CHAPTER

o8 BINARY MACHINE VISION

Thresholding and Segmentation

Introduction

In the detection and recognition of two-dimensional or three-dimensional objects or
object defects by a computer vision system, the input image is often simplified by
generating an output image whose pixels tend to have high values if they are part
of an object of interest and low values if they are not part of any object of interest.
To actually recognize an object, regions on the image that have the potential for
being some part of the object first need to be identified. The simplest, although not
necessarily the best, way to identify these object regions is to perform a threshold-
labeling operation in which each pixel that has a high enough value is given the value
binary 1. The value binary 1 here designates that the pixel has some possibility of
being part of an object of interest. Each pixel that does not have a high enough value
is given the value binary 0. This designates that it has little possibility of being part
of any object of interest. The generation and analysis of such a binary image is
called binary machine vision.

The first step of binary machine vision is to threshold a gray scale image, thereby
labeling each pixel as a binary O or a binary 1. The binary-1 label designates a pixel
that is considered to be part of an object of interest. The binary-0 label designates
a background pixel. Thresholding is a labeling operation.

Depending on the complexity of the objects and the nature of the shapes to
be identified and their expected relative positions, the next stage of processing
could be one of two midlevel vision grouping techniques: connected components
labeling or signature segmentation. Both these techniques make a transformation
on the kind of units being processed. The units of the image are the pixels. The
units after the transformation are more complex; they are called regions or segments
and are composed of groupings of pixels. After the regions are defined, a variety
of measurements can be made on them. This constitutes an attribute labeling or
property measurement step that we call feature extraction. The regions are finally
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14 Binary Machine Vision

assigned an object class or an object defect class or category through a pattern
recognition technique. This constitutes the matching and inferring steps.

The operation sequence of thresholding, connected components labeling, re-
gion property measurement, and statistical pattern recognition is called connected
components analysis. This was the basis of what has come to be known as the
SRI algorithm (Gleason and Agin, 1979; Agin, 1980). The operation sequence of
thresholding, signature segmentation, region property measurement, and statistical
pattern recognition is called signature analysis. This chapter covers the topics of
thresholding and segmentation. Thresholding is discussed in Section 2.2; segmenta-
tion by connected components labeling, in Section 2.3; and signature segmentation
and analysis, in Section 2.4.

- Thresholding

Thresholding is a labeling operation on a gray scale image. Thresholding distin-
guishes pixels that have higher gray values from pixels that have lower gray values.
Pixels whose gray values are high enough are given the binary value 1. Pixels whose
gray values are not high enough are given the binary value 0. Figure 2.1 illustrates
a simple gray scale image. Figure 2.2 illustrates a thresholded image obtained by
making all pixels having a value greater than 1 a binary 1 and all other pixels a
binary 0.

The question of thresholding is a question of the automatic determination of
the threshold value. What basis can be used? Since the threshold value separates
the dark background from the bright object (or vice versa), the separation could
ideally be done if the distribution of dark pixels were known and the distribution
of bright pixels were known. The threshold value could then be determined as that
separation value for which the fraction of dark pixels labeled binary 1 equals the
fraction of bright pixels labeled binary 0. Such a threshold value would equalize the
probability of the two kinds of errors: the error of assigning a pixel belonging to
the background as a binary 1 and the error of assigning a pixel belonging to the
object as a binary 0. The difficulty here is that the independent distributions of dark
and bright pixels are often not known ahead of time. What is known is the image
histogram, which tells how many pixels are associated with any gray value in the
mixture distribution.

The histogram h of a digital image I is defined by h(m) = #{(r,c) | I(r,c) =
m}, where m spans each gray level value and # is the operator that counts the
number of elements in a set. A histogram can be computed by using an array
data structure and a very simple procedure. Let H be a vector array dimensioned
from 0 to MAX, where O is the value of the smallest possible gray level value and
MAX is the value of the largest. Let I be a two-dimensional array, dimensioned
1 to ROWSIZE by 1 to COLSIZE that holds a gray level image. The histogram
procedure is given by

procedure Histogram(I,H);
“Initialize histogram to zero.”
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Figure 2.1 Original gray scale image. Pixels having no numbers have value of 0.

for i := 0 to MAX do
H(@) := 0;
“Compute values by accumulation.”

for r := 1 to ROWSIZE do
for ¢ := 1 to COLSIZE do
begin
grayval := I(r,c);
H(grayval) := H(grayval) + 1
end
end for
end for
end Histogram

If the distributions of dark pixels and bright pixels are widely separated, then
the image histogram will be bimodal, one mode corresponding to the dark pixels
and one mode corresponding to the bright pixels. With little distribution overlap, the
threshold value is easily chosen as a value in the valley between the two dominant
histogram modes. This is illustrated in Figs. 2.3 through 2.5. However, as the
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Figure 2.2 Thresholded gray scale image. All pixels greater than O are marked
with a binary 1.

distributions for the bright and dark pixels become more and more overlapped, the
choice of threshold value as the valley between the two histogram modes becomes
more difficult, because the valley begins to disappear as the two distributions begin
to merge together. Furthermore, when there is substantial overlap, the choice of
threshold as the valley point is less optimal in the sense of minimizing classification
error.

To make this point, we consider an example. Figure 2.6 illustrates an image
of a BNC T-connector on a dark textured background. In such a simple image one
might hope for a pixel to'be either a part of the background or a part of the object
of interest based purely on its gray value. But things are not so simple. Figure 2.7
shows a histogram of the BNC T-connector image of Fig. 2.6. For this image the
histogram of the combination of the bright object on the dark background is not
bimodal. The placement of the threshold is not so easy to determine.

Figure 2.8 illustrates different thresholds applied to the image of Fig. 2.6. Some
are too low. Some are too high. Thresholds that are too low incorrectly label more
pixels as bright (and therefore as part of the object of interest) than appropriate.
Thresholds that are too high incorrectly label more pixels as dark (and therefore as
not part of the object of interest) than appropriate.
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Figure 2.3 Image of a metal part.

Simple thresholding schemes such as that employed on the image of Fig. 2.6
and shown as the images of Fig. 2.8 compare each pixel’s gray value with the
same global threshold and make the distinction on the basis of whether the pixel’s
gray value is higher than the threshold. More complex thresholding schemes use a
spatially varying threshold. Such techniques can compensate for a variety of local
spatial context effects. Some of the more complex thresholding algorithms can be
decomposed into two algorithms; the first algorithm produces the spatially varying
threshold image, and the second subtracts the spatially varying threshold image from
the original image and then performs a simple thresholding on the difference image.
Such a spatially varying threshold image can be thought of as a means of performing

Figure 2.4 Histogram of the image of Fig. 2.3. The histogram shows two dom-
inant modes. The small mode on the left tail is not significant.
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Figure 2.5 Metal-part image of Fig. 2.3 thresholded at gray level 148, which is
in the valley between the two dominant modes.

background normalization. The technique of constructing a spatially varying thresh-
old image arises naturally in the opening and closing residue operations, which are
discussed in Chapter 5 on mathematical morphology.

In this section we give an.introductory discussion of two methods for simple
thresholding. The key issue is how to select the most appropriate threshold value.
Since all pixels will be compared with the same global threshold, and no further
information is available, it is natural to base the selection of the threshold on the
image histogram.

The two techniques we discuss are based on finding a threshold that minimizes
a criterion function. The first method minimizes the within-group variance. The
second method minimizes the Kullback information measure (Kullback, 1959).

Figure 2.6 BNC T-connector against a dark background.
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Figure 2.7 Histogram of the BNC T-connector image of Fig. 2.6.

(b)

(© (d)

Figure 2.8 Image of the BNC T-connector thresholded at four levels: (a) 110,
(b) 130, (c) 150, and (d) 170.
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2.2.1 Minimizing Within-Group Variance

Let P(1),...,P(I) represent the histogram probabilities of the observed gray val-
ues 1,...,I;P(i) = #{(r,c) | Image(r,c) =i}/#R x C, where R x C is the
spatial domain of the image. If the histogram is bimodal, the histogram threshold-
ing problem is to determine a best threshold ¢ separating the two modes of the
histogram from each other. Each threshold ¢ determines a variance for the group of
values that are less than or equal to ¢ and a variance for the group of values greater
than . The definition for best threshold suggested by Otsu (1979) is that threshold
for which the weighted sum of group variances is minimized. The weights are the
probabilities of the respective groups.

We motivate the within-group variance criterion by considering the situation
that sometimes happens in a schoolroom. An exam is given and the histogram of
the resulting scores is bimodal. There are the better students and the worse students.
Lectures that are aimed at the better students go too fast for the others, and lectures
that are aimed at the level of the worse students are boring to the better students. To
fix this situation, the teacher decides to divide the class into two mutually exclusive
and homogeneous groups based on the test score. The question is to determine
which test score to use as the dividing criterion. Ideally each group should have test
scores that have a unimodal bell-shaped histogram, one around a lower mean and
one around a higher mean. This would indicate that each group is homogeneous
within itself and different from the other.

A measure of group homogeneity is variance. A group with high homogeneity
will have low variance. A group with low homogeneity will have high variance.
One possible way to choose a dividing criterion is to choose a dividing score such
that the resulting weighted sum of the within-group variances is minimized. This
criterion emphasizes high group homogeneity. A second way to choose the dividing
criterion is to choose a dividing score that maximizes the resulting squared difference
between the group means. This difference is related to the between-group variance.
Both dividing criteria lead to the same dividing score because the sum of the within-
group variances and the between-group variances is a constant.

Let o2, be the weighted sum of group variances, that is, the within-group
variance. Let o3(t) be the variance for the group with values less than or equal to
t and o2(¢) be the variance for the group with values greater than ¢. Let g,(f) be
the probability for the group with values less than or equal to ¢ and g,(¢) be the
probability for the group with values greater than ¢. Let u,(¢) be the mean for the
first group and u,(¢) the mean for the second group. Then the within-group variance
o, is defined by

o5 () = (1) o3(1) + ga(t) a2(2)

where

a1y =>_P()
i=1

1
a:(0) =Y _ P@) (2.1)

i=t+1
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wm() =) i P())/q.(t)
i=1

I
wa(t) =Y i P(D)/qa(t) (2.2)

i=t+1

i) = Yl = mI P()/qi(1)

i=1

1
03(1) = Y i = wa(0)] PG)/qa(t) 23)

i=t+1

The best threshold # can then be determined by a simple sequential search through all
possible values of ¢ to locate the threshold ¢ that minimizes o3, (¢). In many situations
this can be reduced to a search between the two modes. However, identification of
the modes is really equivalent to the identification of separating values between the
modes.

There is a relationship between the within-group variance o (¢) and the total
variance o2 that does not depend on the threshold. The total variance is defined by

1
o =) (i —pyP@)
i=1

where
1
p= zi P(i)
i=1

The relationship between the total variance and the within-group variance
can make the calculation of the best threshold less computationally complex. By
rewriting o2, we have

t I
0 = li — ) + pi () —pl’ PG+ Yl — palt) + palt) —p)* PG)
i=1

i=t+1

= }: {li = (OF + 20 = pi(ONps () — p] + [i1() — I} P )

i=1

I
+ 57 {li = waOF +20 — pa(Olpa(8) — w1 + [ua(t) — wI*}P)

i=t+1

But

t

Yl = m@llpa(®) = pIP@) =0 and

i=1

1
Dl = maOllpa(t) = WIP@) =0

i=t+1
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Since

t I
g =) P@) and g() =Y P(i)
i=1

i=t+1

o} =3 "l = mOF PG) + [ () — ul q1(0)

i=l
I
+ 3 = ) PG) + [pa(0) — ) qa(0)
i=t+1
=[q:(t) 01(t) + g2(t) 03(1)]
+{q1(®) [p1(1) — uI* + qa(0) [ua(t) — 1*} (2.4)

The first bracketed term is called the within-group variance o3,. It is just the sum
of the weighted variances of each of the two groups. The second bracketed term is
called the between-group variance o3. It is just the sum of the weighted squared
distances between the means of each group and the grand mean. The between-group
variance can be further simplified. Note that the grand mean u can be written as

g = qi(t) pi(8) + q2(8) pa(2) (2.5)
Using Eq. (2.5) to eliminate x in Eq. (2.4), substituting 1 — g,(¢) for g,(¢), and
simplifying, we obtain )
o* = o, (1) + @i (D[ = GO [r(8) — (D))

Since the total variance o* does not depend on #, the ¢ minimizing o3, (¢) will be
the ¢ maximizing the between-group variance o3(?),

ai(t) = () [1 — g [ (1) — pa(OF (2.6)

To determine the maximizing ¢ for o3(¢), the quantities determined by Egs. (2.1)
to (2.3) all have to be determined. However, this need not be done independently for
each ¢. There is a relationship between the value computed for ¢ and that computed
for the next ¢ : ¢ + 1. We have directly from Eq. (2.1) the recursive relationship

@t +1)=q@)+PCr+1) 2.7

with initial value g,(1) = P(1).
From Eq. (2.2) we obtain the recursive relation

() p() + @ +DP( +1)

t+1)= 2.8
m +1) PNTESY (2.8)
with the initial value u,(0) = 0. Finally, from Eq. (2.5) we have
—qt+ 1) +1
it + 1) = B2 DD p £ D 29

1-q,(t+1)

Figure 2.9 illustrates the binary image produced by the Otsu threshold. Kittler and
Illingworth (1985) note that the between group variance o} is not necessarily a uni-
modal criterion, even though Otsu had hypothesized it was. Also, when the fractions
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Figure 2.9 Binary image produced by thresholding the T-connector image of
Fig. 2.6 with the Otsu threshold. '

of pixels in each mode are far from being approximately equal, the minimization
of ¢, or the equivalent maximization of o} will not necessarily produce the correct
answer.

2.2.2 Minimizing Kullback Information Distance

Kittler and Illingworth (1985) suggest a different criterion from Otsu’s. They assume
that the observations come from a mixture of two Gaussian distributions having
respective means and variances (u;, 07) and (u,, 03) and respective proportions g,
and q,. They determine the threshold T that results in q,, g2, g1, g2, 01, 02, Which
minimize the Kullback (1959) directed divergence J from the observed histogram
P(1),...,P(I) to the unknown mixture distribution f. J is defined by

P(3)
P@) lo
J = Z ) g{m}

A mixture distribution f having fraction g, of distribution 4; and fraction g,
of distribution A, can be represented as

f@) = qih () + q:h:(3)

The mixture distribution of the two Gaussians reflected in the histogram therefore
takes the form

e_%(i%“l : 72 e %(L—g)

)+
\/27!'0’1 V2o,
The meaning of J can be understood in the following way. Let H be the

hypothesis that the observed outcomes follow probability distribution P. Let H' be
the hypothesis that the observed outcomes follow probability distribution f. Let /

S =
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designate a value of an outcome. Then Prob(i|[H) = P(i) and Prob(i|H'") = f(i).
Denote the prior probability of H by Prob(H) and the prior probability of H’ by
Prob(H").

By definition of conditional probability,

Prob(i|H)Prob(H)

Prob(Hli) = B i Prob(H) + Prob(JH )Prob()
B P(i)Prob(H)
" P(@i)Prob(H) + f(i)Prob(H")
Similarly, ‘
Prob(H'|i) = S OProb(H)

P(i)Prob(h) + f(i)Prob(H")

Dividing the two equations and rearranging them yields:

Prob(H|i)Prob(H') P(i)
Prob(H'|i)Prob(H)  f(i)

Hence
P@i) o Prob(H i) o Prob(H)
FG) = B ProbH) % ProbH)

log —— (2.10)

The right-hand side of Eq. (2.10) is the difference between the logarithm of the
odds in favor of H after observing outcome i and the logarithm of the odds in favor
of H before observing outcome i. Therefore log P(i)/f (i) has the interpretation of
the information in the outcome i for discrimination in favor of H against A’. Under
the hypothesis H, the mean information in favor of H against H' is then

P@)
[

J(P; f) has the property that (1) J(P; f) > 0 for all probability distributions P and
f,and (2) J(P; f) =0 if and only if P = f (Kullback, 1959). However, J is not
symmetric and does not satisfy the triangle inequality and is therefore not a metric.

The parameters of the mixture distribution can be estimated by minimizing J.
Now J can be rewritten

J(P;f) = ZP(:)IO

I I
J = Z_;P(i) log P(i) — Z;P(i) log £ ()

Clearly the first term does not depend on the unknown parameters. The minimization
can be done by minimizing the second term. Hence we take the information measure
H to be minimized where '

I
=—> P() log f(i)

i=1
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To carry out the minimization, we assume that the modes are well separated. Hence
for some threshold ¢ that separates the two modes

41/(\/2;00 e_%(i%L)Q» i<t
S ~ o,
l Qz/(\/2_7raz) e ), iy

Now

_ t ) q _1( = )2
H(t) = - E P@)1 2\
® — ¢) log V2rar’

! q YEO %
— P() 1 1 o2\
2008 gt

Upon simplifying we obtain
1 +log 2w
2

The assumption of well separated modes means that if ¢ is the threshold that
separates the modes, the mean and variance estimated from P(1),...,P(¢) will be
close to the true mean and variance p; and g,. Likewise, the mean and variance
estimated from P(¢ + 1),...,P(I) will be close to the true mean and variance p,
and 0,. Hence, using the estimated ‘quantities for the unknown quantities, H(#) can
be evaluated for each threshold ¢. The value ¢ that minimizes H () is then the best
threshold. Figure 2.10 illustrates the binary image of the BNC T-connector image
produced by the Kittler-Illingworth technique. Figure 2.11 shows the histogram of
the T-connector image and the places where the Otsu technique and the Kittler-
Illingworth technique determine the threshold. The difference is substantial. In this
case the Otsu technique detected all the pixels belonging to the connecter but at the

1
H = — qilog g — g:log > + 5 (q1log ol +qilog 0))  (2.11)

Figure 2.10 Binary image produced by thresholding the T-connector image of
Fig. 2.6 with the Kittler-Illingworth threshold.
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Figure 2.11 Histogram of the image of Fig. 2.6 showing where the Otsu and
Kittler-Illingworth techniques choose the threshold value. The leftmost dark line
is the Otsu threshold. The rightmost dark line is the Kittler-Illingworth threshold.

expense of many background pixels being falsely detected. In the case of the Kittler-
Illingworth technique, no background pixels were falsely detected, but not quite
all the connector pixels were detected. On balance, for gray scale images having
bimodal histograms, machine vision techniques will have an easier job working with
the binary images produced by the Kittler-Illingworth threshold than with the images
produced by the Otsu threshold.

The evaluation of the best Kittler-Illingworth threshold ¢ can be simplified by
using the results of the previous ¢. From Egs. (2.1) and (2.3), we can develop the
recursive equations

@) {a1) + [ () — it + D'} + Pt + D[+ 1) — gyt + DY

2 —
o/ (t+1)= PRCEY)
o5t +1) =
(1= g1 {03(0) + [p2(t) — po(t + DI’} =Pt + D2 + 1) — po(t + DY
1—-q+1

which can be used in evaluating the H(¢) of Eq. (2.10). Then u(f), u,(¢), and
q:(2) can be recursively computed using Egs. (2.7), (2.8), and (2.9).

Instead of using the criterion of Kittler and Illingworth; we can use the more
theoretically powerful criterion of probability of correct classification P.(z) that
would be obtained by a threshold classifier under the assumption of class conditional
Gaussian distributions. If we assume, without loss of generality, that u, < p,, the
probability of correct classification with threshold value ¢ is given by

P(t)—qlmqs( > >+<12(t) [1— (’—;ﬁiﬂ
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where 1 .
= —_— _%"zd
o0 = = [ e au

This is illustrated in Fig. 2.12.

In using the criterion of probability of correct classification, the means p, and u,
are each computed by using a distribution; one of whose tails has been truncated. The
smaller-valued mean comes from a distribution whose right tail has been truncated,
and the larger-valued mean comes from a distribution whose left tail has been
truncated. Thus the smaller mean is biased too small and the larger mean is biased
too high. It is possible to correct for these biases.

If p denotes the mean of a normal distribution having variance ¢2, with a
truncated right tail, and u* denotes the mean of the same normal distribution without
its right tail, then it is easy to derive

. g 1 _%(f_-ﬁ)z

where ¢ is the truncation point.
As a first order correction to u, we can estimate the mean of the normal without
a truncated right tail by

0 L a5y

=

__49
fI(X)—\/z—ﬂO'l e

- 2
-3

q, _,_(x_,,z 2

O
\/21r02 e

Figure 2.12 Mixture of two Gaussians. If an assignment is made to background
pixel whenever x < ¢ and an assignment is made to foreground pixel whenever
X > t, the probability of observing an x < ¢ and classifying it as background
will be the area under f to the left of ¢. The probability of observing an x > ¢
and classifying it as foreground will be the area under f> to the right of ¢.

fz(x) =
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Similarly, if u denotes the mean of a normal distribution with a truncated left
tail, we can obtain

=t — L -1y

$(F) Vor

Cho, Haralick, and Yi (1989) demonstrate how the use of these corrections can
improve the performance of the Kittler-Illingworth technique.

Several other thresholding techniques are discussed in the vision literature.
Some of them do not work as well as the Kullback information we do discuss.
Unfortunately, there seems to be no uniform solution to the thresholding problem
without simplifying the assumptions such as mixture of Gaussians.

Weszka and Rosenfeld (1978) discuss a variety of ways to evaluate threshold-
ing techniques. Weszka (1978) and Sahoo et al. (1988) survey thresholding tech-
niques. Tsai (1985) suggests thresholding based on preserving values of moments.
Wu, Hong, and Rosenfeld (1982) suggest using a quadtree segmentation procedure.
There, the histogram of the resulting larger near piecewise constant regions will be
highly peaked, the various peaks corresponding to the modes.

A few papers have suggested combining histogram information with edge and
gradient information: Weszka, Nagel, and Rosenfeld (1974); Weszka and Rosenfeld
(1979); Milgram and Herman (1979); and Kittler, Illingworth, and Foglein (1985).
Kirby and Rosenfeld (1979) combine gray level and local neighborhood gray level.
Abutaleb (1989) uses the same combination along with an entropy criterion. Ahuja
and Rosenfeld (1978) suggest using the distribution of spatially neighboring gray
tones. Kohler (1981) selects a threshold to maximize the resulting contrast between
the gray value coming from binary-1 pixels adjacent to binary-0 pixels.

Connected Components Labeling

Connected components analysis of a binary image consists of the connected com-
ponents labeling of the binary-1 pixels followed by property measurement of the
component regions and decision making. The connected components labeling oper-
ation performs the unit change from pixel to region or segment. All pixels that have
value binary 1 and are connected to each other by a path of pixels all with value bi-
nary 1 are given the same identifying label. The label is a unique name or index
of the region to which the pixels belong. The label is the identifier for a potential
object region. Connected components labeling is a grouping operation.

The units of the image are pixels, and the filtering techniques of image pro-
cessing transform pixels to pixels. Connected components labeling is one image-
processing technique that can make a unit change from pixel to region. The region is
a more complex unit than the pixel. The only properties a pixel has are its position
and its gray level or brightness level. A region has a much richer set of properties.
A region has shape and position properties as well as statistical properties of the
gray levels of the pixels in the region.
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To each region, therefore, we can construct an N-tuple or vector of its measure-
ment properties. One way to recognize different objects, object defects, or characters
is to distinguish between the regions on the basis of their measurement properties.
This is the role of statistical pattern recognition, which is discussed in Chapter 4.
This section examines connected components labeling algorithms, which in essence
group together all pixels belonging to the same region and give them the same la-
bel. Software for performing connected components labeling can be found in Ronse
and Divijver (1984) and in Cunningham (1981). An APL-based strategy for the
extraction of binary image structures is given in Mussio and Padula (1985).

2.3.1 Connected Components Operators

Once a gray level image has been processed to remove noise and thresholded to
produce a binary image, a connected components labeling operator can be employed
to group the binary-1 pixels into maximal connected regions. These regions are
called the connected components of the binary image, and the associated operator
is called the connected components operator. Its input is a binary image and
its output is a symbolic image in which the label assigned to each pixel is an
integer uniquely identifying the connected component to which that pixel belongs.
Figure 2.13 illustrates the connected components operator as applied to the 1-pixels
of a binary image. The same operator can, of course, be applied to the O-pixels.
Two 1-pixels p and g belong to the same connected component C if there is
a sequence of 1-pixels (po,pi,...,p,) of C where p, = p, p, = q, and p; is
a neighbor of p;_, for i = 1,...,n. Thus the definition of a connected compo-
nent depends on the definition of neighbor. When only the north, south, east, and
west neighbors of a pixel are considered part of its neighborhood, then the result-
ing regions are called 4-connected. When the north, south, east, west, northeast,
northwest, southeast, and southwest neighbors of a pixel are considered part of its
neighborhood, the resulting regions are called 8-connected. This is illustrated in
Fig. 2.14. Whichever definition is used, the neighbors of a pixel are said to be ad-
Jacent to that pixel. The border of a connected component of 1-pixels is the subset
of pixels belonging to the component that are also adjacent to O-pixels. Similarly,

. ° .
o | X | o e [ X | o
. .

(@ (b)

Figure 2.13 (a) Function of the connected components operator on a binary
image; (b) Symbolic image produced from (a) by the connected components
operator.
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Figure 2.14 (a) Pixels, e, that are 4-connected to the center pixel x; (b) pixels,
o, that are 8-connected to the center pixel x.

the border of a connected component of O-pixels is the subset of pixels of that
component that are also adjacent to 1-pixels.

Rosenfeld (1970) has shown that if C is a component of 1s and D is an adjacent
component of Os, and if 4-connectedness is used for 1-pixels and 8-connectedness
is used for O-pixels, then either C surrounds D (D is a hole in C) or D surrounds
C (C is a hole in D). This is also true when 8-connectedness is used for 1-pixels
and 4-connectedness for O-pixels, but not when 4-connectedness is used for both
1-pixels and O-pixels and not when 8-connectedness is used for both 1-pixels and
0-pixels. Figure 2.15 illustrates this phenomenon. The surroundedness property is
desirable because it allows borders to be treated as closed curves. Because of this, it
is common to use one type of connectedness for 1-pixels and the other for 0-pixels.
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Figure 2.15 Phenomenon associated with using 4- and 8-adjacency in connected
components analyses. Numeric labels are used for components of 1-pixels and
letter labels for’'O-pixels. (a) Binary image; (b) connected components labeling
with 4-adjacency used for both 1-pixels and 0-pixels; (c) connected components
labeling with 8-adjacency used for both 1-pixels and O-pixels; and (d) connected
components labeling with 8-adjacency used for 1-pixels and 4-adjacency used for
0-pixels.



32 Binary Machine Vision
2.3.3 An lterative Algorithm

The iterative algorithm (Haralick, 1981) uses no auxillary storage to produce the
labeled image from the binary image. It would be useful in environments whose
storage is severely limited or on SIMD hardware. It consists of an initialization
step plus a sequence of top-down label propagation followed by bottom-up label
propagation iterated until no label changes occur. Figure 2.17 illustrates the iterative
algorithm on a simple image.

This algorithm and the others will be expressed in pseudocode for an NLINES
by NPIXELS binary image I and label image LABEL. The function NEWLABEL
generates a new integer label each time it is called. The function NEIGHBORS
returns the set of already-labeled neighbors of a given pixel on its own line or the
previous line. The function LABELS, when given such a set of already-labeled
pixels, returns the set of their labels. Finally, the function MIN, when given a set
of labels, returns the minimum label.

' procedure Iterate;
“Initialization of each 1-pixel to a unique label”
for L := 1 to NLINES do
for P :=1 to NPIXELS do
if (L,P) =1
then LABEL (L,P) := NEWLABEL( )
else LABEL(L,P) :=0
end for
end for;

“Iteration of top-down followed by bottom-up passes”
repeat ’

1)1 11 1{2 3
11 1]1 516 8
11111 9|10]11]12]13
(a) (b)
1{1{ |3]3 11 11
1/1] [3]3 11 11
1j1f1]1]1 Tj11]1]1
(©) (d

Figure 2.17 Iterative algorithm for connected components labeling. Part
(a) shows the original binary image; (b) the results after initialization of each
1-pixel to a unique label; (c) the results after the first top-down pass, in which
the value of each nonzero pixel is replaced by the minimum value of its nonzero
neighbors in a recursive manner going from left to right and top to bottom; and
(d) the results after the first bottom-up pass.
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“Top-down pass”’
CHANGE := false;
for L := 1 to NLINES do -
for P := 1 to NPIXELS do
if LABEL(L,P) <> 0O then
begin
M := MIN(LABELS(NEIGHBORS((L,P)) U (L,P)));
if M <> LABEL(L,P)
then CHANGE := true;
LABEL(L,P) :=M
end
.end for
end for;

“Bottom-up pass’’

for L := NLINES to 1 by -1 do
for P := NPIXELS to 1 by -1 do
if LABEL(L,P) <> 0 then
begin
M := MIN(LABELS(NEIGHBORS((L,P)) U (L,P)));
if M <> LABEL(L,P)
then CHANGE := true;
LABEL(L,P) :=M
end
end for
end for
until CHANGE := false
end Iterate

This algorithm selects the minimum label of its neighbors to assign to pixel
A. It does not directly keep track of equivalences but instead uses a number of
passes through the image to complete the labeling. It alternates top-down, left-to-
right passes with bottom-up, right-to-left passes so that labels near the bottom or
right margins of the image will propagate sooner than if all passes were top-down,
left-to-right. This is an attempt to reduce the number of passes. The algorithm has a
natural extension for SIMD parallel processing (Manohar and Ramapriyan, 1989).

2.3.4 The Classical Algorithm

The classical algorithm, deemed so because it is based on the classical connected
components algorithm for graphs, was described in Rosenfeld and Pfaltz (1966).
This algorithm makes only two passes through the image but requires a large global
table for recording equivalences. The first pass performs label propagation, much
as described above. Whenever a situation arises in which two different labels can
propagate to the same pixel, the smaller label propagates and each such equivalence
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found is entered in an equivalence table. Each entry in the equivalence table consists
of an ordered pair, the values of its components being the labels found to be equiv-
alent. After the first pass, the equivalence classes are found by taking the transitive
closure of the set of equivalences recorded in the equivalence table. In the algorithm
we call this the “Resolve” function. It is a standard algorithm discussed in many
books on algorithms, such as Aho, Hopcroft, and Ullman (1983). Each equivalence
class is assigned a unique label, usually the minimum (or oldest) label in the class.
Finally, a second pass through the image performs a translation, assigning to each
pixel the label of the equivalence class of its pass-1 label. This process is illustrated
in Fig. 2.18, and the algorithm is given below.

procedure Classical
““Initialize global equivalence table.”
EQTABLE := CREATE( );
«“Top-down pass 1”
for L := 1 to NLINES do
<“Initialize all labels on line L to zero.”

for P := 1 to NPIXELS do
LABEL(L,P) :=0

end for;

“«Process the line.”

for P := 1 to NPIXELS do
if F(L,P) :=1 then
begin
A := NEIGHBORS((L,P));
if ISEMPTY(A)
then M := NEWLABEL( )
else M := MIN(LABELS(A));
LABEL(L,P) := M;
for X in LABELS(A) and X <> M
ADD(X, M, EQTABLE)
end for;
end
end for
end for;
«Find equivalence classes.”

EQCLASSES := Resolve(EQTABLE);
for E in EQCLASSES

EQLABEL(E) := min(LABELS(E))
end for;

«“Top-down pass 2”

for L := 1 to NLINES do
for P := 1 to NPIXELS do
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Figure 2.18 Classical connected components labeling algorithm: Part (a)
shows the initial binary image, and (b) the labeling after the first
top-down pass of the algorithm. The equivalence classes found are 1:
{1,12,7,8,9,10,5 } and 2: { 2,3,4,6,11,13 }.

if (L,P) =1
then LABEL(L,P) := EQLABEL(CLASS(LABEL(L,P)))
end for
end for
end Classical

The algorithm referred to as RESOLVE is simply the algorithm for finding
the connected components of the graph structure defined by the set of equivalences
(EQTABLE) defined in pass 1. The nodes of the graph are region labels, and the
edges are pairs of labels_that have been declared equivalent. The procedure, which
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Figure 2.18 Continued.

uses a standard depth-first search algorithm, can be stated as follows:

procedure RESOLVE(EQTABLE);
list_of_components := nil;

for each unmarked node N in EQTABLE
current_component := DFS(N,EQTABLE);
add_to_list(list_of_components,current_component)
end for
end RESOLVE

In this procedure, list_of_components is a list that will contain the final resultant
equivalence classes. The function DFS performs a depth-first search of the graph
beginning at the given node N and returns a list of all the nodes it has visited in
the process. It also marks each node as it is visited. A standard depth-first search
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algorithm is given in Horowitz and Sahni (1982) and in most other data structures
texts.

The main problem with the classical algorithm is the global equivalence table.
For large images with many regions, the equivalence table can become very large.
On some machines there is not enough memory to hold the table. On other machines
that use paging, the table gets paged in and out of memory frequently. For example,
on a VAX 11/780 system, the classical algorithm ran (including I/O) in 8.4 seconds
with. 1791 page faults on one 6000-pixel image but took 5021.0 seconds with 23,674
page faults on one 920,000-pixel image. This motivates algorithms that avoid the
use of the large global equivalence table for computers employing virtual memory.

2.3.5 A Space-Efficient Two-Pass Algorithm That Uses
a Local Equivalence Table

One solution to the space problem is the use of a small local equivalence table that
stores only the equivalences detected from the current line of the image and the line
that precedes it. Thus the maximum number of equivalences is the number of pixels
per line. These equivalences are then used in the propagation step to the next line.
In this case not all the equivalencing is done by the end of the first top-down pass,
and a second pass is required for both the remainder of the equivalence finding and
for assigning the final labels. The algorithm is illustrated in Fig. 2.19. As in the
iterative algorithm, the second pass is bottom-up. This is not required but is done
this way for consistency with other algorithms that do require a bottom-up pass,
and will be discussed in a later chapter. We will state the general algorithm (Lumia,
Shapiro, and Zuniga, 1983) in the same pseudocode we have been using and then
describe, in more detail, an efficient run-length implementation.

procedure Local_Table_Method
“Top-down pass”’
for L := 1 to NLINES do
begin
“Initialize local equivalence table for line L.”
EQTABLE := CREATEC( );
“Initialize all labels on line L to zero.”
for P := 1 to NPIXELS do
LABEL(L,P) :=0
end for;
“Process the line.”
for P := 1 to NPIXELS do
if I(L,P) := 1 then
begin
A := NEIGHBORS((L,P));
if ISEMPTY(A)
then M := NEWLABEL( )
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Figure 2.19 Results after the top-down pass of the local table method on the
binary image of Fig. 2.18(a). Note that on the lines where equivalences were
detected, the pixels have different labels from those they had after pass 1 of the
classical algorithm. For example, on line 5 the four leading 3s were changed to
2s on the second scan of that line, after the equivalence of labels 2 and 3 was
detected. The bottom up pass will now propagate the label 1 to all pixels of the
single connected component.

else M := MIN(LABELS(A) );
LABEL(L,P) :=M;
for X in LABELS(A) and X <> M
ADD (X,M, EQTABLE)
end for
end
end for;

“Find equivalence classes detected on this line.”

EQCLASSES := Resolve(EQTABLE);
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for E in EQCLASSES do
EQLABEL(E) := MIN(LABELS(E))
end for;
“‘Relabel the parts of line L with their equivalence class labels.”

for P := 1 to NPIXELS do

if I(L,P) :=1
then LABEL(L,P) := EQLABEL(CLASS(LABEL(L P))
end for
end
end for;

“Bottom-up pass”

for L := NLINES to 1 by -1 do
begin

““Initialize local equivalence table for line L.”
EQTABLE := CREATE( );
“Process the line.”

for P := 1 to NPIXELS do
if LABEL(L,P) <>O0 then .
begin
LA = LABELS(NEIGHBORS(L P));
for X in LA and X <> LABEL(L,P)
ADD (X,LABEL(L,P), EQTABLE)
end for
end
end for
end
end for

“Find equivalence classes.”

EQCLASSES := Resolve(EQTABLE);
for E in EQCLASSES do

EQLABEL(E) := MIN(LABELS(E))
end for ;

“‘Relabel the pixels of line L one last time.”

for P := 1 to NPIXELS do

if LABEL(L,P) <> 0

then LABEL(L,P) := EQLABEL(CLASS(LABEL(L, P)))
end for
end Local_Table_Method

39

In comparison with the classical algorithm, the local table method took 8.8
seconds with 1763 page faults on the 6000-pixel image, but only 626.83 seconds
with 15,391 page faults on the 920,000-pixel image, which is 8 times faster. For an
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even larger 5,120,000-pixel image, the local table method ran 31 times faster than
the classical method.

2.3.6 An Efficient Run-Length Implementation of the
Local Table Method

In many industrial applications the image used is from a television camera and thus
is roughly 512 x 512 pixels, or 260K, in size. On an image half this size, the local
table method as implemented on the VAX 11/780 took 116 seconds to execute,
including I/O time. But industrial applications often require times of less than one
second. To achieve this kind of efficiency, the algorithm can be implemented on a
machine with some special hardware capabilities. The hardware is used to rapidly
extract a run-length encoding of the image, and the software implementation can then
work on the more compact run-length data. Ronse and Devijver (1984) advocate
this approach.

A run-length encoding of a binary image is a list of contiguous typically
horizontal runs of 1-pixels. For each run, the location of the starting pixel of the
run and either its length or the location of its ending pixel must be recorded.
Figure 2.20 shows the run-length data structure used in our implementation. Each
run in the image is encoded by its starting- and ending-pixel locations. (ROW,
START_COL) is the location of the starting pixel, and (ROW, END_COL) is the
location of the ending pixel, PERM_LABEL is the field in which the label of the
connected component to which this run belongs will be stored. It is initialized to
zero and assigned temporary values in pass 1 of the algorithm. At the end of pass
2, the PERM_LABEL field contains the final, permanent label of the run. This
structure can then be used to output the labels back to the corresponding pixels of
the output image. .

Consider a run P of 1-pixels. During pass 1, when the run has not yet been
fully processed, PERM_LABEL(P) will be zero. After run P has been processed
and determined to be adjacent to some other run Q on the previous row, it
will be assigned the current label of Q, PERM_LABEL(Q). If it is determined
to be adjacent to other runs Q;,Q,,...,Qx also on the previous row, then the
equivalence of PERM_LABEL(Q), PERM_LABEL(Q,), PERM_LABEL(Q,),...,
PERM_LABEL(Q) must be recorded. The data structures used for recording the
equivalences are shown in Fig. 2.21. For a given run P, PERM_LABEL(P) may
be zero or nonzero. If it is nonzero, then LABEL(PERM_LABEL(P)) may be zero
or nonzero. If it is zero, then PERM_LABEL(P) is the current label of the run and
there is no equivalence class. If it is nonzero, then there is an equivalence class
and the value of LABEL(PERM_LABEL(P)) is the label assigned to that class. All
the labels that have been merged to form this class will have the same class label;
that is, if run P and run P’ are in the same class, LABEL(PERM_LABEL(P)) =
LABEL(PERM_LABEL(P’)). When such an equivalence is determined, if each run
was already a member of a class and the two classes were different, the two classes
are merged. This is accomplished by linking together each prior label belonging
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Figure 2.20 Binary image (a) and its run-length encoding (b) and (c). Each run
of 1-pixels is encoded by its row (ROW) and the columns of its starting and
ending pixels (START_.COL and END_COL). In addition, for each row of the
image, ROW_START points to the first run of the row and ROW_END points to
the last run of the row. The PERM_LABEL field will hold the component label
of the run; it is initialized to zero.

to a single class in a linked list pointed to by EQ_CLASS(L) for class label L and
linked together using the NEXT field of the LABEL/NEXT structure. To merge two
classes, the last cell of one is made to point to the first cell of the second, and the
LABEL field of each cell of the second is changed to reflect the new label of the
class. ' ‘

In this implementation the value of the minimum label does not always become
the label of the equivalence class. Instead, a single-member class is always merged
into and assigned the label of a multimember class. This allows the algorithm to
avoid traversing the linked list of the larger class to change all its labels when only
one element is being added. Only when both classes are multimember is one of the
labels selected. In this case the first label of the two being merged is selected as
the equivalence class field. The equivalencing procedure, make_equivalent, is given
below. :

procedure make_equivalent (I1, I2);

“I1 is the value of PERM_LABEL(R1) and 12 is the value of PERM_
LABEL(R2) for two different runs R1 and R2. They have been detected to be
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Figure 2.21 Data structures used for keeping track of equivalence classes. In this
example, run 4 has PERM_LABEL 1, which is an index into the LABEL array,
that gives the equivalence class label for each possible PERM_LABEL value.
In the example, PERM_LABELS 1,2, and 3 have all been determined to be
equivalent, so LABEL(1), LABEL(2), and LABEL(3) all contain the equivalence
class label, which is 1. Furthermore, the equivalence class label is an index into
the EQ_CLASS array that contains pointers to the beginnings of the equivalence
classes that are linked lists in the LABEL/NEXT structure. In this example there
is only one equivalence class, class 1, and three elements of the LABEL/NEXT
array are linked together to form this class.

equivalent. The purpose of this routine is to make them equivalent in the

data structures.

case

9

LABEL(I1) = 0 and LABEL(I2) = O:

“Both classes have only one member. Create a new class with
I1 as the label.”

begin

LABEL(1) :=I1;
LABEL(I2) :=I1;
NEXT(1) := I2;
NEXT(12) :=0;

. EQ_CLASS(1) :=11

end;

LABEL(I1) = LABEL(12):
*“Both labels already belong to the same class.”

return;

LABEL(I1) <> 0 and LABEL(I2) = 0:
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“There is more than one member in the class with label 11,
but only one in the class with label I2. So add the
smaller class to the larger.”
begin
BEGINNING := LABEL(I1);
LABEL(I2) := BEGINNING;
NEXT(12) := EQ_CLASS(BEGINNING);
EQ_CLASS(BEGINNING) :=12
end;
LABEL(I1) = 0 and LABEL(I2) <> O:

“There is more than one member in the class with label 12,
but only one in the class with label I1. Add the smaller class
to the larger.”
begin
BEGINNING := LABEL(I2);
LABEL(I1) := BEGINNING;
NEXT(11) := EQ_.CLASS(BEGINNING);
EQ_CLASS(BEGINNING) :=11
end;
LABEL (I1) <> 0 and LABEL (I2) <> 0:

“Both classes are multimember. Merge them by linking the first
onto the end of the second, and assign label I1.”
begin
BEGINNING := LABEL(12);
MEMBER := EQ.CLASS(BEGINNING);
EQ_LABEL := LABEL(I1);
while NEXT(MEMBER) <> 0 do
LABEL(MEMBER) := EQ_LABEL;
MEMBER := NEXT(MEMBER)
end while;
LABEL(MEMBER) := EQ_LABEL,;
NEXT(MEMBER) := EQ_CLASS(EQ_LABEL);
EQ_CLASS(EQ-LABEL) := EQ_CLASS(BEGINNING);
EQ_CLASS(BEGINNING) :=0
end
end case;
return
end make_equivalent

With this procedure, the run length implementation is as follows:

procedure Run_Length Implementation
“Initialize PERM_LABEL array.”
for R :=1 to NRUNS do
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PERM_LABEL(R) :=0
end for;
“Top-down pass”
for L := 1 to NLINES do
begin
P := ROW_START(L);
PLAST := ROW_END(L);
ifL=1
then begin Q := 0; QLAST := 0 end
else begin Q := ROW_START(L-1); QLAST := ROW_END(L-1) end;
ifP<>0and Q <>0
then INITIALIZE EQUIV( );
“SCAN 1”7

“Either a given run is connected to a run on the previous row or
it is not. If it is, assign it the label of the first run to which it

is connected. For each subsequent run of the previous

row to which it is connected and whose label is different from its
own, equivalence its label with that run’s label.”

while P<= PLAST and Q <= QLAST do
““Check whether runs P and Q overlap.”
case
END_COL(P) < START_COL(Q):
“Current run ends before start of run on previous row.”
P:=P +1;
END_COL(Q) < START_COL(P):
“Current run begins after end of run on previous row.”
Q:=Q+1;
else :
“There is some overlap between run P and run Q.”
begin
PLABEL := PERM_LABEL(P);

case
PLABEL = 0:

“There is no permanent label yet; assign Q’s label.”
PERM_LABEL(P) := PERM_LABEL(Q);
PLABEL <> 0 and PERM_LABEL(Q) <> PLABEL,;

“There is a permanent label that is different from the
label of run Q; make them equivalent.”

make_equivalent(LABEL, PERM_LABEL/(Q));
end case;

“Increment P or Q or both as necessary.”
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case

END_COL(P) > END_COL(Q):
Q:=Q+1,;
END_COL(Q) > END_COL(P);
P:=P+1;
END_COL(Q) = END_COL(P):
begin Q := Q+1; P := P+1 end;
end case
end
end case
end while;

“SCAN 2”

“Make a second scan through the runs of the current row.
Assign new labels to isolated runs and the labels of their
equivalence classes to all the rest.”
:= ROWSTART(L);
while P <= PLAST do
begin
PLABEL := PERM_LABEL(P);
case
PLABEL = 0:

“No permanent label exists yet, so assign one.”’

PERM_LABEL(P) := NEW_LABEL( );
PLABEL <> 0 and LABEL(PLABEL) <> 0:

“Permanent label and equivalence class;
assign the equivalence class label.”

PERM_LABEL(P):=LABEL(PLABEL);
end case;
P:=P+1
end
end while

“Bottom-up pass’’

for L := NLINES to 1 by -1 do
begin

P := ROW _START(L);
PLAST := ROW_END(L);
if L = NLINES
then begin Q := 0; QLAST := 0 end
else begin Q := ROW_START(L+1); QLAST := ROW_END(L+1) end
ifP<>0and Q <> 0
then INITIALIZE EQUIV( );

“SCAN 1”7
while P < PLAST and Q < QLAST do
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case
END_COL(P) < START_COL(Q):
= P+1;
END_COL(Q) < START_COL(P):
Q:=Q+1
else :
“There is some overlap; if the two adjacent runs have different labels,
then assign Q’s label to run P.”
begin
if PERM_LABEL(P) <> PERM_LABEL(Q) then
begin
LABEL(PERM_LABEL(P)) := PERM_LABEL(Q);
PERM_LABEL(P) := PERM_LABEL(Q)
end;

“Increment P or Q or both as necessary.”

case
END_COL(P) > END_COL(Q):
Q:=Q+1
END_COL(Q) > END_COL(P):
=P+1,
END_COL(Q) = END_COL(P):
begin Q := Q+1; P := P+1 end
end case;
end
end case
end while

“SCAN 27

P := ROW_START(L);
while P < PLAST do

“Replace P’s label by its class label.”

if LABEL(PERM_LABEL(P)) <> 0
then PERM_LABEL(P) := LABEL(PERM_LABEL(P));
end while
end
end Run_Length Implementation

There is one other significant difference between procedure Run_Length_
Implementation and procedure Local Table_Method besides the data structures.
Procedure Local _Table_ Method computed equivalence classes using Resolve both in
the top-down pass and in the bottom-up pass. Procedure Run_Length Implemen-
tation updates equivalence classes in the top-down pass using make_equivalent, but
it only propagates and replaces labels in the bottom-up pass. This gives correct
results not only in procedure Run_Length Implementation but also back in pro
cedure Local Table_Method. To prove this, note that the last row of the image is
labeled correctly by the two algorithms. That is, after the top-down pass, each pixel
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in the last row has its final label. (This was proved in Lumia, Shapiro, and
Zuniga, 1983.) -

Now consider the bottom-up pass. The bottom row is already correctly labeled.
Suppose k rows have been correctly labeled and the algorithm proceeds with row
k +1 (from the bottom). Further suppose there are two pixels p and g on row k +1
that are part of the same connected component but have different labels from the
top-down pass. Then the bridge between p and g that connects them must certainly
be below them, since if it were above them, they would have the same label from
the propagation and equivalencing efforts of the top-down pass. Since the bridge is
below, there must be pixels on row k that form part of the bridge and whose labels
will propagate to p and g. But row k is correctly labeled. So these bridge pixels all
have the same final label, and that one label will become the label of both p and q.
Therefore only propagation is necessary on the bottom-up pass in both algorithms
to take care of this situation.

A second situation occurs when row & + 1 has two pixels p and g that are part
of the same connected component and, although they have the same label from the
top-down pass, it is not the final label because of some bridging that occurs for the
component segment from below. In this case at least one of the pixels p or g must
bridge to a correctly labeled neighboring pixel on row k from the bottom. Then one
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Figure 2.22 Diagram showing how the bottom-up pass needs only to propagate
and replace the label 1 to the two pixels having label 2 on the fourth row from
bottom. Note that one of these label-2 pixels is not connected to a label-1 pixel.
This means that the neighborhood propagate only will not work for the bottom-up
pass. After the 1-labeled pixel of row 4, column 4, propagates its label to the 2-
labeled pixel of row 3, column 3, the replace operation must replace the label of
the 1-labeled pixel of row 3, column 1, to label 1. (a) Binary image; (b) labeling
after top-down pass; (c) labeling after processing the first four bottom rows;
(d) final labeling after bottom-up pass.
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pixel, say p, will get a correct label from the neighborhood propagate operation.
In order for g to get the correct label, the replace operation must be performed in
which each pixel on row & + 1 from the bottom that has the same label as g gets
its label replaced by the label that the neighborhood propagate operation gave pixel
p. This situation is illustrated in Fig. 2.22.

Signature Segmentation and Analysis

Signature analysis, like connected components analysis, performs a unit change from
the pixel to the region or segment. Signature segmentation consists of taking one or
more projections of a binary image or a subimage of a binary image, segmenting
each projection to form the new higher-level unit, and taking property measurements
of each projection segment. Signature analysis consists of generating the binary
image by a thresholding technique, taking projections, and finally making decisions
about the objects on the basis of properties of the projections. Projections can
be vertical, horizontal, diagonal, circular, radial, spiral, or general projections.
Signature analysis was first used in character recognition. It is important for binary
vision because it can easily be computed in real time. Sanz, Hinkle, and Dinstein
(1985) and Sanz and Dinstein (1987) discuss one kind of a pipeline architecture to
compute projections and projection-based geometric features.

A general projection of a given binary image can be produced by masking a
projection index image with the given binary image. Each pixel of the resulting
image has a value of O if the corresponding pixel on the binary image is a 0.
And if the pixel of the binary image is a 1, then the pixel will take the value of
the corresponding pixel of the projection index image. The signature, which is a
projection, is the histogram of the nonzero pixels of the resulting masked image.
To produce a vertical projection, the projection index image contains the value ¢
in every pixel having column coordinate c¢. Thus a vertical projection is a one-
dimensional function that for each column has a value given by the number of pixels
in the binary image in the column having value binary 1. Figure 2.23 illustrates a
45° diagonal projection.

In signature analysis the binary image must be processed in such a way that the
clutter of all noninteresting object entities is eliminated before projections are taken.
This could be done partly by the gray scale processing preceding the thresholding
operation, partly by binary morphological operations (discussed in Chapter 5) after
thresholding, and partly by simple masking.

If the clutter has been successfully eliminated and the objects are known to be
separated horizontally, then a vertical projection will be most useful. If the objects
are known to be separated 'vertically, then a horizontal projection will be most
useful. If a window, called a bounding box, can be found that is guaranteed to
contain one and only one object, then all projections relative to this window would
have potential use. O’Gorman and Sanderson (1986) discuss a converging squares
projection technique to locate centroids and bounding boxes of image regions.

The next stage of signature segmentation is a projection segmentation. The
segmentation accomplishes a transformation of the pixel as a unit to the projection
segment as a unit. Successive mutually exclusive segments can be determined by
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Figure 2.23 Diagonal projection of a shape. The direction of the projection is
45° counterclockwise from the column axis.

locating places where the projection values are relatively small. For example, those
locations having a vertical projection with sufficiently or relatively small values are
indicative of columns that have a very small number of pixels with binary 1. Hence
they are likely to arise from the projection of object ends. A similar statement can be
made about horizontal, diagonal, or arbitrary projections. These locations constitute
endpoints of intervals that mark the projected boundary of objects of interest. Thus
the segmentation process produces projection segments bounded by zero or low-
valued projection counts and whose projection counts within the segment tend to be
unimodal. These projection segments constitute the new units for the next step of
the analysis.

Projection segmentation induces a segmentation of the image in the following
way. Suppose that one segment determined from the vertical projection is given by
{c|]s < ¢ <t} and that one segment determined from the horizontal projection is
given by {r|u <r <wv}. These vertical and horizontal segments naturally define a
segment R of the image by

R={(r,o)|u<r<v and s <c <t}

If there are Ny segments of the horizontal projection and N, segments of the
vertical projection, then Ny N, mutually exclusive segments will be induced on the
image, each segment being a rectangular subimage.
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This induction of a segmentation on the image from its vertical and horizontal
projection segmentations leads to an iterative way of refining the initial segmentation
of the image. The iterative refinement technique works as follows: Segment the
vertical and horizontal projections of the image. Induce a segmentation on the image
from these segmentations. Now treat each rectangular subimage as the image was
treated. Determine its vertical and horizontal projections, segment the projections,
and induce the segmentation back onto the subimage. The refinement process can
continue in this way until each resulting rectangular subimage has a vertical and
horizontal projection that consists of precisely one segment and therefore cannot be
further divided.

. EXAMPLE 2.1

In the example we consider the binary image shown in Fig. 2.24, which
also shows the vertical and horizontal projections of the image. The horizon-
tal projection mask image associated with the horizontal projection is shown in
Fig. 2.25. The binary image masked by the horizontal projection mask is shown
in Fig. 2.26. The horizontal projection shown in Fig. 2.24 is the histogram of

10/10{10{10}10|10|10| 10|10} 10| 10| 10| 10] 10

111110 (11 f 10 | 10 p 10 | 11 | 11 [ 11 {11 | 11|11

1212121212 1212|1212 |12|12|12{12]| 12

1313|1313 ]13|13}13|13[13|13|13|13]13}13

Figure 2.24 Binary image and its vertical and horizontal projections. The hori-
zontal projection is the histogram of the binary image masked by the horizontal
projection mask of Fig. 2.25. The masked image is shown in Fig. 2.26.

'
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This induction of a segmentation on the image from its vertical and horizontal
projection segmentations leads to an iterative way of refining the initial segmentation
of the image. The iterative refinement technique works as follows: Segment the
vertical and horizontal projections of the image. Induce a segmentation on the image
from these segmentations. Now treat each rectangular subimage as the image was
treated. Determine its vertical and horizontal projections, segment the projections,
and induce the segmentation back onto the subimage. The refinement process can
continue in this way until each resulting rectangular subimage has a vertical and
horizontal projection that consists of precisely one segment and therefore cannot be
further divided.

W exavpie 2.1

In the example we consider the binary image shown in Fig. 2.24, which
also shows the vertical and horizontal projections of the image. The horizon-
tal projection mask image associated with the horizontal projection is shown in
Fig. 2.25. The binary image masked by the horizontal projection mask is shown
in Fig. 2.26. The horizontal projection shown in Fig. 2.24 is the histogram of
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Figure 2.24 Binary image and its vertical and horizontal projections. The hori-
zontal projection is the histogram of the binary image masked by the horizontal
projection mask of Fig. 2.25. The masked image is shown in Fig. 2.26.
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the nonzero pixels of the horizontally masked image. The vertical projection
can be understood in a similar manner.

Each projection of Fig. 2.24 has one segment with zero value surrounded by
nonzero-value segments. This permits the image to be segmented once vertically
and once horizontally. This segmentation is shown in Fig. 2.27.

Figure 2.27 also shows the vertical and horizontal projections for each of
the four image regions arising from the initial segmentation. Only the horizon-
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Figure 2.27 Binary image segmented into regions on the basis of the seg-
mentation of the initial vertical and horizontal projections. Also shown are
the vertical and horizontal projections of each region.
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Figure 2.28 Binary image segmented into regions on the basis of the segmentation
of Fig. 2.27. Also shown are the vertical and horizontal projections of each
region.

tal projection for the upper right region has a zero value area surrounded by
nonzero values. This suggests that the upper right region can be further divided
horizontally into two pieces. But all the other regions cannot be divided any
further. The final segmentation and its vertical and horizontal projections are
shown in Fig. 2.28.
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Figure 2.29 Diagonal projections Pp and Pg for each of the five image regions
of Fig. 2.28. Pp is the diagonal projection taken 45° clockwise from the hori-
zontal. Pg is the diagonal projection taken 135° clockwise from the horizontal.
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Figure 2.29 shows the diagonal projections for each of the five image
regions. From the vertical, horizontal, and diagonal projections, the centroids,
second central moments, and bounding rectangle can be easily computed. Such
computations are described in Chapter 3.

N

The final phase of signature analysis measures features of each of the projection
segments. One feature can consist of the sum of all the projection values in the seg-
ment. This feature gives object area. Another is the weighted sum of all projection
positions in the segment, weighted by the projection value. This produces a central
projected position. Others can include numbers and heights of peaks and numbers
and depths of valleys. If the shape of the projection is known to be sufficiently sim-
ple, a fit of a suitable functional form to the segment projection values can be made.
A feature vector can be constructed from the computed parameters of the fit. Fi-
nally, the projection segment can be normalized to have a prespecified length, and
the normalized projection values can constitute a projection measurement vector.
Computation of signature properties is described in Chapter 3.

Thus after signature analysis, to each projection segment we have an N-tuple or
vector of its measurement properties. To recognize different objects, object defects,
or characters is to distinguish between their projected segments on the basis of their
measurement properties. This is the role of statistical pattern recognition, which is
discussed in Chapter 4.

Summary

When the component segmentation is done in a simple situation— simple meaning
that the components are spaced away from each other and there are relatively few
components— then signature segmentation is the technique of choice because it has
a faster implementation than the connected components analysis techniques, both in
special pipeline hardware and in standard computer hardware. However, when there
are many components and they are near one another, with protrusions that wiggle
into another component’s bays, signature segmentation will not work. In this case
connected component analysis must be used.

| Exercises

2.1. Use a pseudorandom-number generator to generate 1000 numbers from a Gaussian
distribution having mean 100 and standard deviation 10. Then generate another
1000 numbers from a Gaussian distribution having mean 150 and standard deviation
10. Round the resulting 2000 numbers to integers. Determine their histogram.
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2.2. Write a program that inputs a histogram and evaluates the location of a threshold
by using the Otsu technique. Execute this program on the histogram generated in
Exercise 2.1.

2.3. Write a program that inputs a histogram and outputs the location of a threshold by using
the Kittler-Illingworth technique. Execute this program on the histogram generated
in Exercise 2.1.

2.4. Use a pseudorandom-number generator to generate 1000 numbers from a Gaussian dis-
tribution having mean 100 and standard deviation 10. Then generate 5000 numbers
from a Gaussian distribution having mean 150 and standard deviation 10. Round
the resulting 6000 numbers to integers. Determine their histogram.

2.5. Compare the locations where the Otsu and the Kittler-Illingworth techniques locate the
threshold. Which produces the better threshold value, and why is it better?

2.6. Write a program to determine the connected components of a binary image by using the
classical algorithm. Perform some experiments to determine how long the algorithm
takes to execute as a function of image size and the fraction of binary-1 pixels the
image has. ‘

2.7. Write a program to determine the connected component of a binary image by using
the algorithm of Section 2.3.5. Determine how long the algorithm takes to execute
as a function of image size and the fraction of binary-1 pixels the image has.

2.8. Write a program to determine the connected components of a binary image by first
. run-length encoding the binary image and then using the run-length algorithm of
Section 2.3.5, Determine how long the algorithm takes to execute as a function of

image size and the fraction of binary-1 pixels the image has.

2.9. Write a program that can take the horizontal, vertical, and dlagonal projections of a
binary image.

2.10. Write a program that uses the horxzonta] vertical, and diagonal projections to perform
a signature segmentation. Apply this segmentation procedure to binary images that
you create having rectangular, square, and circular objects. How many and how
large do the objects have to be before the signature segmentation procedure is not
able to fully segment the image?
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