2 ANALYSIS OF TWO- DIMENSIONAL
LINEAR SYSTEMS

Many physical phenomena are found experimentally to share the basic
property that their response to several stimuli acting simultaneously is
identically equal to the sum of the responses that each of the component
stimuli would produce individually. Such phenomena are called linear,
and the property that they share is called linearity. Electrical networks
composed of resistors, capacitors, and inductors are usually linear over a
wide range of inputs. In addition, as we shall soon see, the linearity of
the wave equation describing the propagation of light through most
media leads us naturally to regard optical imaging operations as linear
mappings of “object’” light distributions into “image” light distributions.

The single property of linearity leads to a vast simplification in the
mathematical description of such phenomena and represents the founda-
tion of a mathematical structure which we shall refer to here as linear
systems theory. The great advantage afforded by linearity is the ability to
express the response (be it voltage, current, light amplitude, or light
intensity) to a complicated stimulus in terms of the responses to certain
“elementary”” stimuli. Thus if a stimulus is decomposed into a linear
combination of elementary stimuli, each of which produces a known
response of convenient form, then by virtue of linearity the total response
can be found as a corresponding linear combination of the responses to
the elementary stimuli. v _

In this chapter we review some of the mathematical tools that are
useful in describing linear phenomena, and discuss some of the mathe-
matical decompositions that are often employed in their analysis.
Throughout the later chapters we shall be concerned with stimuli (system
inputs) and responses (system outputs) that may be either of two different
physical quantities. If the illumination used in an optical system exhibits
a property called spatial coherence, then we shall find that it is appropriate
to describe the light as a spatial distribution of complez-valued field
amplitude. When the illumination lacks spatial coherence, it is appropriate

4
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to describe the light as a spatial distribution of real-valued intensity.
Attention will be focused here on the analysis of linear systems with
complex-valued inputs; the results for real-valued inputs are thus included
as special cases of the theory.

2-1 FOURIER ANALYSIS IN TWO DIMENSIONS

A mathematical tool of great utility in the analysis of both linear and
nonlinear phenomena is Fourier analysis. This tool is widely used in the
study of electrical networks and communication systems; it is assumed
that the reader has encountered Fourier theory in such applications and
therefore that he is familiar with the analysis of functions of one independ-
ent variable (e.g., time). For a review of the fundamental mathematical
concepts, see the books by Papoulis [Ref. 2-1] and Bracewell [Ref. 2-2].
Our purpose here is limited to extending the reader’s familiarity to the
analysis of functions of two independent variables. No attempt at great
mathematical rigor will be made, but rather an operational approach,
characteristic of most engineering treatments of the subject, will be
adopted.

Definition and existence conditions

The Fourier transform (alternatively the Fourier spectrum orlfrequency
spectrum) of a complex function! g of two independent variables, z and
y, will be represented here by F{g} and is defined by?

59} = [[ 9@y) exp[—i2r(fxz + fry)] do dy 1)

The transform so defined is itself a complex-valued function of two
independent variables fx and fy, which we generally refer to as frequencies.
Similarly, the tnverse Fourier transform of a function G(fx,fy) will be
represented by - 1{G} and is defined as

514G} = [[ GUfxfr) explizn(faz + fro)l dfxdfy  (22)

Note that as mathematical operations the transform and inverse trans-

1 Boldface sans serif type will be used throughout to indicate that a function is
complex-valued.

2 When a single limit of integration appears above or below a double integral,
then that limit applies to both integrations.
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form are very similar, differing only in the sign of the exponent appearing
in the integrand.

Before discussing the properties of the Fourier transform and its
inverse, we must first decide when the definitions (2-1) and (2-2) are in
fact meaningful. For certain functions, these integrals may not exist in
the usual mathematical sense, and therefore this discussion would be
incomplete without at least a brief mention of ‘‘existence conditions.”
While a variety of sets of sufficient conditions for the existence of (2-1)
are possible, perhaps the most common set is the following:

1. g must be absolutely integrable over the infinite zy plane.

2. g must have only a finite number of discontinuities and a finite
number of maxima and minima in any finite rectangle.

3.. g must have no infinite discontinuities.

In general, any one of these conditions can be weakened at the price of
strengthening one or both of the companion conditions, but such con-
siderations lead us rather far afield from our purposes here.

As Bracewell [Ref. 2-2] has pointed out, “physical possibility is a
valid sufficient condition for the existence of a transform.” However, it
is often convenient in the analysis of systems to represent true physical
waveforms by idealized mathematical functions, and for such functions,
one or more of the above existence conditions may be violated. For
example, it is common to represent a strong, narrow time pulse by the
so-called Dirac é function,® defined by

5(t) = I}’im N exp (—N?2rt?)

Similarly, an idealized point source of light is often represented by the
two-dimensional equivalent,

é(zyy) = z}rifi N? exp [—N?r(z* + y?)] (2-3)

Such functions, being infinite at the origin and zero elsewhere, have an
infinite discontinuity and therefore fail to satisfy existence condition 3.
Other important examples are readily found; for example, the functions

fly) =1 and  f(z,y) = cos (2nfxx)

both fail to satisfy existence condition 1.
Evidently, if the majority of functions of interest are to be included
within the framework of Fourier analysis, some generalization of the

! For a more detailed discussion of the & function, including alternative definitions,
see Sec. A in the appendix.
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definition (2-1) is required. Fortunately, it is often possible to find &
meaningful transform of functions that do not strictly satisfy the exist-
ence conditions, provided those functions can be defined as the limit of a
sequence of functions that are transformable. By transforming each
member function of the defining sequence, a corresponding sequence of
transforms is generated, and we call the limit of this new sequence the
generalized Fourier transform of the original function. Generalized trans-
forms can be manipulated in the same manner as conventional trans-
forms, and the distinction between the two cases can generally be ignored,
it being understood that when a function fails to satisfy the existence
conditions and yet is said to have a transform, then the generalized
transform is actually meant. For a more detailed discussion of this
generalization of Fourier analysis the reader is referred to the book by
Lighthill [Ref. 2-3].
To illustrate the calculation of a generalized transform, consider
the Dirac & function, which has been seen to violate existence condition .
3. Note that each member function of the defining sequence (2-3) does
satisfy the existence requirements and that each, in fact, has a Fourier
transform given by (see Table 2-1) ,
2 2
TV exp [~ N'r(e? + 9]} = oxp | — L]

Accordingly the generalized transform of 8(z,y) is found to be

i)

= (2-4)

F{é(z,y)} = lim lexp [—
Now
Evidently the spectrum of a § function extends uniformly over the entire
frequency domain.
For other examples of generalized transforms see Table 2-1.

The Fourier transform as a decomposition

As mentioned previously, when dealing with linear systems it is often
useful to decompose a complicated input into a number of more simple
inputs, to calculate the response of the system to each of these “‘elemen-
tary”’ functions, and to superimpose the individual responses to find the
total response. Fourier analysis provides a basic means of performing one
such decomposition. Consider the familiar inverse-transform relationship

o) = [~ G() exp (j2uft) df

expressing the time function g in terms of its frequency spectrum. We
may regard this expression as a decomposition of the function ¢(t) into a
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B

Lines of zero phase

Figure 2-1 Lines of zero phase for the function exp [727(fxx + fry)]-

linear combination (i.e., an integral) of elementary functions, each with
the specific form exp (j2xft). Evidently the complex number G(f) is
simply a weighting factor that must be applied to the elementary function
of frequency f in order to synthesize the desired g¢(t).
In a similar fashion, we may regard the two-dimensional Fourier
- transform as a decomposition of a function g(z,y) into a linear combina-
tion of elementary functions of the form exp [j2r(fxz + fry)]. Such
functions have a number of interesting properties. Note that for any
particular frequency pair (fx,fv), the corresponding elementary function
has zero phase along lines described by

fx

n .
y=——z+ — (n an integer)

fr fr

Thus, as indicated in Fig. 2-1, this elementary function may be regarded
as being “directed’” in the zy plane at an angle 6 (with respect to the
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z axis) given by
fr
fx

In addition, the spatial period (i.e., the distance between zero-phase lines)
is evidently given by

6 = tan—1—~ (2-5)

1
Vixt +f¢?
In conclusion, then, we may again regard the inverse Fourier trans-
form as providing a means of decomposing mathematical functions. The
Fourier spectrum G of a function g is simply a description of the weight-
ing factors that must be applied to each elementary function in order to
synthesize the desired g. The real advantage to using this decomposition

will not be fully evident until our later discussion of invariant linear
systems.

(2-6)

Fourier transform theorems

The basic definition (2-1) of the Fourier transform leads to a rich mathe-
matical structure associated with-the transform operation. We now
consider a few of the basic mathematical properties of the transform,
properties that will find wide use in later material. These properties are
presented as mathematical theorems, followed by a brief statement of
their physical significance. Since these theorems are direct extensions of
the analogous one-dimensional statements, the proofs are deferred to
the appendix.

1. Linearity theorem. F{ag 4+ ph} = aF{g} + BF{h}; that is, the trans-
form of a sum of two functions is simply the sum of their individual
transforms.

2. Similarity theorem. If F{g(z,y)} = G(fx,fy), then

fx [
slatai)) = o 6 (2
that is, a “stretching” of the coordinates in the space domain (z,y)
* results in a contraction of the coordinates in the frequency domain
(fx,fr), plus a change in the overall amplitude of the spectrum.
3. Shift theorem. If F{g(zx,y)} = G(fx,fr), then '

Fla(@ — a,y — b} = GUxfy) exp [—j2r(fxa + frb)]

that is, translation of a function in the space domain introduces a
linear phase shift in the frequency domain.



10/ INTRODUCTION TO FOURIER OPTICS
4. Parseval’s theorem. If §{g(z,y)} = G(fx,fr), then

_/7 lg(z,)|? dz dy = ﬂ IG(fx.fv) | dfx dfy

This theorem is generally interpretable as a statement of conserva-
tion of energy.
5. Convolution theorem. If F{g(z,y)} = G(fx,fr) and

F{h(z,y)} = H(fx.fr)
then .

7 _ff 9(&mh( — &y — ) dEdn} = G(fxfH(fxfr)

The convolution of two functions in the space domain (an operation
that will be found to arise frequently in the theory of linear systems)
is entirely equivalent to the more simple operation of multiplying
their individual transforms.

6. Autocorrelation theorem. If F{g(z,y)} = G(fx,fr), then

5 { _// o(Eme*(E — 2,1 — 9) dednf = [GUnfnl?
Similarly, "

sl = [[ GEMG* & — fx, n — fy) dg dn

This theorem may be regarded as a special case of the convolution
theorem. .
7. Fourier integral theorem. At each point of continuity of g

55 gy} = F%{g,y)} = g(zy)

At each point of discontinuity of g, the two successive transforms
yield the angular average of the value of g in a small neighborhood
of that point. That is, the successive transformation and inverse
transformation of a function yields that function again, except at
points of discontinuity.

The above transform theorems are of far more than just theoretical
interest. They will be used frequently, since they provide basic tools for
the manipulation of Fourier transforms and can save enormous amounts
of work in the solution of Fourier analysis problems.
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Separable functions

A function of two independent variables is called separable with respect
to a specific coordinate system if it can be written as a product of two
functions, each of which depends on only one independent variable.
Thus a function g is separable in the rectangular coordinates (z,y) if

9@y) = gx(@ar@) (27)
while it is separable in polar coordinates (r,6) if ‘ V
g(r,0) = gr(r)ge(f) (2-8)

Separable functions are often more convenient to deal with than
more general functions, for separability often allows complicated two-
dimensional manipulations to be reduced to more simple one-dimensional
manipulations. For example, a function separable in rectangular coor-
dinates has the particularly simple property that its two-dimensional
Fourier transform can be found as a product of one-dimensional Fourier
transforms, as evidenced by the following relation:

F{g(z,y)}

J[ av) exp [—s2x sz + frw)) do dy

= [, 9x(x) exp [—j2efxzl dz [ gr(y) exp [—j2nfey] dy
= Fx{gx}Fr{gr} (2-9)

Thus the transform of g is itself separable into a product of two factors,
one a function of fx only and the second a function of fy only, and the
process of two-dimensional transformation simplifies to a succession of
more familiar one-dimensional manipulations.

Functions separable in polar coordinates are not so easﬂy handled
as those separable in rectangular coordinates, but it is still generally
possible to demonstrate that two-dimensional manipulations can be
performed by means of a series of one-dimensional manipulations. For
example, the process of Fourier transforming a function separable in
polar coordinates is considered in the problems (see Prob. 2-7), where
the reader is asked to verify that the two-dimensional spectrum can be
found by performing a series of one-dimensional operations called Hankel
transforms.

Functions with circular symmetry: Fourier-Bessel transforms

Perhaps the simplest class of functions separable in polar coordinates is
composed of those possessing circular symmetry. The function g is said to
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be circularly symmetric if it can be written as a function of radius r
alone, that is,

g(r,0) = gr(r) : (2-10)

Such functions play a particularly important role in the problems of
interest here, since most optical systems have precisely this type of
symmetry. We accordingly devote special attention to the problem of
Fourier transforming a circularly symmetric function.

The Fourier transform of g in a system of rectangular coordinates
is, of course, given by

Uxin = [[ a@u) exp [=i2n(fs + frp)l dady  (2-11)

To fully exploit the circular symmetry of g, we make a transformation to
polar coordinates in both the zy and fxfy planes as follows:

= Va4 y? x = rcosf

6 = tan™! (%) y =rsin @
2-12
=Vix*+fr* fx=pcos¢ ®12)

¢ = tan! (&) fr =psin ¢
fx
For the present we write the transform as a function of both radius and

angle,

Applying the coordinate transformations (2- 12) to Eq. (2-11), the
Fourier transform of g can be written

Go(p,¢) = /; do '/; dr - rgr(r) exp [—j2rrp(cos 6 cos ¢ + sin 8 sin ¢)]

or equivalently,

Golp,¢) = / dr - rgg(r)/ d6 exp [ —j2xrp cos (0 — ¢)] (2—13)

Finally, we use the Bessel function identity .

Jo(a) = —2}; /;2’ exp [—ja cos (6 — ¢)] db (2-14)

where J, is a Bessel function of the ﬁrst kind, zero order, to simplify the
expression for the transform. Substituting (2-14) in (2-13), the depend-
ence of the transform on angle ¢ is seen to disappear, leaving G, as the
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following function of radius p,
Golp) = 2r [,” rgn(r)o(2rrp) dr (2-15)

Thus the Fourier transform of a circularly symmetric function is
itself circularly symmetric and can be found by performing the one-
dimensional manipulation (2-15). This particular form of the Fourier
transform occurs frequently enough to warrant a special designation;
the expression (2-15) is accordingly referred to as the Fourier-Bessel
transform, or alternatively, as the Hankel transform of zero order. For
brevity we adopt the former terminology:.

By means of arguments identical with those used above, the inverse
Fourier transform of a circularly symmetric function Go(p) can be
expressed as

gR(r) =‘ 2r /;“ PGo(P)Jo(21I"I‘p) dp

Thus, for circularly symmetric functions there is no difference between
the transform and inverse-transform operations.

Using the notation &{ } to represent the Fourier-Bessel transform
operation, it follows directly from the Fourier integral theorem that

BB {gr(r)} = ®B{gr(r)} = ga(r)

at each value of r where gr(r) is continuous. In addition, the similarity
theorem can be straightforwardly applied (see Prob. 2-4) to show that

®{gr(ar)} = ;11—2 G, (%)

When using the expression (2-15) for the Fourier-Bessel transform,
the reader should remember that it is no more than a special case of the
two-dimensional Fourier transform, and therefore any familiar property
of the Fourier transform has an entirely equivalent counterpart in the
terminology of Fourier-Bessel transforms.

Some frequently used functions and some useful Fourier transform pairs

A number of mathematical functions will find such extensive use in later
material that considerable time and effort can be saved by assigning
them special notations of their own. Accordingly, we adopt the followmg
definitions of some frequently used functions:

Rectangle function

1 el <34

rect(z) = 0 otherwise
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Sinc function

sinc(z) = snre
T
Sign function

1 z>0
sgn(z) = {O z=0
-1 <0

Triangle function
1— |z z| <1

M) = [O g (l)tlherwise

Comb function
comb(z) = z oz — n)

n=—c

Circle function

circ(‘\/ xz‘_l'_ yz) = { 1 V x? + y2 S 1

0 otherwise

The first five of these functions, depicted in Fig. 2-2, are all functions of
only one independent variable; however, a variety of separable functions
on a two-dimensional space can be formed by means of products of these
functions. The circle function is, of course, unique to the case of two
independent variables; see Fig. 2-3 for an illustration of its structure.

We conclude our discussion of Fourier analysis by presenting some
specific two-dimensional transform pairs. Table 2-1 lists a number of
transforms of functions separable in rectangular coordinates. Since the
transforms of such functions can be found directly from products of

Table 2-1 Transform pairs for some functions
separable in rectangular coordinates

Function

Transform

_exp [—7(z? + y?)]
rect(z) rect(y)
A@@)Ay)
5(zy)
exp [jr(z + y)]

- sgn(z) sgn(y)

comb(z) comb(y)

exp [—m(fx? + fr?)]
sinc(fx) sine(fy)
sinc?(fx) sinc?(fy)

1

(fx —33, fr —1%)
A 1

Jnfx jmfr

comb(fx) comb(fy)
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rect (z)

1 sinc ()

z N\ 2\ z
1
—% 3 3 21 0 2 3
sgn (x) A(z)
1
+1
z T
-1 1

comb ()

3 —2 —1 0 1 2 3 _°

Figure 2-2 Spectal functions.

familiar one-dimensional transforms, the proofs of these relations are
left to the reader (see Prob. 2-2).

On the other hand, transforms of most circularly symmetric func-
tions cannot be found simply from a knowledge of one-dimensional
transforms. The most frequently encountered function with circular
symmetry is: :

cire(r) = {1 rsl .
0 otherwise

Accordingly, some effort is now devoted to finding the transform of this
function. Using the Fourier-Bessel transform expression (2-15), the
transform of the circle function can be written

®{cire(r)} = 2= ];1 rd o(27rp) dr
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cire (r)
Y
-1
N
—/ z
J 1(27"P) T
P
fy
(-
o~
C \\\ yah
-~ ), =
= NVEAL S
-9 —~ = ]
TN =N\
A N7 /A N Z N I
— =,/ 0610 1.619
///////
Figure 2-3 The circle function and its transform.
Using a change of variables, ' = 2x7p, and the identity
[ &70(®) 4t = aT1@)
we rewrite the transform as
. 1 27p , J1(2mp)
®{cire(r)} = o ﬁ) ' Jo(r') dr' = e (2-16)

where J; is a Bessel function of the first kind, order one. Figure 2-3
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illustrates the circle function and its transform. Note that the transform is
circularly symmetric, as expected, and consists of a central spike and a
series of concentric rings of diminishing amplitude. As a matter of
curiosity we note that the zeros of this transform are not equally spaced
in radius. For a number of additional Fourier-Bessel transform pairs,
the reader is referred to the problems (see Prob. 2-4).

2-2 LINEAR SYSTEMS

For the purposes of our discussions here, we seek to define the word
system in a way sufficiently general to include both the familiar case of
electrical networks and the less-familiar case of optical imaging devices.
Accordingly, a system is defined to be a mapping of a set of input functions
into a set of output functions. For the case of electrical networks, the
inputs and outputs are real functions (voltages or currents) of a one-
dimensional independent variable (time); for the case of imaging systems,
the inputs and outputs can be real-valued functions (intensity) or
complex-valued functions (field amplitude) of a two-dimensional inde-
pendent variable (space). As mentioned previously, the question of
whether the intensity or the field amplitude should be considered the
system variable will be treated at a later time.

If attention is restricted to deterministic (nonrandom) systems,
then a specified input must map into a unique output. It is not necessary,
however, that each output correspond to a unique input, for as we shall
see, a variety of input functions can produce no output. Thus we restrict
attention at the outset to systems characterized by many-one mappings.

A convenient representation of a system is a mathematical operator,
${ }, which we imagine to operate on input functions to produce output
functions. Thus, if the function gi(z1,y:) represents the input to a system,
and g2(r2,y2) represents the corresponding output, then by the definition
of §{ }, the two functions are related through

g:(z2,y2) = ${g1(z1,y1)} (2-17)

Without specifying more detailed properties of the operator §{ },
it is difficult to state more specific properties of a general system than
those expressed by Eq. (2-17). In the material that follows, we shall be
concerned primarily, though not exclusively, with a restricted class of
systems that are said to be linear. The assumption of linearity will be
found to yield simple and physically meaningful representations of such
systems; it will also allow useful relations between inputs and outputs
to be-developed. :
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Linearity and the superposition integral

A system is said to be linear if the following superposition property is
obeyed for all input functions t and s and all complex constants a and b:

Slas(zi,y1) + bt(zyyn)} = ag{s(@ny)} + bg{t,yr)}  (2-18)

~ As mentioned previously, the great advantage afforded by linearity is the
ability to express the response of the system to an arbitrary input in
terms of the responses to certain ‘“‘elementary’’ functions into which the
input has been decomposed. It is most important, then, to find a simple
and convenient means of decomposing the input. Such a decomposition is
offered by the so-called sifting property of the & function (cf. Sec. A in the
appendix), which states that

aienyy) = [[ giEmite — & v — n) dedn (2-19)

This equation may be regarded as expressing g; as a linear combination
of weighted and displaced & functions; the elementary functions of the
decomposition are, of course, just these § functions.

. -To find the response of the system to the input g;, sukstitute (2-19)
in (2-17):

9r(@y2) = 8 { _j/ 91(6m)3@s — & y1 — n) dt dn)

Now, regarding the number g;(£,1) as simply a weighting factor applied
- to the elementary function 8(z; — £, y1 — ), the linearity property (2-18)
is invoked to allow §{- } to operate on the individual elementary
functions; thus the operator §{ } is brought within the integral, yielding

9:@2y2) = [[ @u(Emsloe — & ys — )} ddn

As a final step we let the symbol h(zs,ys;¢,7) denote the response of the
system at point (z2,y:) of the output space to a & function input at coor-
dinates (£,9) of the input space; that is,

h(x%y?;{:m) = S{a(xl — &y — "7)} (2'20)

The function h is called the impulse response of the system. The system
input and output can now be related by the simple equatlon

9:@2yn) = [ / gi(6mh(enysikn) dt dn (2-21)
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This fundamental expression, known ‘as the superposition integral,
demonstrates the very important fact that a linear system is completely
characterized by its response to unit impulses. To completely specify
the output, the responses must in general be known for impulses located
at all possible points in the input plane. For the case of a linear tmaging-
system, this result has the interesting physical interpretation that the
effects of imaging elements (lenses, stops, etc.) can be fully described by
specifying the (possibly complex-valued) images of point sources located
throughout the object field.

Invariant linear systems: transfer functions

Having examined the input-output relations for a general linear system,
we turn now to an important subclass of linear systems, namely, tnvariant
‘linear systems. An electrical network is said to be time-invariant if its
impulse response A(¢;r) (that is, its response at time ¢ to a unit-impulse
excitation applied at time r) depends only on the time difference (¢ — 7).
Electrical networks composed of fixed resistors, capacitors, and inductors
are time-invariant since their characteristics do not change with time.

In a similar fashion, a linear imaging system is said to be space-
invariant (or equivalently, isoplanatic) if its impulse response h(z2,y2;¢,7)
depends only on the distances (z: — £) and (y2 — 7). For such a system
we can, of course, write

h(x%?/z}fm) = h(x2 - E; Y2 — 7)) (2"22)

Thus an imaging system is space-invariant if the image of a point-source
object changes only in location, not in functional form, as the point
source explores the object field. In practice, imaging systems are seldom
isoplanatic over their object field, but it is usually possible to divide the
object field into small regions (isoplanatic paiches) within- which the
system is approximately invariant. To completely describe the imaging
system, the-impulse response appropriate to each isoplanatic patch should
be specified; but if the particular portion of the object field of interest is
sufficiently small, it often suffices to consider only the isoplanatic patch
on the axis of the system. Note that for an invariant system the super-
position integral (2-21) takes on the particularly simple form

0:@sy) = [[ uemh(@: — bva —mdedn  (223)

which we recognize as a two-dimensional conwolution of the object function
with the impulse response of the system. In the future it will be convenient



20/ INTRODUCTION TO FOURIER OPTICS

to have a shorthand notation for a convolution relation such as (2-23) R
and accordingly this equation is rewritten

g:=gi*h

where an asterisk between any two functions is a convenient symbol
indicating that those functions are to be convolved.

The class of invariant linear systems has associated with it a far
more detailed mathematical structure than the more general class of all
linear systems, and it is precisely because of this structure that invariant
systems are so easily dealt with. The simplicity of invariant systems
begins to be evident when we note that the convolution relation (2-23)
takes on a particularly simple form after Fourier transformation. Spe-
cifically, transforming both sides of (2-23) and invoking the convolution
theorem, the spectra G.(fx,fr) and Gi(fx,fr) of the system output and
input are seen to be related by the simple equation

G:(fx.fr) = H(fx.fr)G1(fx.fr) (2-24)

where H is the Fourier transform of the impulse response

H(xfr) = [[ h(em) exp (—j2n(fxt + frm)ldedn  (2-25)

The function H, called the transfer function of the system, indicates the
effects of the system in the “frequency domain.” Note that the relatively
tedious convolution operation (2-23) required to find the system output
is ‘replaced in (2-24) by the often more simple sequence of Fourier
transformation, multlphcatlon of transforms, and inverse Fourier
transformation.

From another point of view, we may regard the relations (2-24) and
(2-25) as indicating that, for linear invariant systems, the input can be
decomposed into elementary functions that are more convenient than
the & functions of Eq. (2-19). These alternative elementary functions are,
of course, the complex-exponential functions. By transforming g, we are
simply decomposing the input into complex-exponential functions of
various spatial frequencies (fx,fy). Multiplication of the input spectrum .
G, by the transfer function H then takes into account the effects of the
system on each elementary function. Note that these effects are limited
to an amplitude change and a phase shift, as evidenced by the fact that
we simply multiply ‘the input spectrum by a complex number H(fx,fr)
at each (fx,fr). Inverse transformation of the output spectrum G, simply
synthesizes the output g. by adding up all the modified elementary
functions. .
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Finally, it should be strongly emphasized that the simplifications
afforded by transfer-function theory are only applicable for invariant
linear systems. For applications of Fourier theory in the analysis of
time-varying electrical networks, the reader may consult Ref. 2-4;
applications of Fourier analysis to space-variant imaging systems can be
found in Ref. 2-5.

2-3 TWO-DIMENSIONAL SAMPLING THEORY

It is often convenient, both for data processing and for mathematical
analysis purposes, to represent a function g(z,y) by an array of its
sampled values taken on a discrete set of points in the zy plane. Intu-
itively, it is clear that if these samples are taken sufficiently close to each
other, the sampled data are an accurate representation of the original
function in the sense that g can be reconstructed with considerable
accuracy by simple interpolation. It is a less obvious fact that for a
particular class of functions (known as bandlimited functions) the recon-
struction can be accomplished exactly, providing only that the interval
between samples is not greater than a certain limit. This result was
originally pointed out by Whittaker [Ref. 2-6] and was later popularized
by Shannon [Ref. 2-7] in his studies of information theory.

The sampling theorem applies to the class of bandlimited functions,
by which we mean functions with Fourier transforms that are nonzero
over only a finite region ® of the frequency space. We consider first a
form of this theorem that is directly analogous to the one-dimensional
theorem used by Shannon. Later we very briefly indicate improvements
of this theorem that can be made in some two-dimensional cases.

The Whittaker-Shannon sampling theorem

To derive what is perhaps the simplest version of the sampling theorem,
we consider a rectangular lattice of samples of the function g, as defined by

gs(z,y) = comb (%) comb <—}%> g(z,y) (2-26)

The sampled function g, thus consists of an array of § functions, spaced
at intervals of width X in the z direction and width Y in the y direction
as illustrated in Fig. 2-4. The area under each & function is proportional
to the value of the function g at that particular point in the rectangular
sampling lattice. As implied by the convolution theorem, the spectrum G,
of g, can be found by convolving the transform of comb(z/X) comb(y/Y)
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Figure 2-4 The sampled function.

with the transform of g, or

G.(fx,fv) =& ’comb (—X:f) comb( )l * G(fx,fr)

where the asterisk again indicates that a convolution is to be performed.
Now using Table 2-1 and the similarity theorem, we have

F {comb (y::,) comb (—;{)] = XY comb(Xfx) comb,(iffy)

while from the results of Prob. 2-1b,

«© ©

XY comb(Xfx) comb(Yfy) = Z z 8 (fx - ’";’fY - %)

n=-—ow0 ms== —ow

It follows that the spectrum of the sampled function is given by

' o C n m
G.(fx.fr) = n—z_“ m;:_” G (fx - }’fv - ?) (2-27)
Evidently the spectrum of g, can be found simply by erecting the spec-
trum of g about each point (n/X,m/¥Y) in the fxfy plane as shown in
Fig. 2-5.
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Since the function g is assumed to be bandlimited, its spectrum G
“is nonzero over only a finite region ® of the frequency space. As implied
by Eq. (2-27), the region over which the spectrum of the sampled function
is nonzero can be found by constructing the region ® about each point
(n/X,m/Y) in the frequency plane. Now it becomes clear that if X and
Y are sufficiently small (i.e., the samples are sufficiently close together),
then the separations 1/X and 1/Y of the various spectral regions will be
great enough to assure that adjacent regions do not overlap (see Fig. 2-5).
Thus recovery of the original spectrum G from G, can be accomplished
exactly by passing the sampled function g, through a linear filter that
transmits the term (n = 0, m = 0) of Eq. (2-27) without distortion,
while perfectly excluding all other terms. Thus, at the output of this
filter we find an exact replica of the original data g(z,y).

As stated in the above discussion, to successfully recover the original
data it is necessary to take the samples close enough together to enable
separation of the various spectral regions of G,. To determine the max-
imum allowable separation between samples, let 2Bx and 2By represent
the widths in the fx and fy directions, respectively, of the smallest rec-
tangle! that completely encloses the region ®. Since the various terms in
the spectrum (2-27) of the sampled data are separated by distances
1/X and 1/Y in the fx and fy directions, respectively, separation of the
spectral regions is assured if

1
< — < — -
X <L By and Y < 2B, (2-28)

1 For simplicity we assume that this rectangle is centered on the origin. If this
is not the case, the arguments can be modified in a straightforward manner to yield
a somewhat more efficient sampling theorem.

G(fx fy)

(@)
Figure 2-5 Spectra of (a) the original function and (b) the sampled data.



24/ INTRODUCTION TO FOURIER OPTICS

The mazximum spacings of the sample lattice for exact recovery of the
original function are thus (2Bx)~! and (2By)~L.

Having determined the maximum allowable distances between
samples, it remains to specify the exact transfer function of the filter
through which the sampled data should be passed. In many cases there
is considerable latitude of choice here, since for many possible shapes of
the region & there are a multitude of transfer functions that will pass the
(n = 0, m = 0) term of G, and exclude all other terms. For our purposes,
however, it suffices to note that if the relations (2-28) are satisfied, there
is one transfer function that will always yield the desired result regardless °
of the specific shape of &, namely,

H(fx,fr) = rect (2};){) rect (ng) | (2-29)

The exact recovery of G from G, is seen by noting that the spectrum
of the output of such a filter is

G,(fx,fr) rect (zfltxx) rect (2‘; ) G(fx,fr)

The equivalent identity in the space domain is

[comb (—;—2) comb ( ) g(z,y)] * h(zr,y) = vg (z,y) ~(2-30)

where h is the impulse response of the filter

o fx fr .
h(z,y) = L/! rect (2_B—;> rect (53—17) exp [72r(fxx + fry)] dfx dfy
= 4BxBy sinc(2Bxz) sinc(2Byy)
Noting that

comb (%) comb ( ) g(z,y)

=Xy ) Y gmXmY)s —nX,y —mY)

n=—wo m=-—o

Eq. (2-30) becomes
g(z,y) = 4BxByXY -

Yy z g(nX,mY) sinc[2Bx(z — nX)] sinc[2By(y — mY)]

n=—w m=—ow
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Finally, when the sampling intervals X and Y are taken to have their
maximum allowable values, the identity becemes

9@@y) = 2 2 (23X 2By
sinc [2Bx( - 2—;;)] sinc [2By( - 2—;%)] (2-31)

Equation (2-31) represents a fundamental result which we shall refer
to as the Whittaker-Shannon sampling theorem. It implies that exact
recovery of a bandlimited function can be achieved from an appropriately
spaced rectangular array of its sampled values; the recovery is accom-
plished* by injecting, at each sample point, an interpolation function
consisting of a product of sinc functions.

The above result is by no means the only possible sampling theorem.
Two rather arbitrary choices were made in the analysis, and alternative
assumptions at these two points will yield alternative sampling theorems.
The first arbitrary choice, appearing early in the analysis, was the use of
a rectangular sampling lattice. The sécond, somewhat laterin the analysis,
was the choice of the particular transfer function (2-29). Alternative
theorems derived by making different choices at these two points are,
of course, no less valid than Eq. (2-31); in fact, in some cases alternative
theorems can be more “efficient’’ in the sense that fewer samples per unit
"area are required to assure complete recovery. The reader interested in
further pursuing this extra richness of the multidimensional sampling
theory is referred to the works of Bracewell [Ref. 2-8] and of Peterson
and Middleton [Ref. 2-9]. In addition, sampling theorems involving the
values of derivatives of the function as well as the function itself have
been discussed by Linden [Ref. 2-10].

PROBLEMS-
2-1 Prove the following properties of & functions:

(a) o(az,by) = 3(z,y)

1
|ad|
1 L] L]
() comb(az) comb(by) = > o s (x ~Zy- %)

n=—w m=—

2.2 Prove the following Fourier transform relations:
(a) F{rect(z) rect(y)} = sinc(fx) sinc(fr)
(b) F{A(z) A(y)} = sinc¥(fx) sinc*(fr)
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23

24

2-6

Prove the following generalized Fourier transform relations:

(C) ‘J[l} = s(fzyfv) . 1
(d) F{sgn(z) sgn(y)} = (—-——) (—)
Jrfx ) \Jrfr

Prove the following Fourier transform theorems:
(a) 55{g(z,9)} = F'5!{g(z,y)} = 9(—=z,—y) at all points of continuity of g.
(0) F{a(z,y)n(z,y)} = Flo(z,y)} * F{h(z,y)}

(c) F{vig(z,y)} = —4r¥fx? + fr*)Flg(z,y)} where V2is the laplacian operator
9?2 a2
2 = — —_—
v az? = oy

Prdve the following Fourier-Bessel transform relations:
(a) If gr(r) = &(r — ry), then

®{gr(r)} = 2nroeJo(27rop)
(b) If gr(r) = 1for a <r <1 and zero otherwise, then

®{gr(r)} = J1(27p) — aJy(2xap)

(c) If ®{gr(r)} = G(p), then

®lox(an)} = — G (5)
a a
(d) ®lexp (—wr?)} = exp (—mp?)

The expression

p](x,y) = g(z,y) * [comb (—;%) comb (%)]

defines a periodic function, with period X in the z direction and period Y in the
y direction.
(a) Show that the Fourier transform of p can be written

© «©

P(fx.fr) = Z z G(%:%)&(fx—%:fr—%)

N=-—00 Mm= —o0

where G is the transform of g.
(b) Sketch the function p(z,y) when

g(z,y) = rect (2 )%) rect (2 —3,—)

and find the corresponding transform P(fx,fy).

Let the transform operators $4{ } and $s{ |} be defined by

1 y 2
Sale) = - [[ o(£,m) exp [ i (fxt +fm)] dt dn

1 y 2r i
sale) =3 [[ ot exp [—j; (st + m)] dg dn
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(d) Find a simple expression for
Fe{Falalz,y)}}
(b) Interpret the results for a > band a <b.

2.7 Let g(r,0) be separable in polar coordinates.
(a) Show that if g(r,6) = gr(r)ei™?, then

Flo(r,0)} = (—f)mei™*HLm{gr(r)}

where 3¢,{ |} is a Hankel transform of order m,
Knloa(r)] = 2 |7 rea(r)Tn(2ere) dr

and (p,¢) are polar coordinates in the frequency space.
L]

HINT: exp (jasinz) = z Ji(a) exp (jkz)

k=—w

(b) Show that for a more general case of an arbitrary angular dependence ge(6),
the Fourier transform can be expressed by the following infinite series of Hankel

transforms:
L]
Fland)) = Y cl—iFerosloa(n)]
k=—w
1 2r .
where = — g6(8)e=7%4 dg
27 JO

2-8 Suppose that a sinusoidal input .
- 9(z)y) = cos [2r(fxz + Jryl

is applied to a linear system. Under what (sufficient) condmon/is the output a
real sinusoidal function of the same spatxal frequency as the 1np1rt" Express
the amplitude and phase of that output in terms of an appropriate character-/

istic of the system. - /

/
/

2.9 Show that a function with no nonzero (s;pectra,l components outside a circle of
radius B in the frequency plane obeys the following sampling theorem:

N e G R
Z 2 (23 23) 2 _42,,3\/@_%)24( _%>2

2-10 The Fourier transform operator may be regarded as a mapping of functions
into their transforms and therefore satisfies the definition of a system as pre-
sented in this chapter.

(a) Is this system linear?
(b) Can you specify a transfer function that characterizes this system? If so,
what is it? If not, why not?

g(z,y) =

n=—w m=—ow
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2-1

2-13

The “equivalent area’” Axy of a function g(z,y) can be defined by

[] o(zy) de dy
== 0w

while the “equivalent bandwidth’’ of g is defined in terms of its transform G by

Axy

/ 7 S(fx.fr) dfx dfy

A =
Ixly G(0,0)

Show that AxyAsgry =1

A certain complex-valued function of two independent variables (z,y) has a
spatial Fourier transform that is‘identically zero outside the region |fx| < Bx,
|fr] £ By in the frequency domain. Show that the portion of this function
extending over the region |z|] < X, |y| < Y in the space domain can be specified
(approximately) by 32BxByXY real numbers. Why is this only an approxima-
tion, and when will it be a good one? (The number 16 BxByXY is commonly
called the space-bandwidth product of the portion of the function considered.)

The input to a certain imaging system is an object complex-field distribution
U,(z,y) of unlimited spatial frequency content, while the output of the system
is an ¢mage field distribution Ui(z,y). The imaging system can be assumed to
act as a linear space-invariant lowpass filter with a transfer function that is
identically zero outside the region [fx| < Bx, |fr| < By in the frequency
domain. Show that there exists an “equivalent’”’ object U/(z,y), consisting of a
rectangular array of point sources, that produces exactly the same image U;
as does the true object U,, and that the field distribution across the equivalent
object can be written

Ul(z,y) = i i [ /7 Uo(£,m) sine(n — 2Bx§) sinc(m — 2Byn) d¢ dn]

n=—®0m=—0 —wn

o, ™
* 7282 Y 2By
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APPENDIX

A. DIRAC DELTA FUNCTIONS

The one-dimensional Dirac delta function, widely used in electric circuit
analysis, can be defined as the limit of a sequence of pulses of decreasing
width, increasing height, and unit area. There are, of course, a multitude
of different pulse shapes that can be used in the definition; three equally
acceptable definitions are '

6(t) = lim N exp (—N?2xt?) (A-la)
Now .

() = lsrim N rect(Nt) (A-1b)

ot) = Al,im N sinc(Nt) (A-1¢)

While the 6 function is used in circuit analysis to represent a sharp,
intense pulse of current or voltage, the analogous concept in optics is a
point source of light, or a spatial pulse of unit area. The definition of a &
function on a two-dimensional space is a simple extension of the one-
dimensional case, although there is even greater latitude in the possible
choice for the functional form of the pulses. Possible definitions of the
spatial § function include

8z,y) = lim N*exp [~ Nir(a? + y)] (4-20)

8(z,y) = ]&1_{1‘1° N?rect(Nz) rect(Ny) (A-2b)

é(x,y) = 23‘1_)11:, N?sine(Nz) sine(Ny) (A-2c)
2

é(zy) = Alrim N circ(N V'z? + 32 (A-2d)
— w0 - T

NJ1(21rN Vx4 y?)
Vi 4 2

Definitions (A-2a) to (A-2c) are separable in rectangular coordinates,

(A-2e)

é(z,y) = A}im

275
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while definitions (A-2d) and (A-2¢) are circularly symmetric. In some
applications one definition may be more convenient than others, and the
definition best suited for the problem can be chosen.

Each of the above definitions of the spatial § function has the followmg
fundamenta,l properties:

0 z=y=0

oY) = [O otherwise (A-3)
/f S(xy)dedy =1 any € > 0 ) (A-4)
[ aemis@ — &y — m didn = g(z) (A-5)

at each point of continuity of g

Property (A-5) is often referred to as the sifting property of the é function.
An additional property of considerable importance can be proved from
any of the definitions (c¢f. Prob. 2-1a), namely,

' s(azm,by) = |a1_b| 5(z,9) (A-6)

There is, of course, no reason why the § function cannot be defined on
a space of higher dimensionality than two, but the properties of such
functions are exactly analogous to their counterparts on spaces of lower
dimensionality.

B. DERIVATION OF FOURIER TRANSFORM THEOREMS

In this section, brief proofs of basic Fourier transform theorems are
presented. For more rigorous derivations, the reader should consult Ref.
2-1 or 2-2.

1. Linearity theorem. F{ag + ph} = aF{g} + BF{h}
Proof: This theorem follows directly from the linearity of the
integrals that define the Fourier transform.

2. Similarity theorem. If F{g(z,y)} = G(fx,fy), then

F{g(az,by)} = ﬁ G (fX f;)
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Proof: :

F{g(az,by)} = [ / g(az,by) exp [—j2x(fxz + fry)] dz dy
= [/ g(ax,by) exp [—j21r (%X ax + f—; by)] daz dby

lal 0]
_ 1 oz tfr
B lablG(a’ b)

3. Shiff theorem. If ${g(z,y)} = G(fx,fr), then

Flglz — o,y — )} = G(fx.fr) exp [—j2r(fxa + frb)]
Proof:

F{g(x —a,y — b)}

= ,// g(z — a,y — b) exp [—j2r(fxz + fry)] dz dy

= [[ o' w) exp (=j2elfx(’ + a) + fr (¢ + D))} da’ dy’

= G(fx,fr) exp [—j2r(fxa + frb)] »
4. Parseval’s theorem. If F{g(z,y)} = G(fx,fr), then

ﬁ lg(zy)|* dx dy = ﬁ |G (fx.fv)|? dfx dfy

Proof:

J j l9(z,)|* dz dy = _fj 0(@y) 9*@y) do dy
B fz d dy | _f/ dt dn G(gn) exp [72n(wt + un)]
[ /] derds G*(eo) exp [—s2e(aa + u8)]]
- _/[ dt dn G(&7) _// det 4B G*(au)

[ /7 exp {j2r[z(¢ — @) + y(n — B)]} d dy]
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= /7 dt& dn G(&,7) /7da dB G*(a,B)8(§ — a, 7 — B)

~ [] 16 dz

5. Convolution theorem. If ${g(z,y)} = G(fx,fr) and
Flh(z,y)} = H(fx.,fr), then

5{ [[ alemh — &y — n) dédn} = GUxfIH(fx r)
Proof:

5 { _// o(tmh( — &y — ) dg dn}
=_/7 glEmFih(z — &y — )} dédy

= [[ a(em exp [—s2w(ixt + frn)] dt dn H(fx,fv)

= G(fx,fr)H(fx,fr)
6. Autocorrelation theorem. If F{g(z,y)} = G(fx,fr), then

F { _/7 9(Emg*(E — 2, 1 — ¥) dé dn} = |G (fx,fr)[?

Proof:
| i { [7 g(Emg*(§ — x,n — y) d¢ dn}

-5 { _/f o + =, o + 1)g*(¥'n) d¥’ dn'}

a¢' dn’ g*(¢,m)F{g(¢ + 7, 1" + )}

| d& dn’ g*(¢',n') exp [j2r(fx& + frn)IG(fx.fr)

|
8\.8 8\.3

= G*(fn. )G (fxfr) = [GUnfo)*
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7. Fourier integral theorem. At each point of continuity of g,
55 1{g(z,y)} = F5{g(zy)} = g(zy)

At each point of discontinuity of g, the two successive transformations
yield the angular average of the value of g in a small neighborhood of

that point.
Proof: Let the function gr(z,y) be defined by

9r@y) = [[ GUxfr) exp [2r(fxz + fry)) dix dfr

AR

where A is a circle of radius R, centered at the origin of the fxfy plane.
To prove the theorem, it suffices to show that at each point of continuity
of g,

lim gr(z,y) = g(z,y)

R—

and that at each point of discontinuity of g,
. 1 27
lim gr(2,y) = 5= |, g.(0) db
R—w 21" 0

where g,(6) is the angular dependence of g in a small neighborhood about
the point in question.

Some initial straightforward manipulation can be performed as
follows:

ax@y) = [[ { /] dt dn g(&m) exp [—72n(fxk + frn)l}
Ar

- exp [j2r (fxx + fry)] dfx dfy

[[ag angtem [[ dfx dfr exp {i2nlfx(@ — & + frly — D}
—» Ar

Noting that
J1(2nRr) ]

r

[[ dfx dfv exp (g2nlix(@ — & + frly — 1} = R [
Ar .

where r = \/(x — 82+ (y — n)? we have

aaten) = [[ deanatenn |20
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Suppose initially that (z,y) is a point of continuity of g. Then

| - [(2eR
lim gr(zy) = f/ dg dn g(§n) lim B [_1(—:_1_)]

= [/ dtdn g(Em)s(z — & y — 1) = g(z,y)

where Eq. (A-2¢) has been used in the second step. Thus the first part
of the theorem has been proved.

Consider next a point of discontinuity of g. Without loss of generality
that point can be taken to be the origin. Thus we write

0s00) = [] deangsnr ||

- 00

where r = V' £2 4 % But for sufficiently large R, the quantity in brackets
has significant value only in a small neighborhood of the origin. In
addition, in this small neighborhood the function g depends (approxi-
mately) only on the angle 6 about that point, and therefore

92(0,0) = Azr g.(0) do /: rR [@] dr

where g,(d) represents the 6 dependence of g about the origin. Finally,

noting that
© J1(2rRr) 1
L rR «[—r ] dr = o

us

we conclude that
. 1 27
Igl—I»I: gz(0,0) = o fo g.(6) dé

and the proof is thus complete.



