334

Preview

The word morphology commonly denotes a branch of biology that deals with
the form and structure of animals and plants. We use the same word here in the
context of mathématical morphology as a tool for extracting image compo-
nents that are useful in the representation and description of region shape,
such as boundaries, skeletons, and the convex hull. We are interested also in
morphological techniques for pre- or postprocessing, such as morphological
filtering, thinning, and pruning.

In Section 9.1 we define several set theoretic operations, introduce binary
images, and discuss binary sets and logical operators. In Section 9.2 we define
two fundamental morphological operations, dilation and erosion, in terms of
the union (or intersection) of an image with a translated shape (structuring el-
ement). Section 9.3 deals with combining erosion and dilation to obtain more
complex morphological operations. Section 9.4 introduces techniques for la-
beling connected components in an image. This is a fundamental step in ex-
tracting objects from an image for subsequent analysis.

Section 9.5 deals with morphological reconstruction, a morphological trans-
formation involving two images, rather than a single image and a structuring
element, as is the case in Sections 9.1 through 9.4. Section 9.6 extends morpho-
logical concepts to gray-scale images by replacing set union and intersection
with maxima and minima. Most binary morphological operations have natural
extensions to gray-scale processing. Some, like morphological reconstruction,
have applications that are unique to gray-scale images, such as peak filtering.

The material in this chapter begins a transition from image-processing
methods whose inputs and outputs are images, to image analysis methods,
whose outputs in some way describe the contents of the image. Morphology is

9.1 # Preliminaries

a cornerstone of the mathematical set of tools underlying the development of
techniques that extract “meaning” from an image. Other approaches are de-
veloped and applied in the remaining chapters of the book.

B Preliminaries

In this section we introduce some basic concepts from set theory and discuss
the application of MATLAB’s logical operators to binary images.

9.1.1 Some Basic Concepts from Set Theory

Let Z be the set of integers. The sampling process used to generate digital im-
ages may be viewed as partitioning the xy-plane into a grid, with the coordi-
nates of the center of each grid being a pair of elements from the Cartesian
product,” Z2 In the terminology of set theory, a function f(x, y) is said to be a
digital image if (x, y) are integers from Z? and f is a mapping that assigns an
intensity value (that is, a real number from the set of real numbers, R) to each
distinct pair of coordinates (x, y). If the elements of R also are integers (as is
usually the case in this book), a digital image then becomes a two-dimensional
function whose coordinates and amplitude (i.e., intensity) values are integers.

Let A be a set in Z2, the elements of which are pixel coordinates (x, y). If
w = (x, y) is an element of A, then we'write

we A
Similarly, if w is not an element of A, we write

weA
A set B of pixel coordinates that satisfy a particular condition is written as

B = {w|condition}
For example, the set of all pixel coordinates that do not belong to set A, de-
noted A is given by
A ={wlwe A}

This set is called the complement of A.
The union of two sets, denoted by

C=AUB

is the set of all elements that belong to either A, B, or both. Similarly, the
intersection of two sets A and B is the set of all elements that belong to both
sets, denoted by

C=ANB

The Cartesian product of a set of integers, Z, is the set of all ordered pairs of elements (z;, zj), with z;

and z; being integers from Z. It is customary to denote this set by z2 P

335

336
ape
aE

FIGURE 9.1

(a) Two sets A
and B. (b) The
union of A and B.
(c) The
intersection of A
and B. (d) The
complement of A.
(e) The difference
between A and B.

BE

FIGURE 9.2

(a) Translation of
Abyz.

(b) Reflection of
B.The sets A and
B are from

Fig. 9.1.

Chapter 9 & Morphological Image Processing

Ay

The difference of sets A and B, denoted A — B, is the set of all elements that
belong to A but not to B:

: A—- B={wlweA, we¢B}

Figure 9.1 illustrates these basic set operations. The result of each operation is
shown in gray.

In addition to the preceding basic operations, morphological operations
often require two operators that are specific to sets whose elements are pixel
coordinates. The reflection of set B, denoted B, is defined as

B = {wlw = —b,forbe B}
The translation of set A by point z = (z1, z,), denoted (A),, is defined as
(A), = {clc = a + z,forae A}

Figure 9.2 illustrates these two definitions using the sets from Fig. 9.1. The
black dot identifies the origin assigned (arbitrarily) to the sets.

9.2 ® Dilation and Frosion 337

9.1.2 Binary Images, Sets, and Logical Operators

The language and theory of mathematical morphology often present a dual
view of binary images. As in the rest of the book, a binary image can be viewed
as a bivalued function of x and y. Morphological theory views a binary image
as the set of its foreground (1-valued) pixels, the elements of which are in Z2,
Set operations such as union and intersection can be applied directly to binary
image sets. For exampl\e, if A and B are binary images, then C = AU B is also
a binary image, where a pixel in C is a foreground pixel if either or both of the
corresponding pixels in A and B are foreground pixels. In the first view, that of
a function, C is given by

1 if either A(x, y) or B(x, y)is 1, or if both are 1
0 otherwise

C(x,y) = {

Using the set view, on the other hand, C is given by
C = {(x,y)l(x,y)e Aor (x,y)e Bor (x, y) € (A and B)}

The set operations defined in Fig. 9.1 can be performed on binary images using
MATLAB’s logical operators OR (|), AND (&), and NOT (~), as Table 9.1
shows.

As a simple illustration, Fig. 9.3 shows the results of applying several logical
operators to two binary images containing text. (We follow the IPT conven-
tion that foreground (1-valued) pixels are displayed as white.) The image in
Fig. 9.3(d) is the union of the “UTK” and “GT” images; it contains all the fore-
ground pixels from both. By contrast, the intersection of the two images
[Fig. 9.3(e)] consists of the pixels where the letters in “UTK” and “GT” over-
lap. Finally, the set difference image [Fig. 9.3(f)] shows the letters in “UTK”
with the pixels “GT” removed.

&¥] Dilation and Erosion

The operations of dilation and erosion are fundamental to morphological
image processing. Many of the algorithms presented later in this chapter are
based on these operations, which are defined and illustrated in the discussion
that follows.

AND

OR
NOT ,
DIFFERENCE

Pe

TABLE 9.1
Using logical
expressions in
MATLAB to
perform set
operations on
binary images.

338 Chapter 9 ® Morphological Image Processing

FIGURE 9.3 (a) Binary image A. (b) Binary image B. (c) Complement ~A. (d) Union A | B. (e) Intersection
A&B. (f) Set difference A & ~B.

2.2.1 Dilation

Dilation is an operation that “grows” or “thickens” objects in a binary image.
The specific manner and extent of this thickening is controlled by a shape re-
ferred to as a structuring element. Figure 9.4 illustrates how dilation works.
Figure 9.4(a) shows a simple binary image containing a rectangular object.
Figure 9.4(b) is a structuring element, a five-pixel-long diagonal line in this
case. Computationally, structuring elements typically are represented by a ma-
trix of Os and 1s; sometimes it is convenient to show only the 1s, as illustrated
in the figure. In addition, the origin of the structuring element must be clearly
identified. Figure 9.4(b) shows the origin of the structuring element using a
black outline. Figure 9.4(c) graphically depicts dilation as a process that trans-
lates the origin of the structuring element throughout the domain of the image
and checks to see where it overlaps with 1-valued pixels. The output image in
Fig. 9.4(d) is 1 at each location of the origin such that the structuring element
overlaps at least one 1-valued pixel in the input image.

Mathematically, dilation is defined in terms of set operations. The dilation
of A by B, denoted A @ B, is defined as :

A®B = {z|(B),NA # O}

9.2 # Dilation and Erosion 339

00000000
060600000
006000G0CGO
00000GO0C
0600000C0GO
060060111
006001111
goeo0o111
0060000«
0000000«
G600000C¢
00 00600(
000000000

0000000
00000
00000
00

0

0

foow v)

<
CTOCOORR,R,ROOT OO
[

-

0000
00000
00000 1
0000000 1
0000000
6000000
0C00000
0000000

0

0

0 (
0606000

1

1

1

The structuring element translated to
these locations does not overlap any
1-valued pixels in the original image.

/ ~
/il DO b
'S Do
Al TR TN L]
*i131 1111 1\1\&_

[el#11]1 1 11178 > When the originis
vieioieie sl X translated to the
sieieie o sbelsT | “¢” locations, the .

- structuring element

i overlaps 1-valued

b pixels in the original
image.
G0 0080006000000 000
000000006000 00060¢0CC0
00000000000 0008000
0600000111111 166¢08¢0
6600601111111 1000
0060001111111 11020%9
006060111111111¢060¢0
000111111111 080¢06¢C
006011111111006060208¢0
0600111111160000202¢0
D00080CG0CG0O00000C0
000000600000 000000
0600000000000 00C0O0

where () is the empty set and B is the structuring element. In words, the dila-
tion of A by B is the set consisting of all the structuring element origin loca-
tions where the reflected and translated B overlaps at least some portion of A.
The translation of the structuring element in dilation is similar to the mechan-
ics of spatial convolution discussed in Chapter 3. Figure 9.4 does not show the
structuring element’s reflection explicitly because the structuring element is
“symmetrical with respect to its origin in this case. Figure 9.5 shows a nonsym-
metric structuring element and its reflection.
Dilation is commutative; thatis, A® B = B ® A. Itis a convention in image
processing to let the first operand of A& B be the image and the second

2%

©

@

FIGURE 9.4
Illustration of
dilation.

(a) Original image
with rectangular
object.

(b) Structuring
element with five
pixels arranged in
a diagonal line.
The origin of the
structuring
element is shown
with a dark
border.

(c) Structuring
element
translated to
several locations
on the image.

(d) Output image.

340

&

FIGURE 9.5
Structuring
element
reflection.

(a) Nonsymmetric
structuring
element.

(b) Structuring -
element reflected
about its origin.

EXAMPLE 9.1:
A simple
application of
dilation.

%j}é late

an

FIGURE 9.6

A simple example
of dilation.

(a) Input image
containing broken
text. (b) Dilated

Chapter 9 @ Morphological Image Processing

operand be the structuring element, which usually is much smaller than the
image. We follow this convention from this point on.

& IPT function imdilate performs dilation. Its basic calling syntax is

A2 = imdilate(A, B) .

where A and A2 are binary images, and B is a matrix of Os and 1s that specifies
the structuring element. Figure 9.6(a) shows a sample binary image containing
text with broken characters. We want to use imdilate to dilate the image with
the structuring element:

‘ 0 1 0
1 [1] 1
0 1 0

The following commands read the image from a file, form the structuring ele-
ment matrix, perform the dilation, and display the result.

>> A = imread('broken_text.tif');
>B=[010; 111; 01 0];

>> A2 = imdilate(A, B);

>> imshow(A2)

Figure 9.6(b) shows the resulting image. -

Historically, certain computer Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company’s software may
recognize a date using "00"
as 1900 rather than the year

2000.

orograms were written using

ther
four to define th plic

only two digit

year. Accordingly, the
cempany's software may
recognize a date using "00”
as 1900 rather than the yeer
20060.

9.2 & Dilation and Erosion

9.2.2 Structuring Element Decomposition
Dilation is associative. That is,

A®(BOC) = (A®B)®C

Suppose that a structuring element B can be represented as a dilation of two
structuring elements B; and B;:

B=B®B

Then A®B = A® (B,® B,) = (A® B;) ® B,. In other words, dilating A
with B is the same as first dilating A with By, and then dilating the Tesult with
B,. We say that B can be decomposed into the structuring elements B; and B,.

The associative property is important because the time required to com-
pute dilation is proportional to the number of nonzero pixels in the structuring
element. Consider, for example, dilation with a 5 X 5 array of 1s:

11 1 11
11 1 11
11 1] 11
11 1 11
11 1 11

This structuring element can be decomposed into a five-element row of 1s and
a five-element column of 1s:

1
1
11 11ge|[1]
1
1

The number of elements in the original structuring element is 25, but the total
number of elements in the row-column decomposition is only 10. This means
that dilation with the row structuring element first, followed by dilation with
the column element, can be performed 2.5 times faster than dilation with the
5 X 5 array of 1s. In practice, the speed-up will be somewhat less because there
is usually some overhead associated with each dilation operation, and at least
two dilation operations are required when using the decomposed form. How-
ever, the gain in speed with the decomposed implementation is still significant.

9.2.3 The strel Function

IPT function strel constructs structuring elements with a variety of shapes
and sizes. Its basic syntax is

se = strel(shape, parameters)

341

'342 Chapter 9 ® Morphological Image Processing

EXAMPLE 9.2:
An illustration of
structuring
element
decomposition
using strel.

where shape is a string specifying the desired shape, and parameters is a list
of parameters that specify information about the shape, such as its size. For ex-
ample, strel('diamond’', 5) returns a diamond-shaped structuring element
that extends +5 pixels along the horizontal and vertical axes. Table 9.2 sum-
marizes the various shapes that strel can create.

In addition to simplifying the generation of common structuring element
shapes, function strel also has the important property of producing structur-
ing elements in decomposed form. Function imdilate automatically uses the
decomposition information to speed up the dilation process. The following ex-
ample illustrates how strel returns information related to the decomposition
of a structuring element.

B Consider again the creation of a diamond-shaped structuring element using
strel:

>> se = strel('diamond', 5)

se =

Flat STREL object containing 61 neighbors.

Decomposition: 4 STREL objects containing a total of 17 neighbors
Neighborhood:

Coocoo—+r00O0O0O
OO0+~ 42000O0O
o0+~ 2204000,
OO+ 242 saa00
O+ 4 4 aaaaaa0
o a4 aaa
O =+ 24244 aaa0
OO+ 44402100
OO0+ 22 aa00O0
OC0OO0OO0O =2 20000
Oo0OO0cO0OO—~O0OO0OO0O0OO

We see that strel does not display as a normal MATLAB matrix; it returns
instead a special quantity called an strel object. The command-window display
of an strel object includes the neighborhood (a matrix of 1s in a diamond-
shaped pattern in this case); the number of 1-valued pixels in the structuring
element (61); the number of structuring elements in the decomposition (4);
and the total number of 1-valued pixels in the decomposed structuring ele-
ments (17). Function getsequence can be used to extract and examine sepa-
rately the individual structuring elements in the decomposition.

>> decomp = getsequence(se);

>> whos
Name Size Bytes Class
decomp 4x1 1716 strel object
se 1x1 3309 strel object

Grand total is 495 elements using 5025 bytes

9.2 & Dilation and Erosion 343

crip

se =strel('diamond', R)

se =strel('disk', R)

se=strel('line’', LEN, DEG)

4

se=strel('octagon', R)

se =strel('pair', OFFSET)

se=strel('periodicline', P, V)

se =strel('rectangle', MN)

se=strel('square', W)

se=strel('arbitrary', NHOOD)
se = strel(NHOOD)

Creates a flat, diamond-shaped
structuring element, where R specifies the
distance from the structuring element
origin to the extreme points of the
diamond.

Creates a flat, disk-shaped structuring
element with radius R. (Additional
parameters may be specified for the disk;
see the strel help page for details.)
Creates a flat, linear structuring element,
where LEN specifies the length, and DEG
specifies the angle (in degrees) of the
line, as measured in a counterclockwise
direction from the horizontal axis.
Creates a flat, octagonal structuring
element, where R specifies the distance
from the structuring element origin to the
sides of the octagon, as measured along
the horizontal and vertical axes. R must
be a nonnegative multiple of 3.

Creates a flat structuring element
containing two members. One member is
located at the origin. The second
member’s location is specified by the
vector OFFSET, which must be a two-
element vector of integers.

Creates a flat structuring element
containing 2*P + 1 members.V is a two-
element vector containing integer-valued
row and column offsets. One structuring
element member is located at the origin.
The other members are located at 1*V,
—1*V, 2%V, 2%V, ..., P*V,and —P*V.
Creates a flat, rectangle-shaped
structuring element, where MN specifies
the size. MN must be a two-element vector
of nonnegative integers. The first element
of MN is the number rows in the
structuring element; the second element
is the number of columns.

Creates a square structuring element
whose width is W pixels. W must be a
nonnegative integer scalar.

Creates a structuring element of
arbitrary shape. NHOOD is a matrix of
0Os and 1s that specifies the shape. The
second, simpler syntax form shown
performs the same operation.

TABLE 9.2

The various
syntax forms of
function strel.
(The word flat
means that the
structuring
element has zero
height. This is
meaningful only
for gray-scale
dilation and
erosion. See
Section 9.6.1.)

344 Chapter 9 ® Morphological Image Processing

The output of whos shows that se and decomp are both strel objects, and,
further, that decomp is a four-element vector of strel objects. The four structyr-
ing elements in the decomposition can be examined individually by indexing
into decomp:

>> decomp(1)
ans =

Flat STREL object containing 5 neighbors.

Neighborhood:
0 1 0
1 1 1
0 1 0

>> decomp(2)
ans =

Flat STREL object containing 4 neighbors.

Neighborhood:
0 1 0
1 0 1

0 1 0
>> decomp(3) '
ans =

Flat STREL object containing 4 neighbors.

Neighborhood:
0 0 1 0 0
0 0 0 0 0
1 0 0 0 1
0 0 0 0 0
0 0 1 0 0

>> decomp(4)
ans =

Flat STREL object containing 4 neighbors.

Neighborhood:
0 1 0
1 0 1
0 1 0

Function imdilate uses the decomposed form of a structuring element au--
tomatically, performing dilation approximately three times faster (~ 61/17)
than with the non-decomposed form.]

9.2 & Dilation and Erosion 345

2.2.4 Erosion

Erosion “shrinks” or “thins” objects in a binary image. As in dilation, the man-
ner and extent of shrinking is controlled by a structuring element. Figure 9.7 il-
lustrates the erosion process. Figure 9.7(a) is the same as Fig. 9.4(a).
Figure 9.7(b) is the structuring element, a short vertical line. Figure 9.7(c)
graphically depicts erosion as a process of translating the structuring element
throughout the domain of the image and checking to see where it fits entirely

0000000000000 0000
CO0C000C000G0000000D
0000000000000 0000
0600000000006 0000
0000000000000 00CO
000001111111000600 1
000001111111006000 1]
000001111111006606200 1
0000000000000 000C
0000000000000 0000
000000000C000D0000
0000000000000 0Q00
00000000000000000

Output is zero in these locations because
the structuring element overlaps the
background. :

A

Output is one here because
the structuring element fits
entirely within the foreground.

0000000C00000000C0CGC0
0006000000000 0C0O0GO
000000060060CG000C000D0
00000000060006600C00
000000060000060C00CGCGO
00000000006006006G60C0CGO0
0000011111110000°60
000006000006000C0000
C000C0GCO0CO00O0O0000D0O0O0
000000C0060C00000C0S0
60000000 CGOO00O00O0GEO
0000060000CG00G0C0O0O00O
0000000C000G00C000CC00

a8
- |

FIGURE 9.7
Illustration of
erosion.

(a) Original image
with rectangular
object.

(b) Structuring
element with
three pixels
arranged in a
vertical line. The
origin of the
structuring
element is shown
with a dark
border.

(c) Structuring
element
translated to
several locations
on the image.

(d) Output image.

346 Chapter 9 ® Morphological Image Processing

EXAMPLE 9.3:
An illustration of
erosion.

L
Td

FIGURE 9.8 An
illustration of
erosion.

(a) Original
image.

(b) Erosion with a
disk of radius 10.
(c) Erosion with a
disk of radius 5.
(d) Erosion with a
disk of radius 20.

within the foreground of the image. The output image in Fig. 9.7(d) has a value
of 1 at each location of the origin of the structuring element, such that the ele-
ment overlaps only 1-valued pixels of the input image (i.e., it does not overlap
any of the image background). ’

The mathematical definition of erosion is similar to that of dilation. The
erosion of A by B, denoted A © B, is defined as

ASB = {z|(B),N A # @}

In other words, erosion of A by B is the set of all structuring element origin lo-
cations where the translated B has no overlap with the background of A.

® Erosion is performed by IPT function imerode. Suppose that we want to
remove the thin wires in the image in Fig. 9.8(a), but we want to preserve the
other structures. We can do this by choosing a structuring element small
enough to fit within the center square and thicker border leads but too large to
fit entirely within the wires. Consider the following commands:

9.3 # Combining Dilation and Erosion

>> A = imread('wirebond_mask.tif');
>> gse = strel('disk', 10);

>> A2 = imerode(A, se);

>> imshow(A2)

As Fig. 9.8(b) shows, these commands successfully removed the thin wires in
the mask. Figure 9.8(c) shows what happens if we choose a structuring element
that is too small:

>> se = strel('disk’', 5);
>> A3 = imerode (A, se);
>> imshow(A3)

Some of the wire leads were not removed in this case. Figure 9.8(d) shows
what happens if we choose a structuring element that is too large:

>> A4 = imerode(A, strel('disk', 20));
>> imshow(A4)

The wire leads were removed, but so were the border leads.

In practical image-processing applications, dilation and erosion are used most
often in various combinations. An image will undergo a series of dilations
and/or erosions using the same, or sometimes different, structuring elements.
In this section we consider three of the most common combinations of dilation
and erosion: opening, closing, and the hit-or-miss transformation. We also in-
troduce lookup table operations and discuss bwmorph, an IPT function that
can perform a variety of practical morphological tasks.

Combining Dilation and Erosion

9.3.1 Opening and Closing

The morphological opening of A by B, denoted A o B, is simply erosion of A
by B, followed by dilation of the result by B:

A°B=(ASB)®B
An alternative mathematical formulation of opening is
A°B = U{(B)(B).C A}

where U {-} denotes the union of all sets inside the braces, and the notation
C C D means that C is a subset of D. This formulation has a simple geometric
interpretation: A o B is the union of all translations of B that fit entirely within
A. Figure 9.9 illustrates this interpretation. Figure 9.9(a) shows a set A and a
disk-shaped structuring element B. Figure 9.9(b) shows some of the transla-
tions of B that fit entirely within A. The union of all such translations is the
shaded region in Fig. 9.9(c); this region is the complete opening. The white re-
gions in this figure are areas where the structuring element could not fit

4 im)\\ ode
i

347

348

Chapter 9 & Morphological Image Processing

Translates of B inside A

Translates of B
outside A

BE

de |
FIGURE 9.9 Opening and closing as unions of translated structuring elements. (a) Set A and struc-
turing element B. (b) Translations of B that fit entirely within set A. (c) The complete opening
(shaded). (d) Translations of B outside the border of A. (¢) The complete closing (shaded).

completely within A, and, therefore, are not part of the opening. Morphologi-
cal opening removes completely regions of an object that cannot contain the
structuring element, smoothes object contours, breaks thin connections, and
removes thin protrusions.

The morphological closing of A by B, denoted A « B, is a dilation followed
by an erosion:

A-B=(A®B)SB

Geometrically, A« B is the complement of the union of all translations of B
that do not overlap A. Figure 9.9(d) illustrates several translations of B that do
not overlap A. By taking the complement of the union of all such translations,
we obtain the shaded region if Fig. 9.9(¢), which is the complete closing. Like
opening, morphological closing tends to smooth the contours of objects. Un-
like opening, however, it generally joins narrow breaks, fills long thin gulfs, and
fills holes smaller than the structuring element.

Opening and closing are implemented in the toolbox with functions imopen
and imclose. These functions have the simple syntax forms

C = imopen(A, B)
and
C = imclose(A, B)

where A is a binary image and B is a matrix of Os and 1s that specifies the struc-
turing element. A strel object, SE, can be used instead of B.

9.3 ® Combining Dilation and Erosion

This example illustrates the use of functions imopen and imclose. The
image shapes.tif shown in Fig. 9.10(a) has several features designed to illus-
trate the characteristic effects of opening and closing, such as thin protrusions,
joins, gulfs, an isolated hole, a small isolated object, and a jagged boundary. The
following commands open the image with a 20 X 20 structuring element:

>> f = imread('shapes.tif');
>> se = strel('square', 20);
>> fo = imopen(f, se);

>> imshow(fo)

Figure 9.10(b) shows the result. Note that the thin protrusions and outward-
pointing boundary irregularities were removed. The thin join and the small
isolated object were removed also. The commands

>> fc = imclose(f, se);
>> imshow(fc)

produced the result in Fig. 9.10(c). Here, the thin gulf, the inward-pointing
boundary irregularities, and the small hole were removed. As the next para-
graph shows, combining a closing and an opening can be quite effective in re-
moving noise. In terms of Fig. 9.10, performing a closing on the result of the
earlier opening has the net effect of smoothing the object quite s1gmflcantly
We close the opened image as follows:

>> foc = imclose(fo, se);
>> imshow(foc)

Figure 9.10(d) shows the resulting smoothed objects.

349

FIGURE 9.10
Illustration of
opening and
closing.

(a) Original
image.

(b) Opening.

(c) Closing.

(d) Closing of (b).

EXAMPLE 9.4:
Working with
functions imopen
and imclose.

350 Chapter 9 ® Morphological Image Processing

FIGURE 9.11 (a) Noisy fingerprint image. (b) Opening of image. (c) Opening followed by closing. (Original
image courtesy of the National Institute of Standards and Technology.)

Figure 9.11 further illustrates the usefulness of closing and opening by ap-
plying these operations to a noisy fingerprint [Fig. 9.11(a)]. The commands

>> f = imread('fingerprint.tif');
>> se = strel('square', 3);

>> fo = imopen(f, se);

>> imshow(fo)

produced the image in Fig. 9.11(b). Note that noisy spots were removed by
opening the image, but this process introduced numerous gaps in the ridges of
the fingerprint. Many of the gaps can be filled in by following the opening with
a closing:

>> foc = imclose(fo,se);
>> imshow(foc)

Figure 9.11(c) shows the final result. 2

9.3.2 The Hit-or-Miss Transformation

Often, it is useful to be able to identify specified configurations of pixels, such
as isolated foreground pixels, or pixels that are end points of line segments.
The hit-or-miss transformation is useful for applications such as these. The hit-
or-miss transformation of A by B is denoted A ® B. Here, B is a structuring
element pair, B = (Bj, B,), rather than a single element, as before. The hit-or-
miss transformation is defined in terms of these two structuring elements as

A®B=(A©B)N(ASB,)

Figure 9.12 shows how the hit-or-miss transformation can be used to identi-
fy the locations of the following cross-shaped pixel configuration:

010

111
010

9.3 m Combining Dilation and Erosion 351

Q0000000000000
GOoO0OO0D0O0O0B00O00CCO

6000001100
0000001110 1

1000000000 1
0000000000

0000000000000 00G0
0000000006000 00CDO00
1005000060000 0¢0
0000C0000GC000100
GO0O00O00C0000GO0D0O00
000100600000¢00
CoO0000000C000O0CC0CE0

<
Py
<
<
o~
four]
]
o
g
o
P
-]
)
<
<2
o
<
<O D

o
<o
=
—
—-
—
T =
=
S

el e N
e e "]
<
<
= D R R R e
ol B i e
o R
e e e
el e
il e e
PN I S
Ll e e B e o S
P e B
fon]
el el
—
—

—_

.
—
—
—_
—_
-
-
e

1
610100060001 111
60011
0101
0000
{

_ ==
o

<

<
.
foes
el
<
<
foms)
oD
o~
poon]
o]
—

o]
—
]
—_

i
—
o
=0
<D
o
-
el e
e D
_ <
[l el i
= o
[=

o
<
<

000
500606000
G oo
0010000C¢0
Co00060CO00
0006000600

O @ <
<D <

@ <
o <
< o]
O DO D OD
o o
< <
[l <

OO DD O DD
) 3
o
<

0000061060 0000000
0006000600 00006000
0606060000000 0C00OCGO0

Figure 9.12(a) contains this configuration of pixels in two different locations.
Erosion with structuring element B; determines the locations of foreground
pixels that have north, east, south, and west foreground neighbors. Erosion of
the complement with structuring element B, determines the locations of all
- the pixels whose northeast, southeast, southwest, and northwest neighbors

a5

B

as

&

%

FIGURE 9.12

(2) Original image
A. (b) Structuring
element B;.

(c) Erosion of A
by B1 .

(d) Complement of
the original image,
A°. (e) Structuring
element B,.

(f) Erosion of 4°
by B,. (g) Output
image.

352 Chapter 9 8 Morphological Image Processing

EXAMPLE 9.5:
Using IPT
function

bwhitmiss.

avy
FIGURE 9.13
(a) Original
image. (b) Result
of applying the
hit-or-miss
transformation
(the dots shown
were enlarged to
facilitate viewing).

belong to the background. Figure 9.12(g) shows the intersection (logical
AND) of these two operations. Each foreground pixel of Fig. 9.12(g) is the lo-
cation of a set of pixels having the desired configuration.

The name “hit-or-miss transformation” is based on how the result is affect-
ed by the two erosions. For example, the output image in Fig. 9.12 consists of
all locations that match the pixels in B; (a “hit”) and that have none of the pix-
elsin B, (a “miss”). Strictly speaking, hit-and-miss transformation is a more ac-
curate name, but hit-or-miss transformation is used more frequently.

The hit-or-miss transformation is implemented in IPT by function
bwhitmiss, which has the syntax

C = bwhitmiss(A, B1, B2)

where C is the result, A is the input image, and B1 and B2 are the structuring el-
ements just discussed.

& Consider the task of locating upper-left-corner pixels of objects in an image
using the hit-or-miss transformation. Figure 9.13(a) shows a simple image con-
taining square shapes. We want to locate foreground pixels that have east and
south neighbors (these are “hits”) and that have no northeast, north, north-
west, west, or southwest neighbors (these are “misses”). These requirements
lead to the two structuring elements:

>> B1

strel([0 O
>> B2 1

0; 011; 01 0]);
strel([1 1; 100; 100]);

nn

Note that neither structuring element contains the southeast neighbor, which
is called a don’t care pixel. We use function bwhitmiss to compute the trans-
formation, where f is the input image shown in Fig. 9.13(a):

>> g = bwhitmiss(f, B1
>> imshow(g)

,B2);

9.3 ® Combining Dilation and Erosion

Each single-pixel dot in Fig. 9.13(b) is an upper-left-corner pixel of the objects
in Fig. 9.13(a). The pixels in Fig. 9.13(b) were enlarged for clarity. B

9.3.3 Using Lookup Tables

When the hit-or-miss structuring elements are small, a faster way to compute
the hit-or-miss transformation is to use a lookup table (LUT). The technique is
to precompute the output pixel value for every possible neighborhood config-
uration and then store the answers in a table for later use. For instance, there
are 2° = 512 different 3 X 3 configurations of pixel values in a binary image.

To make the use of lookup tables practical, we must assign a unique index
to each possible configuration. A simple way to do this for, say, the 3 X 3 case,
is to multiply each 3 X 3 configuration element-wise by the matrix

1 8 64
2 16 128
4 32 256

and then sum all the products. This procedure assigns a unique value in the
range [0, 511] to each different 3 X 3 neighborhood configuration. For exam-
ple, the value assigned to the neighborhood

110
1 01
1 01

is 1(1) + 2(1) + 4(1) + 8(1) + 16(0) + 32(0) + 64(0) + 128(1) +
256(1) = 399, where the first number in these products is a coefficient from
the preceding matrix and the numbers in parentheses are the pixel values,
taken columnwise.

The toolbox provides two functions, makelut and applylut (illustrated
later in this section), that can be used to implement this technique. Function
makelut constructs a lookup table based on a user-supplied function, and
applylut processes binary images using this lookup table. Continuing with
the 3 X 3 case, using makelut requires writing a function that acceptsa 3 X 3
binary matrix and returns a single value, typically either a 0 or 1. Function
. makelut calls the user-supplied function 512 times, passing it each possible
" 3 X 3 neighborhood. It records and returns all the results in the form of a 512-
- element vector.

As an illustration, we write a function, endpoints.m,that uses makelut and
applylut to detect end points in a binary image. We define an end point as a
foreground . pixel that has exactly one foreground neighbor. Function
endpoints computes and then applies a lookup table for detecting end points
in an input image. The line of code

persistent lut

used in function endpoints establishes a variable called 1ut and declares it to
be persistent. MATLAB “remembers” the value of persistent variables in be-
tween function calls. The first time function endpoints is called, variable lut

353

354

endpoints
Ty e——

See Section 3.4.2 for

a discussion of func-

tion handle, @.

EXAMPLE 9.6
Playing Conway’s
Game of Life
using binary
images and
lookup-table-
based
computation.

Chapter 9 & Morphological Image Processing

is automatically initialized to the empty matrix ([]). When lut is empty, the
function calls makelut, passing it a handle to subfunction endpoint_fecn,
Function applylut then finds the end points using the lookup table. The
lookup table is saved in persistent variable lut so that, the next time
endpoints is called, the lookup table does not need to be recomputed.

function g = endpoints(f)

%ENDPOINTS Computes end points of a binary image.

% G = ENDPOINTS(F) computes the end points of the binary image F
% and returns them in the binary image G.

persistent lut

if isempty(lut)
lut = makelut(@endpoint_fcn, 3);
end

g = applylut(f, lut);

function is_end_point = endpoint_fcn(nhood)

% Determines if a pixel is an end point.

% IS_END_POINT = ENDPOINT_FCN(NHOOD) accepts a 3-by-3 binary

% neighborhood, NHOOD, and returns a 1 if the center element is an
% end point;-:otherwise it returns a 0.

is_end_point = nhood(2, 2) & (sum(nhood(:)) == 2); J—

Figure 9.14 illustrates a typical use of function endpoints. Figure 9.14(a) is
a binary image containing a morphological skeleton (see Section 9.3.4), and
Fig. 9.14(b) shows the output of function endpoints.

B An interesting application of lookup tables is Conway’s “Game of Life,”
which involves “organisms” arranged on a rectangular grid. We include it here
as another illustration of the power and simplicity of lookup tables. There are
simple rules for how the organisms in Conway’s game are born, survive, and
die from one “generation” to the next. A binary image is a convenient repre-
sentation for the game, where each foreground pixel represents a living organ-
ism in that location.

Conway’s genetic rules describe how to compute the next generation (or
next binary image) from the current one:

1. Every foreground pixel with two or three neighboring foreground pixels
survives to the next generation.

2. Every foreground pixel with zero, one, or at least four foreground neigh-
bors “dies” (becomes a background pixel) because of “isolation” or
“overpopulation.”

3. Every background pixel adjacent to exactly three foreground neighbors is
a “birth” pixel and becomes a foreground pixel.

All births and deaths occur simultaneously in the process of computing the
next binary image depicting the next generation.

9.3 @ Combining Dilation and Erosion 355

as

FIGURE 9.14

(a) Image of a

morphological

skeleton.

(b) Output of

function

endpoints. The

pixels in (b) were
¢ enlarged for

clarity.
To implement the game of life using makelut and applylut, we first write
a function that applies Conway’s genetic laws to a single pixel and its 3 X 3
neighborhood:
function out = conwaylaws(nhood) conwaylaws
%CONWAYLAWS Applies Conway's genetic laws to a single pixel. e

% OUT = CONWAYLAWS(NHOOD) applies Conway's genetic laws to a single
% pixel and its 3-by-3 neighborhood, NHOOD.
num_neighbors = sum(nhood(:)) — nhood(2, 2);
if nhood(2, 2) ==
if num_neighbors <= 1
out = 0; % Pixel dies from isolation.
elseif num_neighbors > = 4
out = 0; % Pixel dies from overpopulation.
else
out = 1; % Pixel survives.
end
else
if num_neighbors == 3
out = 1; % Birth pixel.
else
out = 0; % Pixel remains empty.
end
end -

356

Chapter 9 @ Morphological Image Processing

The lookup table is constructed next by calling makelut with a function
handle to conwaylaws:

>> lut = makelut(@conwaylaws, 3);
Various starting images have been devised to demonstrate the effect of Con-
way’s laws on successive generations (see Gardner, [1970, 1971]). Consider, for

example, an initial image called the “Cheshire cat configuration,”

>> pwl = [

[eNeNeoNloNeNoNoNeNoNo
[eNeoNoNeoNoNoNeNoNoNol
OO0+ =+ 20000
OO0 —-000—+—+00
o0 —-+-0-+2+0-+00O0
00O+ 0—-0 000
OO0+ 000+ 200
OO0 =+ -+~ 000O0
[eNeoNoNeoNoNoNolNoNoNol
[=NeolNeoNeoNoNoNeNoNoNol

13

The following commands perform the computation and display up to the third
generation:

>> imshow(bwi1, 'n'), title('Generation 1')

>> bw2 = applylut(bwil, lut);

>> figure, imshow(bw2, 'n'); title('Generation 2')
>> bw3 = applylut(bw2, lut);

>> figure, imshow(bw3, 'n'); title('Generation 3')

We leave it as an exercise to show that after a few generations the cat fades to
a “grin” before finally leaving a “paw print.” B

9.3.4 Function bwmorph

IPT function bwmorph implements a variety of useful operations based on com-
binations of dilations, erosions, and lookup table operations. Its calling syntax is

g = bwmorph(f, operation, n)

where f is an input binary image, operation is a string specifying the desired
operation, and n is a positive integer specifying the number of times the oper-
ation is to be repeated. Input argument n is optional and can be omitted, in
which case the operation is performed once. Table 9.3 describes the set of valid
operations for bwmorph. In the rest of this section we concentrate on two of
these: thinning and skeletonization.

Thinning means reducing binary objects or shapes in an image to strokes
that are a single pixel wide. For example, the fingerprint ridges shown in

9.3 ® Combining Dilation and Erosion 357

bothat
bridge
clean

close

diag
dilate

erode
fill
hbreak
majority
open
remove
shrink
skel
spur
thicken
thin

tophat

“Bottom-hat” operation using a 3 X 3 structuring element; use
imbothat (see Section 9.6.2) for other structuring elements.
Connect pixels separated by single-pixel gaps. '
Remove isolated foreground pixels.

Closing using a 3 X 3 structuring element; use imclose for other
structuring elements.

Fill in around diagonally connected foreground pixels.

Dilation using a 3 X 3 structuring element; use imdilate for
other structuring elements.

Erosion using a 3 X 3 structuring element; use imerode for other
structuring elements.

Fill in single-pixel “holes” (background pixels surrounded by
foreground pixels); use imfill (see Section 11.1.2) to fill in
larger holes.

Remove H-connected foreground pixels.

Make pixel p a foreground pixel if at least five pixels in Ng(p)
(see Section 9.4) are foreground pixels; otherwise make p a
background pixel.

Opening using a 3 X 3 structuring element; use function imopen
for other structuring elements.

Remove “interior” pixéls (foreground pixels that have no
background neighbors).

Shrink objects with no holes to points; shrink objects with holes
to rings.

Skeletonize an image.

Remove spur pixels.

Thicken objects without joining disconnected 1s.

Thin-objects without holes to minimally connected strokes;
thin objects with holes to rings.

“Top-hat” operation using a 3 X 3 structuring element;
use imtophat (see Section 9.6.2) for other structuring
elements.

Fig. 9.11(c) are fairly thick. It may be desirable for subsequent shape analysis
to thin the ridges so that each is one pixel thick. Each application of bwmorph’s
thinning operation removes one or two pixels from the thickness of binary
image objects. The following commands, for example, display the results of ap-
plying the thinning operation one and two times.

>> f = imread('fingerprint_cleaned.tif');
>> g1 = bwmorph(f, 'thin', 1);

>> g2 = bwmorph(f, 'thin', 2);

>> imshow(g1), figure, imshow(g2)

TABLE 9.3
Operations
supported by
function bwmorph.

358 Chapter 9 @ Morphological Image Processing

HGURE 9.15 (a) Fingerprint image from Fig. 9.11(c) thinned once. (b) Image thinned twice. (c) Image
thinned until stability.

Figures 9.15(a) and 9.15(b), respectively, show the results. A key question is how
many times to apply the thinning operation. For several operations, including
thinning, bwmorph allows n to be set to infinity (Inf). Calling bwmorph with n =
Inf instructs bwmorph to repeat the operation until the image stops changing,
Sometimes this is called repeating an operation until stability. For example,

>> ginf = bwmorph(f, 'thin', Inf);
>> imshow(ginf)

As Fig. 9.15(c) shows, this is a significant improvement over Fig. 9.11(c).

Skeletonization is another way to reduce binary image objects to a set of
thin strokes that retain important information about the shapes of the original
objects. (Skeletonization is described in more detail in Gonzalez and Woods
[2002].) Function bwmorph performs skeletonization when operation is set to
‘skel'.Let f denote the image of the bonelike object in Fig. 9.16(a). To com-
pute its skeleton, we call bwmorph, with n = Inf:

>> fs = bwmorph(f, 'skel', Inf);
>> imshow(f), figure, imshow(fs)

Figure 9.16(b) shows the resulting skeleton, which is a reasonable likeness of
the basic shape of the object.

Skeletonization and thinning often produce short extraneous spurs, some-
times called parasitic components. The process of cleaning up (or removing)
these spurs is called pruning. Function endpoints (Section 9.3.3) can be used
for this purpose. The method is to iteratively identify and remove endpoints.
The following simple commands, for example, postprocesses the skeleton
image fs through five iterations of endpoint removals:

>> for k
fs =
end

fs ~endp01nts (fs);

Figure 9.16(c) shows the result.

9.4 ® Labeling Connected Components

359

b

FIGURE 9.16 (a) Bone image. (b) Skeleton obtained using function bwmorph. (c) Resulting skeleton after

pruning with function endpoints.

§ Labeling Connected Components

The concepts discussed thus far are applicable mostly to all foreground (or all
background) individual pixels and their immediate neighbors. In this section
we consider the important “middle ground” between individual foreground
pixels and the set of all foreground pixels. This leads to the notion of connected
components, also referred to as objects in the following discussion.

When asked to count the objects in Fig. 9.17(a), most people would identify
ten: six characters and four simple geometric shapes. Figure 9.17(b) shows a
small rectangular section of pixels in the image. How are the sixteen fore-
ground pixels in Fig. 9.17(b) related to the ten objects in the image? Although
they appear to be in two separate groups, all sixteen pixels actually belong to
the letter “E” in Fig. 9.17(a). To develop computer programs that locate and
operate on objects, we need a more precise set of definitions for key terms.

A pixel p at coordinates (x, y) has two horizontal and two vertical neigh-
bors whose coordinates are (x + 1,y), (x = 1,y), (x,y + 1) and (x,y — 1).
This set of 4-neighbors of p, denoted N,(p), is shaded in Fig. 9.18(a). The four
diagonal neighbors of p have coordinates (x + 1,y + 1), (x + 1,y — 1),
(x =1,y +1) and (x — 1,y — 1). Figure 9.18(b) shows these neighbors,
which are denoted Np(p). The union of Ny(p) and Np(p) in Fig. 9.18(c) are
the 8-neighbors of p, denoted N3(p).

Two pixels p and q are said to be 4-adjacent if g € Ny(p). Similarly, p and ¢
are said to be 8-adjacent if qe N3(p). Figures 9.18(d) and (e) illustrate

360 Chapter 9 ® Morphological Image Processing

i t{1i1|olojo|o o]o
FIGURE 9.17 ol1/1]lolojololo]o
(a) Image .
containing ten 0101110670106, 0,0710
;’f&iﬁ?;,ﬁ?iﬁ; s olol1lojololo oo
frgr‘n the image. gloi1j0lo0ol0l0i0]0
olo olojololololo
olo olololoielo
oloiolojololoiofo
ololtolojololol1]o
olotolololol1iolo
olofolojol1|1/0]o0|
olololojol1l1lolo
olololol1l1lololo]

@
&e
£E

FIGURE 9.18 (a) Pixel p and its
4-neighbors, Ny(p). (b) Pixel p
and its diagonal neighbors,
Np(p). (c) Pixel p and its
8-neighbors, Ng(p). (d) Pixels p
and g are 4-adjacent and
8-adjacent. () Pixels p and g are

8-adjacent but not 4-adjacent.

(f) The shaded pixels are both 0
4-connected and 8-connected. 0
(g) The shaded foreground

pixels are 8-connected but not 0

4-connected. :
C10]0

01010

these concepts. A path between pixels p; and p, is a sequence of pixels
P1i> P2>---»> Dn—1, Pn SUch that p, is adjacent to py.1, for 1 < k < n. A path
can be 4-connected or 8-connected, depending on the definition of adjacency
used.

Two foreground pixels p and g are said to be 4-connected if there exists a
4-connected path between them, consisting entirely of foreground pixels
[Fig. 9.18(f)]. They are 8-connected if there exists an 8-connected path be-
tween them [Fig. 9.18(g)]. For any foreground pixel, p, the set of all fore-
ground pixels connected to it is called the connected component containing p.

9.4 ® Labeling Connected Components 361

&5
ﬁ 1 x 10107010 /1 1 }\ 010101010 Lo
7T FIGURE 9.19
1711 130/71 11010 17111301 1\JO|O Connected
1111 \0 \l|140]0 1ttt floNL 1Nl oO components
— (a) Four
17141 \0 G| 01\l 0O 111 114{{010}]0 1\ 0 4-connected
components.
11111 ’ 0101010 11111016101] 0 (b) Two
11111 / 01010 N1\1/] 0O 17111 / 00610 }/ 0 8-connected
components.
ti1{1/0]o @ 0lo 11114010 é/ 0lo (c) Label matrix
obtained using
\{ 1 }/ 010101010 \ 1 010101670 4-connectivity
(d) Label matrix
tl1|1]o]oelolojo| |1l1]1]ojo]ololo obtained using
8-connectivity.
il1l1lol21210l0 1 1l1lol2121010
1711102121060 1i1(110(2{2|0]0
1711110010640 1111401070121 60
1111000140 1711 1,0,0101280
1111110106101 4)]04 1711170101061 21]0
1111010613706 0 1111170 (0612101]0
111(1]0101010610 1111170106701 0]0

The term connected component was just defined in terms of a path, and the
definition of a path in turn depends on adjacency. This implies that the nature
of a connected component depends on which form of adjacency we choose,
with 4- and 8-adjacency being the most common. Figure 9.19 illustrates the ef-
fect that adjacency can have on determining the number of connected compo-
nents in an image. Figure 9.19(a) shows a small binary image with four
4-connected components. Figure 9.19(b) shows that choosing 8-adjacency re-
duces the number of connected components to two.

IPT function bwlabel computes all the connected components in a binary
image. The calling syntax is

[L, num] = bwlabel(f, conn)

where f is an input binary image and conn specifies the desired connectivity
(either 4 or 8). Output L is called a label matrix, and num (optional) gives the
~ total number of connected components found. If parameter conn is omitted,
its value defaults to 8. Figure 9.19(c) shows the label matrix corresponding to
Fig. 9.19(a), computed using bwlabel(f, 4).The pixels in each different con-
“nected component are assigned a unique integer, from 1 to the total number
of connected components. In other words, the pixels labeled 1 belong to the

362 Chapter 9 ® Morphological Image Processing

EXAMPLE 9.7
Computing and
displaying the
center of mass of
connected
components.

IfAis a vector,

mean (A) computes
the average value of
its elements. If Ais a
matrix, mean (A)
treats the columns of
A as vectors, return-
ing a row vector of
mean values. The
syntax mean (A,
dim) returns the
mean values of the
elements along the
dimension of A spec-
ified by scalar dim.

first connected component; the pixels labeled 2 belong to the second connect-
ed component; and so on. Background pixels are labeled 0. Figure 9.19(d)
shows the label matrix corresponding to Fig. 9.19(a), computed using
bwlabel(f, 8).

| This example shows how to compute and display the center of mass of each
connected component in Fig. 9.17(a). First, we use bwlabel to compute the 8-
connected components:

>> f = imread('objects.tif');
>> [L, n] = bwlabel(f);

Function find (Section 5.2.2) is useful when working with label matrices. For
example, the following call to find returns the row and column indices for all
the pixels belonging to the third object:

>> [r, ¢] = find(L == 3);

Function mean with r and ¢ as inputs then computes the center of mass of this
object.

>> rbar = mean(r);
>> cbar = mean(c);

A loop can be used to compute and display the centers of mass of all the ob-
jects in the image. To make the centers of mass visible when superimposed on
the image, we display them using a white “ * ” marker on top of a black-filled
circle marker, as follows:

>> imshow(f)
>> hold on % So later plotting commands plot on top of the image.
>> for k = 1:n
[ry, c] = find(L == k);
rbar = mean(r);
cbar = mean(c);
plot(cbar, rbar, 'Marker', 'o', 'MarkertdgeColor', 'k',...
‘MarkerFaceColor', 'k', 'MarkerSize', 10)
plot(cbar, rbar, 'Marker', '*', 'MarkerEdgeColor', 'w')
end

Figure 9.20 shows the result. #

2l Morphological Reconstruction

Reconstruction is a morphological transformation involving two images and a
structuring element (instead of a single image and structuring element). One
image, the marker, is the starting point for the transformation. The other
image, the mask, constrains the transformation. The structuring element used

9.5 @ Morphological Reconstruction 363

FIGURE 9.20 Centers
of mass (white
asterisks) shown
superimposed on
their corresponding
connected
components.

defines connectivity. In this section we use 8-connectivity (the default), which
implies that B in the following discussion is a 3 X 3 matrix of 1s, with the cen-
ter defined at coordinates (2, 2).

If g is the mask and f is the marker,the reconstruction of g from f, denoted
Ry(f), is defined by the following iterative procedure:

1. Initialize A, to be the marker image f.
2. Create the structuring element: B = ones (3).
3. Repeat:

hiv1 = (e ®B)Ng
until hk+1 = hk'
Marker f must be a subset of g; that is,
fcg

Figure 9.21 illustrates the preceding iterative procedure. Note that, al-
though this iterative formulation is useful conceptually, much faster computa-
tional algorithms exist. IPT function imreconstruct uses the “fast hybrid
reconstruction” algorithm described in Vincent [1993]. The calling syntax for
imreconstruct is

out = imreconstruct(marker, mask)

where marker and mask are as defined at the beginning of this section.

9.5.1 Opening by Reconstruction See Sections 10.4.2

In i ening, erosion typically removes small objects, and the a7d 10.43 for addi-
morphological opening, ypically rem jects, and tional applications

subsequent dilation tends to restore the shape of the objects that remain. of morphological
However, the accuracy of this restoration depends on the similarity between reconstruction.

364 v(hupter? # Morphological Image Processing

BEE
FIGURE 9.21 Morphological reconstruction. (a) Original image (the mask). (b) Marker image. (c)—(e) Inter-

mediate result after 100, 200, and 300 iterations, respectively. (f) Final result. [The outlines of the objects in
the mask image are superimposed on (b)—(e) as visual references.]

EXAMPLE 9.8:
Opening by
reconstruction.

the shapes and the structuring element. The method discussed in this section,
opening by reconstruction, restores exactly the shapes of the objects that re-
main after erosion. The opening by reconstruction of f, using structuring ele-
ment B, is defined as R¢(f © B).

B A comparison between opening and opening by reconstruction for an
image containing text is shown in Fig. 9.22. In this example, we are interested
in extracting from Fig. 9.22(a) the characters that contain long vertical strokes.
Since opening by reconstruction requires an eroded image, we perform that
step first, using a thin, vertical structuring element of length proportional to
the height of the characters:

>> f = imread('book_text_bw.tif');
>> fe = imerode(f, ones(51, 1));

Figure 9.22(b) shows the result. The opening, shown in Fig. 9.22(c), is comput-
ed using imopen: ’

9.5 ® Morphological Reconstruction 365

ponents or broken connection paths. There is no poiy

tion past the level of detail required to identify those
Segmentation of nontrivial im

processing. Segmentation accuracy determin

of computerized analysis procedures. For this

be taken to improve the probability of rugged

such as industrial inspection i

the environment is possible ¢

p th Th p
dt d tf th
fth
dt

pencnts er breken cennecti
tien past the level of detail r

mentatien of nentrivial images is enc of the mes
pr ng. Segmentatien accuracy determines the ev
of computerized analysis precedures. Fer this reasen,
be taken te impreve the prewability of rugged segment
such as industrial inspec applications, at least seme|
the envirenment is possible at times. The experienced
designer invariably pays considerable attention te suc

ponents or broken connection paths. There is no poi
tion past the level of detail required to identify those
Ssegmentation of nontrivial images is one of the mo
processing. Segmentation accuracy determines the ev
of computerized analysis procedur “or this reason,

be taken to improve the probability of rugged segment
such as industrial inspection applications, at least some
the environment is possible at times. The experienced

designer invariably pays considerable attention to suc

>> fo = imopen(f, ones(51, 1));

Note that the vertical strokes were restored, but not the rest of the characters
containing the strokes. Finally, we obtain the reconstruction:

>> fobr = imreconstruct(fe, f);

The result in Fig. 9.22(d) shows that characters containing long vertical strokes
were restored exactly; all other characters were removed. The remaining parts
of Fig. 9.22 are explained in the following two sections. =

9.5.2 Filling Holes

Morphological reconstruction has a broad spectrum of practical applications,
each determined by the selection of the marker and mask images. For exam-
ple, suppose that we choose the marker image, f,,,, to be 0 everywhere except
on the image border, where itissetto 1 — f:

_ J1 = f(x,y) if(x,y)ison the border of f
Fml(x,7) = 0 otherwise '

FIGURE 9.22
Morphological
reconstruction:
(a) Original
image. (b) Eroded
with vertical line.
(c) Opened with a
vertical line.

(d) Opened by
reconstruction
with a vertical
line. (e) Holes
filled.

(f) Characters
touching the
border (see right
border).

(g) Border
characters
removed.

366 Chapter 9 ® Morphological Image Processing

@%rborder
i

Then g = [Ry<(f,n)]° has the effect of filling the holes in f, as illustrated in
Fig. 9.22(e). IPT function imfill performs this computation automatically
when the optional argument 'holes' is used:

g = imfill(f, 'holes')
This function is discussed in more detail in Section 11.1.2.

9.5.3 Clearing Border Objects

Another useful application of reconstruction is removing objects that touch
the border of an image. Again, the key task is to select the appropriate marker
and mask images to achieve the desired effect. In this case, we use the original
image as the mask, and the marker image, f,,,, is defined as

_) f(x,y) if(x,y)ison the border of f
Tm(%,y) = {O otherwise

Figure 9.22(f) shows that the reconstruction, R¢(f,,), contains only the objects
touching the border. The set difference f — Ry(f,,), shown in Fig. 9.22(g), con-
tains only the objects from the original image that do not touch the border.
IPT function imclearborder performs this entire procedure automatically.
Its syntax is

g = 1imclearborder(f, conn)

where T is the input image and g is the result. The value of conn can be either
4 or 8 (the default). This function suppresses structures that are lighter than
their surroundings and that are connected to the image border. Input f can be
a gray-scale or binary image. The output image is a gray-scale or binary image,
respectively.

il Gray-Scale Morphology

All the binary morphological operations discussed in this chapter, with the ex-
ception of the hit-or-miss transform, have natural extensions to gray-scale im-
ages. In this section, as in the binary case, we start with dilation and erosion,
which for gray-scale images are defined in terms of minima and maxima of
pixel neighborhoods.

9.6.1 Dilation and FErosion

The gray-scale dilation of f by structuring element b, denoted f @ b, is de-
fined as

(f@®b)(x,y) = max{f(x — x',y = y') + b(x',y") | (x',y') e Dy}

where Dy, is the domain of b, and f(x, y) is assumed to equal —oo outside the
domain of f. This equation implements a process similar to the concept of spa-
tial convolution, explained in Section 3.4.1. Conceptually, we can think of

9.6 ® Gray-Scale Morphology 367

rotating the structuring element about its origin and translating it to all loca-
tions in the image, just as the convolution kernel is rotated and then translated
about the image. At each translated location, the rotated structuring element
values are added to the image pixel values and the maximum is computed.

One important difference between convolution and gray-scale dilation is
that, in the latter, D,, a binary matrix, defines which locations in the
neighborhood are included in the max operation. In other words, for an
arbitrary pair of coordinates (xg,),) in the domain of D,, the sum
f(x = xo, ¥y — ¥) * b(xp, yp) is included in the max computation only if Dy is
1 at those coordinates. If Dy is 0 at (xg,)p), the sum is not considered in the
max operation. This is repeated for all coordinates (x’, y') € D, each time that
coordinates (x, y) change. Plotting b(x', y") as a function of coordinates x'
and y’ would look like a digital “surface” with the height at any pair of coordi-
nates being given by the value of b at those coordinates.

In practice, gray-scale dilation usually is performed using flat structuring el-
ements (see Table 9.2) in which the value (height) of b is 0 at all coordinates
over which Dy is defined. That is,

b(x',y') =0 for(x',y")eD,

In this case, the max operation is specified completely by the pattern of Os and
1s in binary matrix D, and the gray-scale dilation equation simplifies to

(fob)(x,y) = max{f(x = x',y = y') | (x,y") e Dy}

Thus, flat gray-scale dilation is a local-maximum operator, where the maxi-
mum is taken over a set of pixel neighbors determined by the shape of Dj.

Nonflat structuring elements are created with strel by passing it two ma-
trices: (1) a matrix of Os and 1s specifying the structuring element domain, Dj,
and (2) a second matrix specifying height values, b(x’, y"). For example,

>> b = strel([1 1 1], [1 2 1])
b =
Nonflat STREL object containing 3 neighbors.
Neighborhood:
1 1 1

Height:
1 2 1

creates a 1 X 3 structuring element whose height values are b(0, —1) = 1,
b(0,0) = 2,and b(0,1) = 1.

Flat structuring elements for gray-scale images are created using strel in
the same way as for binary images. For example, the following commands
show how to dilate the image f in Fig. 9.23(a) using a flat 3 X 3 structuring
element: .

>> se
>> gd

strel('square', 3);
imdilate(f, se);

368 Chapter 9 ® Morphological Image Processing

25
wd

FIGURE 9.23
Dilation and
erosion.

(a) Original
image. (b) Dilated
image. (c) Eroded
image.

(d) Morphological
gradient.
(Original image
courtesy of
NASA.)

Figure 9.23(b) shows the result. As expected, the image is slightly blurred. The
rest of this figure is explained in the following discussion.

The gray-scale erosion of f by structuring element b, denoted f © b, is de-
fined as

(fOb)(x,y) =min{f(x + x',y + y') = b(x',y') | (x',y') e Dy}

where D, is the domain of b and f(x, y) is assumed to be +oc outside the do-
main of f. Conceptually, we again can think of translating the structuring ele-
ment to all locations in the image. At each translated location, the structuring
element values are subtracted from the image pixel values and the minimum
is taken.

As with dilation, gray-scale erosion is most often performed using flat struc-
turing elements. The equation for flat gray-scale erosion can then be simplified to

(f©b)(x,y) = min{f(x + x',y + y') [(x',y") e Dy}

Thus, flat gray-scale erosion is a local-minimum operator, in which the mini-
mum is taken over a set of pixel neighbors determined by the shape of Dj.

9.6 @ Gray-Scale Morphology 369

Figure 9.23(c) shows the result of using imerode with the same structuring el-
ement used for Fig. 9.23(b):

>> ge = imerode(f, se);
Dilation and erosion can be combined to achieve a variety of effects. For in-

stance, subtracting an eroded image from its dilated version produces a “mor-
phological gradient,” which is a measure of local gray-level variation in the

image. For example, letting ? Computing the mor-
. phological gradient
>> morph_grad = imsubtract(gd, ge); requires a different
procedure for non-

. A L . i symmetric structur-
produced the image in Fig. 9.23(d), which is the morphological gradient of the ing elements.
image in Fig. 9.23(a). This image has edge-enhancement characteristics similar Sg“’ﬁc"”yg a ";ﬂe“'
to tl?ose that would be‘ obtaiged using the gradient operations discussed in fneff,r umczflgflfsid
Sections 6.6.1 and later in Section 10.1.3. in the dilation step.

9.6.2 Opening and Closing

The expressions for opening and closing gray-scale images have the same form
as their binary counterparts. The openmg of image f by structuring element b,
denoted f ° b, is defined as

fob=(fob)®b

As before, this is simply the erosion of f by b, followed by the dilation of the
result by b. Similarly, the closing of f by b, denoted f « b, is dilation followed by
erosion:

feb=(f®b)Ob

Both operations have simple geometric interpretations. Suppose that an image
function f(x, y) is viewed as a 3-D surface; that is, its intensity values are in-
terpreted as height values over the xy-plane. Then the opening of f by b can
be interpreted geometrically as pushing structuring element b up against the
underside of the surface and translating it across the entire domain of f. The
opening is constructed by finding the highest points reached by any part of the
structuring element as it slides against the undersurface of f.

Figure 9.24 illustrates the concept in one dimension. Consider the curve in
Fig. 9.24(a) to be the values along a single row of an image. Figure 9.24(b)
shows a flat structuring element in several positions, pushed up against the
bottom of the curve. The complete opening is shown as the curve along the
top of the shaded region in Fig. 9.24(c). Since the structuring element is too
large to fit inside the upward peak on the middle of the curve, that peak is re-
moved by the opening. In general, openings are used to remove small bright
details while leaving the overall gray levels and larger bright features rela-
tively undisturbed.

Figure 9.24(d) provides a graphical illustration of closing. Note that the
structuring element is pushed down on top of the curve while being translated

370 Chapter 9 ® Morphological Image Processing

FIGURE 9.24
Opening and
closing in one
dimension.

(a) Original 1-D
signal. (b) Flat
structuring
element pushed
up underneath
the signal.

(c) Opening.

(d) Flat
structuring
element pushed
down along the
top of the signal.
(e) Closing.

EXAMPLE 9.9:
Morphological
smoothing using
openings and
closings.

F
T Ve ; \\)

to all locations. The closing, shown in Fig. 9.24(e), is constructed by finding the
lowest points reached by any part of the structuring element as it slides against
the upper side of the curve. Here, we see that closing suppresses dark details
smaller than the structuring element.

Because opening suppresses bright details smaller than the structuring ele-
ment, and closing suppresses dark details smaller than the structuring element,
they are used often in combination for image smoothing and noise removal. In
this example we use imopen and imclose to smooth the image of wood dowel
plugs shown in Fig. 9.25(a):

9.6 @ Gray-Scale Morphology 371

cd

FIGURE 9.25
Smoothing using
openings and
closings.

(a) Original image
of wood dowel
plugs. (b) Image
opened using a
disk of radius 5.
(c) Closing of the
opening.

(d) Alternating
sequential filter
result.

>> f = imread('plugs.jpg');

1]

>> se strel('disk', 5);
>> fo = imopen(f, se);
>> foc = imclose(fo, se);

Figure 9.25(b) shows the opened image, fo, and Fig. 9.25(c) shows the closing
of the opening, foc. Note the smoothing of the background and of the details
in the objects. This procedure is often called open-close filtering. Close-open
filtering produces similar results.

Another way to use openings and closings in combination is in alternating
sequential filtering. One form of alternating sequential filtering is to perform
open-close filtering with a series of structuring elements of increasing size. The
following commands illustrate this process, which begins with a small structur-
ing element and increases its size until it is the same as the structuring element
used to obtain Figs. 9.25(b) and (c):

>> fasf = f;
>> for k = 2:5
se = strel('disk', k);
fasf = imclose(imopen(fasf, se), se);
-end

The result, shown in Fig. 9.25(d), yielded slightly smoother results than using a
single open-close filter, at the expense of additional processing.]

372 Chapter 9 ® Morphological Image Processing

aE

FIGURE 9.26 Top-hat transformation. (a) Original image. (b) Thresholded image. (c) Opened image. (d) Top-
hat transformation. (¢) Thresholded top-hat image. (Original image courtesy of The MathWorks, Inc.)

EXAMPLE 9.10:
Using the tophat
transformation.

& Openings can be used to compensate for nonuniform background illumina-
tion. Figure 9.26(a) shows an image, f, of rice grains in which the background
is darker towards the bottom than in the upper portion of the image. The un-
even illumination makes image thresholding (Section 10.3) difficult.
Figure 9.26(b), for example, is a thresholded version in which grains at the top
of the image are well separated from the background, but grains at the bottom
are improperly extracted from the background. Opening the image can pro-
duce a reasonable estimate of the background across the image, as long as the
structuring element is large enough so that it does not fit entirely within the
rice grains. For example, the commands

>> se
>> fo

strel('disk', 10);
imopen(f, se);

resulted in the opened image in Fig. 9.26(c). By subtracting this image from the
original image, we can produce an image of the grains with a reasonably even
background:

9.6 @ Gray-Scale Morphology 373
>> f2 = imsubtract(f, fo);

Figure 9.26(d) shows the result, and Fig. 9.26(e) shows the new thresholded
image. The improvement is apparent.

Subtracting an opened image from the original is called a top-hat transfor-
mation. IPT function imtophat performs this operation in a single step:

>> f2 = imtophat(f, se);

Function imtophat can also be called as g = imtophat (f, NHOOD), where NHOOD
is an array of Os and 1s that specifies the size and shape of the structuring ele-
ment. This syntax is the same as using the call imtophat (f, strel(NHOOD)).

A related function, imbothat, performs a bottom-hat transformation, de-
fined as the closing of the image minus the image. Its syntax is the same as for
function imtophat. These two functions can be used together for contrast en-
hancement using commands such as

>> se = strel('disk', 3);
>> g = imsubtract(imadd(f, imtophat(f, se)), imbothat(f , se)); &

Techniques for determining the size distribution of particles in an image EXAMPLE 9.11:
are an important part of the field of granulometry. Morphological techniques ~Granulometry.
can be used to measure particle size distribution indirectly; that is, without

identifying explicitly and measuring every particle. For particles with regular

shapes that are lighter than the background, the basic approach is to apply

morphological openings of increasing size. For each opening, the sum of all the

pixel values in the opening is computed; this sum sometimes is called the

surface area of the image. The following commands apply disk-shaped open-

ings with radii O to 35 to the image in Fig. 9.25(a):

>> f = imread('plugs.jpg');
>> sumpixels = zeros(1, 36);
>> for k = 0:35

- ek ! . If v is a vector, then
se _ ?trel(disk ’.k)’ diff(v) returnsa
fo —.lmOpen(f’ se); vector, one element
sumpixels(k + 1) = sum(fo(:)); shorter than v, of dif-

end ferences between adja-

cent elements. If X is a

. ; et . 1 matrix, then diff (X)
>> plot(0:35, sumpixels), xlabel('k'), ylabel('Surface area') returns a matrix of

. . row differences:
Figure 9.27(a) shows the resulting plot of sumpixels versus k. More interest- X (2: end, :) —

ing is the reduction in surface area between successive openings: X(1: end~1, :).

>> plot(—diff (sumpixels))
>> xlabel('k')
>> ylabel('Surface area reduction')

374

FIGURE 9.27
Granulometry.
(a) Surface area
versus structuring
element radius.
(b) Reduction in
surface area
versus radius.

(c) Reduction in
surface area
versus radius for a
smoothed image.

%ﬁ&
55

Chapter 9 @ Morphological Image Processing

x 107 x 108
T T T T T T
=
S 2
o g
5 T 15
8]
@ &
5 05
wn
.5 1 | | 0
0 0 10 20 30
k k
x 109
4 T T T
=}
)
S 3r 7
=1
el
]
S 2r .
5
E1r 1
[75]
0 1 1
0 10 20 30
k

Peaks in the plot in Fig. 9.27(b) indicate the presence of a large number of ob-
jects having that radius. Since the plot is quite noisy, we repeat this procedure
with the smoothed version of the plugs image in Fig. 9.25(d). The result, shown
in Fig. 9.27(c), more clearly indicates the two different sizes of objects in the
original image. |

9.6.2 Reconstruction

Gray-scale morphological reconstruction is defined by the same iterative pro-
cedure given in Section 9.5. Figure 9.28 shows how reconstruction works in
one dimension. The top curve of Fig. 9.28(a) is the mask while the bottom, gray
curve is the marker. In this case the marker is formed by subtracting a constant
from the mask, but in general any signal can be used for the marker as long as
none of its values exceed the corresponding value in the mask. Each iteration
of the reconstruction procedure spreads the peaks in the marker curve until
they are forced downward by the mask curve [Fig. 9.28(b)].

The final reconstruction is the black curve in Fig. 9.28(c). Notice that the
two smaller peaks were eliminated in the reconstruction, but the two taller
peaks, although they are now shorter, remain. When a marker image is formed
by subtracting a constant 4 from the mask image, the reconstruction is called
the h-minima transform. The h-minima transform, computed by IPT function
imhmin, is used to suppress small peaks.

9.6 ® Gray-Scale Morphology 375

Another useful gray-scale reconstruction technique is opening-by-
reconstruction, in which an image is first eroded, just as in standard morpho-
logical opening. However, instead of following the opening by a closing, the
eroded image is used as the marker image in a reconstruction. The original
image is used as the mask. Figure 9.29(a) shows an example of opening-by-
reconstruction, obtained using the commands

>> f = imread('plugs.jpg’');

>> se = strel('disk', 5);

>> fe imerode(f, se); :
>> fobr = imreconstruct(fe, f);

Reconstruction can be used to clean up image fobr further by applying to
it a technique called closing-by-reconstruction. Closing-by-reconstruction is

]

&

- |

FIGURE 9.28 Gray-
scale morphological
reconstruction in
one dimension.

(a) Mask (top) and
marker curves.

(b) Iterative
computation of the
reconstruction.

(c) Reconstruction
result (black curve).

@n

FIGURE 9.29

(a) Opening-by-
reconstruction.
(b) Opening-by-
reconstruction
followed by
closing-by-
reconstruction.

376 Chapter 9 @ Morphological Image Processing

EXAMPLE 9.12:
Using
reconstruction to
remove a complex
image
background.

implemented by complementing an image, computing its opening-by-
reconstruction, and then complementing the result. The steps are as follows:

>> fobrc = imcomplement (fobr);
>> fobrce = imerode(fobrc, se); '
>> fobrcbr = imcomplement(imreconstruct(fobrce, fobrc));

Figure 9.29(b) shows the result of opening-by-reconstruction followed by
closing-by-reconstruction. Compare it with the open-close filter and alternat-
ing sequential filter results in Fig. 9.25.

& Our concluding example uses gray-scale reconstruction in several steps. The
objective is to isolate the text out of the image of calculator keys shown in
Fig. 9.30(a). The first step is to suppress the horizontal reflections along the top of
each key. To accomplish this, we take advantage of the fact that these reflections
are wider than any single text character in the image. We perform opening-by-
reconstruction using a structuring element that is a long horizontal line:

>> f = imread('calculator.jpg');
>> f_obr = imreconstruct(imerode(f, ones(1, 71)), f);
>> f o = imopen(f, ones(1, 71)); % For comparison.

The opening-by-reconstruction (f_obr) is shown in Fig. 9.30(b). For compari-
son, Fig. 9.30(c) shows the standard opening (f_o). Opening-by-reconstruction
did a better job of extracting the background between horizontally adjacent
keys. Subtracting the opening-by-reconstruction from the original image is
called tophat-by-reconstruction, and is shown in Fig. 9.30(d):

>> f_thr = imsubtract(f, f_obr);
>> f_th = imsubtract(f, f_o); % Or imtophat(f, ones(1, 71))

Figure 9.30(e) shows the standard top-hat computation (i.e., f_th).

Next, we suppress the vertical reflections on the right edges of the keys in
Fig. 9.30(d). This is done by performing opening-by-reconstruction with a
small horizontal line:

>> g _obr = imreconstruct(imerode(f_thr, ones(1, 11)), f_thr);

In the result [Fig. 9.30(f)], the vertical reflections are gone, but so are thin-ver-
tical-stroke characters, such as the slash on the percent symbol and the “I” in
ASIN. We take advantage of the fact that the characters that have been sup-
pressed in error are very close to other characters still present by first per-
forming a dilation [Fig. 9.30(g)],

>> g _obrd = imdilate(g_obr, ones(1, 21));

followed by a final reconstruction with f_thr as the mask and min(g_obrd,
f_thr) as the marker:

>> f2 = imreconstruct(min(g_obrd, f_thr), f_thr);

Figure 9.30(h) shows the final result. Note that the shading and reflections on
the background and keys were removed successfully.]

& Summary 377

wHE
@eE
B

FIGURE 9.30 An application of gray-scale reconstruction. (a) Original image. (b) Opening-by-reconstruction.
(c) Opening. (d) Tophat-by-reconstruction. (e) Tophat. (f) Opening-by-reconstruction of (d) using a horizontal
line. (g) Dilation of (f) using a horizontal line. (h) Final reconstruction result.

Summary

The morphological concepts and techniques introduced in this chapter constitute a
powerful set of tools for extracting features from an image. The basic operators of ero-
sion, dilation, and reconstruction—defined for both binary and gray-scale image pro-
cessing—can be used in combination to perform a wide variety of tasks. As shown in
the following chapter, morphological techniques can be used for image segmentation.
Moreover, they play a major role in algorithms for image description, as discussed in
Chapter 11.

