242

Preview

When digital images are to be viewed or processed at multiple resolutions, the
discrete wavelet transform (DWT) is the mathematical tool of choice. In addi-
tion to being an efficient, highly intuitive framework for the representation
and storage of multiresolution images, the DWT provides powerful insight into
an image’s spatial and frequency characteristics. The Fourier transform, on the
other hand, reveals only an image’s frequency attributes.

In this chapter, we explore both the computation and use of the discrete
wavelet transform. We introduce the Wavelet Toolbox, a collection of
MathWorks’ functions designed for wavelet analysis but not included in
MATLAB’s Image Processing Toolbox (IPT), and develop a compatible set of
routines that allow basic wavelet-based processing using IPT alone; that is,
without the Wavelet Toolbox. These custom functions, in combination with IPT,
provide the tools needed to implement all the concepts discussed in Chapter 7
of Digital Image Processing by Gonzalez and Woods [2002]. They are applied in
much the same way—and provide a similar range of capabilities—as IPT func-
tions fft2 and ifft2 in Chapter 4.

Background

Consider an image f(x, y) of size M X N whose forward, discrete transform,
T(u,v,...), can be expressed in terms of the general relation

T(u,v,...) = xEyf(x’ y)gu,v,...(x’ y)

where x and y are spatial variables and u, v,... are transform domain vari-
ables. Given T (u, v, ...), f(x, y) can be obtained using the generalized inverse
discrete transform

7.1 @ Background 243

fxy) = 2 T(wv,..)k (1,)

T

The g, »,...and h, ,, _in these equations are called forward and inverse trans-
formation kernels, respectively. They determine the nature, computational
complexity, and ultimate usefulness of the transform pair. Transform coeffi-
cients T(u,v,...) can be viewed as the expansion coefficients of a series ex-
pansion of f with respect to {A, , . }. That is, the inverse transformation
kernel defines a set of expansion functions for the series expansion of f.

The discrete Fourier transform (DFT) of Chapter 4 fits this series expan-
sion formulation well.” In this case

ej21r(ux/M+vy/N)

h,m,(x,)’) = g;:,v(x,)’) = \/M—]_f

where j = V —1,* is the complex conjugate operator, u = 0,1,..., M — 1,
andv =0,1,..., N — 1. Transform domain variables v and u represent hori-
zontal and vertical frequency, respectively. The kernels are separable since

u,o(%, y) = hy(x)hy(y)

for

e j2mvy/N

h,(x) = el2mx/M - and h(y) =

and orthonormal since

(h,, hs) =0, = {

1 r=s
0 otherwise

where () is the inner product operator. The separability of the kernels simpli-
fies the computation of the 2-D transform by allowing row-column or column-
row passes of a 1-D transform to be used; orthonormality causes the forward
and inverse kernels to be the complex conjugates of one another (they would
be identical if the functions were real).

Unlike the discrete Fourier transform, which can be completely defined by
two straightforward equations that revolve around a single pair of transforma-
tion kernels (given previously), the term discrete wavelet transform refers to a
class of transformations that differ not only in the transformation kernels em-
ployed (and thus the expansion functions used), but also in the fundamental
nature of those functions (e.g., whether they constitute an orthonormal or
biorthogonal basis) and in the way in which they are applied (e.g., how many
different resolutions are computed). Since the DWT encompasses a variety of
unique but related transformations, we cannot write a single equation that

'In the DFT formulation of Chapter 4,a 1/MN term is placed in the inverse transform equation. Equiv-
alently, it can be incorporated into the forward transform only, or split, as we do here, between the
forward and inverse transformations as 1/ MN.

244 Chapter 7 ® Wavelets

2E
FIGURE 7.1

(a) The familiar
Fourier expansion

functions are
sinusoids of

varying frequency

and infinite
duration.

(b) DWT
expansion
functions are

“small waves” of

finite duration
and varying
frequency.

«/V\/\/\/M_»

A VAVAC NN Y
-

completely describes them all. Instead, we characterize each DWT by a trans-
form kernel pair or set of parameters that defines the pair. The various
transforms are related by the fact that their expansion functions are “small
waves” (hence the name wavelets) of varying frequency and limited duration
[see Fig. 7.1(b)]. In the remainder of the chapter, we introduce a number of
these “small wave” kernels. Each possesses the following general properties:

Property 1: Separability, Scalability, and Translatability. The kernels can be
represented as three separable 2-D wavelets

Y (x, y) = d(x)e(y)
W(x,y) = e(x)(y)
¥P(x,y) = ¢(x)¥(y)

where ¢ (x, y), ¢V (x, y), and ¢P(x, y) are called horizontal, vertical, and
diagonal wavelets, respectively, and one separable 2-D scaling function

e(x, y) = o(x)e(y)

Each of these 2-D functions is the product of two 1-D real, square-integrable
scaling and wavelet functions

¢, k(%) = 2P¢(2x — k)

¥ (x) = 2P9(2x - k)
Translation k determines the position of these 1-D functions along the x-axis,
scale j determines their width—how broad or narrow they are along x—and
2/ controls their height or amplitude. Note that the associated expansion

functions are binary scalings and integer translates of mother wavelet
¥(x) = Yo, o(x) and scaling function ¢(x) = ¢ o(x).

Property 2: Multiresolution Compatibility. The 1-D scaling function just intro-
duced satisfies the following requirements of multiresolution analysis:

7.2 ® The Fast Wavelet Transform 245

a. @j i is orthogonal to its integer translates.

b. The set of functions that can be represented as a series expansion of ¢; j at
low scales or resolutions (i.e., small j) is contained within those that can be
represented at higher scales.

¢. The only function that can be represented at every scale is f(x) = 0.

d. Any function can be represented with arbitrary precision as j — 0.

When these conditions are met, there is a companion wavelet i; that, together
with its integer translates and binary scalings, spans—that is, can represent—the
difference between any two sets of ¢; ; -representable functions at adjacent scales.

‘Property 3: Orthogonality. The expansion functions [i.e.,{¢; ¢(x)}] form an
orthonormal or biorthogonal basis for the set of 1-D measurable, square-
integrable functions. To be called a basis, there must be a unique set of expan-
sion coefficients for every representable function. As was noted in the
introductory remarks on Fourier kernels, g, ,, .. = h, ,_. for real, orthonor-
mal kernels. For the biorthogonal case,

1 r=s
By, g) =8, = .
(ks 80) = 8rs {0 otherwise
and g is called the dual of h. For a biorthogonal wavelet transform with scaling
and wavelet functions ¢; ,(x) and ¢; (x), the duals are denoted @; (x) and
¥ k(x), respectively.

The Fast Wavelet Transform

An important consequence of the above properties is that both ¢(x) and ¢(x)
can be expressed as linear combinations of double-resolution copies of them-
selves. That is, via the series expansions

¢(x) = 3 hy(n)V26(2x — n)
y(x) = Eh¢,(n)\/§<p(2x - n)

where h, and h,—the expansion coefficients—are called scaling and wavelet
vectors, respectively. They are the filter coefficients of the fast wavelet trans-
form (FWT), an iterative computational approach to the DWT shown in
Fig. 7.2. The W,(j, m,n) and {W}(j, m,n) fori = H,V, D} outputs in this
figure are the DWT coefficients at scale j. Blocks containing time-reversed
scaling and wavelet vectors—the h,(—n) and h,(—m)—are lowpass and
highpass decomposition filters, respectively. Finally, blocks containing a 2 and a
down arrow represent downsampling—extracting every other point from a se-
~ quence of points. Mathematically, the series of filtering and downsampling
. operations used to compute W,,,H (j, m, n) in Fig. 7.2 is, for example,

Wl (j,m,n) = hy(—m) * [h,(=n) * W,(j + 1, m, n)|ui k=0l m=2k, k=0

246 Chapter 7 ® Wavelets

FIGURE 7.2 The
2-D fast wavelet
transform (FWT)
filter bank. Each
pass generates one
DWT scale. In the
first iteration,
W,(j+ 1,m,n) =
f (x9 y)'

The W on the icon
is used to denote a
MATLAB Wavelet
Toolbox function, as
opposed to a
MATLAB or Image
Processing Toolbox

function.

Wll[l)(]’ m) n)

Columns

(along n) W (j,m,n)

W, + 1,m,n)e—

Wi, m,n)

Columns
onm WlP(j’ m,n)

Rows

where * denotes convolution. Evaluating convolutions at nonnegative, even
indices is equivalent to filtering and downsampling by 2.

Each pass through the filter bank in Fig. 7.2 decomposes the input into four
lower resolution (or lower scale) components. The W, coefficients are created
via two lowpass (i.e., h,-based) filters and are thus called approximation coef-
ficients; {W,for i = H,V, D} are horizontal, vertical, and diagonal detail co-
efficients, respectively. Since f(x, y) is the highest resolution representation of
the image being transformed, it serves as the W,(j + 1, m, n) input for the
first iteration. Note that the operations in Fig. 7.2 use neither wavelets nor scal-
ing functions—only their associated wavelet and scaling vectors. In addition,
three transform domain variables are involved—scale j and horizontal and
vertical translation, » and m. These variables correspond to u, v, ... in the first
two equations of Section 7.1.

7.2.1 FWTs Using the Wavelet Toolbox

In this section, we use MATLAB’s Wavelet Toolbox to compute the FWT of a
simple 4 X 4 test image. In the next section, we will develop custom functions
to do this without the Wavelet Toolbox (i.e., with IPT alone). The material here
lays the groundwork for their development.

The Wavelet Toolbox provides decomposition filters for a wide variety of
fast wavelet transforms. The filters associated with a specific transform are ac-
cessed via the function wfilters, which has the following general syntax:

[Lo_D, Hi_D, Lo_R, Hi_R] = wfilters(wname)

Here, input parameter wname determines the returned filter coefficients in ac-
cordance with Table 7.1; outputs Lo_D, Hi_D, Lo_R, and Hi_R are row vectors
that return the lowpass decomposition, highpass decomposition, lowpass re-
construction, and highpass reconstruction filters, respectively. (Reconstruction
filters are discussed in Section 7.4.) Frequently coupled filter pairs can alter-
nately be retrieved using

[F1, F2] = wfilters(wname, type)

1.2 B The Fast Wavelet Transform 247

TABLE 7.1

: — ' Wavelet Toolbox
Haar haar' ‘haar' FWT filters and
Daubechies 'db! 'db2', 'db3',..., 'db45' filter family
Coiflets 'coif' ‘coifi', 'coif2',..., 'coif5"' names.
Symlets 'sym' 'sym2', 'sym3',..., 'sym45'
Discrete Meyer ‘dmey’ 'dmey’
Biorthogonal 'bior' ‘biort.1', 'bior1.3"', 'biort.5', 'bior2.2",

‘bior2.4', '‘bior2.6', 'bior2.8', ‘bior3.1",
'bior3.3', 'bior3.5', 'bior3.7', 'bior3.9’,
'bior4.4', 'bior5.5', 'bior6.8"'

Reverse 'rbio’ ‘rbio1.1','rbio1.3"', 'rbio1.5', 'rbio2.2",

Biorthogonal 'rbio2.4', 'rbio2.6', 'rbio2.8"', 'rbio3.1"',
'rbio3.3', 'rbio3.5"', 'rbio3.7"', 'rbio3.9",
'rbio4.4', 'rbio5.5', 'rbio6.8"'

with type setto 'd', 'r', '1',0r 'h' to obtain a pair of decomposition, re-
construction, lowpass, or highpass filters, respectively. If this syntax is em-
ployed, a decomposition or lowpass filter is returned in F1, and its companion
is placed in F2.

Table 7.1 lists the FWT filters included in the Wavelet Toolbox. Their
properties—and other useful information on the associated scaling and
wavelet functions—is available in the literature on digital filtering and mul-
tiresolution analysis. Some of the more important properties are provided by
the Wavelet Toolbox’s waveinfo and wavefun functions. To print a written
description of wavelet family wfamily (see Table 7.1) on MATLAB’s
Command Window, for example, enter

waveinfo(wfamily)

at the MATLAB prompt. To obtain a digital approximation of an orthonormal
- transform’s scaling and/or wavelet functions, type

[phi, psi, xval] = wavefun(wname, iter)

which returns approximation vectors, phi and psi, and evaluation vector
xval. Positive integer iter determines the accuracy of the approximations by
controlling the number of iterations used in their computation. For biorthogo-
nal transforms, the appropriate syntax is

[phi1, psit, phi2, psi2, xval] = wavefun(wname, iter)

- where phi1 and psit are decomposition functions and phi2 and psi2 are
- reconstruction functions.

248 Chapter 7 m Wavelets

EXAMPLE 7.1: B The oldest and simplest wavelet transform is based on the Haar scaling and

Haar filters, wavelet functions. The decomposition and reconstruction filters for a Haar-
scaling,and based transform are of length 2 and can be obtained as follows:
wavelet functions.
>> [Lo_D, Hi_D, Lo_R, Hi_R] = wfilters('haar')
Lo D =
0.7071 0.7071
Hi D =
-0.7071 0.7071
Lo R =
0.7071 0.7071
Hi R =
0.7071 -0.7071

Their key properties (as reported by the waveinfo function) and plots of the
associated scaling and wavelet functions can be obtained using

>> waveinfo('haar');
HAARINFO Information on Haar wavelet.
Haar Wavelet

General characteristics: Compactly supported
wavelet, the oldest and the simplest wavelet.

scaling function phi = on [0 1] and O otherwise.
wavelet function psi = on [0 0.5], = -1 on [0.5 1] and O

otherwise.

Family Haar

Short name haar

Examples haar is the same as db1
Orthogonal yes

Biorthogonal yes

Compact support yes

DWT possible

CWT possible

Support width 1

Filters length 2

Regularity haar is not continuous
Symmetry yes

Number of vanishing

moments for psi 1

Reference: I. Daubechies,
Ten lectures on wavelets,
CBMS, SIAM, 61, 1994, 194-202.

>> [phi, psi, xval] = wavefun('haar', 10);

>> xaxis = zeros(size(xval));

>> subplot(121); plot(xval, phi, 'k', xval, xaxis, '--k');
>> axis([0 1 —1.5 1.5]); axis square;

>> title('Haar Scaling Function');

1.2 & The Fast Wavelet Transform 249

Haar scaling function Haar wavelet function FIGURE 7.3 The
1.5 T 1.5 T Haar scaling and
wavelet functions.
1 1 4
05 4 osf -
Of————m==mm oo R
-05 4 -osp -
—-1F - -1k
~15 ! -15 '
0.5 1 0 0.5 1

>> subplot(122); plot(xval, psi, 'k', xval, xaxis, '--k');
>> axis([0 1 —1.5 1.5]); axis square;
>> title('Haar Wavelet Function');

Figure 7.3 shows the display generated by the final six commands. Functions
title, axis, and plot were described in Chapters 2 and 3; function subplot
is used to subdivide the figure window into an array of axes or subplots. It has
the following generic syntax:

H = subplot(m, n, p) or H = subplot(mnp)

where m and n are the number of rows and columns in the subplot array, re-
spectively. Both m and n must be greater than 1. Optional output variable H is
the handle of the subplot (i.e., axes) selected by p, with incremental values of p
(beginning at 1) selecting axes along the top row of the figure window, then the
second row, and so on. With or without H, the pth axes is made the current plot.
Thus, the subplot(122) function in the commands given previously selects
the plot in row 1 and column 2 of a1 X 2 subplot array as the current plot; the
subsequent axis and title functions then apply only to it.

The Haar scaling and wavelet functions shown in Figure 7.3 are discontinu-
ous and compactly supported, which means they are 0 outside a finite interval
called the support. Note that the support is 1. In addition, the waveinfo data
reveals that the Haar expansion functions are orthogonal, so that the forward
and inverse transformation kernels are identical. |

Given a set of decomposition filters, whether user provided or generated by
the wfilters function, the simplest way of computing the associated wavelet
transform is through the Wavelet Toolbox’s wavedec?2 function. It is invoked
using

[C, 8] = wavedec2(X, N, Lo_D, Hi D)

250 Chapter 7 ® Wavelets

EXAMPLE 7.2:
A simple FWT
using Haar filters.

where X is a 2-D image or matrix, N is the number of scales to be computed
(i.e., the number of passes through the FWT filter bank in Fig. 7.2), and Lo_pD
and Hi_D are decomposition filters. The slightly more efficient syntax

[C, S] = wavedec2(X, N, wname)

in which wname assumes a value from Table 7.1, can also be used, Output data
structure [C, S] is composed of row vector C (class double), which contains
the computed wavelet transform coefficients, and bookkeeping matrix S (also
class double), which defines the arrangement of the coefficients in C. The rela-
tionship between C and $ is introduced in the next example and described in
detail in Section 7.3.

8 Consider the following single-scale wavelet transform with respect to Haar
wavelets:

>> f = magic(4)

f =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
>> [c1, s1] = wavedec2(f, 1, 'haar')
cl =
Columns 1 through 9
17.0000 17.0000 17.0000 17.0000 1.0000
—1.0000 —1.0000 1.0000 4.0000
Columns 10 through 16 :
—4.0000 —4.0000 4.0000 10.0000 6.0000
—6.0000 —-10.0000
s1 =
2 2
2 2
4 4

Here, a 4 X 4 magic square f is transformed into a 1 X 16 wavelet decompo-
sition vector ¢1 and 3 X 2 bookkeeping matrix s1.The entire transformation
is performed with a single execution (with f used as the input) of the opera-
tions depicted in Fig. 7.2. Four 2 X 2 outputs—a downsampled approximation
and three directional (horizontal, vertical, and diagonal) detail matrices—are
generated. Function wavedec?2 concatenates these 2 X 2 matrices columnwise
in row vector c¢1 beginning with the approximation coefficients and continuing
with the horizontal, vertical, and diagonal details. That is, c1(1) through
c1(4) are approximation coefficients W,(1, 0, 0), W,(1,1,0), W,(1,0, 1), and
W,(1,1,1) from Fig. 7.2 with the scale of f assumed arbitrarily to be 2; c1(5)
through c1(8) are W[(1,0,0), Wi (1,1,0), Wk(1,0,1), and W (1,1, 1);

7.2 & The Fast Wavelet Transform 251

and so on. It we were to extract the horizontal detail coefficient matrix from
vector c1, for example, we would get

1 -1
H =

Bookkeeping matrix s1 provides the sizes of the matrices that have been con-
catenated a column at a time into row vector ¢1—plus the size of the original
image f [in vector s1(end, :)]. Vectors s1(1, :) and s1(2, :) contain the
sizes of the computed approximation matrix and three detail coefficient matri-
ces, respectively. The first element of each vector is the number of rows in the
- referenced detail or approximation matrix; the second element is the number
of columns.

When the single-scale transform described above is extended to two scales,
we get

>> [c2, s2] = wavedec2(f, 2, 'haar')

c2 =
Columns 1 through 9
34.0000 0 0 0.0000 1.0000
—1.0000 —1.0000 1.0000 4.0000
Columns 10 through 16
—4.0000 —4.0000 4.0000 10.0000 6.0000
—6.0000 -10.0000
s2 =
1 1
1 1
2 2
4 4

Note that c2(5:16) =c1(5:16). Elements c¢1(1:4), which were the approxi-
mation coefficients of the single-scale transform, have been fed into the filter
bank of Fig. 7.2 to produce four 1 X 1 outputs: W,(0,0,0), W (0,0,0),
W};(O, 0,0), and Wf (0,0,0). These outputs are concatenated columnwise
(though they are 1 X 1 matrices here) in the same order that was used in the
~ preceding single-scale transform and substituted for the approximation coeffi-
- cients from which they were derived. Bookkeeping matrix s2 is then updated
to reflect the fact that the single 2 X 2 approximation matrix in ¢1 has been
replaced by four 1 X 1 detail and approximation matrices in c2. Thus,
s2(end, :) is once again the size of the original image, s2(3, :) is the size of
the three detail coefficient matrices at scale 1, s2(2, :) is the size of the three
detail coefficient matrices at scale 0, and s2(1, :) is the size of the final
approximation.)]

To conclude this section, we note that because the FWT is based on digital
filtering techniques and thus convolution, border distortions can arise. To min-
imize these distortions, the border must be treated differently from the other

252 Chapter 7 ® Wavelets

TABLE 7.2
Wavelet Toolbox
image extension
or padding modes.

wavefilter
—_——

'sym' The image is extended by mirror reflecting it across its borders.

This is the normal default mode.

'zpd' The image is extended by padding with a value of 0.

'spd', 'spt’ The image is extended by first-order derivative extrapolation—or
padding with a linear extension of the outmost two border values.

'spo’ The image is extended by extrapolating the border yalues—that
is, by boundary value replication.

‘ppd" The image is extended by periodic padding.

‘per' The image is extended by periodic padding after it has been
padded (if necessary) to an even size using 'sp0' extension.

parts of the image. When filter elements fall outside the image during the con-
volution process, values must be assumed for the area, which is about the size
of the filter, outside the image. Many Wavelet Toolbox functions, including the
wavedec2 function, extend or pad the image being processed based on global
parameter dwtmode. To examine the active extension mode, enter st =
dwtmode('status') or simply dwtmode at the MATLAB command prompt
(e.g., >> dwtmode). To set the extension mode to STATUS, enter
dwtmode (STATUS); to make STATUS the default extension mode, use
dwtmode('save', STATUS).The supported extension modes and correspond-
ing STATUS values are listed in Table 7.2.

7.2.2 FWTs without the Wavelet Toolbox

In this section, we develop a pair of custom functions, wavefilter and
waveTfast, to replace the Wavelet Toolbox functions,wfilters and wavedec2,
of the previous section. Our goal is to provide additional insight into the me-
chanics of computing FWTs, and to begin the process of building a “stand-
alone package” for basic wavelet-based image processing without the Wavelet
Toolbox. This process is completed in Sections 7.3 and 7.4, and the resulting set
of functions is used to generate the examples in Section 7.5.

The first step is to devise a function for generating wavelet decomposition
and reconstruction filters. The following function, which we call wavefilter,
uses a standard switch construct, together with case and otherwise, to do
this in a readily extendable manner. Although wavefilter provides only the
filters examined in Chapters 7 and 8 of Digital Image Processing (Gonzalez
and Woods [2002]), other wavelet transforms can be accommodated by adding
(as new “cases”) the appropriate decomposition and reconstruction filters
from the literature.

function [varargout] = wavefilter(wname, type)

SSWAVEFILTER Create wavelet decomposition and reconstruction filters.
% [VARARGOUT] = WAVEFILTER(WNAME, TYPE) returns the decomposition
% and/or reconstruction filters used in the computation of the

% forward and inverse FWT (fast wavelet transform).

7.2 @ The Fast Wavelet Transform

EXAMPLES:

[1d, hd, 1lr, hr] = wavefilter('haar') Get the low and highpass
decomposition (1d, hd)
and reconstruction
(1r, hr) filters for
wavelet 'haar'.

[1d, hd] = wavefilter('haar','d") Get decomposition filters
1d and hd.
[1r, hr] = wavefilter('haar','r") Get reconstruction

filters 1r and hr.

INPUTS:
WNAME Wavelet Name
‘haar' or 'dbi' Haar
'db4’ 4th order Daubechies
"'sym4’ 4th order Symlets
'bior6.8' Cohen-Daubechies-Feauveau biorthogonal
'jpeg9.7' Antonini-Barlaud-Mathieu-Daubechies
TYPE Filter Type
'd' Decomposition filters
r' Reconstruction filters

0° ° 3P o° O° O I I P O° OF P O° P I I I° P OP P of P O o oF oF of

See also WAVEFAST and WAVEBACK.

% Check the input and output arguments.
error(nargchk(1, 2, nargin));

if (nargin == 1 & nargout ~= 4) | (nargin == 2 & nargout ~= 2)
error('Invalid number of output arguments.');
end

if nargin == 1 & ~ischar(wname)
error('WNAME must be a string.');
end

if nargin == 2 & ~ischar(type)
error('TYPE must be a string.');
end

% Create filters for the requested wavelet.
switch lower(wname)
case {'haar', 'db1'}

1d = [1 1]/sqrt(2); hd = [-1 1]/sqrt(2);
1r = 1d; hr = —hd;
case 'db4’

1d = [-1.059740178499728e—-002 3.288301166698295e—002 ...
3.084138183598697e~002 —1.870348117188811e-001 ...
—2.798376941698385e—-002 6.308807679295904e-001 ...
7.148465705525415e—001 2.303778133088552e—001];

253

254 Chapter 7 @ Wavelets

= (0:7);
hd = 1d; hd(end:-1:1) = cos(pi * t) .* 1d;
1r = 1d; 1r(end:-1:1) = 1d;
hr = cos(pi * t) .* ld;
case 'sym4'

1ld = [~7.576571478927333e-002 —2.963552764599851e-002 ...
4.976186676320155e—~001 8.037387518059161e—001 ...
2.978577956052774e—001 —9.921954357684722e-002 ...
—1.260396726203783e—002 3.222310060404270e—002] ;

t = (0:7);

hd = 1d; hd(end:-1:1) = cos(pi * t) .* 1ld;

1r = 1d; 1lr(end:-1:1) = 1ld;

hr = cos(pi * t) .* ld;

case 'bior6.8'
= [0 1.908831736481291e—003 —1.914286129088767¢—003 ...

—1.699063986760234e—002 1.193456527972926e-002 ...
4.973290349094079e-002 —7.726317316720414e-002 ...
-9.405920349573646e—002 4.207962846098268e—001 ...
8.259229974584023e—001 4.207962846098268e—001 ...
-9.405920349573646e—-002 —7.726317316720414e—002 ...
4,973290349094079e—-002 1.193456527972926e—-002 ...
—1.699063986760234e—002 —1.914286129088767¢—003 ...
1.908831736481291e—003];

= [0 0 0 1.442628250562444e—-002 —1.446750489679015e-002 ...

—7.872200106262882e—002 4.036797903033992e-002 ...
4,178491091502746e—001 —7.589077294536542¢—-001 ...
4,178491091502746e—001 4.036797903033992e-002 ...
—7.872200106262882e—002 —1.446750489679015e-002 ...
1.442628250562444e-002 0 0 0 O];

t = (0:17);
1r = cos(pi * (t +)) .* hd;
hr = cos(pi * t) .

case 'jpeg9.7'

= [0 0.02674875741080976 —0.01686411844287495 ...
—0.07822326652898785 0.2668641184428723 ...
0.6029490182363579 0.2668641184428723 ...
—0.07822326652898785 —0.01686411844287495 ...
0.02674875741080976] ;

= [0 —0.09127176311424948 0.05754352622849957 ...
0.5912717631142470 —1.115087052456994 .
0.5912717631142470 0.05754352622849957 ..
-0.09127176311424948 0 0] ;

t = (0:9);

1r = cos(pi * (t + 1)) .* hd;

hr = cos(pi * t) .* 1d;
otherwise

error('Unrecognizable wavelet name (WNAME).');
end

1.2 & The Fast Wavelet Transform 255

% Output the requested filters.
if (nargin == 1)
varargout(1:4) = {1d, hd, 1r, hr};

else
switch lower(type(1))
case 'd’
varargout = {1d, hd};
case 'r'
varargout = {1r, hr};
otherwise
error('Unrecognizable filter TYPE.');
end
end -

Note that for each orthonormal filter in wavefilter (ie., 'haar', 'db4', and
'sym4 '), the reconstruction filters are time-reversed versions of the decomposi-
tion filters and the highpass decomposition filter is a modulated version of its
lowpass counterpart. Only the lowpass decomposition filter coefficients need to
be explicitly enumerated in the code. The remaining filter coefficients can be
computed from them. In wavefilter, time reversal is carried out by reordering
filter vector elements from last to first with statements like 1r(end: —1:1) = 1d.
Modulation is accomplished by multiplying the components of a known filter by
cos(pi*t), which alternates between 1 and —1 as t increases from 0 in integer
steps. For each biorthogonal filter in wavefilter (ie, 'bior6.8' and
'jpeg9.7"), both the lowpass and highpass decomposition filters are specified;
the reconstruction filters are computed as modulations of them. Finally, we note
that the filters generated by wavefilter are of even length. Moreover, zero
padding is used to ensure that the lengths of the decomposition and reconstruc-
tion filters of each wavelet are identical.

Given a pair of wavefilter generated decomposition filters, it is easy to
write a general-purpose routine for the computation of the related fast
wavelet transform. The goal is to devise an efficient algorithm based on the fil-
tering and downsampling operations in Fig. 7.2. To maintain compatibility with
the existing Wavelet Toolbox, we employ the same decomposition structure
(ie., [C, S] where C is a decomposition vector and S is a bookkeeping matrix).
The following routine, which we call wavefast, uses symmetric image exten-
sion to reduce the border distortion associated with the computed FWT:

function [c, s] = wavefast(x, n, varargin) wavefast
%SWAVEFAST Perform multi-level 2-dimensional fast wavelet transform. T
[C, L] = WAVEFAST(X, N, LP, HP) performs a 2D N-level FWT of

image (or matrix) X with respect to decomposition filters LP and

HP.

[C, L] = WAVEFAST(X, N, WNAME) performs the same operation but
fetches filters LP and HP for wavelet WNAME using WAVEFILTER.

Scale parameter N must be less than or equal to log2 of the
maximum image dimension. Filters LP and HP must be even. To

0° o° o° o° of O o° of o°

256 Chapter 7 ® Wavelets

rem (X, Y) returns
the remainder of the
division of X by Y.

reduce border distortion, X is symmetrically extended. That is,
if X = [c1 ¢c2 ¢3 ... ¢cn] (in 1D), then its symmetric extension
would be [... ¢3 c2 ¢1cl1c2c3 ... cncncen-1cn-2...].

OUTPUTS:
Matrix C is a coefficient decomposition vector:

C = [a(n) h(n) v(n) d(n) h(n=1) ... v(1) d(1) 1]

%
%
%
%
%
%
%
%
%
% where a, h, v, and d are columnwise vectors containing

% approximation, horizontal, vertical, and diagonal coefficient
% matrices, respectively. C has 3n + 1 sections where n is the
% number of wavelet decompositions.

%

%

%

%

%

%

%

%

%

Matrix S is an (n+2) x 2 bookkeeping matrix:
S =1 sa(n, :); sd(n, :); sd(n—1, :); ...; sd(1, :); sx]
where sa and sd are approximation and detail size entries.

See also WAVEBACK and WAVEFILTER.

Check the input arguments for reasonableness.
error(nargchk(3, 4, nargin));

if nargin ==
if ischar(varargin{1})
[1p, hp] = wavefilter(varargin{1}, 'd');

else
error('Missing wavelet name.');
end
else
1p = varargin{1}; hp = varargin{2};
end
f1 = length(lp); sx = size(x);

if (ndims(x) ~= 2) | (min(sx) < 2) | ~isreal(x) | ~isnumeric(x)
error('X must be a real, numeric matrix.');
end

if (ndims(lp) ~= 2) | ~isreal(lp) | ~isnumeric(lp) ...
| (ndims(hp) ~= 2) | ~isreal(hp) | ~isnumeric(hp) ...
| (f1 ~= length(hp)) | rem(fl, 2) ~= 0
error(['LP and HP must be even and equal length real, ' ...
'numeric filter vectors.']);
end

if ~isreal(n) | ~isnumeric(n) | (n < 1) | (n > log2(max(sx)))
error(['N must be a real scalar between 1 and ' ...
'log2(max(size((X))).'1);
end

7.2 B The Fast Wavelet Transform 257

% Init the starting output data structures and initial approximation.
c=11 s = sX; app = double(x);

% For each decomposition ...

for i = 1:in
% Extend the approximation symmetrically.
[app, keep] = symextend(app, fl);

% Convolve rows with HP and downsample. Then convolve columns
% with HP and LP to get the diagonal and vertical coefficients.
rows = symconv(app, hp, ‘row', fl, keep);

coefs = symconv(rows, hp, 'col', fl, keep);

¢ = [coefs(:)' c]; s = [size(coefs); s];

coefs = symconv(rows, lp, 'col', fl, keep);

¢ = [coefs(:)' c];

% Convolve rows with LP and downsample. Then convolve columns
% with HP and LP to get the horizontal and next approximation
% coefficients.
rows = symconv(app, lp, 'row', fl, keep);
coefs = symconv(rows, hp, 'col', fl, keep);
¢ = [coefs(:)' c];
app = symconv(rows, lp, 'col', fl, keep);
end

% Append final approximation structures.
¢ = [app(:)' cl; s = [size(app); sl;

function [y, keep] = symextend(x, fl)
% Compute the number of coefficients to keep after convolution
% and downsampling. Then extend x in both dimensions.

keep = floor((fl + size(x) — 1) / 2);
y = padarray(x, [(fl — 1) (fl - 1)], 'symmetric', 'both');

function y = symconv(x, h, type, fl, keep)
% Convolve the rows or columns of x with h, downsample,
% and extract the center section since symmetrically extended.

if strcmp(type, 'row')
y = conv2(x, h);
y = y(:, 1:2:end);

y =y(:, f1 / 2 + 1:f1 / 2 + keep(2));
else

y = conv2(x, h');

y = y(1:2:end, :);

y=y(fl / 2+ 1:fl /| 2 + keep(1), :);

end 1

C=conv2 (A, B)
performs the 2-D
convolution of ma-
trices A and B.

258 Chapter 7 ® Wavelets

EXAMPLE 7.3:
Comparing the
execution times of
wavefast and
wavedec2.

As can be seen in the main routine, only one for loop, which cycles through
the decomposition levels (or scales) that are generated, is used to orchestrate
the entire forward transform computation. For each execution of the loop, the
current approximation image, app, which is initially set to x, is symmetrically
extended by internal function symextend. This function calls padarray, which
was introduced in Section 3.4.2, to extend app in two dimensions by mirror re-
flecting 1 — 1 of its elements (the length of the decomposition filter minus 1)
across its border.

Function symextend returns an extended matrix of approximation coeffi-
cients and the number of pixels that should be extracted from the center of
any subsequently convolved and downsampled results. The rows of the ex-
tended approximation are next convolved with highpass decomposition filter
hp and downsampled via symconv. This function is described in the following
paragraph. Convolved output, rows, is then submitted to symconv to convolve
and downsample its columns with filters hp and 1p—generating the diagonal
and vertical detail coefficients of the top two branches of Fig. 7.2. These results
are inserted into decomposition vector ¢ (working from the last element to-
ward the first) and the process is repeated in accordance with Fig. 7.2 to gen-
erate the horizontal detail and approximation coefficients (the bottom two
branches of the figure).

Function symconv uses the conv2 function to do the bulk of the transform
computation work. It convolves filter h with the rows or columns of x (de-
pending on type), discards the even indexed rows or columns (i.e., downsam-
ples by 2), and extracts the center keep elements of each row or column.
Invoking conv2 with matrix x and row filter vector h initiates a row-by-row
convolution; using column filter vector h' results in a columnwise convolution.

B The following test routine uses functions tic and toc to compare the exe-
cution times of the Wavelet Toolbox function wavedec2 and custom function
wavefast:

function [ratio, maxdiff] = fwtcompar‘e(’f, n, wname)
%FWTCOMPARE Compare wavedec2 and wavefast.

% [RATIO, MAXDIFF] = FWTCOMPARE(F, N, WNAME) compares the operation
% of toolbox function WAVEDEC2 and custom function WAVEFAST.
%

% INPUTS:

% F Image to be transformed.

% N Number of scales to compute.

% WNAME Wavelet to use.

%

% OUTPUTS:

% RATIO Execution time ratio (custom/toolbox)

% MAXDIFF Maximum coefficient difference.

% Get transform and computation time for wavedec2.
tic;

[c1, s1] = wavedec2(f, n, wname);

reftime = toc;

7.3 ® Working with Wavelet Decomposition Structures 259

% Get transform and computation time for wavefast.
tic;

[c2, s2] = wavefast(f, n, wname);

t2 = toc;

% Compare the results.

ratio = t2 / (reftime + eps);

maxdiff = abs(max(c1 — c2));

For the 512 X 512 image of Fig. 7.4 and a five-scale wavelet transform with
- respect to 4th order Daubechies’ wavelets, fwtcompare yields

>> f = imread('Vase', 'tif');
>> [ratio, maxdifference] = fwtcompare(f, 5, 'db4')
ratio =

0.5508

maxdifference =
3.2969e-012

Note that custom function wavefast was almost twice as fast as its Wavelet
Toolbox counterpart while producing virtually identical results. =

Working with Wavelet Decomposition Structures

The wavelet transformation functions of the previous two sections produce
nondisplayable data structures of the form {¢, S}, where ¢ is a transform coef-
ficient vector and S is a bookkeeping matrix that defines the arrangement of
coefficients in ¢. To process images, we must be able to examine and/or modify
¢. In this section, we formally define {c, S}, examine some of the Wavelet Tool-
- box functions for manipulating it, and develop a set of custom functions that
can be used without the Wavelet Toolbox. These functions are then used to
build a general purpose routine for displaying c.

FIGURE 7.4
A 512 x 512

260 Chapter 7 ® Wavelets

EXAMPLE 7.4
Wavelet Toolbox
functions for
manipulating
transform
decomposition
Vvector c.

The representation scheme introduced in Example 7.2 integrates the coeffi-
cients of a multiscale two-dimensional wavelet transform into a single, one-
dimensional vector

c=[An()" Hy() - H() V() D) - Vi)' Dy()]

where Ay is the approximation coefficient matrix of the Nth decomposition
level and H;, V;, and D; fori = 1,2,... N are the horizontal, vertical, and di-
agonal transform coefficient matrices for level i. Here, H,(:)’, for example, is
the row vector formed by concatenating the transposed columns of matrix H;.

That is, if
3 -2
then
3
1
H;(:) = 5 and H;:))=[3 1 -2 6]
6

Because the equation for ¢ assumes N decompositions (or passes through the
filter bank in Fig. 7.2), ¢ contains 3N + 1 sections—one approximation and N
groups of horizontal, vertical, and diagonal details. Note that the highest scale
coefficients are computed when i = 1; the lowest scale coefficients are associ-
ated with i = N. Thus, the coefficients of ¢ are ordered from low to high scale.

Matrix S of the decomposition structure is an (N + 2) X 2 bookkeeping
array of the form

S = [say; sdy; sdy_q; - sd; - sdq; sf]

where say, sd;, and sf are 1 X 2 vectors containing the horizontal and vertical
dimensions of Nth-level approximation Ay, ith-level details (H;, V;, and D;
fori = 1,2,...N),and original image F, respectively. The information in S can
be used to locate the individual approximation and detail coefficients in c.
Note that the semicolons in the preceding equation indicate that the elements
of S are organized as a column vector.

® The Wavelet Toolbox provides a variety of functions for locating, extract-
ing, reformatting, and/or manipulating the approximation and horizontal, ver-
tical, and diagonal coefficients of ¢ as a function of decomposition level. We
introduce them here to illustrate the concepts just discussed and to prepare
the way for the alternative functions that will be developed in the next section.
Consider, for example, the following sequence of commands:

>> f = magic(8);
>> [c1, s1] = wavedec2(f, 3, 'haar');
>> size(c1)

7.3 ® Working with Wavelet Decomposition Structures

AN =
O AN

>> approx = appcoef2(ct, s1, 'haar')
approx =

260.0000
>> horizdet2 = detcoef2('h', c1, s1, 2)

horizdet2 =
1.0e-013 *

0 -0.2842
0 0

>> newc1l = wthcoef2('h', c1, s1, 2);
>> newhorizdet2 = detcoef2('h', newct, si1, 2)

newhorizdet2 =
0 0
0 0

Here, a three-level decomposition with respect to Haar wavelets is performed
on an 8 X 8 magic square using the wavedec? function. The resulting coeffi-
cient vector, ¢1, is of size 1 X 64. Since s1is 5 X 2, we know that the coeffi-
cients of c¢1 span (N — 2) = (5 — 2) = 3 decomposition levels. Thus, it
concatenates the elements needed to populate 3N + 1 = 3(3) + 1 = 10 ap-
proximation and detail coefficient submatrices. Based on s1, these submatri-
ces include (a) a1 X 1 approximation matrix and three 1 X 1 detail matrices
for decomposition level 3 [see s1(1, :) and s1(2, :)], (b) three 2 X 2 detail
matrices for level 2 [see s1(3, :)],and (c) three 4 X 4 detail matrices for level
1 [see s1(4, :)]. The fifth row of s1 contains the size of the original image f.

Matrix approx = 260 is extracted from c1 using toolbox function appcoef2,
which has the following syntax:

a = appcoef2(c, s, wname)
Here, wname is a wavelet name from Table 7.1 and a is the returned approxi-
mation matrix. The horizontal detail coefficients at level 2 are retrieved using
detcoef2, a function of similar syntax

d = detcoef2(o, ¢, s, n)

in which oissetto 'h', 'v',or 'd' for the horizontal, vertical, and diagonal
details and n is the desired decomposition level. In this example, 2 X 2 matrix

261

262 Chapter 7 @ Wavelets

horizdet2 is returned. The coefficients corresponding to horizdet2in c1 are
then zeroed using wthcoef2, a wavelet thresholding function of the form

.\.-gcoefz nc = wthcoef2(type, c, s, n, t, sorh)

where typeissetto 'a' to threshold approximation coefficientsand 'h', 'v',
or 'd' to threshold horizontal, vertical, or diagonal details, respectively. Input
n is a vector of decomposition levels to be thresholded based on the corre-
sponding thresholds in vector t, while sorhissetto 's' or 'h' for soft or hard
thresholding, respectively. If t is omitted, all coefficients meeting the type and
n specifications are zeroed. Output nc is the modified (i.e., thresholded) de-
composition vector. All three of the preceding Wavelet Toolbox functions have
other syntaxes that can be examined using the MATLAB help command. #®

7.3.1 Editing Wavelet Decomposition Coefficients
without the Wavelet Toolbox

Without the Wavelet Toolbox, bookkeeping matrix S is the key to accessing
the individual approximation and detail coefficients of multiscale vector c. In
this section, we use S to build a set of general-purpose routines for the manip-
ulation of ¢. Function wavework is the foundation of the routines developed,
which are based on the familiar cut-copy-paste metaphor of modern word pro-
cessing applications.

wavework function [varargout] = wavework(opcode, type, ¢, s, n, x)
m— SWAVEWORK is used to edit wavelet decomposition structures.
[VARARGOUT] = WAVEWORK(OPCODE, TYPE, C, S, N, X) gets the
coefficients specified by TYPE and N for access or modification
based on OPCODE. ’

INPUTS:
OPCODE Operation to perform
‘copy’ [varargout] = Y = requested (via TYPE and N)
coefficient matrix
"cut' [varargout] = [NC, Y] = New decomposition vector

(with requested coefficient matrix zeroed) AND
requested coefficient matrix

'paste’ [varargout] = [NC] = new decomposition vector with
coefficient matrix replaced by X

TYPE Coefficient category

‘a' Approximation coefficients
‘h' Horizontal details

'v! Vertical details

d' Diagonal details

0° o° o° o° d° Of O S A° O° O° O° O° O° O° O° O° A O I o o° of

[C, S] is a wavelet toolbox decomposition structure.

7.3 ® Working with Wavelet Decomposition Structures

% N is a decomposition level (Ignored if TYPE = ‘'a').

% X is a two-dimensional coefficient matrix for pasting.
%

% See also WAVECUT, WAVECOPY, and WAVEPASTE.
error(nargchk(4, 6, nargin));

if (ndims(c) ~= 2) | (size(c, 1) ~= 1)
error('C must be a row vector.');
end

if (ndims(s) ~= 2) | ~isreal(s) | ~isnumeric(s) | (size(s, 2) ~= 2)
error('S must be a real, numeric two-column array.');
end

elements = prod(s, 2); % Coefficient matrix elements.
if (length(c) < elements(end)) | ...
~(elements(1) + 3 * sum(elements(2:end — 1)) >= elements(end))
error(['[C S] must form a standard wavelet decomposition '
'structure.']);
end

if strcmp(lower(opcode(1:3)), 'pas') & nargin < 6
error('Not enough input arguments.');

end
if nargin < 5
n=1, % Default level is 1.
end
nmax = size(s, 1) — 2; % Maximum levels in [C, S].

aflag = (lower(type(1)) == 'a');
if ~aflag & (n > nmax)
error('N exceeds the decompositions in [C, S].');

end
switch lower(type(1)) % Make pointers into C.
case 'a’

nindex = 1;

start = 1; stop = elements(1); ntst = nmax;

case {'h', 'v', 'd'}
switch type

case 'h', offset = 0; % Offset to details.

case 'v', offset = 1;

case 'd', offset = 2;

end

nindex = size(s, 1) — n; % Index to detail info.

start = elements(1) + 3 * sum(elements(2:nmax — n + 1)) + ...
offset * elements(nindex) + 1;

stop = start + elements(nindex) — 1;
ntst = n;
otherwise
error('TYPE must begin with "a", "h", "v", or "d".');

end

263

264 Chapter 7 ® Wavelets

o

£
2
14 ’4
gyepmat
TGN

wavecut
o

switch lower(opcode) % Do requested action.
case {'copy', 'cut'}
y = repmat(0, s(nindex, :));
y(:) = c(start:stop); nc = c;
if strcmp(lower(opcode(1:3)), 'cut')
nc(start:stop) = 0; varargout = {nc, y};
else
varargout = {y};
end
case 'paste’
if prod(size(x)) ~= elements(end — ntst)
error('X is not sized for the requested paste.');

else
nc = c¢; nc(start:stop) = x(:); varargout = {nc};
end
otherwise
error('Unrecognized OPCODE.');
end JR—

As wavework checks its input arguments for reasonableness, the number of
elements in each coefficient submatrix of ¢ is computed via elements =
prod(s, 2). Recall from Section 3.4.2 that MATLAB function Y = prod (X,
DIM) computes the products of the elements of X along dimension DIM. The first
switch statement then begins the computation of a pair of pointers to the co-
efficients associated with input parameters type and n. For the approximation
case (i.e.,case 'a'), the computation is trivial since the coefficients are always
at the start of ¢ (so pointer start is 1); the ending index, pointer stop, is the
number of elements in the approximation matrix, which is elements (1). When
a detail coefficient submatrix is requested, however, start is computed by
summing the number of elements at all decomposition levels above n and
adding offset * elements(nindex); where offset is 0, 1, or 2 for the hori-
zontal, vertical, or diagonal coefficients, respectively, and nindex is a pointer
to the row of s that corresponds to input parameter n.

The second switch statement in function wavework performs the opera-
tion requested by opcode. For the 'cut' and 'copy' cases, the coefficients of
c between start and stop are copied into y, which has been preallocated as a
two-dimensional matrix whose size is determined by s. This is done using y =
repmat (0, s(nindex, :)),in which MATLAB’s “replicate matrix” function,
B =repmat (A, M, N), is used to create a large matrix B composed of M x N tiled
copies of A. For the 'paste’ case, the elements of x are copied into nc, a copy
of input ¢, between start and stop. For both the 'cut' and 'paste' opera-
tions, a new decomposition vector nc is returned.

The following three functions—wavecut, wavecopy, and wavepaste—use
wavework to manipulate ¢ using a more intuitive syntax:

function [nc, y] = wavecut(type, c, s, n)

SWAVECUT Zeroes coefficients in a wavelet decomposition structure.

% [NC, Y] = WAVECUT(TYPE, C, S, N) returns a new decomposition

% vector whose detail or approximation coefficients (based on TYPE

SWAVEPASTE Puts coefficients in a wavelet decomposition structure.

7.3 ® Working with Wavelet Decomposition Structures

% NC = WAVEPASTE(TYPE, C, S, N, X) returns the new decomposition
% structure after pasting X into it based on TYPE and N.

265

% and N) have been zeroed. The coefficients that were zeroed are
% returned in Y.
%
% INPUTS:
9% TYPE Coefficient category
96 ---
% ‘a' Approximation coefficients
% 'h! Horizontal details
% 'v! Vertical details
% d' Diagonal details
%
% [C, S] is a wavelet data structure.
% N specifies a decomposition level (ignored if TYPE = 'a').
%
% See also WAVEWORK, WAVECOPY, and WAVEPASTE.
error(nargchk(3, 4, nargin));
if nargin ==
[nc, y] = wavework('cut', type, ¢, s, n);
else
[nc, y] = wavework('cut', type, c, S);
end e S
function y = wavecopy(type, ¢, S, n) wavecopy
%WAVECOPY Fetches coefficients of a wavelet decomposition structure. o
% Y = WAVECOPY(TYPE, C, S, N) returns a coefficient array based on
% TYPE and N.
%
% INPUTS:
% TYPE Coefficient category
% = memmmmemmememeeeaceeascaceeeeeemmeaacace-seme-meacememamaaoaonn
% ‘a’ Approximation coefficients
% 'h' Horizontal details
% 'v! Vertical details
% 'd’ Diagonal details
%
% [C, S] is a wavelet data structure.
% N specifies a decomposition level (ignored if TYPE = 'a').
%
% See also WAVEWORK, WAVECUT, and WAVEPASTE.
error(nargchk(3, 4, nargin));
if nargin ==
y = wavework('copy', type, ¢, s, n);
else
y = wavework('copy', type, c, s);
end O
function nc = wavepaste(type, c, s, n, x) wavepaste
TRy ———

266 Chapter 7 ® Wavelets

EXAMPLE 7.5:
Manipulating ¢
with wavecut and
wavecopy.

INPUTS:
TYPE Coefficient category
'a' Approximation coefficients
'h' Horizontal details
'v! Vertical details
'd' Diagonal details

[C, S] is a wavelet data structure.

N specifies a decomposition level (Ignored if TYPE = 'a').

X is a two-dimensional approximation or detail coefficient
matrix whose dimensions are appropriate for decomposition
level N.

° o° o o° o° O° o° o° ° P P oO° o o° o° o°

See also WAVEWORK, WAVECUT, and WAVECOPY.

error(nargchk(5, 5, nargin))
nc = wavework('paste', type, ¢, s, n, X); S

Functions wavecopy and wavecut can be used to reproduce the Wavelet
Toolbox based results of Example 7.4:

>> f = magic(8);
>> [c1, s1] = wavedec2(f, 3, 'haar');
>> approx = wavecopy('a', ct1, s1)

approx =
260.0000
>> horizdet2 = wavecopy('h', c1, s1, 2)
horizdet2 =
1.0e-013 *
0 -0.2842
0 0

>> [newcl, horizdet2] = wavecut('h", cl, s1, 2);
>> newhorizdet2 = wavecopy('h', newci, si1, 2)

newhorizdet2 =
0 0
0 0

Note that all extracted matrices are identical to those of the previous
example.]

7.3.2 Displaying Wavelet Decomposition Coefficients

As was indicated at the start of Section 7.3, the coefficients that are packed
into one-dimensional wavelet decomposition vector c are, in reality, the coeffi-
cients of the two-dimensional output arrays from the filter bank in Fig. 7.2. For
each iteration of the filter bank, four quarter-size coefficient arrays (neglecting
any expansion that may result from the convolution process) are produced.

7.3 ® Working with Wavelet Decomposition Structures 267

They can be arranged as a 2 X 2 array of submatrices that replace the two-
dimensional input from which they are derived. Function wave2gray performs
this subimage compositing—and both scales the coefficients to better reveal
their differences and inserts borders to delineate the approximation and vari-
ous horizontal, vertical, and diagonal detail matrices.

function w = wave2gray(c, s, scale, border) wave2gray
%WAVE2GRAY Display wavelet decomposition coefficients. —
W = WAVE2GRAY(C, S, SCALE, BORDER) displays and returns a

wavelet coefficient image.

%

%

%

% EXAMPLES:

% wavez2gray(c, s); Display w/defaults.

% foo = wave2gray(c, s); Display and return.

% foo = wave2gray(c, s, 4); Magnify the details.
% foo = wave2gray(c, s, —4); Magnify absolute values.
% foo = wave2gray(c, s, 1, 'append'); Keep border values.

%

% INPUTS/OUTPUTS:

% [C, 8] is a wavelet decomposition vector and bookkeeping

% matrix.

%

% SCALE Detail coefficient scaling

95 ...
% 0or1 Maximum range (default)

% 2, 3... Magnify default by the scale factor

% -1, =2... Magnify absolute values by abs(scale)

%

% BORDER Border between wavelet decompositions

9% eesemecescccccccecescmcmmeccsecasccccmecceececacececemccececnoea
% 'absorb'’ Border replaces image (default)

% 'append’ Border increases width of image

%

% Image Wi ---emmm imi i
% I I I I

% | a(n) | h(n) | I

% I I I I

% mmeeees e h(n-1) |

% I I

% | v(n) | d(n) | I h(n-2)

% I I I I

% eeemee eeea eeceadeaaa-

% I I I

% I vin=1) | d(n-1) I

% I |

% e e e e e e e e mammee e e me e —m———-
% I I

% | v(n-2) | d(n-2)

%

%

268 Chapter 7 ® Wavelets

% Here, n denotes the decomposition step scale and a, h, v, d are
% approximation, horizontal, vertical, and diagonal detail
% coefficients, respectively.

% Check input arguments for reasonableness.
error(nargchk(2, 4, nargin));

if (ndims(c) ~= 2) | (size(c, 1) ~= 1)
error('C must be a row vector.'); end

if (ndims(s) ~= 2) | ~isreal(s) | ~isnumeric(s) | (size(s, 2) ~= 2)
error('S must be a real, numeric two-column array.'); end

elements = prod(s, 2);
if (length(c) < elements(end)) | ...
~(elements(1) + 3 * sum(elements(2:end — 1)) >= elements(end))
error(['[C S] must be a standard wavelet ' ...
'decomposition structure.']);
end

if (nargin > 2) & (~isreal(scale) | ~isnumeric(scale))
error('SCALE must be a real, numeric scalar.');
end

if (nargin > 3) & (~ischar(border))
error('BORDER must be character string.');
end

if nargin == 2
scale = 1; 9% Default scale.
end

if nargin < 4
border = 'absorb'; % Default border.
end

% Scale coefficients and determine pad fill.
absflag = scale < 0;
scale = abs(scale);
if scale ==
scale = 1;
end

[cd, w] = wavecut('a', ¢, s); w = mat2gray(w);
cdx = max(abs(cd(:))) / scale;

if absflag

cd = mat2gray(abs(cd), [0, cdx]); fill = 0;
else

cd = mat2gray(cd, [-cdx, cdx]); fill = 0.5;
end

% Build gray image one decomposition at a time.
for i = size(s, 1) — 2:-1:1
ws = size(w);

wavecopy('h', cd, s, 1i);
= ws — size(h); frontporch = round(pad / 2);
padarray(h, frontporch, fill, 'pre');

h
pa
h
h padarray(h, pad — frontporch, fill, 'post');

nmna

1.3 ® Working with Wavelet Decomposition Structures

v = wavecopy('v', cd, s, 1i);

pad = ws — size(v); frontporch = round(pad / 2);
= padarray(v, frontporch, fill, 'pre');

v = padarray(v, pad — frontporch, fill, 'post');

d = wavecopy('d', cd, s, 1i);

pad = ws — size(d); frontporch = round(pad / 2);
d = padarray(d, frontporch, fill, 'pre');

d = padarray(d, pad — frontporch, fill, 'post');

% Add 1 pixel white border.
switch lower(border)
case 'append'

w = padarray(w, [1 1], 1, 'post');
h = padarray(h, [1 0], 1, 'post');
v = padarray(v, [0 1], 1, 'post');
case 'absorb'
w(:, end) = 1; w(end, :) = 1;
h(end, :) = 1; v(:, end) = 1;
otherwise
error('Unrecognized BORDER parameter.');
end
w = [w h; v dl; % Concatenate coefs.
end
if nargout ==
imshow(w) ; % Display result.
end P

The “help text” or header section of wave2gray details the structure of gen-
erated output image w. The subimage in the upper left corner of w, for instance,
is the approximation array that results from the final decomposition step. It is
surrounded—in a clockwise manner—by the horizontal, diagonal, and vertical
detail coefficients that were generated during the same decomposition. The re-
sulting 2 X 2 array of subimages is then surrounded (again in a clockwise
manner) by the detail coefficients of the previous decomposition step; and
the pattern continues until all of the scales of decomposition vector ¢ are
appended to two-dimensional matrix w.

The compositing just described takes place within the only for loop in
wave2gray. After checking the inputs for consistency, wavecut is called to re-
move the approximation coefficients from decomposition vector c. These coeffi-
cients are then scaled for later display using mat2gray. Modified decomposition
vector cd (i.e., ¢ without the approximation coefficients) is then similarly scaled.
For positive values of input scale, the detail coefficients are scaled so that a co-
efficient value of 0 appears as middle gray; all necessary padding is performed
with a fi11 value of 0.5 (mid-gray). If scale is negative, the absolute values of
the detail coefficients are displayed with a value of 0 corresponding to black and
the pad fill value is set to 0. After the approximation and detail coefficients
have been scaled for display, the first iteration of the for loop extracts the last
decomposition step’s detail coefficients from cd and appends them to w (after
padding to make the dimensions of the four subimages match and insertion of a

269

270 Chapter 7 @ Wavelets

EXAMPLE 7.6:
Transform
coefficient display
using wave2gray.

]
Be
FIGURE 7.5
Displaying a two-
scale wavelet
transform of the
image in Fig. 7.4:
(a) Automatic
scaling;
(b) additional
scaling by 8; and
(c) absolute

values scaled by 8.

one-pixel white border) via the w= [w h; v d] statement. This process is then re-
peated for each scale in c. Note the use of wavecopy to extract the various detail
coefficients needed to form w.

The following sequence of commands computes the two-scale DWT of the
image in Fig. 7.4 with respect to fourth-order Daubechies’ wavelets and dis-
plays the resulting coefficients:

>> f = imread('vase.tif');

>> [c, s] = wavefast(f, 2, 'db4');
>> wave2gray(c, S);

>> figure; wave2gray(c, s, 8);

>> figure; wave2gray(c, s, -8);

The images generated by the final three command lines are shown in
Figs. 7.5(a) through (c), respectively. Without additional scaling, the detail
coefficient differences in Fig. 7.5(a) are barely visible. In Fig. 7.5(b), the dif-
ferences are accentuated by multiplying them by 8. Note the mid-gray

7.4 @ The Inverse Fast Wavelet Transform 271

padding along the borders of the level 1 coefficient subimages; it was insert-
ed to reconcile dimensional variations between transform coefficient subim-
ages. Figure 7.5(c) shows the effect of taking the absolute values of the
details. Here, all padding is done in black. B

The Inverse Fast Wavelet Transform

Like its forward counterpart, the inverse fast wavelet transform can be com-
puted iteratively using digital filters. Figure 7.6 shows the required synthesis or
reconstruction filter bank, which reverses the process of the analysis or decom-
- position filter bank of Fig. 7.2. At each iteration, four scale j approximation
and detail subimages are upsampled (by inserting zeroes between every
element) and convolved with two one-dimension filters—one operating on the
subimages’ columns and the other on its rows. Addition of the results yields
the scale j + 1 approximation, and the process is repeated until the original
image is reconstructed. The filters used in the convolutions are a function of
the wavelets employed in the forward transform. Recall that they can be ob-
tained from the wfilters and wavefilter functions of Section 7.2 with input
parameter type setto 'r' for “reconstruction.”
When using the Wavelet Toolbox, function waverec2 is employed to compute
the inverse FWT of wavelet decomposition structure [C, S]. It is invoked using

g = waverec2(C, S, wname)

where g is the resulting reconstructed two-dimensional image (of class double).
The required reconstruction filters can be alternately supplied via syntax

g = waverec2(C, S, Lo_R, Hi_R)

The following custom routine, which we call waveback, can be used when the
Wavelet Toolbox is unavailable. It is the final function needed to complete our
wavelet-based package for processing images in conjunction with IPT (and
without the Wavelet Toolbox).

FIGURE 7.6 The
2-D FWT ! filter
bank. The boxes
with the up
arrows represent
upsampling by
inserting zeroes
between every
element.

WP(j,m,n)

W«‘,/(j, m,n)

Wo(j + 1,m,n)

Wil(j,m,n)

W,(j,m,n)

272 Chapter 7 & Wavelets

waveback function [varargout] = waveback(c, s, varargin)

— %SWAVEBACK Performs a multi-level two-dimensional inverse FWT.
% [VARARGOUT] = WAVEBACK(C, S, VARARGIN) computes a 2D N-level
% partial or complete wavelet reconstruction of decomposition
% structure [C, S].
%
% SYNTAX:
% Y = WAVEBACK(C, S, 'WNAME'); Output inverse FWT matrix Y
% Y = WAVEBACK(C, S, LR, HR); using lowpass and highpass
% reconstruction filters (LR and
% HR) or filters obtained by
% calling WAVEFILTER with 'WNAME'.
%
% [NC, NS] = WAVEBACK(C, S, 'WNAME', N); Output new wavelet
% [NC, NS] = WAVEBACK(C, S, LR, HR, N); decomposition structure
% [NC, NS] after N step
% reconstruction.
%

% See also WAVEFAST and WAVEFILTER.

% Check the input and output arguments for reasonableness.
error(nargchk(3, 5, nargin));
error(nargchk(1, 2, nargout));

if (ndims(c) ~= 2) | (size(c, 1) ~=1)
error('C must be a row vector.');
end

if (ndims(s) ~= 2) | ~isreal(s) | ~isnumeric(s) | (size(s, 2) ~= 2)
error('S must be a real, numeric two-column array.');
end

elements = prod(s, 2);
if (length(c) < elements(end)) | ...
~(elements(1) + 3 * sum(elements(2:end — 1)) >= elements(end))
error(['[C S] must be a standard wavelet ' ...
'decomposition structure.']);
end

% Maximum levels in [C, S].

nmax = size(s, 1) - 2;

% Get third input parameter and init check flags.
wname = varargin{1}; filterchk = 0; nchk = 0;

switch nargin
case 3
if ischar(wname)
[1p, hp] = wavefilter(wname, 'r'); n = nmax;
else
error('Undefined filter.');
end
if nargout ~= 1

7.4 @ The Inverse Fast Wavelet Transform

error('Wrong number of output arguments.');
end
case 4
if ischar(wname)
[1p, hp] = wavefilter(wname, 'r');
n = varargin{2}; nchk = 1;
else
1p = varargin{1}; hp = varargin{2};
filterchk = 1; n = nmax;
if nargout ~= 1
error('Wrong number of output arguments.');
end
end
case 5
1lp = varargin{1}; hp = varargin{2}; filterchk = 1;
n = varargin{3}; nchk = 1;
otherwise
error('Improper number of input arguments.');
end

f1 = length(lp);
if filterchk % Check filters.
if (ndims(lp) ~= 2) | ~isreal(lp) | ~isnumeric(lp) ...
| (ndims(hp) ~= 2) | ~isreal(hp) | ~isnumeric(hp) ...
| (f1 ~= length(hp)) | rem(fl, 2) ~= 0
error(['LP and HP must be even and equal length real, ' ...
'numeric filter vectors.']);

end

end

if nchk & (~isnumeric(n) | ~isreal(n)) % Check scale N.
error('N must be a real numeric.');

end

- if (n > nmax) | (n < 1)
error('Invalid number (N) of reconstructions requested.');
end
if (n ~= nmax) & (nargout ~= 2)
error('Not enough output arguments.');
end

nc = c; ns = s; nnmax = nmax; % Init decomposition.
for i = 1:n
% Compute a new approximation.
a = symconvup(wavecopy('a', nc, ns), 1lp, 1lp, fl, ns(3, :)) + ...
symconvup(wavecopy('h', nc, ns, nnmax), ...
hp, 1p, f1l, ns(3, :)) + ...
symconvup (wavecopy('v', nc, ns, nnmax), ...
1p, hp, f1l, ns(3, :)) + ..
symconvup (wavecopy('d', nc, ns, nnmax), ...
hp, hp, fl, ns(3, :));

273

274

Chapter 7 ® Wavelets

% Update decomposition.

nc = nc(4 * prod(ns(1, :)) + 1:end); nc = [a(:)"' nc];
ns = ns(3:end, :); ns = [ns(1, :); ns];
nnmax = size(ns, 1) — 2;
end
% For complete reconstructions, reformat output as 2-D.
if nargout ==
a = nc; nc = repmat(0, ns(1, :)); nc(:) = a;
end
varargout{1} = nc;
if nargout ==
varargout{2} = ns;
end
T R R e e TP PP PP TR %

function z = symconvup(x, f1, f2, fln, keep)
% Upsample rows and convolve columns with f1; upsample columns and

conv2(z, f2);
z(fln — 1:fln + keep(1) — 2, fln — 1:fln + keep(2) - 2); I

% convolve rows with f2; then extract center assuming symmetrical
% extension.

y = zeros([2 1] .* size(x)); y(1:2:end, :) = x;

y = conv2(y, f1');

z = zeros([1 2] .* size(y)); z(:, 1:2:end) = y;

Z:

Z:

The main routine of function waveback is a simple for loop that iterates
through the requested number of decomposition levels (i.e., scales) in the de-
sired reconstruction. As can be seen, each loop calls internal function
symconvup four times and sums the returned matrices. Decomposition vector
nc, which is initially set to c, is iteratively updated by replacing the four coeffi-
cient matrices passed to symconvup by the newly created approximation a.
Bookkeeping matrix ns is then modified accordingly—there is now one less
scale in decomposition structure [nc, ns]. This sequence of operations is
slightly different than the ones outlined in Fig. 7.6, in which the top two inputs
are combined to yield

(WR(j, m, n) 1™ % hy(m) + WY (j, m, n)12™ % hy(m) 11> % hy(n)

where 12" and 12" denote upsampling along m and n, respectively. Function
waveback uses the equivalent computation

(W2(j, m, n)}?m « h,,,(m)]TZ" *hy(n) + [W}(j, m, n)1*" * h¢(m)]T2” * hy(n)

Function symconvup performs the convolutions and upsampling required to
compute the contribution of one input of Fig. 7.6 to output W,(j + 1, m, n) in ac-
cordance with the proceding equation. Input x is first upsampled in the row direc-
tion to yield y, which is convolved columnwise with filter f1.The resulting output,
which replaces y, is then upsampled in the column direction and convolved row by
row with f2 to produce z. Finally, the center keep elements of z (the final convo-
lution) are returned as input x’s contribution to the new approximation.

7.4 ® The Inverse Fast Wavelet Transform 275

B The following test routine compares the execution times of Wavelet Tool-
box function waverec2 and custom function waveback using a simple modifi-
cation of the test function in Example 7.3:

function [ratio, maxdiff] = ifwtcompare(f, n, wname)
%IFWTCOMPARE Compare waverec2 and waveback.

% [RATIO, MAXDIFF] = IFWTCOMPARE(F, N, WNAME) compares the
% operation of Wavelet Toolbox function WAVEREC2 and custom function
% WAVEBACK.

%

% INPUTS:

% F Image to transform and inverse transform.

% N Number of scales to compute.

% WNAME Wavelet to use.

%

% OUTPUTS:

% RATIO Execution time ratio (custom/toolbox).

%

MAXDIFF Maximum generated image difference.

% Compute the transform and get output and computation time for
% waverec2.

[c1, s1] = wavedec2(f, n, wname);

tic;

g1 = waverec2(c1, s1, wname);

reftime = toc;

% Compute the transform and get output and computation time for
% waveback.

[c2, s2] = wavefast(f, n, wname);

tic;

g2
t2
% Compare the results.

ratio = t2 / (reftime + eps);
maxdiff = abs(max(max(gl — g2)));

waveback(c2, s2, wname),
toc;

nn

For a five scale transform of the 512 X 512 image in Fig. 7.4 with respect to 4th-order
Daubechies’ wavelets, we get

>> f = imread('Vase', 'tif');
>> [ratio, maxdifference] = ifwtcompare(f, 5, 'db4')
ratio =

1.0000

maxdifference =
3.6948e—-013

Note that the inverse transformation times of the two functions are equivalent
(i.e., the ratio is 1) and that the largest output difference is 3.6948 X 1013, For
all practical purposes, they generate identical results in identical times. =

EXAMPLE 7.7:
Comparing the
execution times of
waveback and
waverec2.

276 Chapter 7 m Wavelets

EXAMPLE 7.8:
Wavelet
directionality and
edge detection.

EXAMPLE 7.9:
Wavelet-based
image smoothing
or blurring.

Wavelets in Image Processing

As in the Fourier domain (see Section 4.3.2), the basic approach to wavelet-
based image processing is to

1. Compute the two-dimensional wavelet transform of an image.
2. Alter the transform coefficients.
3. Compute the inverse transform.

Because scale in the wavelet domain is analogous to frequency in the Fourier
domain, most of the Fourier-based filtering techniques of Chapter 4 have an
equivalent “wavelet domain” counterpart. In this section, we use the preceding
three-step procedure to give several examples of the use of wavelets in image
processing. Attention is restricted to the routines developed earlier in the
chapter; the Wavelet Toolbox is not needed to implement the examples given
here—nor the examples in Chapter 7 of Digital Image Processing (Gonzalez
and Woods [2002]).

B Consider the 500 X 500 test image in Fig. 7.7(a). This image was used in
Chapter 4 to illustrate smoothing and sharpening with Fourier transforms.
Here, we use it to demonstrate the directional sensitivity of the 2-D wavelet
transform and its usefulness in edge detection:

>> f = imread('A.tif');

>> imshow(f);

>> [c, s] = wavefast(f, 1, 'sym4');

>> figure; wave2gray(c, s, —6);

>> [nc, y] = wavecut('a', ¢, s);

>> figure; wave2gray(nc, s, —6);

>> edges = abs(waveback(nc, s, 'sym4'));
>> figure; imshow(mat2gray(edges));

The horizontal, vertical, and diagonal directionality of the single-scale
wavelet transform of Fig. 7.7(a) with respect to 'sym4' wavelets is clearly vis-
ible in Fig. 7.7(b). Note, for example, that the horizontal edges of the original
image are present in the horizontal detail coefficients of the upper-right quad-
rant of Fig. 7.7(b). The vertical edges of the image can be similarly identified in
the vertical detail coefficients of the lower-left quadrant. To combine this in-
formation into a single edge image, we simply zero the approximation coeffi-
cients of the generated transform, compute its inverse, and take the absolute
value. The modified transform and resulting edge image are shown in
Figs.7.7(c) and (d), respectively. A similar procedure can be used to isolate the
vertical or horizontal edges alone. =

B Wavelets, like their Fourier counterparts, are effective instruments for
smoothing or blurring images. Consider again the test image of Fig. 7.7(a),
which is repeated in Fig. 7.8(a). Its wavelet transform with respect to fourth-

1.5 ® Wavelets in Image Processing 277

FIGURE 7.7
Wavelets in edge
detection:

(a) A simple test
image; (b) its
wavelet
transform; (c) the
transform
modified by
zeroing all
approximation
coefficients; and
(d) the edge
image resulting
from computing
the absolute value
of the inverse

order symlets is shown in Fig. 7.8(b), where it is clear that a four-scale decom-
position has been performed. To streamline the smoothing process, we employ
the following utility function:

function [nc, g8] = wavezero(c, s, 1, wname) wavezero

" %WAVEZERO Zeroes wavelet transform detail coefficients. T
% [NC, G8] = WAVEZERO(C, S, L, WNAME) zeroes the level L detail

% coefficients in wavelet decomposition structure [C, S] and

% computes the resulting inverse transform with respect to WNAME

% wavelets.

[nc, foo] = wavecut('h', ¢, s, 1);

[nc, foo] wavecut('v', nc, s, 1);

[nc, foo] = wavecut('d', nc, s, 1);

i = waveback(nc, s, wname);

g8 = im2uint8(mat2gray(i));

figure; imshow(g8); T

278 Chapter 7 ® Wavelets

FIGURE 7.8
Wavelet-based
image smoothing:
(a) A test image;
(b) its wavelet
transform; (c) the
inverse transform
after zeroing the
first-level detail
coefficients; and
(d) through

(f) similar results
after zeroing the
second-, third-,
and fourth-level
details.

1.5 ®m Wavelets in Image Processing 279

Using wavezero, a series of increasingly smoothed versions of Fig. 7.8(a)
can be generated with the following sequence of commands:

>> f = imread('A.tif');
>> [c, s] = wavefast(f, 4, 'sym4');
~>> wave2gray(c, s, 20);

>> [c, g8] = wavezero(c, s, 1, 'sym4');
>> [c, g8] = wavezero(c, s, 2, 'sym4');
>> [c, ¢g8] = wavezero(c, s, 3, 'sym4');
>> [c, g8] = wavezero(c, s, 4, 'sym4');

Note that the smoothed image in Fig. 7.8(c) is only slightly blurred, as it was ob-
- tained by zeroing only the first-level detail coefficients of the original image’s
wavelet transform (and computing the modified tranform’s inverse). Additional
blurring is present in the second result—Fig. 7.8(d)—which shows the effect of
zeroing the second level detail coefficients as well. The coefficient zeroing
process continues in Fig. 7.8(e), where the third level of details is zeroed, and
concludes with Fig. 7.8(f), where all the detail coefficients have been eliminated.
The gradual increase in blurring from Figs. 7.8(c) to (f) is reminiscent of similar
results with Fourier transforms. It illustrates the intimate relationship between
scale in the wavelet domain and frequency in the Fourier domain. B

B Consider next the transmission and reconstruction of the four-scale wavelet EXAMPLE 7.10:
transform in Fig. 7.9(a) within the context of browsing a remote image data- Progressive
base for a specific image. Here, we deviate from the three-step procedure de- reconstruction.
scribed at the beginning of this section and consider an application without a

Fourier domain counterpart. Each image in the database is stored as a multi-

- scale wavelet decomposition. This structure is well suited to progressive recon-

struction applications, particularly when the 1-D decomposition vector used to

~ store the transform’s coefficients assumes the general format of Section 7.3.

- For the four-scale transform of this example, the decomposition vector is

[Ad()" HL() - H(G) V() D) -+ Vi)' Dy(e)']

where A, is the approximation coefficient matrix of the fourth decomposition
level and H;, V;, and D; for i = 1,2, 3, 4 are the horizontal, vertical, and diag-
onal transform coefficient matrices for level i. If we transmit this vector in a
left-to-right manner, a remote display device can gradually build higher reso-
lution approximations of the final high-resolution image (based on the user’s
needs) as the data arrives at the viewing station. For instance, when the A4 co-
efficients have been received, a low-resolution version of the image can be
made available for viewing [Fig. 7.9(b)]. When Hy, V,, and D, have been re-
ceived, a higher-resolution approximation [Fig. 7.9(c)] can be constructed, and

280 Chapter 7 ® Wavelets

-
BEEaEE
FIGURE 7.9 Progressive reconstruction: (a) A four-scale wavelet transform,; (b) the fourth-
level approximation image from the upper-left corner; (c) a refined approximation incor-
porating the fourth-level details; (d) through (f) further resolution improvements
incorporating higher-level details.

so on. Figures 7.9(d) through (f) provide three additional reconstructions of
increasing resolution. This progressive reconstruction process is easily simulat-
ed using the following MATLAB command sequence:

>> f = imread('Strawberries.tif'); % Generate transform
>> [c, s] = wavefast(f, 4, 'jpeg9.7');
>> wave2gray(c, s, 8);

>>

>> f = wavecopy('a', ¢, s); % Approximation 1
>> figure; imshow(mat2gray(f));

>>

>> [c, s] = waveback(c, s, 'jpeg9.7', 1); % Approximation 2

>> f = wavecopy('a', ¢, S);

>> figure; imshow(mat2gray(f));

>> [c, s] = waveback(c, s, 'jpeg9.7', 1); % Approximation 3
>> f = wavecopy('a', ¢, S);

>> figure; imshow(mat2gray(f));

>> [c, s] = waveback(c, s, 'jpeg9.7', 1); % Approximation 4
>> f = wavecopy('a', ¢, §);

>> figure; imshow(mat2gray(f));

>> [c, s] = waveback(c, s, 'jpeg9.7', 1); % Final image

>> f = wavecopy(‘a', ¢, s); ‘

>> figure; imshow(mat2gray(f));

Note that the final four approximations use waveback to perform single level
reconstructions. |

Summary

The material in this chapter introduces the wavelet transform and its use in image pro-
cessing. Like the Fourier transform, wavelet transforms can be used in tasks ranging
from edge detection to image smoothing, both of which are considered in the material
. that is covered. Because they provide significant insight into both an image’s spatial and
frequency characteristics, wavelets can also be used in applications in which Fourier
methods are not well suited, like progressive image reconstruction (see Example 7.10).
Because the Image Processing Toolbox does not include routines for computing or using
wavelet transforms, a significant portion of this chapter is devoted to the development
of a set of functions that extend the Image Processing Toolbox to wavelet-based imag-
ing. The functions developed were designed to be fully compatible with MATLAB’s
Wavelet Toolbox, which is introduced in this chapter but is not a part of the Image
Processing Toolbox. In the next chapter, wavelets will be used for image compression, an
area in which they have received considerable attention in the literature.

® Summary 281

