194

Processing

Preview

In this chapter we discuss fundamentals of color image processing using the
Image Processing Toolbox and extend some of its functionality by developing
additional color generation and transformation functions. The discussion in
this chapter assumes familiarity on the part of the reader with the principles
and terminology of color image processing at an introductory level.

38 color Image Representation in MATLAB

As noted in Section 2.6, the Image Processing Toolbox handles color images
either as indexed images or RGB (red, green, blue) images. In this section we
discuss these two image types in some detail.

6.1.1 RGB Images

An RGB color imageisan M X N X 3 array of color pixels, where each color
pixel is a triplet corresponding to the red, green, and blue components of an
RGB image at a specific spatial location (see Fig. 6.1). An RGB image may be
viewed as a “stack” of three gray-scale images that, when fed into the red,
green, and blue inputs of a color monitor, produce a color image on the screen.
By convention, the three images forming an RGB color image are referred to
as the red, green, and blue component images. The data class of the component
images determines their range of values. If an RGB image is of class double,
the range of values is [0, 1]. Similarly, the range of values is [0, 255] or [0, 65535]
for RGB images of class uint8 or uint16, respectively. The number of bits
used to represent the pixel values of the component images determines the bit
depth of an RGB image. For example, if each component image is an 8-bit
image, the corresponding RGB image is said to be 24 bits deep. Generally, the
number of bits in all component images is the same. In this case, the number of

6.1 m Color Image Representation in MATLAB 195

e
escee
sep0e
LN
seccee
secee

o

i

Blue component image

The three color
components of Green component image
a color pixel.

Red component image

possible colors in an RGB image is (2°)3, where b is the number of bits in each
component image. For the 8-bit case, the number is 16,777,216 colors.

Let R, fG,and fB represent three RGB component images. An RGB image
is formed from these images by using the cat (concatenate) operator to stack
the images:

rgb_image = cat(3, fR, fG, fB)
The order in which the images are placed in the operand matters. In general,
cat(dim, A1, A2, .) concatenates the arrays along the dimension spec-
ified by dim. For example, if dim = 1, the arrays are arranged vertically, if dim =
2, they are arranged horizontally, and, if dim = 3, they are stacked in the third
dimension, as in Fig. 6.1.

If all component images are identical, the result is a gray-scale image. Let
rgb_image denote an RGB image. The following commands extract the three
component images:

>> fR = rgb_image(:, :, 1);
>> fG = rgb_image(:, :, 2);
>> fB = rgb_image(:, :, 3);

The RGB color space usually is shown graphically as an RGB color cube, as
depicted in Fig. 6.2. The vertices of the cube are the primary (red, green, and
blue) and secondary (cyan, magenta, and yellow) colors of light.

Often, it is useful to be able to view the color cube from any perspective.
Function rgbcube is used for this purpose. The syntax is

rgbcube (vx, vy, vz)

Typing rgbcube (vx, vy, vz) at the prompt produces an RGB cube on the
MATLAB desktop, viewed from point (vx, vy, vz).The resulting image
can be saved to disk using function print, discussed in Section 2.4. The code
for this function follows. It is self-explanatory.

FIGURE 6.1
Schematic
showing how
pixels of an RGB
color image are
formed from the
corresponding
pixels of the three
component
images.

rgbcube
L —

196

FIGURE 6.2

(a) Schematic of
the RGB color
cube showing the
primary and
secondary colors of
light at the vertices.
Points along the
main diagonal have
gray values from
black at the origin
to white at point
(1,1,1). (b) The
RGB color cube.

Function patch cre-
ates filled, 2-D poly-
gons based on
specified
property/value pairs.
For more informa-
tion about patch,
see the MATLAB
help page for this
function.

Chapter 6 ® Color Image Processing

Blue {(0,0,1)

Magenta Cyan

(1,0,0)

Yellow

function rgbcube(vx, vy, vz)
%RGBCUBE Displays an RGB cube on the MATLAB desktop.

% RGBCUBE(VX, VY, VZ) displays an RGB color cube, viewed from point
% (VX, VY, VZ). With no input arguments, RGBCUBE uses (10, 10, 4)

% as the default viewing coordinates. To view individual color

% planes, use the following viewing coordinates, where the first

% color in the sequence is the closest to the viewing axis, and the
% other colors are as seen from that axis, proceeding to the right
% right (or above), and then moving clockwise.

%

3

% COLOR PLANE (vx, vy, vz)

% R e R

% Blue-Magenta-White-Cyan (0, 0, 10)

% Red-Yellow-White-Magenta (10, 0, 0)

% Green-Cyan-White-Yellow (0, 10, 0)

% Black-Red-Magenta-Blue (0, -10, 0)

% Black-Blue-Cyan-Green (-10, 0, 0)

% Black-Red-Yellow-Green (0, 0, -10)

% Set up parameters for function patch.

vertices_matrix = [0 0 0;0 0 1;0 1 0;0 1 1;1 0 0;1 0 1;1 1 0;1 1 1];
faces_matrix = [1 56 2;1 37 5;1243;2486;3784;5687];
colors = vertices_matrix;

% The order of the cube vertices was selected to be the same as

% the order of the (R,G,B) colors (e.g., (0,0,0) corresponds to

% black, (1,1,1) corresponds to white, and so on.)

% Generate RGB cube using function patch.
patch('Vertices', vertices_matrix, 'Faces', faces_matrix,
'FaceVertexCData', colors, 'FaceColor', 'interp',
'EdgeAlpha’, 0)
% Set up viewing point.
if nargin ==
vx = 10; vy = 10; vz = 4;

6.1 m Color Image Representation in MATLAB 197

elseif nargin -= 3
error('Wrong number of inputs.')
end
axis off
view([vx, vy, vz])
axis square

6.1.2 Indexed Images

An indexed image has two components: a data matrix of integers, X, and a
colormap matrix, map. Matrix map is an m X 3 array of class double containing
floating-point values in the range [0, 1]. The length, m, of the map is equal to the
number of colors it defines. Each row of map specifies the red, green, and blue
components of a single color. An indexed image uses “direct mapping” of pixel in-
tensity values to colormap values. The color of each pixel is determined by using
the corresponding value of integer matrix X as a pointer into map. If X is of class
double, then all of its components with values less than or equal to 1 point to the
first row in map, all components with value 2 point to the second row, and so on. If
X is of class uint8 or uint16, then all components with value 0 point to the first
row in map, all components with value 1 point to the second row, and so on. These
concepts are illustrated in Fig. 6.3.
To display an indexed image we write

>> imshow(X, map)
or, alternatively,

>> image(X)
>> colormap(map)

A colormap is stored with an indexed image and is automatically loaded with
the image when function imread is used to load the image.

rnlg|b
rn|&|b

eecoece
ccecee
ceec e
eecee
se s

| 7 |8 by | <— kth row

rolgLlbL

cscee
eeeoe
see
se e

2-D integer array, X .

map
Value of circled element = k

If three columns of
map are equal, then
the colormap be-
comes a grayscale
map.

FIGURE 6.3
Elements of an
indexed image.
Note that the
value of an
element of integer
array X
determines the
row number in
the colormap.
Each row contains
an RGB triplet,
and L is the total
number of rows.

198 Chapter 6 W Color Image Processing

TABLE 6.1

RGB values of

some basic colors.

The long or short
names (enclosed
by quotes) can be
used instead of
the numerical
triplet to specify
an RGB color.

Sometimes it is necessary to approximate an indexed image by one with
fewer colors. For this we use function imapprox, whose syntax is

[Y, newmap] = imapprox(X, map, n)

This function returns an array Y with colormap newmap, which has at most n colors.
The input array X can be of class uint8,uint16, or double.The output Y is of class
uint8if nis less than or equal to 256. If n is greater than 256, Y is of class double.

When the number of rows in map is less than the number of distinct integer val-
ues in X, multiple values in X are displayed using the same color in map. For exam-
ple, suppose that X consists of four vertical bands of equal width, with values 1,64,
128, and 256. If we specify the colormap map = [0 0 0; 1 1 1],then all the el-
ements in X with value 1 would point to the first row (black) of the map and all the
other elements would point to the second row (white). Thus, the command
imshow(X, map) would display an image with a black band followed by three
white bands. In fact, this would be true until the length of the map became 65, at
which time the display would be a black band, followed by a gray band, followed
by two white bands. Nonsensical image displays can result if the length of the map
exceeds the allowed range of values of the elements of X.

There are several ways to specify a color map. One approach is to use the
statement

>> map(k, :) = [r(k) g(k) b(k)]

where [r(k) g(k) b(k)] are RGB values that specify one row of a col-
ormap. The map is filled out by varying k.

Table 6.1 lists the RGB values for some basic colors. Any of the three for-
mats shown in the table can be used to specify colors. For example, the back-
ground color of a figure can be changed to green by using any of the following
three statements:

>> whitebg('g')
>> whitebg('green')
>> whitebg([0 1 0])

' Long name ‘Short name RGB values
Black k [0 0 O]
Blue b [00 1]
Green g [0 1 0]
Cyan c 01 1]
Red r [1 0 0]
Magenta m [101]
Yellow y [1 1 0]
White w [111]

6.1 m Color Image Representation in MATLAB 199

Other colors in addition to the ones shown in Table 6.1 involve fractional val-
ues. For instance, [.5 .5 .5] isgray,[.5 0 0] isdarkred,and [.49 1 .83]
is aquamarine.

MATLAB provides several predefined color maps, accessed using the
command

>> colormap(map_name)

which sets the colormap to the matrix map_name; an example is
>> colormap(copper)

where copper is one of the prespecified MATLAB colormaps. The colors in
this map vary smoothly from black to bright copper. If the last image displayed
was an indexed image, this command changes its colormap to copper. Alter-
natively, the image can be displayed directly with the desired colormap:

>> imshow(X, copper)

Table 6.2 lists some of the colormaps available in MATLAB. The length (number
of colors) of these colormaps can be specified by enclosing the number in paren-
theses. For example, gray (16) generates a colormap with 16 shades of gray.

6.1.3 IPT Functions for Manipulating RGB and Indexed Images

Table 6.3 lists the IPT functions suitable for converting between RGB, in-
dexed, and gray-scale images. For clarity of notation in this section, we use
rgb_image to denote RGB images, gray_image to denote gray-scale images,
bw to denote black and white images, and X, to denote the data matrix compo-
nent of indexed images. Recall that an indexed image is composed of an inte-
ger data matrix and a colormap matrix.

Function dither is applicable both to gray-scale and color images. Dither-
ing is a process used mostly in the printing and publishing industry to give the
visual impression of shade variations on a printed page that consists of dots. In
the case of gray-scale images, dithering attempts to capture shades of gray by
producing a binary image of black dots on a white background (or vice versa).
The sizes of the dots vary, from small dots in light areas to increasingly larger
dots for dark areas. The key issue in implementing a dithering algorithm is a
tradeoff between “accuracy” of visual perception and computational complex-
ity. The dithering approach used in IPT is based on the Floyd-Steinberg algo-
rithm (see Floyd and Steinberg [1975], and Ulichney [1987]). The syntax used
by function dither for gray-scale images is

bw = dither(gray_image)

where, as noted earlier, gray_image is a gray-scale image and bw is the
dithered result (a binary image).

200 Chapter 6 m Color Image Processing

TABLE 6.2
Some of the
MATLAB
predefined
colormaps.

TABLE 6.3

IPT functions for
converting
between RGB,
indexed, and gray-
scale intensity
images.

autumn
bone

colorcube

cool

copper
flag

gray
hot

hsv

jet

lines

pink

prism
spring
summer
white
winter

Varies smoothly from red, through orange, to yellow.

A gray-scale colormap with a higher value for the blue component.
This colormap is useful for adding an “electronic” look to gray-
scale images.

Contains as many regularly spaced colors in RGB color space as
possible, while attempting to provide more steps of gray, pure red,
pure green, and pure blue.

Consists of colors that are shades of cyan and magenta. It varies
smoothly from cyan to magenta.

Varies smoothly from black to bright copper.

Consists of the colors red, white, blue, and black. This colormap
completely changes color with each index increment.

Returns a linear gray-scale colormap.

Varies smoothly from black, through shades of red, orange, and
yellow, to white.

Varies the hue component of the hue-saturation-value color
model. The colors begin with red, pass through yellow, green, cyan,
blue, magenta, and return to red. The colormap is particularly
appropriate for displaying periodic functions.

Ranges from blue to red, and passes through the colors cyan,
yellow, and orange.

Produces a colormap of colors specified by the ColorOrder
property and a shade of gray. Consult online help regarding
function ColorOrder.

Contains pastel shades of pink. The pink colormap provides sepia
tone colorization of grayscale photographs.

Repeats the six colors red, orange, yellow, green, blue, and violet.
Consists of colors that are shades of magenta and yellow.
Consists of colors that are shades of green and yellow.

This is an all white monochrome colormap.

Consists of colors that are shades of blue and green.

dither
grayslice

gray2ind
ind2gray
rgb2ind
ind2rgb
rgb2gray

Creates an indexed image from an RGB image by dithering.
Creates an indexed image from a gray-scale intensity image by
multilevel thresholding.

Creates an indexed image from a gray-scale intensity image.
Creates a gray-scale intensity image from an indexed image.
Creates an indexed image from an RGB image.

Creates an RGB image from an indexed image.

Creates a gray-scale image from an RGB image.

6.1 m Color Image Representation in MATLAB 201

When working with color images, dithering is used principally in conjunc-
tion with function rgb2ind to reduce the number of colors in an image. This
function is discussed later in this section.

Function grayslice has the syntax

X = grayslice(gray_image, n)

This function produces an indexed image by thresholding gray_image with
threshold values
12 n—1

Pt

n n n

As noted earlier, the resulting indexed image can be viewed with the com-
mand imshow (X, map) using a map of appropriate length [e.g., jet (16)]. An
alternate syntax is

X = grayslice(gray_image, v)

where v is a vector whose values are used to threshold gray_image. When
used in conjunction with a colormap, grayslice is a basic tool for pseudocol-
or image processing, where specified gray intensity bands are assigned differ-
ent colors. The input image can be of class uint8, uint16, or double. The
threshold values in v must between 0 and 1, even if the input image is of class
uint8 or uint16. The function performs the necessary scaling.

Function gray2ind, with syntax

[X, map] = gray2ind(gray_image, n)

scales, then rounds image gray_image to produce an indexed image X with
colormap gray (n). If n is omitted, it defaults to 64. The input image can be of
class uint8,uint16, or double. The class of the output image X is uint8if n is
less than or equal to 256, or of class uint16 if n is greater than 256.

Function ind2gray, with the syntax

gray_image = ind2gray(X, map)

converts an indexed image, composed of X and map, to a gray-scale image.
Array X can be of class uint8, uint16, or double. The output image is of class
double.

The syntax of interest in this chapter for function rgb2ind has the form

[X, map] = rgb2ind(rgb_image, n, dither_option)

where n determines the length (number of colors) of map, and dither_option
can have one of two values: 'dither' (the default) dithers, if necessary, to

202 Chapter 6 m Color Image Processing

EXAMPLE 6.1:

Illustration of
some of the
functions in
Table 6.3.

achieve better color resolution at the expense of spatial resolution; conversely,
'nodither' maps each color in the original image to the closest color in the new
map (depending on the value of n). No dithering is performed. The input image
can be of class uint8, uint16, or double. The output array, X, is of class uint8 if
n is less than or equal to 256; otherwise it is of class uint16. Example 6.1 shows
the effect that dithering has on color reduction.

Function ind2rgb, with syntax

rgb_image = ind2rgb(X, map)

converts the matrix X and corresponding colormap map to RGB format; X can
be of class uint8, uint16, or double. The output RGB image is an
M X N X 3 array of class double.

Finally, function rgb2gray, with syntax

gray_image = rgb2gray(rgb_image)

converts an RGB image to a gray-scale image. The input RGB image can be of
class uint8, uint16, or double; the output image is of the same class as the
input.

B Function rgb2ind is quite useful for reducing the number of colors in an
RGB image. As an illustration of this function, and of the advantages of using
the dithering option, consider Fig. 6.4(a), which is a 24-bit RGB image, f.
Figures 6.4(b) and (c) show the results of using the commands

>> [X1, mapi1] = rgb2ind(f, 8, 'nodither');
>> imshow(X1, mapt1)

and

>> [X2, map2] = rgb2ind(f, 8, 'dither');
>> figure, imshow(X2, map2)

Both images have only 8 colors, which is a significant reduction in the number
of possible colors in f, which, for a 24-bit RGB image exceeds 16 million, as
mentioned earlier. Figure 6.4(b) has noticeable false contouring, especially in
the center of the large flower. The dithered image shows better tonality, and
considerably less false contouring, a result of the “randomness” introduced by
dithering. The image is a little blurred, but it certainly is visually superior to
Fig. 6.4(b).

The effects of dithering are usually better illustrated with gray-scale images.
Figures 6.4(d) and (e) were obtained using the commands

>> g = rgb2gray(f);
>> g1 = dither(g);
>> figure, imshow(g); figure, imshow(g1)

6.1 m Color Image Representation in MATLAB 203

FIGURE 6.4

(a) RGB image.
(b) Number of
colors reduced

to 8 without
dithering.

(c) Number of
colors reduced to
8 with dithering.
(d) Gray-scale
version of (a)
obtained using
function
rgb2gray.

(e) Dithered gray-
scale image (this
is a binary image).

204 Chapter 6 m Color Image Processing

The image in Fig. 6.4(e) is a binary image, which again represents a significant
degree of data reduction. By looking at Figs. 6.4(c) and (e), it is clear why
dithering is such a staple in the printing and publishing industry, especially in
situations (such as in newspapers) where paper quality and printing resolution
are low. n

m Converting to Other Color Spaces

As explained in the previous section, the toolbox represents colors as RGB val-
ues, directly in an RGB image, or indirectly in an indexed image, where the col-
ormap is stored in RGB format. However, there are other color spaces (also
called color models) whose use in some applications may be more convenient
and/or appropriate. These include the NTSC, YCbCr, HSV, CMY, CMYK, and
HSI color spaces. The toolbox provides conversion functions from RGB to the
NTSC, YCbCr, HSV and CMY color spaces, and back. Functions for converting
to and from the HSI color space are developed later in this section.

6.2.1 NTSC Color Space

The NTSC color system is used in television in the United States. One of the
main advantages of this format is that gray-scale information is separate from
color data, so the same signal can be used for both color and monochrome
television sets. In the NTSC format, image data consists of three components:
luminance (Y), hue (I), and saturation (Q), where the choice of the letters YIQ
is conventional. The luminance component represents gray-scale information,
and the other two components carry the color information of a TV signal. The
YIQ components are obtained from the RGB components of an image using
the transformation

Y 0299 0587 0114 (| R
I]1=105% -0274 -0322 || G
(0] 0211 -0.523 0312 || B

Note that the elements of the first row sum to 1 and the elements of the next
two rows sum to 0. This is as expected because for a gray-scale image all the
RGB components are equal, so the I and Q components should be 0 for such
an image. Function rgb2ntsc performs the transformation:

yiq_image = rgb2ntsc(rgb_image)

where the input RGB image can be of class uint8, uint16, or double. The
output image is an M X N X 3 array of class double. Component image
yiq_image(:, :, 1) isthe luminance, yiq_image(:, :, 2) isthe hue,and
yiq_image(:, :, 3) isthe saturation image.

Similarly, the RGB components are obtained from the YIQ components
using the transformation:

6.2 m Converting to Other Color Spaces 205

R 1.000 0956 0621 || Y
G |=|1000 —-0272 -0.647 || I
B 1.000 -1.106 1.703 || Q

IPT function ntsc2rgb implements this equation:
rgb_image = ntsc2rgb(yiq_image)
Both the input and output images are of class double.

6.2.2 The YCbCr Color Space

The YCbCr color space is used widely in digital video. In this format, luminance
information is represented by a single component, Y, and color information is
stored as two color-difference components, Cb and Cr. Component Cb is the dif-
ference between the blue component and a reference value, and component Cr is
the difference between the red component and a reference value (Poynton
[1996]). The transformation used by IPT to convert from RGB to YCbCr is

Y 16 65.481 128553 24.966 || R
Cb | =128 | +| —37.797 -74203 112.000 || G
Cr 128 112.000 -93.786 -—18.214 || B

The conversion function is
ycbcr_image = rgb2ycber(rgb_image)

The input RGB image can be of class uint8, uint16, or double. The output
image is of the same class as the input. A similar transformation converts from
YCbCr back to RGB:

rgb_image = ycbcr2rgb(ycbcr_image)

The input YCbCr image can be of class uint8, uint16, or double. The output
image is of the same class as the input.

6.2.3 The HSV Color Space

HSV (hue, saturation, value) is one of several color systems used by people to
select colors (e.g., of paints or inks) from a color wheel or palette. This color
system is considerably closer than the RGB system to the way in which hu-
mans experience and describe color sensations. In artist’s terminology, hue,
saturation, and value refer approximately to tint, shade, and tone.

The HSV color space is formulated by looking at the RGB color cube along
its gray axis (the axis joining the black and white vertices), which results in the
hexagonally shaped color palette shown in Fig. 6.5(a). As we move along the
vertical (gray) axis in Fig. 6.5(b), the size of the hexagonal plane that is perpen-
dicular to the axis changes, yielding the volume depicted in the figure. Hue is

To see the transforma-
tion matrix used to
convert from YCbCr
to RGB, type the fol-
lowing command at
the prompt:

>> edit ycbcr2rgh.

206 Chapter 6 m Color Image Processing

mE

FIGURE 6.5

(a) The HSV
color hexagon.
(b) The HSV

120°
Green Yellow

Cyan

expressed as an angle around a color hexagon, typically using the red axis as the
0° axis. Value is measured along the axis of the cone. The V' = 0 end of the axis
is black. The V = 1 end of the axis is white, which lies in the center of the full
color hexagon in Fig. 6.5(a). Thus, this axis represents all shades of gray. Satura-
tion (purity of the color) is measured as the distance from the V axis.

The HSV color system is based on cylindrical coordinates. Converting from
RGB to HSV is simply a matter of developing the equations to map RGB val-
ues (which are in Cartesian coordinates) to cylindrical coordinates. This topic
is treated in detail in most texts on computer graphics (e.g., see Rogers [1997])
so we do not develop the equations here.

The MATLAB function for converting from RGB to HSV is rgb2hsv,
whose syntax is

hsv_image = rgb2hsv(rgb_image)

The input RGB image can be of class uint8, uint16, or double; the output
image is of class double. The function for converting from HSV back to RGB
is hsv2rgb:

rgb_image = hsv2rgb(hsv_image)

The input image must be of class double. The output also is of class double.

6.2.4 The CMY and CMYK Color Spaces

Cyan, magenta, and yellow are the secondary colors of light or, alternatively,
the primary colors of pigments. For example, when a surface coated with cyan
pigment is illuminated with white light, no red light is reflected from the sur-
face. That is, the cyan pigment subtracts red light from reflected white light,
which itself is composed of equal amounts of red, green, and blue light.

6.2 m Converting to Other Color Spaces

Most devices that deposit colored pigments on paper, such as color printers
and copiers, require CMY data input or perform an RGB to CMY conversion
internally. This conversion is performed using the simple equation

c 1 R
M|=|1|-|G
Y 1 B

where the assumption is that all color values have been normalized to the range
[0, 1]. This equation demonstrates that light reflected from a surface coated with
pure cyan does not contain red (that is, C = 1 — R in the equation). Similarly,
pure magenta does not reflect green, and pure yellow does not reflect blue. The
preceding equation also shows that RGB values can be obtained easily from a set
of CMY values by subtracting the individual CMY values from 1.

In theory, equal amounts of the pigment primaries, cyan, magenta, and yel-
low should produce black. In practice, combining these colors for printing pro-
duces a muddy-looking black. So, in order to produce true black (which is the
predominant color in printing), a fourth color, black, is added, giving rise to the
CMYK color model. Thus, when publishers talk about “four-color printing,”
they are referring to the three-colors of the CMY color model plus black.

Function imcomplement introduced in Section 3.2.1 can be used to convert
from RGB to CMY:

cmy_image = imcomplement(rgb_image)
We use this function also to convert a CMY image to RGB:

rgb_image = imcomplement(cmy_image)

6.2.5 The HSI Color Space

With the exception of HSV, the color spaces discussed thus far are not well
suited for describing colors in terms that are practical for human interpreta-
tion. For example, one does not refer to the color of an automobile by giving
the percentage of each of the pigment primaries composing its color.

When humans view a color object, we tend to describe it by its hue, satura-
tion, and brightness. Hue is an attribute that describes a pure color (e.g., pure
yellow, orange, or red), whereas saturation gives a measure of the degree to
which a pure color is diluted by white light. Brightness is a subjective descrip-
tor that is practically impossible to measure. It embodies the achromatic no-
tion of intensity and is a key factor in describing color sensation. We do know
that intensity (gray level) is a most useful descriptor of monochromatic im-
ages. This quantity definitely is measurable and easily interpretable.

The color space we are about to present, called the HSI (hue, saturation, in-
tensity) color space, decouples the intensity component from the color-carrying
information (hue and saturation) in a color image. As a result, the HSI model is
an ideal tool for developing image-processing algorithms based on color
descriptions that are natural and intuitive to humans who, after all, are the
developers and users of these algorithms. The HSV color space is somewhat

207

208 Chapter 6 m Color Image Processing

FIGURE 6.6
Relationship
between the RGB
and HSI color
models.

similar, but its focus is on presenting colors that are meaningful when interpret-
ed in terms of a color artist’s palette.

As discussed in Section 6.1.1, an RGB color image is composed of three
monochrome intensity images, so it should come as no surprise that we should
be able to extract intensity from an RGB image. This becomes quite clear if we
take the color cube from Fig. 6.2 and stand it on the black, (0, 0, 0), vertex,
with the white vertex, (1, 1, 1), directly above it, as Fig. 6.6(a) shows. As noted
in connection with Fig. 6.2, the intensity is along the line joining these two ver-
tices. In the arrangement shown in Fig. 6.6, the line (intensity axis) joining the
black and white vertices is vertical. Thus, if we wanted to determine the inten-
sity component of any color point in Fig. 6.6, we would simply pass a plane
perpendicular to the intensity axis and containing the color point. The inter-
section of the plane with the intensity axis would give us an intensity value in
the range [0, 1]. We also note with a little thought that the saturation (purity)
of a color increases as a function of distance from the intensity axis. In fact, the
saturation of points on the intensity axis is zero, as evidenced by the fact that
all points along this axis are gray.

In order to see how hue can be determined from a given RGB point, con-
sider Fig. 6.6(b), which shows a plane defined by three points, (black, white,
and cyan). The fact that the black and white points are contained in the plane
tells us that the intensity axis also is contained in the plane. Furthermore, we
see that all points contained in the plane segment defined by the intensity axis -
and the boundaries of the cube have the same hue (cyan in this case). This is
because the colors inside a color triangle are various combinations or mixtures
of the three vertex colors. If two of those vertices are black and white, and the
third is a color point, all points on the triangle must have the same hue since
the black and white components do not contribute to changes in hue (of
course, the intensity and saturation of points in this triangle do change). By ro-
tating the shaded plane about the vertical intensity axis, we would obtain dif-
ferent hues. From these concepts we arrive at the conclusion that the hue,
saturation, and intensity values required to form the HSI space can be ob-
tained from the RGB color cube. That is, we can convert any RGB point to a
corresponding point is the HSI color model by working out the geometrical
formulas describing the reasoning just outlined in the preceding discussion.

White

Cyan Cyan ¢

Blue Blue

6.2 m Converting to Other Color Spaces

Green Yellow
Cyan Red
Blue Magenta
Green Yellow Green Yellow Green
Cyan Red Cyan Red Cyan Yellow
Blue Magenta Blue Magenta Blue Magenta Red

Based on the preceding discussion, we see that the HSI space consists of a
vertical intensity axis and the locus of color points that lie on a plane perpen-
dicular to this axis. As the plane moves up and down the intensity axis, the
boundaries defined by the intersection of the plane with the faces of the cube
have either a triangular or hexagonal shape. This can be visualized more read-
ily by looking at the cube down its gray-scale axis, as shown in Fig. 6.7(a). In
this plane we see that the primary colors are separated by 120°. The secondary
colors are 60° from the primaries, which means that the angle between sec-
ondary colors also is 120°.)

Figure 6.7(b) shows the hexagonal shape and an arbitrary color point
(shown as a dot). The hue of the point is determined by an angle from some
reference point. Usually (but not always) an angle of 0° from the red axis des-
ignates 0 hue, and the hue increases counterclockwise from there. The satura-
tion (distance from the vertical axis) is the length of the vector from the origin
to the point. Note that the origin is defined by the intersection of the color
plane with the vertical intensity axis. The important components of the HSI
color space are the vertical intensity axis, the length of the vector to a color
point, and the angle this vector makes with the red axis. Therefore, it is not un-
usual to see the HSI plane defined is terms of the hexagon just discussed, a tri-
angle, or even a circle, as Figs. 6.7(c) and (d) show. The shape chosen is not
important because any one of these shapes can be warped into one of the
other two by a geometric transformation. Figure 6.8 shows the HSI model
based on color triangles and also on circles.

Converting Colors from RGB to HSI

In the following discussion we give the RGB to HSI conversion equations

without derivation. See the book Web site (the address is listed in Section 1.5)

for a detailed derivation of these equations. Given an image in RGB color for-
mat, the H component of each RGB pixel is obtained using the equation

ifB=G

7= { itB>G

0
360 — 6

209

B
EaE
FIGURE 6.7 Hue and
saturation in the HSI
color model. The dot
is an arbitrary color
point. The angle from
the red axis gives the
hue, and the length of
the vector is the
saturation. The
intensity of all colors
in any of these planes
is given by the
position of the plane
on the vertical
intensity axis.

210 Chapter 6 m Color Image Processing

= I=0.75
FIGURE 6.8 The
HSI color model
based on (a)
triangular and (b)
circular color
planes. The
triangles and
circles are
perpendicular to
the vertical
intensity axis.

Black """~ "7"—7~——~~ -

White ,————__ .

Yellow
Red

Magenta

Black "7~~~ —~~———— -

6.2 m Converting to Other Color Spaces

with

) e COS_I{ 3[(R=G) + (R~ B)] }
[(R~G)*+ (R~ B)(G — B)]**

The saturation component is given by

3 .
S=1- m[mm(R’ G, B)]

Finally, the intensity component is given by
I= %(R + G + B)

It is assumed that the RGB values have been normalized to the range [0, 1],
. and that angle 6 is measured with respect to the red axis of the HSI space, as in-
dicated in Fig. 6.7. Hue can be normalized to the range [0, 1] by dividing by 360°
all values resulting from the equation for H. The other two HSI components al-
ready are in this range if the given RGB values are in the interval [0, 1].

Converting Colors from HSI to RGB

Given values of HSI in the interval [0, 1], we now find the corresponding RGB
values in the same range. The applicable equations depend on the values of H.
There are three sectors of interest, corresponding to the 120° intervals in the
separation of primaries (see Fig. 6.7). We begin by multiplying H by 360°,
which returns the hue to its original range of [0°, 360°].

RG sector (0° = H < 120°): When H is in this sector, the RGB components
are given by the equations

B=1I(1-25)
S cos H
k= Il:l * cos(60° — H)}

G =3I — (R + B)

and

GB sector (120° = H < 240°): If the given value of H is in this sector, we
first subtract 120° from it:

H=H - 120°
Then the RGB components are
R=I1-25)

S cos H
G= 1[1 " cos(60° — H)j|

211

212 Chapter 6 W Color Image Processing

and
B =3 - (R +G)

BR sector (240° = H = 360°): Finally, if H is in this range, we subtract 240°
from it:

H = H — 240°
Then the RGB components are
G=I1-29)

S cos H
= B e ———
B I[:1 cos(60° — H):l

R =3I - (G + B)

Use of these equations for image processing is discussed later in this chapter.

and

An M-function for Converting from RGB to HSI
The following function,

rgb2hsi hsi = rgb2hsi(rgb)
| I——
implements the equations just discussed for converting from RGB to HSI. To
simplify the notation, we use rgb and hsi to denote RGB and HSI images, re-
spectively. The documentation in the code details the use of this function.

function hsi = rgb2hsi(rgb)

%RGB2HSI Converts an RGB image to HSI.

HSI = RGB2HSI(RGB) converts an RGB image to HSI. The input image
is assumed to be of size M-by-N-by-3, where the third dimension
accounts for three image planes: red, green, and blue, in that
order. If all RGB component images are equal, the HSI conversion
is undefined. The input image can be of class double (with values
in the range [0, 1]), uint8, or uint16.

The output image, HSI, is of class double, where:
hsi(:, :, 1) = hue image normalized to the range [0, 1] by
dividing all angle values by 2*pi.

o® d° d° o° of P O° of o° J° o oF° oF°

hsi(:, :, 2) = saturation image, in the range [0, 1].
hsi(:, :, 3) = intensity image, in the range [0, 1].
Extract the individual component immages.

rgb = im2double(rgb);

r=nrgb(:, :, 1);

g =rgb(:, :, 2);

b = rgb(:, :, 8);

% Implement the conversion equations.

num = 0.5*((r — g) + (r — b));

6.2 m Converting to Other Color Spaces 213

den = sqrt((r — g)."2 + (r —b).*(g - b));
theta = acos(num./(den + eps));

H = theta;

H(b > g) = 2*pi — H(b > g);
H = H/(2*pi);

num = min(min(r, g), b);
den = r + g + b;

den(den == 0) = eps;
S =1 - 3.* num./den;

H(S == 0) = 0;
I=(r+g+b)/3

% Combine all three results into an hsi image.
hsi = cat(3, H, S, I);

An M-function for Converting from HSI to RGB

The following function,

rgb = hsi2rgb(hsi)

implements the equations for converting from HSI to RGB. The documenta-

tion in the code details the use of this function.

function rgb = hsi2rgb(hsi)
%HSI2RGB Converts an HSI image to RGB.

Implement the conversion equations.
zeros(size(hsi, 1), size(hsi, 2));
zeros(size(hsi, 1), size(hsi, 2));
zeros(size(hsi, 1), size(hsi, 2));
% RG sector (0 <= H < 2*pi/3).

idx = find((0 <= H) & (H < 2*pi/3));
B(idx) = I(idx) .* (1 — S(idx));

% RGB = HSI2RGB(HSI) converts an HSI image to RGB, where HSI
% is assumed to be of class double with:

% hsi(:, :, 1) = hue image, assumed to be in the range
% [0, 1] by having been divided by 2*pi.
% hsi(:, :, 2) = saturation image, in the range [0, 1].
% hsi(:, :, 3) = intensity image, in the range [0, 1].
%

% The components of the output image are:

% rgb(:, :, 1) = red.

% rgb(:, :, 2) = green.

% rgb(:, :, 3) = blue.

% Extract the individual HSI component images.

H=hsi(:, :, 1) * 2 * pi;

S = hsi(:, :, 2);

I = hsi(:, :, 3);

%

R

G

B

hsi2rgb
L I—

214 Chapter 6 m Color Image Processing

R(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx)) ./ ...
cos(pi/3 — H(idx)));
G(idx) = 3*I(idx) — (R(idx) + B(idx));
% BG sector (2*pi/3 <= H < 4*pi/3).
idx = find((2*pi/3 <= H) & (H < 4*pi/3));

R(idx) = I(idx) .* (1 — S(idx));

G(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx) — 2*pi/3) ./ ...
cos (pi — H(idx)));

B(idx) = 3*I(idx) — (R(idx) + G(idx));

% BR sector.

idx = find((4*pi/3 <= H) & (H <= 2*pi));

G(idx) = I(idx) .* (1 — S(idx));

B(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx) — 4*pi/3) .
cos(5*pi/3 - H(ldx))),

R(idx) = 3*I(idx) — (G(idx) + B(idx));

% Combine all three results into an RGB image. Clip to [0, 1] to
% compensate for floating-point arithmetic rounding effects.

rgb = cat(3, R, G, B);

rgb = max(min(rgb, 1), 0); —

EXAMPLE 6.2: B Figure 6.9 shows the hue, saturation, and intensity components of an
Converting from jmage of an RGB cube on a white background, similar to the image in
RGB to HSL. Fig. 6.2(b). Figure 6.9(a) is the hue image. Its most distinguishing feature is
the discontinuity in value along a 45° line in the front (red) plane of the
cube. To understand the reason for this discontinuity, refer to Fig. 6.2(b),
draw a line from the red to the white vertices of the cube, and select a point
in the middle of this line. Starting at that point, draw a path to the right, fol-
lowing the cube around until you return to the starting point. The major col-
ors encountered on this path are yellow, green, cyan, blue, magenta, and back
to red. According to Fig. 6.7, the value of hue along this path should increase

FIGURE 6.9 HSI component images of an image of an RGB color cube. (a) Hue, (b) saturation, and (c)
intensity images.

6.3 m The Basics of Color Image Processing 215

from 0° to 360° (i.e., from the lowest to highest possible values of hue). This
is precisely what Fig. 6.9(a) shows because the lowest value is represented as
black and the highest value as white in the figure.

The saturation image in Fig. 6.9(b) shows progressively darker values to-
ward the white vertex of the RGB cube, indicating that colors become less and
less saturated as they approach white. Finally, every pixel in the intensity
image shown in Fig. 6.9(c) is the average of the RGB values at the corre-
sponding pixel in Fig. 6.2(b). Note that the background in this image is white
because the intensity of the background in the color image is white. It is black
in the other two images because the hue and saturation of white are zero. B

Xl 1he Basics of Color Image Processing

In this section we begin the study of processing techniques applicable to color
images. Although they are far from being exhaustive, the techniques devel-
oped in the sections that follow are illustrative of how color images are han-
dled for a variety of image-processing tasks. For the purposes of the following
discussion we subdivide color image processing into three principal areas:
(1) color transformations (also called color mappings); (2) spatial processing of
individual color planes; and (3) color vector processing. The first category deals
with processing the pixels of each color plane based strictly on their values and
not on their spatial coordinates. This category is analogous to the material in
Section 3.2 dealing with intensity transformations. The second category deals
with spatial (neighborhood) filtering of individual color planes and is analo-
gous to the discussion in Sections 3.4 and 3.5 on spatial filtering.

The third category deals with techniques based on processing all compo-
nents of a color image simultaneously. Because full-color images have at least
three components, color pixels really are vectors. For example, in the RGB sys-
tem, each color point can be interpreted as a vector extending from the origin
to that point in the RGB coordinate system (see Fig. 6.2).

Let c represent an arbitrary vector in RGB color space:

CR R
c=|cl|l=|GC
Cp B

This equation indicates that the components of ¢ are simply the RGB compo-
nents of a color image at a point. We take into account the fact that the color
components are a function of coordinates (x, y) by using the notation

CR(x’ y) R(xa .Y)
e(x,y) = | cg(x,y) | = | G(x,y)
cp(x, y) B(x, y)

For an image of size M X N, there are MN such vectors, ¢(x,y), for
x=012,...,M—1andy=0,1,2,..., N - L.

In some cases, equivalent results are obtained whether color images are
processed one plane at a time or as vector quantities. However, as explained in

216 Chapter 6 m Color Image Processing

FIGURE 6.10
Spatial masks for
gray-scale and
RGB color

(x1y) ii

(x,y) _/

Spatial mask Spatial mask

Gray-scale image RGB color image i

more detail in Section 6.6, this is not always the case. In order for independent
color component and vector-based processing to be equivalent, two conditions
have to be satisfied: First, the process has to be applicable to both vectors and
scalars. Second, the operation on each component of a vector must be inde-
pendent of the other components. As an illustration, Fig. 6.10 shows spatial
neighborhood processing of gray-scale and full-color images. Suppose that the
process is neighborhood averaging. In Fig. 6.10(a), averaging would be accom-
plished by summing the gray levels of all the pixels in the neighborhood and
dividing by the total number of pixels in the neighborhood. In Fig. 6.10(b) av-
eraging would be done by summing all the vectors in the neighborhood and di-
viding each component by the total number of vectors in the neighborhood.
But each component of the average vector is the sum of the pixels in the image
corresponding to that component, which is the same as the result that would
be obtained if the averaging were done on the neighborhood of each compo-
nent image individually, and then the color vector were formed.

m Color Transformations

The techniques described in this section are based on processing the color
components of a color image or intensity component of a monochrome image
within the context of a single color model. For color images, we restrict atten-
tion to transformations of the form

S; = T,(r,-), i= 1,2,...,n

where r; and s; are the color components of the input and output images, 7 is
the dimension of (or number of color components in) the color space of 7;, and
the T; are referred to as full-color transformation (or mapping) functions.

If the input images are monochrome, then we write an equation of the form

s;=Tyr), i=12,...,n

where r denotes gray-level values, s; and T; are as above, and 7 is the number of
color components in s;. This equation describes the mapping of gray levels into
arbitrary colors, a process frequently referred to as a pseudocolor transforma-
tion or pseudocolor mapping. Note that the first equation can be used to process
monochrome images in RGB space if we letr; = r, = r; = r. In either case, the

6.4 m Color Transformations 217

equations given here are straightforward extensions of the intensity transforma-
tion equation introduced in Section 3.2. As is true of the transformations in that
section, all n pseudo- or full-color transformation functions {7}, T5, ..., T,} are
independent of the spatial image coordinates (x, y).

Some of the gray-scale transformations introduced in Chapter 3, like
imcomplement, which computes the negative of an image, are independent of
the gray-level content of the image being transformed. Others, like histeq,
which depends on gray-level distribution, are adaptive, but the transformation
is fixed once the necessary parameters have been estimated. And still others,
like imadjust, which requires the user to select appropriate curve shape para-
meters, are often best specified interactively. A similar situation exists when
working with pseudo- and full-color mappings—particularly when human
viewing and interpretation (e.g., for color balancing) are involved. In such ap-
plications, the selection of appropriate mapping functions is best accomplished
by directly manipulating graphical representations of candidate functions and
viewing their combined effect (in real time) on the images being processed.

Figure 6.11 illustrates a simple but powerful way to specify mapping func-
tions graphically. Figure 6.11(a) shows a transformation that is formed by lin-
early interpolating three control points (the circled coordinates in the figure);
Fig. 6.11(b) shows the transformation that results from a cubsic spline interpo-
lation of the same three points; and Figs. 6.11(c) and (d) provide more complex
linear and cubic spline interpolations, respectively. Both types of interpolation
are supported in MATLAB. Linear interpolation is implemented by using

z = interpiq(x, y, xi)

which returns a column vector containing the values of the linearly interpolat-
ed 1-D function z at points xi. Column vectors x and y specify the horizontal
and vertical coordinate pairs of the underlying control points. The elements of
x must increase monotonically. The length of z is equal to the length of xi.
Thus, for example,

>> z = interpiq([0 255]', [0 255]', [0: 255]')

produces a 256-element one-to-one mapping connecting control points (0, 0)

and (255,255)—thatis,z = [0 1 2 . . . 255]"'.
1 T T T 1 T T T 1 T T T 1 T T T
[I 1 1 I 1 I I 1 | I
075F-=+-=a=-a-f-| 075p--toqooafool oasko i ioca--o] azshoNGAI oo
I 1 i ! 1 [} I 1 I ! 1 1
I
(1) SRR AR 1 A SR A 1 N U R S R I
I I 1 I 1 1 ! 1 ! ! 1 1
1 I 1 ! 1 1 ! 1 I 1 1 J
025F--1 > --"--- 025p--t--d/-do-ut g2sp--tbfio-oooof gasbo-to-udy |
i 1 | 1 I T T T | I 1
0 ! I ! 0 1 ! O I] ! 0 |] I
0 025 05 075 1 0 025 05 075 1 0 025 05 075 1 0 025 05 075
BEmeE

FIGURE 6.11 Specifying mapping functions using control points: (a) and (c) linear interpolation, and

(b) and (d) cubic spline interpolation.

218 Chapter 6 m Color Image Processing

ice
————

The development of
function ice, given
in Appendix B, is a
comprehensive illus-
tration of how to de-
sign a graphical user
interface (GUI) in
MATLAB.

TABLE 6.4
Valid inputs for
function ice.

In a similar manner, cubic spline interpolation is implemented using the
spline function,

z = spline(x, y, xi)

where variables z, X, y, and xi are as described in the previous paragraph for
interp1q. However, the xi must be distinct for use in function spline. More-
over, if y contains two more elements than x, its first and last entries are as-
sumed to be the end slopes of the cubic spline. The function depicted in
Fig. 6.11(b), for example, was generated using zero-valued end slopes.

The specification of transformation functions can be made interactive by
graphically manipulating the control points that are input to functions
interpiq and spline and displaying in real time the results of the transfor-
mation functions on the images being processed. The ice (interactive color
editing) function does precisely this. Its syntax is

g = ice('Property Name', 'Property Value', . . .)

where 'Property Name' and 'Property Value' must appear in pairs, and
the dots indicate repetitions of the pattern consisting of corresponding input
pairs. Table 6.4 lists the valid pairs for use in function ice. Some examples are
given later in this section.

With reference to the 'wait' parameter, when the 'on' option is selected
either explicitly or by default, the output g is the processed image. In this case,
ice takes control of the process, including the cursor, so nothing can be typed
on the command window until the function is closed, at which time the final
result is image g. When 'off' is selected, g is the handle’ of the processed
image, and control is returned immediately to the command window; there-
fore, new commands can be typed with the ice function still active. To obtain
the properties of an image with handle g we use the get function

h = get(g)

This function returns all properties and applicable current values of the graph-
ics object identified by the handle g. The properties are stored in structure h,

y T Properyvame
'image’ An RGB or monochrome input image, f, to be transformed by
interactively specified mappings.
'space’ The color space of the components to be modified. Possible

values are 'rgb', ‘cmy', 'hsi’, 'hsv', 'ntsc’ (or 'yiq'),and
'ycber'. The defaultis 'rgb'.

'wait' If 'on' (the default), g is the mapped input image. If 'off', g
is the handle of the mapped input image.

"Whenever MATLAB creates a graphics object, it assigns an identifier (called a handle) to the object,
used to access the object’s properties. Graphics handles are useful when modifying the appearance of
graphs or creating custom plotting commands by writing M-files that create and manipulate objects
directly.

6.4 m Color Transformations 219

so typing h at the prompt lists all the properties of the processed image (see
Sections 2.10.6 and 11.1.1 for an explanation of structures). To extract a partic-
ular property, we type h.PropertyName.

Letting f denote an RGB or monochrome image, the following are exam-
ples of the syntax of function ice:

>> ice % Only the ice graphical
% interface is displayed.

>> g = ice('image', f); % Shows and returns the mapped
% image g.

>> g = ice('image', f, 'wait', 'off'); % Shows g and returns
% the handle.
>> ¢ = ice('image', f, 'space', 'hsi'); % Maps RGB image f in HSI space.

Note that when a color space other than RGB is specified, the input image
(whether monochrome or RGB) is transformed to the specified space before
any mapping is performed. The mapped image is then converted to RGB for
output. The output of ice is always RGB; its input is always monochrome or
RGB.Ifwe typeg = ice('image', f),animage and graphical user interface
(GUI) like that shown in Fig. 6.12 appear on the MATLAB desktop. Initially,

FIGURE 6.12 The typical opening windows of function ice. (Image courtesy of G. E. Medical Systems.)

220 Chapter 6 m Color Image Processing

TABLE 6.5
Manipulating
control points
with the mouse.

EXAMPLE 6.3

Inverse mappings:

monochrome
negatives and
color

complements.

TABLE 6.6
Function of the
checkboxes and
pushbuttons in
the ice GUL

B

Move control point by pressing and dragging.

Add control point. The location of the control point
can be changed by dragging (while still pressing the
Shift Key).

Left Button + Control Key Delete control point.

Left Button
Left Button + Shift Key

t For three button mice, the left, middle, and right buttons correspond to the move, add, and delete oper-
ations in the table.

the transformation curve is a straight line with a control point at each end.
Control points are manipulated with the mouse, as summarized in Table 6.5.
Table 6.6 lists the function of the other GUI components. The following exam-
ples show typical applications of function ice.

B Figure 6.13(a) shows the ice interface after the default RGB curve of
Fig. 6.12 is modified to produce an inverse or negative mapping function. To
create the new mapping function, control point (0, 0) is moved (by clicking and
dragging it to the upper-left corner) to (0, 1), and control point (1, 1) is moved
similarly to coordinate (1, 0). Note how the coordinates of the cursor are dis-
played in red in the Input/Output boxes. Only the RGB map is modified; the

- GUIElement - .- Function :

Smooth Checked for cubic spline (smooth curve) interpolation. If
unchecked, piecewise linear interpolation is used.

Clamp Ends Checked to force the starting and ending curve slopes in cubic
spline interpolation to 0. Piecewise linear interpolation is not
affected.

Show PDF Display probability density function(s) [i.e., histogram(s)] of the
image components affected by the mapping function.

Show CDF Display cumulative distribution function(s) instead of PDFs.
(Note: PDFs and CDFs cannot be displayed simultaneously.)

Map Image If checked, image mapping is enabled; otherwise it is not.

Map Bars If checked, pseudo- and full-color bar mapping is enabled;
otherwise the unmapped bars (a gray wedge and hue wedge,
respectively) are displayed.

Reset Initialize the currently displayed mapping function and uncheck
all curve parameters.

Reset All Initialize all mapping functions.

Input/Output Shows the coordinates of a selected control point on the
transformation curve. Input refers to the horizontal axis, and
Output to the vertical axis.

Component Select a mapping function for interactive manipulation. In RGB
space, possible selections include R, G, B, and RGB (which maps
all three color components). In HSI space, the options are H, S, I,
and HSI, and so on.

6.4 m Color Transformations 221

individual R, G, and B maps are left in their 1:1 default states (see the Compo-
nent entry in Table 6.6). For monochrome inputs, this guarantees monochrome
outputs. Figure 6.13(b) shows the monochrome negative that results from the
inverse mapping. Note that it is identical to Fig. 3.3(b), which was obtained
using the imcomplement function. The pseudocolor bar in Fig. 6.13(a) is the
“photographic negative” of the original gray-scale bar in Fig. 6.12.

Inverse or negative mapping functions also are useful in color processing.
As can be seen in Figs. 6.14(a) and (b), the result of the mapping is reminiscent
of conventional color film negatives. For instance, the red stick of chalk in the
bottom row of Fig. 6.14(a) is transformed to cyan in Fig. 6.14(b)—the color
complement of red. The complement of a primary color is the mixture of the
other two primaries (e.g., cyan is blue plus green). As in the gray-scale case,
color complements are useful for enhancing detail that is embedded in dark
regions of color—particularly when the regions are dominant in size. Note that
the Full-color Bar in Fig. 6.13(a) contains the complcments of the hues in the
Full-color Bar of Fig. 6.12. _ » |

FIGURE 6.13

(a) A negative
mapping function,
and (b) its effect
on the
monochrome
image of Fig. 6.12.

Default (ie, 1:1)
mappings are not
shown in most
examples.

FIGURE 6.14

(a) A full color
image, and (b) its
negative (color
complement).

222 Chapter 6 m Color Image Processing

EXAMPLE 6.4:
Monochrome and
color contrast
enhancement.

M Consider next the use of function ice for monochrome and color contrast
manipulation. Figures 6.15(a) through (c) demonstrate the effectiveness of
ice in processing monochrome images. Figures 6.15(d) through (f) show
similar effectiveness for color inputs. As in the previous example, mapping
functions that are not shown remain in their default or 1:1 state. In both pro-
cessing sequences, the Show PDF checkbox is enabled. Thus, the histogram of
the aerial photo in (a) is displayed under the gamma-shaped mapping func-
tion (see Section 3.2.1) in (c); and three histograms are providéd in (f) for
the color image in (d)—one for each of its three color components. Although
the S-shaped mapping function in (f) increases the contrast of the image in
(d) [compare it to (e)], it also has a slight effect on hue. The small change of
color is virtually imperceptible in (e), but is an obvious result of the map-
ping, as can be seen in the mapped full-color reference bar in (f). Recall from
the previous example that equal changes to the three components of an
RGB image can have a dramatic effect on color (see the color complement
mapping in Fig. 6.14). |

FIGURE 6.15 Using function ice for monochrome and full color contrast enhancement: (a) and (d) are the
input images, both of which have a “washed-out” appearance; (b) and (e) show the processed results;
(c) and (f) are the ice displays. (Original monochrome image for this example courtesy of NASA.)

6.4 m Color Transformations 223

The red, green, and blue components of the input images in Examples 6.3 and
6.4 are mapped identically—that is, using the same transformation function. To
avoid the specification of three identical functions, function ice provides an “all
components” function (the RGB curve when operating in the RGB color space)
that is used to map all input components. The remaining examples demonstrate
transformations in which the three components are processed differently.

B As noted earlier, when a monochrome image is represented in the RGB
color space and the resulting components are mapped independently, the
transformed result is a pseudocolor image in which input image gray levels
have been replaced by arbitrary colors. Transformations that do this are useful
because the human eye can distinguish between millions of colors—but rela-
tively few shades of gray. Thus, pseudocolor mappings are used frequently to
make small changes in gray level visible to the human eye or to highlight im-
portant gray-scale regions. In fact, the principal use of pseudocolor is human
visualization—the interpretation of gray-scale events in an image or sequence
of images via gray-to-color assignments.

Figure 6.16(a) is an X-ray image of a weld (the horizontal dark region) con-
taining several cracks and porosities (the bright white streaks running through
the middle of the image). A pseudocolor version of the image in shown in

EXAMPLE 6.5:
Pseudocolor
mappings.

FIGURE 6.16

(a) X-ray of a
defective weld;
(b) a pseudo-
color version of
the weld; (c) and
(d) mapping
functions for the
green and blue
components.
(Original image
courtesy of X-
TEK Systems,
Ltd.)

224 Chapter 6 m Color Image Processing

EXAMPLE 6.6:
Color balancing.

R
FIGURE 6.17 Using function ice for color balancing: (a) an image heavy in magenta; (b) the corrected
image; and (c) the mapping function used to correct the imbalance.

Fig. 6.16(b); it was generated by mapping the green and blue components of
the RGB-converted input using the mapping functions in Figs. 6.16(c) and (d).
Note the dramatic visual difference that the pseudocolor mapping makes. The
GUI pseudocolor reference bar provides a convenient visual guide to the
composite mapping. As can be seen in Figs. 6.16(c) and (d), the interactively
specified mapping functions transform the black-to-white gray scale to hues
between blue and red, with yellow reserved for white. The yellow, of course,
corresponds to weld cracks and porosities, which are the important features in
this example. n

B Figure 6.17 shows an application involving a full-color image, in which it is
advantageous to map an image’s color components independently. Commonly
called color balancing or color correction, this type of mapping has been a
mainstay of high-end color reproduction systems but now can be performed
on most desktop computers. One important use is photo enhancement. Al-
though color imbalances can be determined objectively by analyzing—with a
color spectrometer—a known color in an image, accurate visual assessments
are possible when white areas, where the RGB or CMY components should be
equal, are present. As can be seen in Fig. 6.17, skin tones also are excellent
samples for visual assessments because humans are highly perceptive of prop-
er skin color. :

Figure 6.17(a) shows a CMY scan of a mother and her child with an excess
of magenta (keep in mind that only an RGB version of the image can be dis-
played by MATLAB). For simplicity and compatibility with MATLAB, func-
tion ice accepts only RGB (and monochrome) inputs as well—but can

6.4 m Color Transformations 225

process the input in a variety of color spaces, as detailed in Table 6.4. To inter-
actively modify the CMY components of RGB image f1, for example, the ap-
propriate ice call is

>> f2 = ice('image', f1, 'space', 'CMY');

As Fig. 6.17 shows, a small decrease in magenta had a significant impact on
image color.]

B Histogram equalization is a gray-level mapping process that seeks to pro-
duce monochrome images with uniform intensity histograms. As discussed in
Section 3.3.2, the required mapping function is the cumulative distribution
function (CDF) of the gray levels in the input image. Because color images
have multiple components, the gray-scale technique must be modified to han-
dle more than one component and associated histogram. As might be expect-
ed, it is unwise to histogram equalize the components of a color image
independently. The result usually is erroneous color. A more logical approach
is to spread color intensities uniformly, leaving the colors themselves (i.e., the
hues) unchanged.

Figure 6.18(a) shows a color image of a caster stand containing cruets and
shakers. The transformed image in Fig. 6.18(b), which was produced using the
HSI transformations in Figs. 6.18(c) and (d), is significantly brighter. Several of
the moldings and the grain of the wood table on which the caster is resting are
now visible. The intensity component was mapped using the function in
Fig. 6.18(c), which closely approximates the CDF of that component (also dis-
played in the figure). The hue mapping function in Fig. 6.18(d) was selected to
improve the overall color perception of the intensity-equalized result. Note
that the histograms of the input and output image’s hue, saturation, and inten-
sity components are shown in Figs. 6.18(e) and (f), respectively. The hue com-
ponents are virtually identical (which is desirable), while the intensity and
saturation components were altered. Finally note that, to process an RGB
image in the HSI color space, we included the input property name/value pair
'space'/'hsi' in the call to ice.]

The output images generated in the preceding examples in this section are of
type RGB and class uint8. For monochrome results, as in Example 6.3, all three
components of the RGB output are identical. A more compact representation
can be obtained via the rgb2gray function of Table 6.3 or by using the command

f3 = f2(:, :, 1);

where f2 is an RGB image generated by ice and f3 is a standard MATLAB
monochrome image.

EXAMPLE 6.7:
Histogram based
mappings.

226 Chapter 6 W Color Image Processing

FIGURE 6.18
Histogram
equalization
followed by
saturation
adjustment in the
HSI color space:
(a) input image;
(b) mapped
result;

(c) intensity
component
mapping function
and cumulative
distribution
function;

(d) saturation
component
mapping function;
(e) input image’s
component
histograms; and
(f) mapped
result’s
component
histograms.

vl
- :V
2
i
i

6.5 W Spatial Filtering of Color Images

X spatial Filtering of Color Images

The material in Section 6.4 deals with color transformations performed on sin-
gle image pixels of single color component planes. The next level of complexi-
ty involves performing spatial neighborhood processing, also on single image
planes. This breakdown is analogous to the discussion on intensity transforma-
tions in Section 3.2, and the discussion on spatial filtering in Sections 3.4 and
3.5. We introduce spatial filtering of color images by concentrating mostly on
RGB images, but the basic concepts are applicable to other color models as
well. We illustrate spatial processing of color images by two examples of linear
filtering: image smoothing and image sharpening.

6.5.1 Color Image Smoothing

With reference to Fig. 6.10(a) and the discussion in Sections 3.4 and 3.5,
smoothing (spatial averaging) of a monochrome image can be accomplished
by multiplying all pixel values by the corresponding coefficients in the spatial
mask (which are all 1s) and dividing by the total number of elements in the
mask. The process of smoothing a full-color image using spatial masks is
shown in Fig. 6.10(b). The process (in RGB space for example) is formulated
in the same way as for gray-scale images, except that instead of single pixels we
now deal with vector values in the form shown in Section 6.3.

Let S,, denote the set of coordinates defining a neighborhood centered at
(x, y) in a color image. The average of the RGB vectors in this neighborhood is

where K is the number of pixels in the neighborhood. It follows from the dis-
cussion in Section 6.3 and the properties of vector addition that

-1 -
= R(s, 1)
K (s, Bes,, (
1

K (s fcs,,
1

LK (s, 7es,,

c(x,y) = G(s, 1)

B(s,t)

We recognize each component of this vector as the result that we would obtain
by performing neighborhood averaging on each individual component image,
using standard gray-scale neighborhood processing. Thus, we conclude that
smoothing by neighborhood averaging can be carried out on an independent
component basis. The results would be the same as if neighborhood averaging
were carried out directly in color vector space.

As discussed in Section 3.5.1, IPT linear spatial filters for image smoothing
are generated with function fspecial, with one of three options: 'average',
‘disk',and 'gaussian' (see Table 3.4). Once a filter has been generated, fil-
tering is performed by using function imfilter, introduced in Section 3.4.1.

227

228 Chapter 6 ® Color Image Processing

EXAMPLE 6.8:
Color image
smoothing.

Conceptually, smoothing an RGB color image, fc, with a linear spatial filter
consists of the following steps:

1. Extract the three component images:
>> fR = fc(:, :, 1); fG = fc(:, :, 2); fB = fc(:, :, 3);

2. Filter each component image individually. For example, letting w represent
a smoothing filter generated using fspecial, we smooth the red compo-
nent image as follows:

>> fR_filtered = imfilter(fR, w);

and similarly for the other two component images.

3. Reconstruct the filtered RGB image:
>> fc_filtered = cat(3, fR_filtered, fG_filtered, fB_filtered);

However, we can perform linear filtering of RGB images in MATLAB using
the same syntax employed for monochrome images, allowing us to combine
the preceding three steps into one:

>> fc_filtered = imfilter(fc, w);

M Figure 6.19(a) shows an RGB image of size 1197 X 1197 pixels and
Figs. 6.19(b) through (d) are its RGB component images, extracted using the
procedure described in the previous paragraph. Figures 6.20(a) through (c)
show the three HSI component images of Fig. 6.19(a), obtained using function
rgb2hsi.

Figure 6.21(a) shows the result of smoothing the image in Fig. 6.19(a) using
function imfilter with the 'replicate’ option and an 'average' filter of
size 25 X 25 pixels. The averaging filter was large enough to produce a signifi-
cant degree of blurring. A filter of this size was selected to demonstrate the dif-
ference between smoothing in RGB space and attempting to achieve a similar
result using only the intensity component of the image after it had been con-
verted to the HSI color space. Figure 6.21(b) was obtained using the
commands:

>> h = rgb2hsi(fc);

> H=nh(:, 1, 1); §=h(:, 1, 2); T = h(:,), 3);

>> w = fspecial('average', 25);

>> I filtered = imfilter(I, w, 'replicate’);

>> h = cat(3, H, S, I_filtered);

>> f = hsi2rgb(h);

>> f = min(f, 1); % RGB images must have values in the range [0, 1].

>> imshow(f)

6.5 W Spatial Filtering of Color Images 229

FIGURE 6.19

(a) RGB image;
(b) through

(d) are the red,
green and blue
component
images,
respectively.

r’szi"!
FIGURE 6.20 From left to right: hue, saturation, and intensity components of Fig.

230 Chapter 6 m Color Image Processing

k)]

FIGURE 6.21 (a) Smoothed RGB image obtained by smoothing the R, G, and B image planes separately.
(b) Result of smoothing only the intensity component of the HSI equivalent image. (c) Result of smoothing
all three HSI components equally.

Clearly, the two filtered results are quite different. For example, in addition to
the image being less blurred, note the green border on the top part of the
flower in Fig. 6.21(b). The reason for this is simply that the hue and saturation
components were not changed while the variability of values of the intensity
components was reduced significantly by the smoothing process. A logical
thing to try would be to smooth all three components using the same filter.
However, this would change the relative relationship between values of the
hue and saturation, thus producing nonsensical colors, as Fig. 6.21(c) shows.
In general, as the size of the mask decreases, the differences obtained when
filtering the RGB component images and the intensity component of the HSI
equivalent image also decrease. n

6.5.2 Color Image Sharpening

Sharpening an RGB color image with a linear spatial filter follows the same
procedure outlined in the previous section, but using a sharpening filter in-
stead. In this section we consider image sharpening using the Laplacian (see
Section 3.5.1). From vector analysis, we know that the Laplacian of a vector is
defined as a vector whose components are equal to the Laplacian of the indi-
vidual scalar components of the input vector. In the RGB color system, the
Laplacian of vector ¢ introduced in Section 6.3 is

V2R(x, y)
Ve(x, y)] = | V’G(x,)
V2B(x, y)
which, as in the previous section, tells us that we can compute the Laplacian of

a full-color image by computing the Laplacian of each component image
separately.

6.6 W Working Directly in RGB Vector Space 231

M Figure 6.22(a) shows a slightly blurred version, fb, of the image in
Fig. 6.19(a), obtained using a 5 X 5 averaging filter. To sharpen this image we
used the Laplacian filter mask

>> lapmask = [1 1 1; 1 -8 1; 1 1 1];

Then, as in Example 3.9, the enhanced image was computed and displayed
using the commands

>> fen = imsubtract(fb, imfilter(fb, lapmask,
>> imshow(fen)

'replicate'));

where we combined the two required steps into a single command. As in the
previous section, RGB images were treated exactly as monochrome images
(i.e., with the same calling syntax) when using imfilter. Figure 6.22(b) shows
the result. Note the significant increase in sharpness of features such as the
water droplets, the veins in the leaves, the yellow centers of the flowers, and
the green vegetation in the foreground. |

[6.6 Working Directly in RGB Vector Space

As mentioned in Section 6.3, there are cases in which processes based on indi-
vidual color planes are not equivalent to working directly in RGB vector
space. This is demonstrated in this section, where we illustrate vector process-
ing by considering two important applications in color image processing: color
edge detection and region segmentation.

FIGURE 6.22

(a) Blurred image.
(b) Image
enhanced using
the Laplacian,
followed by
contrast
enhancement
using function
ice.

EXAMPLE 6.9:
Color image
sharpening.

232 Chapter 6 m Color Image Processing

6.6.1 Color Edge Detection Using the Gradient
The gradient of a 2-D function, f(x, y), is defined as the vector

w-(a]-|a
The magnitude of this vector is
Vf = mag(Vf) = [G2 + G3]/*
= [(of /ax)* + (af /ay)"1"*
Often, this quantity is approximated by absolute values:
~ |G +1G)|

This approximation avoids the square and square root computations, but still
behaves as a derivative (i.e., it is zero in constant areas, and has a magnitude
proportional to the degree of change in areas whose pixel values are variable).
It is common practice to refer to the magnitude of the gradient simply as “the
gradient.”

A fundamental property of the gradient vector is that it points in the direc-
tion of the maximum rate of change of f at coordinates (x, y). The angle at
which this maximum rate of change occurs is

G
a(x, y) = tan (G)

It is customary to approximate the derivatives by differences of pixel values
over small neighborhoods in an image. Figure 6.23(a) shows a neighborhood
of size 3 X 3, where the z’s indicate pixel values. An approximation of the par-
tial derivatives in the x (vertical) direction at the center point of the region
(i-e., z5) is given by the difference

G, =(z7+ 223+ 29) — (21 + 225 + 23)

7 k73 23 -1 -2 -1 -1 0 1

2 s 26 0 0 0 -2 0 2

27 28 29 1 2 1 -1 0 1
EEs

FIGURE 6.23 (a) A small neighborhood. (b) and (c) Sobel masks used to compute the
gradient in the x (vertical) and y (horizontal) directions, respectively, with respect to
the center point of the neighborhood.

6.6 m Working Directly in RGB Vector Space

Similarly, the derivative in the y direction is approximated by the difference
Gy = (23 + 2z + 29) — (21 + 224 + 27)

These two quantities are easily computed at all points in an image by convolv-
ing (using imfilter) the image separately with the two masks shown in
Figs. 6.23(b) and (c), respectively. Then, an approximation of the correspond-
ing gradient image is obtained by summing the absolute value of the two fil-
tered images. The masks just discussed are the Sobel masks mentioned in
Table 3.4, which can be generated using function fspecial.

The gradient computed in the manner just described is one of the most
frequently-used methods for edge detection in gray-scale images, as dis-
cussed in more detail in Chapter 10. Our interest at the moment is in com-
puting the gradient in RGB color space. However, the method just derived is
applicable in 2-D space but does not extend to higher dimensions. The only
way to apply it to RGB images would be to compute the gradient of each
component color image and then combine the results. Unfortunately, as we
show later in this section, this is not the same as computing edges in RGB
vector space directly.

The problem, then, is to define the gradient (magnitude and direction) of
the vector ¢ defined in Section 6.3. The following is one of the various ways in
which the concept of a gradient can be extended to vector functions. Recall
that for a scalar function, f(x, y), the gradient is a vector pointing in the direc-
tion of maximum rate of change of f at coordinates (x, y).

Letr, g, and b be unit vectors along the R, G, and B axis of RGB color space
(see Fig. 6.2), and define the vectors

u—%r+%z +ﬁb
ax E)xg dx

and

dR oG B
v=—r+—_—g+—b
dy dy dy

Let the quantities g, gy, and g,, be defined in terms of the dot product of
these vectors, as follows:

_uu_uTu_ﬁz aG|* _ |eB|?
Bxx x ox ox
R[> |oG|* |aB|?
gy=vv=viv=|—| + || +|—
dy dy oy

and
T dROR oG 3G 0B IB
gxy=u'v=uv=—— - -
dx dy dx dy dx dy

Keep in mind that R, G, and B, and consequently the g’s, are functions of x
and y. Using this notation, it can be shown (Di Zenzo [1986]) that the

233

234 Chapter 6 m Color Image Processing

colorgrad
S

EXAMPLE 6.10:

RGB edge
detection using
function
colorgrad.

direction of maximum rate of change of ¢(x, y) as a function (x, y) is given

by the angle
1 28y
oo = e 5]
() 2 (gxx - gyy)

and that the value of the rate of change (i.e., the magnitude of the gradient) in
the directions given by the elements of 6(x, y) is given by

1) 1/2
Fo(x, Y) = {5[(gxx + gyy) + (gxx - gyy) cos 26 + 2gxy sm 20]}

Note that 6(x, y) and Fy(x, y) are images of the same size as the input image.
The elements of 0(x, y) are simply the angles at each point that the gradient is
calculated, and Fy(x, y) is the gradient image.

Because tan(a) = tan(a +), if 6 is a solution to the preceding tan™!
equation, so is 6y + /2. Furthermore, Fy(x, y) = Fyi.(x, y), so F needs to
be computed only for values of 8 in the half-open interval [0, 7). The fact that
the tan™! equation provides two values 90° apart means that this equation as-
sociates with each point (x, y) a pair of orthogonal directions. Along one of
those directions F is maximum, and it is minimum along the other, so the final
result is generated by selecting the maximum at each point. The derivation of
these results is rather lengthy, and we would gain little in terms of the funda-
mental objective of our current discussion by detailing it here. The interested
reader should consult the paper by Di Zenzo [1986] for details. The partial de-
rivatives required for implementing the preceding equations can be comput-
ed using, for example, the Sobel operators discussed earlier in this section.

The following function implements the color gradient for RGB images (see
Appendix C for the code):

[VG, A, PPG] = colorgrad(f, T)

where f is an RGB image, T is an optional threshold in the range [0, 1] (the de-
fault is 0); VG is the RGB vector gradient Fy(x, y); Ais the angle image 6(x, y),
in radians; and PPG is the gradient formed by summing the 2-D gradients of the
individual color planes (generated for comparison purposes). These latter gra-
dients are VR(x, y), VG(x, y), and VB(x, y), where the V operator is as de-
fined earlier in this section. All the derivatives required to implement the
preceding equations are implemented in function colorgrad using Sobel oper-
ators. The outputs VG and PPG are normalized to the range [0, 1] by colorgrad
and they are thresholded so that VG(x, y) = 0 for values less than or equal to
Tand VG(x, y) = VG(x, y) otherwise.Similar comments apply to PPG.

B Figures 6.24(a) through (c) show three simple monochrome images which,
when used as RGB planes, produced the color image in Fig. 6.24(d). The ob-
jectives of this example are (1) to illustrate the use of function colorgrad,and
(2) to show that computing the gradient of a color image by combining the
gradients of its individual color planes is quite different from computing the
gradient directly in RGB vector space using the method just explained.

6.6 ® Working Directly in RGB Vector Space 235

~

FIGURE 6.24 (a) through (c) RGB component images (black is 0 and white is 255). (d) Corresponding color
image. (¢) Gradient computed directly in RGB vector space. (f) Composite gradient obtained by
computing the 2-D gradient of each RGB component image separately and adding the results.

Letting f represent the RGB image in Fig. 6.24(d), the command
>> [VG, A, PPG] = colorgrad(f);

produced the images VG and PPG shown in Figs. 6.24(e) and (f). The most im-
portant difference between these two results is how much weaker the horizon-
tal edge in Fig. 6.24(f) is than the corresponding edge in Fig. 6.24(e). The
reason is simple: The gradients of the red and green planes [Figs. 6.24(a) and
(b)] produce two vertical edges, while the gradient of the blue plane yields a
single horizontal edge. Adding these three gradients to form PPG produces a
vertical edge with twice the intensity as the horizontal edge.

On the other hand, when the gradient of the color image is computed directly
in vector space [Fig. 6.24(e)], the ratio of the values of the vertical and horizontal
edges is V2 instead of 2. The reason again is simple: With reference to the color
cube in Fig. 6.2(a) and the image in Fig. 6.24(d) we see that the vertical edge in the
color image is between a blue and white square and a black and yellow square.
The distance between these colors in the color cube is V2, but the distance be-
tween black and blue and yellow and white (the horizontal edge) is only 1. Thus
the ratio of the vertical to the horizontal differences is V2. If edge accuracy is an

236

=
FIGURE 6.25

(a) RGB image.
(b) Gradient
computed in RGB
vector space.

(c) Gradient
computed as in
Fig. 6.24(f).

(d) Absolute
difference
between (b) and
(c), scaled to the
range [0, 1].

Chapter 6 ® Color Image Processing

issue, and especially when a threshold is used, then the difference between these
two approaches can be significant. For example, if we had used a threshold of 0.6,
the horizontal line in Fig. 6.24(f) would have disappeared.

In practice, when interest is mostly on edge detection with no regard for ac-
curacy, the two approaches just discussed generally yield comparable results.
For example, Figs. 6.25(b) and (c) are analogous to Figs. 6.24(e) and (f). They
were obtained by applying function colorgrad to the image in Fig. 6.25(a).
Figure 6.25(d) is the difference of the two gradient images, scaled to the range
[0, 1]. The maximum absolute difference between the two images is 0.2, which
translates to 51 gray levels on the familiar 8-bit range [0, 255]. However, these
two gradient images are quite close in visual appearance, with Fig. 6.25(b)
being slightly brighter in some places (for reasons similar to those explained in
the previous paragraph). Thus, for this type of analysis, the simpler approach
of computing the gradient of each individual component generally is accept-
able. In other circumstances (as in the inspection of color differences in auto-
mated machine inspection of painted products), the more accurate vector
approach may be necessary. |

6.6 m Working Directly in RGB Vector Space ~ 237

6.6.2 Image Segmentation in RGB Vector Space

Segmentation is a process that partitions an image into regions. Although seg-
mentation is the topic of Chapter 10, we consider color region segmentation
briefly here for the sake of continuity. The reader will have no difficulty fol-
lowing the discussion.

Color region segmentation using RGB color vectors is straightforward. Sup-
pose that the objective is to segment objects of a specified color range in an
RGB image. Given a set of sample color points representative of a color (or
range of colors) of interest, we obtain an estimate of the “average” or “mean”
color that we wish to segment. Let this average color be denoted by the RGB
column vector m. The objective of segmentation is to classify each RGB pixel in
an image as having a color in the specified range or not. To perform this com-
parison, we need a measure of similarity. One of the simplest measures is the
Euclidean distance. Let z denote an arbitrary point in RGB space. We say that z
is similar to m if the distance between them is less than a specified threshold, T.
The Euclidean distance between z and m is given by '

D(zm) = |z — m|
= [z~ m)"(z ~ m)]"”

= [(zzr — mR)* + (26 — mg)* + (25 — mp)*]"*

where | - || is the norm of the argument, and the subscripts R, G, and B, denote
the RGB components of vectors m and z. The locus of points such that
D(z,m) = T is a solid sphere of radius T, as illustrated in Fig. 6.26(a). By def-
inition, points contained within, or on the surface of, the sphere satisfy the
specified color criterion; points outside the sphere do not. Coding these two
sets of points in the image with, say, black and white, produces a binary, seg-
mented image.

A useful generalization of the preceding equation is a distance measure of
the form

D(z,m) = [(z — m)TC}(z — m)]l/2

Following conven-
tion, we use a super-
script, T, to indicate
vector or matrix
transposition and a
normal, inline, T to
denote a threshold
value. Care should
be exercised not to
confuse these unre-
lated uses of the
same variable.

FIGURE 6.26 Two
approaches for
enclosing data in
RGB vector space
for the purpose of
segmentation.

238 Chapter 6 m Color Image Processing

See Section 12.2 for
a detailed discussion
on efficient imple-
mentations for com-
puting the Euclidean
and Mahalanobis
distances.

colorseg
T

EXAMPLE 6.11:
RGB color image
segmentation.

BE
FIGURE 6.27

(a) Pseudocolor
of the surface of
Jupiter’s Moon Jo.
(b) Region of
interest extracted
interactively using
function roipoly.
(Original image
courtesy of
NASA))

where C is the covariance matrix' of the samples representative of the color
we wish to segment. This distance is commonly referred to as the Mahalanobis
distance.The locus of points such that D(z, m) < T describes a solid 3-D ellip-
tical body [see Fig. 6.26(b)] with the important property that its principal axes
are oriented in the direction of maximum data spread. When C = I, the iden-
tity matrix, the Mahalanobis distance reduces to the Euclidean distance. Seg-
mentation is as described in the preceding paragraph, except that the data are
now enclosed by an ellipsoid instead of a sphere.

Segmentation in the manner just described is implemented by function
colorseg (see Appendix C for the code), which has the syntax

S = colorseg(method, f, T, parameters)

where method is either 'euclidean' or 'mahalanobis’, f is the RGB image
to be segmented, and T is the threshold described above. The input parameters
are either mif 'euclidean' is chosen, or m and C if 'mahalanobis' is chosen.
Parameter m is the vector, m, described above, in either a row or column for-
mat, and C is the 3 X 3 covariance matrix, C. The output, S, is a two-level
image (of the same size as the original) containing Os in the points failing the
threshold test, and 1s in the locations that passed the test. The 1s indicate the
regions segmented from f based on color content.

M Figure 6.27(a) shows a pseudocolor image of a region on the surface of the
Jupiter Moon Io. In this image, the reddish colors depict materials newly eject-
ed from an active volcano, and the surrounding yellow materials are older sul-
fur deposits. This example illustrates segmentation of the reddish region using
both options in function colorseg.

First we obtain samples representing the range of colors to be segmented.
One simple way to obtain such a region of interest (ROI) is to use function
roipoly described in Section 5.2.4, which produces a binary mask of a region
selected interactively. Thus, letting f denote the color image in Fig. 6.27(a), the
region in Fig. 6.27(b) was obtained using the commands

fComputation of the covariance matrix of a set of vector samples is discussed in Section 11.5.

6.6 m Working Directly in RGB Vector Space ~ 239

>> mask = roipoly(f); % Select region interactively.
>> red = immultiply(mask, f(:, :, 1));

>> green = immultiply(mask, f(:, :, 2));

>> blue = immultiply(mask, f(:, :, 3));

>> g = cat(3, red, green, blue);
>> figure, imshow(g)

where mask is a binary image (the same size as f) with Os in the background
and 1s in the region selected interactively.

Next, we compute the mean vector and covariance matrix of the points in
the ROI, but first the coordinates of the points in the ROI must be extracted.

>> [M, N, K] = size(g);

>> I = reshape(g, M * N, 3); % reshape is discussed in Sec. 8.2.2.
>> idx = find(mask);

>> I = double(I(idx, 1:3));

>> [C, m] = covmatrix(I); % See Sec. 11.5 for details on covmatrix.

The second statement rearranges the color pixels in g as rows of I, and the
third statement finds the row indices of the color pixels that are not black.
These are the non-background pixels of the masked image in Fig. 6.27(b).

The final preliminary computation is to determine a value for 7. A good
starting point is to let 7' be a multiple of the standard deviation of one of the
color components. The main diagonal of C contains the variances of the RGB
components, so all we have to do is extract these elements and compute their
square roots:

>> d = diag(C);
>> sd = sqrt(d)'

22.0643 24.2442 16.1806

The first element of sd is the standard deviation of the red component of the
color pixels in the ROI, and similarly for the other two components.

We now proceed to segment the image using values of T equal to multiples
of 25, which is an approximation to the largest standard deviation: T = 25, 50,
75, 100. For the 'euclidean' option with T = 25, we use

>> E25 = colorseg('euclidean', f, 25, m);

Figure 6.28(a) shows the result, and Figs. 6.28(b) through (d) show the seg-
mentation results with 7 = 50, 75, 100. Similarly, Figs. 6.29(a) through (d)
show the results obtained using the 'mahalanobis' option with the same se-
quence of threshold values.

Meaningful results [depending on what we consider as red in Fig. 6.27(a)]
were obtained with the 'euclidean' option when T = 25 and 50, but
T = 75 and 100 produced significant oversegmentation. On the other hand,
the results with the 'mahalanobis’' option make a more sensible transition

d = diag(C)
returns in vector d
the main diagonal of
matrix C.

240 Chapter 6 m Color Image Processing

FIGURE 6.28

(a) through

(d) Segmentation
of Fig. 6.27(a)
using option
‘euclidean’ in
function
colorseg with
T = 25,50,75,
and 100,
respectively.

FIGURE 6.29
(a) through

(d) Segmentation
of Fig. 6.27(a)
using option
'mahalanobis’
in function
colorseg with
T = 25,50,75,
and 100,
respectively.
Compare with
Fig. 6.28.

for increasing values of T.The reason is that the 3-D color data spread in the
ROI is fitted much better in this case with an ellipsoid than with a sphere.
Note that in both methods increasing T allowed weaker shades of red to be
included in the segmented regions, as expected. |

Summary

The material in this chapter is an introduction to basic topics in the application and use
of color in image processing, and on the implementation of these concepts using
MATLAB, IPT, and the new functions developed in the preceding sections. The area of
color models is broad enough so that entire books have been written on just this topic.
The models discussed here were selected for their usefulness in image processing, and
also because they provide a good foundation for further study in this area.

The material on pseudocolor and full-color processing on individual color planes
provides a tie to the image processing techniques developed in the previous chapters
for monochrome images. The material on color vector space is a departure from the
methods discussed in those chapters, and highlights some important differences be-
tween gray-scale and full-color image processing. The techniques for color-vector pro-
cessing discussed in the previous section are répresentative of vector-based processes
that include median and other order filters, adaptive and morphological filters, 1mage
restoration, image compression, and many others.

o Summary 241

