Preview

In this appendix we develop the ice interactive color editing (ICE) function
introduced in Chapter 6. The discussion assumes familiarity on the part of the
reader with the material in Section 6.4. Section 6.4 provides many examples of
using ice in both pseudo- and full-color image processing (Examples 6.3
through 6.7) and describes the ice calling syntax, input parameters, and
graphical interface elements (they are summarized in Tables 6.4 through 6.6).
The power of ice is its ability to let users generate color transformation curves
interactively and graphically, while displaying the impact of the generated
transformations on images in real or near real time.

Creating ICE’s Graphical User Interface

MATLAB?’s Graphical User Interface Development Environment (GUIDE)
provides a rich set of tools for incorporating graphical user interfaces (GUIs)
in M-functions. Using GUIDE, the processes of (1) laying out a GUI (i.e., its
buttons, pop-up menus, etc.) and (2) programming the operation of the GUI
are divided conveniently into two easily managed and relatively independent
tasks. The resulting graphical M-function is composed of two identically
named (ignoring extensions) files:

1. A file with extension .fig, called a FIG-file, that contains a complete
graphical description of all the function’s GUI objects or elements and
their spatial arrangement. A FIG-file contains binary data that does not
need to be parsed when the associated GUI-based M-function is execut-
ed. The FIG-file for ICE (ice.fig) is described later in this section.

2. A file with extension .m, called a GUI M-file, which contains the code that
controls the GUI operation. This file includes functions that are called

527

528 Appendix B ® ICE and MATLAB Graphical User Interfaces

when the GUI is launched and exited, and callback functions that are
executed when a user interacts with GUI objects—for example, when a
button is pushed. The GUI M-file for ICE (ice.m) is described in the next
section.

To launch GUIDE from the MATLAB command window, type

guide filename

where filename is the name of an existing FIG-file on the current path. If
filename is omitted, GUIDE opens a new (i.e., blank) window.

Figure B.1 shows the GUIDE Layout Editor (launched by entering guide
ice at the MATLAB >> prompt) for the Interactive Color Editor (ICE) lay-
out. The Layout Editor is used to select, place, size, align, and manipulate
graphic objects on a mock-up of the user interface under development. The
buttons on its left side form a Component Palette containing the GUI objects
that are supported—Push Buttons, Toggle Buttons, Radio Buttons, Checkboxes,
Edit Texts, Static Texts, Sliders, Frames, Listboxes, Popup Menus, and Axes. Each
object is similar in behavior to its standard Windows’ counterpart. And any
combination of objects can be added to the figure object in the layout area on
the right side of the Layout Editor. Note that the ICE GUI includes checkbox-
es (Smooth, Clamp Ends, Show PDF, Show CDF, Map Bars, and Map Image), static

text (“Component:”, “Curve”, ...), a frame outlining the curve controls, two
FIGURE B.1 M-file Menu Property Object
The GUIDE Align Edit Edit Inspector Browser Run
Layout Editor
mockup of the
{9_]?991‘ _____________ Selection
o Tool ICE Figure
Object
Component
Palette
Curve_axes . ICE
« Component
* Objects
. Figure
ICE Figure S Resize Tab

Layout Area

B.1 ® Creating ICE’s Graphical User Interface 529

push buttons (Reset and Reset All), a popup menu for selecting a color trans-
formation curve, and three axes objects for displaying the selected curve (with
associated control points) and its effect on both a gray-scale wedge and hue
wedge. A hierarchical list of the elements comprising ICE (obtained by clicking
the Object Browser button in the task bar at the top of the Layout Editor) is
shown in Fig. B.2(a). Note that each element has been given a unique name or
tag. For example, the axes object for curve display (at the top of the list) is as-
signed the identifier curve_axes [the identifier is the first entry after the open
parenthesis in Fig. B.2(a)].

Tags are one of several properties that are common to all GUI objects. A
scrollable list of the properties characterizing a specific object can be obtained
by selecting the object [in the Object Browser list of Fig. B.2(a) or layout area
of Fig. B.1 using the Selection Tool] and clicking the Property Inspector button
on the Layout Editor’s task bar. Figure B.2(b) shows the list that is generated
when the figure object of Fig. B.2(a) is selected. Note that the figure ob-
ject’s Tag property [highlighted in Fig. B.2(b)] is ice. This property is impor-
tant because GUIDE uses it to automatically generate figure callback
function names. Thus, for example, the WindowButtonDownFcn property at the
bottom of the scrollable Property Inspector window, which is executed when a
mouse button is pressed over the figure window, is assigned the name
ice_WindowButtonDownFcn. Recall that callback functions are merely
M-functions that are executed when a user interacts with a GUI object. Other

1=
'—%axes {curve_saxes)
k{ axes (gray_sxes)
34 axes (color_axes)
¥ ulcontrol (framel ")

i—-### uicontrol (textl "Component:”)

@3 uicontrol {(component_popup "RGB")

-8 uicontrol {(text2 "Input:”)

488 uicontrol (text3 "Output:")

-{@ ui 1 {smooth_checkbox "Smooth")

{8 uicontrol (reset_pushbutton "Reset”)

~&% uicontrol (text4 "Curve™}

@ yicontrol {input_text "7}

38 uicontrol {output_text "™}

- ui (slope_checkbox "Clamp Ends"”)
@8 uicontrol {resetall pushbutton "Reset All")
-~ uicontrol (pdf_checkbox "Show PDF”}

— wi L (cdf_checkbox "Show CDF™)

i uicontrol {blue_text ""}

%8 uicontrol {green_text "}

-3 uicontrol (red_text ")

i uicontrol {textld "Pseudo-color Bar"}
% uicontrol {textll "Full-color Bar”)

@ uicontrol {mapbar_checkbox "Map Bars"}
-8 uicontrol (mapimage checkbox "Map Image™)

The GUIDE gener-
ated Tigure object
is a container for all
other objects in the
interface.

FIGURE B.2 (a) The GUIDE Object Browser and (b) Property Inspector for the ICE “figure” object.

530 Appendix B ® ICE and MATLAB Graphical User Interfaces

ice
FRRg——

GUIDE generated
starting M-file.

notable (and common to all GUI objects) properties include the Position
and Units properties, which define the size and locatiou of an object.

Finally, we note that some properties are unique to particular objects. A push-
button object, for example, has a Callback property that defines the function
that is executed when the button is pressed and the String property that deter-
mines the button’s label. The Callback property of the ICE Reset button is
reset_pushbutton_Callback [note the incorporation of its Tag property from
Fig. B2(a) in the callback function name]; its String property is “Reset”. Note,
however, that the Reset pushbutton does not have a WindowButtonMotionFcn
property; it is specific to “figure” objects.

| B.2 | Programming the ICE Interface

When the ICE FIG-file of the previous section is first saved or the GUT is first
run (e.g., by clicking the Run button on the Layout Editor’s task bar), GUIDE
generates a starting GUI M-file called ice.m. This file, which can be modified
using a standard text editor or MATLAB’s M-file editor, determines how the
interface responds to user actions. The automatically generated GUI M-file
for ICE is as follows:

function varargout = ice(varargin)

% Begin initialdization code - DO NOT EDIT

gui_Singleton = 1; .

gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ..
'gui_OpeningFcn', @ice_OpeningFcn, ...
‘gui_OutputFen', @ice_OutputFcen, ...
'gui_LayoutFcn', [1, ...
'gui_Callback', n;

if nargin & ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfen(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

function ice_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;

guidata(hObject, handles);

% uiwait(handles.figurel);

function varargout = ice_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;

function ice_WindowButtonDownFcn(hObject, eventdata, handles)
function ice_WindowButtonMotionFcn(hObject, eventdata, handles)
function ice_WindowButtonUpFcn(hObject, eventdata, handles)

B.2 ® Programming the ICE Interface 531

function component_popup_Callback(hObject, eventdata, handles)
function smooth_checkbox_Callback(hObject, eventdata, handles)
function reset_pushbutton_Callback(hObject, eventdata, handles)
function slope_checkbox_Callback(hObject, eventdata, handles)
function resetall pushbutton_Callback(hObject, eventdata, handles)
function pdf_checkbox_Callback(hObject, eventdata, handles)
function cdf_checkbox_Callback(hObject, eventdata, handles)
function mapbar_checkbox_Callback(hObject, eventdata, handles)
function mapimage checkbox_Callback(hObject, eventdata, handles)

This automatically generated file is a useful starting point or prototype for the
development of the fully functional ice interface. (Note that we have stripped
the file of many GUIDE-generated comments to save space.) In the sections
that follow, we break this code into four basic sections: (1) the initialization code
between the two “DO NOT EDIT” comment lines, (2) the figure opening and out-
put functions (ice_OpeningFcn and ice_OutputFcn), (3) the figure callback
functions (i.e., the ice_WindowButtonDownFcn, ice_WindowButtonMotion-
Fcn,and ice_WindowButtonUpFcn functions), and (4) the object callback func-
tions (e.g., reset_pushbutton_Callback). When considering each section,
completely developed versions of the ice functions contained in the section are
given, and the discussion is focused on features of general interest to most GUI
M-file developers. The code introduced in each section will not be consolidated
(for the sake of brevity) into a single comprehensive listing of ice.m. It is intro-
duced in a piecemeal manner. ,

The operation of ice was described in Section 6.4. It is also summarized in
the following Help text block from the fully developed ice.m M-function:

%ICE Interactive Color Editor. ice
% -

% OUT = ICE('Property Name', 'Property Value', ...) transforms an Help text block of
% image's color components based on interactively specified mapping final version
% functions. Inputs are Property Name/Property Value pairs:

%

% Name Value

9% = meemceeccseeas eeecceeiseasmeescs-smeeasmssesssseesesesssceen=

% 'image’ An RGB or monochrome input image to be

% transformed by interactively specified

% mappings.

% 'space’ The color space of the components to be

% modified. Possible values are 'rgb', 'cmy',

% 'hsi', 'hsv', 'ntsc' (or 'yiq'), 'ycbcr'. When

% omitted, the RGB color space is assumed.

% 'wait' If 'on' (the default), OUT is the mapped input

% image and ICE returns to the calling function

% or workspace when closed. If 'off', OUT is the

% handle of the mapped input image and ICE

% returns immediately.

532 Appendix B ® ICE and MATLAB Graphical User Interfaces

® ° % J° P O° d° O° O° O I I O° O° I° I J° O° O° O° O° I° I I I I I P o o o of

o° 0 d° o° o° o° of o°

o® o° o° o° o° of

EXAMPLES:
ice OR ice('wait', 'off') % Demo user interface
ice('image', f) % Map RGB or mono image
ice('image', f, 'space', 'hsv') % Map HSV of RGB image
g = ice('image', f) % Return mapped image
g = ice('image', f, 'wait', 'off'); % Return its handle

ICE displays one popup menu selectable mapping function at a
time. Each image component is mapped by a dedicated curve (e.g.,
R, G, or B) and then by an all-component curve (e.g., RGB). Each
curve's control points are depicted as circles that can be moved,
added, or deleted with a two- or three-button mouse:

Mouse Button

Left
Middle

Right

Editing Operation

Move control point by pressing and dragging.
Add and position a control point by pressing
and dragging. (Optionally Shift-Left)

Delete a control point. (Optionally
Control-Left)

Checkboxes determine how mapping functions are computed, whether
the input image and reference pseudo- and full-color bars are
mapped, and the displayed reference curve information (e.g.,

PDF) :

Checkbox

Clamp Ends

Show PDF

Show CDF

Map Image

Map Bars

Function

Checked for cubic spline (smooth curve)
interpolation. If unchecked, piecewise linear.
Checked to force the starting and ending curve
slopes in cubic spline interpolation to 0. No
effect on piecewise linear.

Display probability density function(s) [i.e.,
histogram(s)] of the image components affected
by the mapping function.

Display cumulative distributions function(s)
instead of PDFs.

<Note: Show PDF/CDF are mutually exclusive.>
If checked, image mapping is enabled; else
not.

If checked, pseudo- and full-color bar mapping
is enabled; else display the unmapped bars (a
gray wedge and hue wedge, respectively).

B.2 ® Programming the ICE Interface

% Mapping functions can be initialized via pushbuttons:

%

% Button Function

L T R R R
% Reset Init the currently displayed mapping function

% and uncheck all curve parameters.

% Reset All Initialize all mapping functions.

B.2.1 Initialization Code

The opening section of code in the starting GUI M-file (at the beginning of
Section B.2) is a standard GUIDE-generated block of initialization code. Its
purpose is to build and display ICE’s GUI using the M-file’s companion FIG-
file (see Section B.1) and control access to all internal M-file functions. As the
enclosing “DO NOT EDIT” comment lines indicate, the initialization code
should not be modified. Each time ice is called, the initialization block builds
a structure called gui_State, which contains information for accessing ice
functions. For instance, named field gui_Name (i.e., gui_State.gui_Name)
contains the MATLAB function mfilename, which returns the name of the
currently executing M-file. In a similar manner, fields gui_OpeningFcn and
gui_OutputFcn are loaded with the GUIDE generated names of ice’s open-
ing and output functions (discussed in the next section). If an ICE GUI object
is activated by the user (e.g., a button is pressed), the name of the object’s call-
back function is added as field gui_Callback [the callback’s name would
have been passed as a string in varargin(1)].

After structure gui_State is formed, it is passed as an input argument,
along with varargin(:), to function gui_mainfcn. This MATLAB function
handles GUI creation, layout, and callback dispatch. For ice, it builds and dis-
plays the user interface and generates all necessary calls to its opening, output,
and callback functions. Since older versions of MATLAB may not include this
function, GUIDE is capable of generating a stand-alone version of the normal
GUI Mfile (i.e., one that works without a FIG-file) by selecting Export. . .
from the File menu. In the stand-alone version, function gui_mainfcn and two
supporting routines, ice_LayoutFcn and local_openfig, are appended to the
normally FIG-file dependent M-file. The role of ice_LayoutFcn is to create
the ICE GUIL. In the stand-alone version of ice, it begins with the statement

h1 = figure(...
'Units', 'characters',...
"Color', [0.87843137254902 0.874509803921569 0.890196078431373],...
'Colormap', [0 O 0.5625;0 0 0.625;0 0 0.6875;0 0 0.75;...
0 0 0.8125;0 0 0.875;0 0 0.9375;0 0 1;0 0.0625 1;...
0 0.125 1;0 0.1875 1;0 0.25 1;0 0.3125 1;0 0.375 1;...
0 0.4375 1;0 0.5 1;0 0.5625 1;0 0.625 1;0 0.6875 1;..
0 0.75 1;0 0.8125 1;0 0.875 1;0 0.9375 1;0 1 1;...
0.0625 1 1;0.125 1 0.9375;0.1875 1 0.875;...

533

534 Appendix B ® ICE and MATLAB Graphical User Interfaces

Function uicontrol
('PropertyNamet',
Valuel, ...)
creates a user interface
control in the current

window with the speci-

fied properties and re-
turns a handle to it.

0.25 1 0.8125;0.3125 1 0.75;0.375 1 0.6875;...
0.4375 1 0.625;0.5 1 0.5625;0.5625 1 0.5;...
0.625 1 0.4375;0.6875 1 0.375;0.75 1 0. 3125;...
0.8125 1 0.25;0.875 1 0.1875;0.9375 1 0.125;..
11 0.0625;1 1 0;1 0.9375 0;1 0.875 0;1 0. 8125 0;.
1 0.75 0;1 0.6875 0;1 0.625 0;1 0.5625 0;1 0.5 0;.
1 0.4375 0;1 0.375 0;1 0.3125 0;1 0.25 O;...
1 0.1875 0;1 0.125 0;1 0.0625 0;1 0 0;0.9375 0 0;...
0.875 0 0;0.8125 0 0;0.75 0 0;0.6875 0 0;0.625 0 0;...
0.5625 0 0],...
'IntegerHandle', 'off',...
'InvertHardcopy', get(0, 'defaultfigurelInvertHardcopy'),.
'MenuBar', 'none',...
'Name', 'ICE - Interactive Color Editor',...
'NumberTitle', 'off',...
'PaperPosition', get(0, 'defaultfigurePaperPosition'),...
'Position', [0.8 65.2307692307693 92.6 30.0769230769231],...
'Renderer', get(0, 'defaultfigureRenderer'),...
'RendererMode ', 'manual',..
'WindowButtonDownFcn', 'ice(''ice_WindowButtonDownFcn'', gcbo, [],...
guidata(gcbo))',...
'WindowButtonMoiionFcn', 'ice(''ice_WindowButtonMotionFen'', gcbo,...
' [1, guidata(gcbo)) ',
'WindowButtonUpFcn', 'ice(''ice_WindowButtonUpFcn'', gcbo, [],...
guidata(gcbo))',...
'"HandleVisibility', 'callback',...
'Tag', 'ice',...
'UserData', zeros(1,0));

to create the main figure window. GUI objects are then added with statements like

h13 = uicontrol(...

'"Parent', hi,

'Units', 'normalized’',

'Callback', 'ice(''reset_pushbutton_Callback'', gcbo, [1],..

guidata(gcbo)) ',

'FontSize', 10,...

'ListboxTop', O,...

'Position', [0.710583153347732 0.508951406649616. ..
0.211663066954644 0.0767263427109974], ...

'String', 'Reset’,

'Tag', 'reset_pushbutton');

which adds the Reset pushbutton to the figure. Note that these statements
specify explicitly properties that were defined originally using the Property In-
spector of the GUIDE Layout Editor. Finally, we note that the figure func-
tion was introduced in Section 2.3; uicontrol creates a user interface control

B.2 ® Programming the ICE Interface 535

(i.e., GUI object) in the current figure window based on property name/value
pairs (e.g., 'Tag' plus 'reset_pushbutton') and returns a handle to it.

B8.2.2 The Opening and Output Functions

The first two functions following the initialization block in the starting GUI
M-file at the beginning of Section B.2 are called opening and output functions,
respectively. They contain the code that is executed just before the GUI is
made visible to the user and when the GUI returns its output to the command
line or calling routine. Both functions are passed arguments hObject,
eventdata, and handles. (These arguments are also inputs to the callback
functions in the next two sections.) Input hObject is a graphics object handle,
eventdata is reserved for future use, and handles is a structure that provides
handles to interface objects and any application specific or user defined data.
To implement the desired functionality of the ICE interface (see the Help
text), both ice_OpeningFcn and ice_OutputFcn must be expanded beyond
the “barebones” versions in the starting GUI M-file. The expanded code is as
follows:

R LR R T P L PR E P PP PP PP %

function ice_OpeningFcn(hObject, eventdata, handles, varargin) ice_OpeningFcn
% When ICE is opened, perform basic initialization (e.g., setup e
% globals, ...) before it is made ‘visible. From the final

% Set ICE globals to defaults. ' M-file.
handles.updown = 'none'; Mouse updown state

handles.plotbox = [0 0 1 1]; Plot area parameters in pixels

handles.set1 = [0 0; 1 1]; Curve 1 control points

handles.set2 = [0 0; 1 1]; Curve 2 control points

handles.set3 = [0 0; 1 1]; Curve 3 control points

handles.set4 = [0 0 Curve 4 control points

y 1115
handles.curve = 'setl’;
handles.cindex = 1;
handles.node = 0;
handles.below = 1;
handles.above = 2;
handles.smooth = [0; O; 0; O];
handles.slope = [0; 0; 0; 0];
handles.cdf = [0; 0; 0; 0];
handles.pdf = [0; 0; 0; 0];
handles.output = [];
handles.df = [];
handles.colortype = 'rgb';
handles.input = [];
handles.imagemap = 1;
handles.barmap = 1; Bar map enable
handles.graybar = []; Pseudo (gray) bar image
handles.colorbar = []; % Color (hue) bar image

Structure name of selected curve
Index of selected curve

Index of selected control point
Index of node below control point
Index of node above control point
Curve smoothing states

Curve end slope control states
Curve CDF states

Curve PDF states

Output image handle

Input PDFs and CDFs

Input image color space

Input image data

Image map enable

A % ° o° P ° O P O° O° P I I S I I I O O° ° I o°

% Process Property Name/Property Value input argument pairs.
wait = 'on';

536 Appendix B @ ICE and MATLAB Graphical User Interfaces

if (nargin > 3)
for i = 1:2:(nargin - 3)
if nargin - 3 == 1i
break;
end
switch lower(varargin{i})
case 'image'
if ndims(varargin{i + 1}) ==
handles.input = varargin{i + 1};
elseif ndims(varargin{i + 1}) ==
handles.input = cat(3, varargin{i + 1}, ...
varargin{i + 1}, varargin{i + 1});
end
handles.input = double(handles.input);
inputmax = max(handles.input(:));
if inputmax > 255
handles.input = handles.input / 65535;
elseif inputmax > 1 -
handles.input = handles.input / 255;
end

case 'space’
handles.colortype = lower(varargin{i + 1});
switch ‘handles.colortype
case ‘cmy'
list = {'CMY' 'Cyan' 'Magenta' 'Yellow'};
case {'ntsc', 'yiq'}
list = {'YIQ' 'Luminance' 'Hue' 'Saturation'};
handles.colortype = 'ntsc';
case 'ycber' '
list = {'YCbCr' 'Luminance' 'Blue' ...
'Difference’ 'Red Difference'};

case ‘hsv'

list = {'HSV' 'Hue' 'Saturation' 'Value'};
case 'hsi'

list = {'HSI' 'Hue' 'Saturation' 'Intensity'};
otherwise

list = {'RGB' 'Red' 'Green' 'Blue'};
handles.colortype = 'rgb';

end

set(handles.component_popup, 'String', list);

case 'wait'
wait = lower(varargin{i + 1});
end
end
end

% Create pseudo- and full-color mapping bars (grays and hues). Store
% a color space converted 1x128x3 line of each bar for mapping.

xi = 0:1/127:1; x = 0:1/6:1; X =Xx';

y=[1100011; 0111000; 0001110]";

gb = repmat(xi, [1 1 3]); cb = interpiq(x, y, xi');

B.2 ® Programming the ICE Interface

cb = reshape(cb, [1 128 3]);

if ~strcmp(handles.colortype, 'rgb')
gb = eval(['rgb2' handles.colortype '(gb)']);
cb = eval(['rgh2' handles.colortype '(cb)'l);

end

gb = round(255 * gb); gb = max(0, gb); gb = min(255, gb);
¢b = round(255 * cb); cb = max(0, cb); cb = min(255, cb);
handles.graybar = gb; handles.colorbar = cb;

% Do color space transforms, clamp to [0, 255], compute histograms
% and cumulative distribution functions, and create output figure.
if size(handles.input, 1)
if ~strcmp(handles.colortype, 'rgb')
handles.input = eval(['rgb2' handles.colortype ...
'(handles.input)']);
end
handles.input
handles.input
handles.input
for i = 1:3
color = handles.input(:, :, i);
df = hist(color(:), 0:255);
handles.df = [handles.df; df / max(df(:))];
df = df / sum(df(:)); df = cumsum(df);
handles.df = [handles.df; df];
end
figure; handles.output = gcf;
end

round(255 * handles.input);
max(0, handles.input);
min (255, handles.input);

% Compute ICE's screen position and display image/graph.
set(0, 'Units', 'pixels'); ssz = get(0, 'Screensize');
set(handles.ice, 'Units', 'pixels');
uisz = get(handles.ice, 'Position');
if size(handles.input, 1)

fsz = get(handles.output, 'Position');

bc = (fsz(4) — uisz(4)) / 3;

if bc > 0

bc = bc + fsz(2);
else

bc = fsz(2) + fsz(4) — uisz(4) — 10;
end

lc = fsz(1) + (size(handles.input, 2) / 4) + (3 * fsz(3) / 4);
1c = min(lc, ssz(3) — uisz(3) — 10);
set(handles.ice, 'Position', [lc bc 463 391]);
else
bc =-round((ssz(4) — uisz(4)) / 2) - 10;
1c = round((ssz(3) — uisz(3)) / 2) — 10;
set(handles.ice, 'Position', [lc bc uisz(3) uisz(4)]);
end
set(handles.ice, 'Units', 'normalized');
graph(handles); render (handles);

537

538 Appendix B @ ICE and MATLAB Graphical User Interfaces

ice_OutputFcn
PR

From the final
M-file.

% Update handles and make ICE wait before exit if required.
guidata(hObject, handles);
if strcmpi(wait, 'on')

end

uiwait(handles.ice);

function varargout = ice_OutputFcn(hObject, eventdata, handles)

%
%
%

After ICE is closed, get the image data of the current figure
for the output. If 'handles' exists, ICE isn't closed (there was
no 'uiwait') so output figure handle.

if max(size(handles)) ==

figh = get(gcf);
imageh = get(figh.Children);
if max(size(imageh)) > 0
image = get(imageh.Children);
varargout{1} = image.CData;
end

else

end

varargout{1} = hObject;

Rather than examining the intricate details of these functions (see the code’s
comments and consult Appendix A or the index for help on specific func-
tions), we note the following commonalities with most GUI opening and out-
put functions:

1. The handles structure (as can be seen from its numerous references in

the code) plays a central role in most GUI M-files. It serves two crucial
functions. Since it provides handles for all the graphic objects in the inter-
face, it can be used to access and modify object properties. For instance,
the ice opening function uses

set(handles.ice, 'Units', 'pixels');
uisz = get(handles.ice, 'Position');

to access the size and location of the ICE GUI (in pixels). This is accom-
plished by setting the Units property of the ice figure, whose handle is
available in handles.ice, to 'pixels' and then reading the Position
property of the figure (using the get function). The get function, which
returns the value of a property associated with a graphics object, is also
used to obtain the computer’s display area via the ssz = get(O,
'Screensize') statement near the end of the opening function. Here, 0 is
the handle of the computer display (i.e., root figure) and 'Screensize' is
a property containing its extent.

In addition to providing access to GUI objects, the handles structure is
a powerful conduit for sharing application data. Note that it holds the default
values for twenty-three global ice parameters (ranging from the mouse
state in handles . updown to the entire input image in handles. input).They

B.2 @ Programming the ICE Interface 539

must survive every call to ice and are added to handles at the start of
ice_OpeningFcn. For instance, the handles.set1 global is created by the
statement

handles.set1 = [0 0; 1 1]

where set1 is a named field containing the control points of a color map-
ping function to be added to the handles structure and [0 0; 1 1] isits
default value [curve endpoints (0, 0) and (1, 1)]. Before exiting a function
in which handles is modified,

guidata(hObject, handles)

must be called to store variable handles as the application data of the fig-
ure with handle hObject.

Like many built-in graphics functions, ice_OpeningFcn processes input
arguments (except hObject, eventdata, and handles) in property name
and value pairs. When there are more than three input arguments (i.e., if
nargin > 3), a loop that skips through the input arguments in pairs [for
i=1:2:(nargin-3)]is executed. For each pair of inputs, the first is used
to drive the switch construct,

switch lower(varargin{i})

which processes the second parameter appropriately. For case 'space’,
for instance, the statement

handles.colortype = lower(varargin{i + 1});

sets named field colortype to the value of the second argument of the
input pair. This value is then used to setup ICE’s color component popup
options (i.e., the String property of object component_popup). Later, it is
used to transform the components of the input image to the desired map-
ping space via

handles.input = eval(['rgb2’
handles.colortype '(handles.input)']);

where built-in function eval(s) causes MATLAB to execute string s as
an expression or statement (see Section 12.4.1 for more on function
eval).If handles.inputis 'hsv', for example, eval argument ['rgb2'
‘hsv' '(handles.input)'] becomes the concatenated string
'rgb2hsv (handles.input) ', which is executed as a standard MATLAB
expression that transforms the RGB components of the input image to the
HSYV color space (see Section 6.2.3).

Function guidata
(H, DATA) stores
the specified data in
the figure’s applica-
tion data. H is a han-
dle that identifies the
figure—it can be the
figure itself, or any
object contained in
the figure.

540 Appendix B ® ICE and MATLAB Graphical User Interfaces
3. The statement
% uiwait(handles.figurel);
in the starting GUI M-file is converted into the conditional statement
if strcmpi(wait, 'on') uiwait(handles.ice); end
in the final version of ice_OpeningFcn. In general,

uiwait (fig)

blocks execution of a MATLAB code stream until either a uiresume is
executed or figure fig is destroyed (i.e., closed). [With no input argu-
ments, uiwait is the same as uiwait (gcf) where MATLAB function gcf
returns the handle of the current figure]. When ice is not expected to re-
turn a mapped version of an input image, but return immediately (i.e., be-
fore the ICE GUI is closed), an input property name/value pair of
'wait'/'off' must be included in the call. Otherwise, ICE will not re-
turn to the calling routine or command line until it is closed. That is, until
the user is finished interacting with the interface (and color mapping func-
tions). In this situation, function ice_OutputFcn can not obtain the
mapped image data from the handles structure, because it does not exist
after the GUI is closed. As can be seen in the final version of the function,
ICE extracts the image data from the CData property of the surviving
mapped image output figure. If a mapped output image is not to be re-
turned by ice, the uiwait statement in ice_OpeningFcn is not executed,
ice_OutputFcn is called immediately after the opening function (long be-
fore the GUI is closed), and the handle of the mapped image output figure
is returned to the calling routine or command line.’

Finally, we note that several internal functions are invoked by
ice_OpeningFcn. These—and all other ice internal functions—are listed
next. Note that they provide additional examples of the usefulness of the
handles structure in MATLAB GUIs. For instance, the

nodes = getfield(handles, handles.curve)
and
nodes = getfield(handles, ['set' num2str(i)])

statements in internal functions graph and render, respectively, are used to
access the interactively defined control points of ICE’s various color mapping
curves. In its standard form,

F = getfield(S, 'field')

returns to F the contents of named field 'field' from structure S.

B.2 @ Programming the ICE Interface 541

R R LR R R P %

function graph(handles) ice

% Interpolate and plot mapping functions and optional reference —

% PDF(s) or CDF(s). Final M-file internal

nodes = getfield(handles, handles.curve); Junctions.

¢ = handles.cindex; dfx = 0:1/255:1;
colors = ['k' 'r' 'g" 'b'];

% For piecewise linear interpolation, plot a map, map + PDF/CDF, or
% map + 3 PDFs/CDFs.
if ~handles.smooth(handles.cindex)
if (~handles.pdf(c) & ~handles.cdf(c)) | ...
(size(handles.df, 2) == 0)
plot(nodes(:, 1), nodes(:, 2), 'b-', ...
nodes(:, 1), nodes(:, 2), 'ko', ...
'Parent', handles.curve_axes);
elseif ¢ > 1
i=2%*c¢c~-2- handles.pdf(c);
plot(dfx, handles.df(i, :), [colors(c) '-'], ..
nodes(:, 1), nodes(:, 2), 'k-', ..
nodes(:, 1), nodes(:, 2), 'ko', ...
'Parent', handles.curve_axes);
elseif ¢ ==
i = handles.cdf(c); .
plot(dfx, handles.df(i + 1, :), 'r~', ...
dfx, handles.df(i + 3, :), 'g-', ...
dfx, handles.df(i + 5, :), 'b=', ...
nodes(:, 1), nodes(:, 2), 'k-', ...
nodes(:, 1), nodes(:, 2), 'ko', ...
'Parent', handles.curve_axes);
end

% Do the same for smooth (cubic spline) interpolations.
else
x = 0:0.01:1;
if ~handles.slope(handles.cindex)
y = spline(nodes(:, 1), nodes(:, 2), X);

else
y = spline(nodes(:, 1), [0; nodes(:, 2); 0], Xx);
end
i = find(y > 1); y(i) = 1;
i = find(y < 0); y(i) = 0;

if (~handles.pdf(c) & ~handles.cdf(c)) | ...
(size(handles.df, 2) == 0)
plot(nodes(:, 1), nodes(:, 2), 'ko', x, y, 'b-', ...
'Parent', handles.curve_axes);
elseif ¢ > 1
i=2%*c -2 - handles.pdf(c);
plot(dfx, handles.df(i, :), [colors(c) '-'], ...
nodes(:, 1), nodes(:, 2), 'ko', x, y, 'k-',

542 Appendix B ® ICE and MATLAB Graphical User Interfaces

'Parent', handles.curve_axes);
elseif ¢ ==

i = handles.cdf(c);

plot(dfx, handles.df(i + 1, :), 'r-',
dfx, handles.df(i + 3, :), 'g-',
dfx, handles.df(i + 5, :), 'b-', ...
nodes(:, 1), nodes(:, 2), 'ko', x, y, 'k-',
'Parent', handles.curve_axes);

end
end

% Put legend if more than two curves are shown.
s = handles.colortype;
if strcmp(s, 'ntsc')

s = 'yia';
end
if (¢ == 1) & (handles.pdf(c) | handles.cdf(c))
st = ['-- ' upper(s(1))];
if length(s) ==
s2 = ['-- ' upper(s(2))]; s3 = ['-- ' upper(s(3))];
else
dS2 = ['-- " upper(s(2)) s(3)1; s3 = ['-- ' upper(s(4)) s(5)];
en
else '
st =""'; s2 = "'; s3 ="',
end

set(handles.red_text, 'String', si1);
set(handles.green_text, 'String', s2);
set(handles.blue_text, 'String', s3);

function [inplot, x, y] = cursor(h, handles)

% Translate the mouse position to a coordinate with respect to

% the current plot area, check for the mouse in the area and if so
% save the location and write the coordinates below the plot.

set(h, 'Units', 'pixels');
p = get(h, 'CurrentPoint');
x = (p(1, 1) — handles.plotbox(1)) / handles.plotbox(3);
y = (p(1, 2) — handles.plotbox(2)) / handles.plotbox(4);
if x >1.05 | x <-0.05 |y >1.05 | y < -0.05

inplot = 0;
else

X = min(x, 1); X = max(x, 0);

y = min(y, 1); y = max(y, 0);

nodes = getfield(handles, handles.curve);

X = round(256 * x) / 256;

inplot = 1;

set(handles.input_text, 'String', num2str(x, 3));
set(handles.output_text, 'String', num2str(y, 3));

B.2 @ Programming the ICE Interface

end
set(h, 'Units', 'normalized');

function y = render(handles)
% Map the input image and bar components and convert them to RGB
% (if needed) and display.

set(handles.ice, 'Interruptible', 'off');
set(handles.ice, 'Pointer', 'watch');

ygb = handles.graybar; ycb = handles.colorbar;
yi = handles.input; mapon = handles.barmap;
imageon = handles.imagemap & size(handles.input, 1);
for i = 2:4

nodes = getfield(handles, ['set' num2str(i)]);
t = lut(nodes, handles.smooth(i), handles.slope(i));

if imageon
yi(:a o i- 1) = t(yi(:, Y i- 1) + 1);
end
if mapon
ygb(:a b i- 1) = t(ygb(:s o i- 1) + 1);
ycb(:, ¢, i — 1) = t(ycb(:, 1, 1 = 1) + 1);
end
end
t = lut(handles.set1, handles.smooth(1), handles.slope(1));
if imageon
yi = t(yi + 1);
end
_ if mapon
ygb = t(ygbh + 1); ycb = t(ycb + 1);
end

if ~strcmp(handles.colortype, 'rgb')
if size(handles.input, 1)

yi = yi / 255;
yi = eval([handles.colortype '2rgb(yi)']l);
yi = uint8(255 * yi);

end ’

ygb = ygb / 255; ycb = ycb / 255;

ygb = eval([handles.colortype '2rgb(ygb)'l);

ycb = eval([handles.colortype '2rgb(ycb)'}]);

ygb = uint8(255 * ygb); ycb = uint8(255 * ycb);
else

yi = uint8(yi); ygb = uint8(ygb); ycb = uint8(ycb);
end
if size(handles.input, 1)

figure(handles.output); imshow(yi);
end
ygb = repmat(ygb, [32 1 1]); ycb = repmat(ycb, [32 1 1]);
axes(handles.gray_axes); imshow(ygb);
axes(handles.color_axes); imshow(ycb) ;

figure(handles.ice);

543

544 Appendix B ® ICE and MATLAB Graphical User Interfaces

set(handles.ice, 'Pointer', ‘'arrow');
set(handles.ice, 'Interruptible', ‘'on');

function t = lut(nodes, smooth, slope)

% Create a 256 element mapping function from a set of control

% points. The output values are integers in the interval [0, 255].
% Use piecewise linear or cubic spline with or without zero end

% slope interpolation.

t = 255 * nodes; i = 0:255;
if ~smooth
t = [t; 256 256]; t = interplq(t(:, 1), t(:, 2), i');
else
if ~slope
t = spline(t(:, 1), t(:, 2), 1i);
else
t = spline(t(:, 1), [0; t(:, 2); O], i);
end
end
t = round(t); t = max(0, t); t = min(255, t);
T LR T LR PP R PP PP EPPPPEPEP %

function out = spreadout(in)
% Make all x values unique.

% Scan forward for non-unique x's and bump the higher indexed x--
% but don't exceed 1. Scan the entire range.
nudge = 1 / 256;
for i = 2:size(in, 1) - 1

if in(i, 1) <= in(i - 1, 1)

in(i, 1) = min(in(i — 1, 1) + nudge, 1);

end

end

% Scan in reverse for non-unique x's and decrease the lower indexed
% X -- but don't go below 0. Stop on the first non-unique pair.
if in(end, 1) == in(end — 1, 1)
for i = size(in, 1):-1:2
if in(i, 1) <= in(i - 1, 1)
in(i - 1, 1) = max(in(i, 1) — nudge, 0);
else
break;
end
end
end

% If the first two x's are now the same, init the curve.
if in(1, 1) == in(2, 1)
in = [0 0; 1 1];
end
out = in;

B.2 ® Programming the ICE Interface =~ 545

function g = rgb2cmy(f)
% Convert RGB to CMY using IPT's imcomplement.

g = imcomplement (f);

function g = cmy2rgb(f)
% Convert CMY to RGB using IPT's imcomplement.

g = imcomplement(f);

B.2.3 Figure Callback Functions

The three functions immediately following the ICE opening and closing func-
tions in the starting GUI M-file at the beginning of Section B.2 are figure call-
backs ice_WindowButtonDownFcn, ice_WindowButtonMotionFcn, and
ice_WindowButtonUpFcn. In the automatically generated M-file, they are
function stubs—that is, MATLAB function definition statements without
supporting code. Fully developed versions of the three functions, whose joint
task is to process mouse events (clicks and drags of mapping function control
points on ICE’s curve_axes object), are as follows:

5 = e eaieeaaceeeaa- % ice
function ice_WindowButtonDownFcn(hObject, eventdata, handles) Figure Callbacks
% Start mapping function control point editing. Do move, add, or =

% delete for left, middle, and right button mouse clicks ('normal',
% ‘'extend', and 'alt' cases) over plot area.

set(handles.curve_axes, 'Units', 'pixels');
handles.plotbox = get(handles.curve_axes, 'Position');
set(handles.curve_axes, 'Units', 'normalized');
[inplot, x, y] = cursor(hObject, handles);
if inplot
nodes = getfield(handles, handles.curve);
i = find(x >= nodes(:, 1)); below = max(i);
above = min(below + 1, size(nodes, 1));
if (x — nodes(below, 1)) > (nodes(above, 1) — x)
node = above;
else
node = below;
end
deletednode = 0;

switch get(hObject, 'SelectionType')
case 'normal’
if node == above
above = min(above + 1, size(nodes, 1));
elseif node == below
below = max(below — 1, 1);
end
if node == size(nodes, 1)

546 Appendix B ® ICE and MATLAB Graphical User Interfaces

below = above;
elseif node ==
above = below;
end
if x > nodes(above, 1)
X = nodes(above, 1);
elseif x < nodes(below, 1)
X = nodes(below, 1);
end
handles.node = node; handles.updown = ‘down';
handles.below = below; handles.above = above;
nodes(node, :) = [X y];
case 'extend’
if ~length(find(nodes(:, 1) == x))
nodes = [nodes(1:below, :); [x y]; nodes(above:end, :)];
handles.node = above; handles.updown = 'down';
handles.below = below; handles.above = above + 1;
end
case 'alt'
if (node ~= 1) & (node ~= size(nodes, 1))
nodes(node, :) = []; deletednode = 1;
end
handles.node = 0;
set(handlés.input_text, 'String', '")
set(handles.output_text, 'String', '’
end

)

handles = setfield(handles, handles.curve, nodes);
guidata(hObject, handles);

. _ graph(handles);
ﬁZZ;ﬁgﬁLis, if deletednode
‘field', V) sets render (handles);
the contents of the end
specified field to end

value V. The changed

Structure is returned. %= - - = == = = = e e e e e m e eeeeaiaeee-eeeacmameeaa-
function ice_WindowButtonMotionFcn(hObject, eventdata, handles)
% Do nothing unless a mouse 'down' event has occurred. If it has,
% modify control point and make new mapping function.

if ~strcmpi(handles.updown, 'down')
return;
end
[inplot, x, y] = cursor(hObject, handles);
if inplot
nodes = getfield(handles, handles.curve);
nudge = handles.smooth(handles.cindex) / 256;
if (handles.node ~= 1) & (handles.node ~= size(nodes, 1))
if x >= nodes(handles.above, 1)
x = nodes(handles.above, 1) — nudge;
elseif x <= nodes(handles.below, 1)
X = nodes(handles.below, 1) + nudge;
end

B.2 ® Programming the ICE Interface

else
if x > nodes(handles.above, 1)
x = nodes(handles.above, 1);
elseif x < nodes(handles.below, 1)
x = nodes(handles.below, 1);
end
end
nodes (handles.node, :) = [x y];
handles = setfield(handles, handles.curve, nodes);
guidata(hObject, handles);
graph(handles);

function ice_WindowButtonUpFcn(hObject, eventdata, handles)
% Terminate ongoing control point move or add operation. Clear
% coordinate text below plot and update display.

update = strcmpi(handles.updown, 'down');

handles.updown = 'up'; handles.node = 0;
guidata(hObject, handles);
if update

set(handles.input_text, 'String', '')
set(handles.output_text, 'String', "'
render(handles);

end

)

In general, figure callbacks are launched in response to interactions with a fig-
ure object or window—not an active uicontrol object. More specifically,

e The WindowButtonDownFcn is executed when a user clicks a mouse but-
ton with the cursor in a figure but not over an enabled uicontrol (e.g.,a
pushbutton or popup menu).

e The WindowButtonMotionFcn is executed when a user moves a de-
pressed mouse button within a figure window.

¢ The WindowButtonUpFcn is executed when a user releases a mouse but-
ton, after having pressed the mouse button within a figure but not over an
enabled uicontrol.

The purpose and behavior of ice’s figure callbacks are documented (via com-
ments) in the code. We make the following general observations about the
final implementations:

1. Because the ice_WindowButtonDownFcn is called on all mouse button clicks
in the ice figure (except over an active graphic object), the first job of the
callback function is to see if the cursor is within ice’s plot area (i.e., the ex-
tent of the curve_axes object). If the cursor is outside this area, the mouse
should be ignored. The test for this is performed by internal function cursor,
whose listing was provided in the previous section. In cursor, the statement

p = get(h, 'CurrentPoint');

547

548 Appendix B ® ICE and MATLAB Graphical User Interfaces

returns the current cursor coordinates. Variable h is passed from
ice_WindowButtonDownFcn and originates as input argument hObject.
In all figure callbacks, hObject is the handle of the figure requesting ser-
vice. Property 'CurrentPoint' contains the position of the cursor rela-
tive to the figure as a two-element row vector [x y].

Since ice is designed to work with two- and three-button mice,
ice_WindowButtonDownFcn must determine which mouse button causes
each callback. As can be seen in the code, this is done with a switch con-
struct using the figure’s 'SelectionType' property. Cases 'normal’,
‘extent', and 'alt' correspond to the left, middle, and right button
clicks on three-button mice (or the left, shift-left, and control-left clicks of
two-button mice), respectively, and are used to trigger the add control
point, move control point, and delete control point operations.

The displayed ICE mapping function is updated (via internal function
graph) each time a control point is modified, but the output figure, whose
handle is stored in handles.output, is updated on mouse button releases
only. This is because the computation of the output image, which is per-
formed by internal function render, can be time-consuming. It involves
mapping separately the input image’s three color components, remapping
each by the “all-component” curve, and converting the mapped compo-
nents to the RGB color space for display. Note that without adequate pre-
cautions, the mapping function’s control points could be modified
inadvertently during this lengthy output mapping process.

To prevent this, ice controls the interruptibility of its various callbacks. All
MATLAB graphics objects have an Interruptible property that determines
whether their callbacks can be interrupted. The default value of every object’s

"Interruptible’ propertyis 'on', which means that object callbacks can be

interrupted. If switched to ' off ', callbacks that occur during the execution of
the now noninterruptible callback are either ignored (i.e., cancelled) or placed
in an event queue for later processing. The disposition of the interrupting call-
back is determined by the 'BusyAction' property of the object being inter-
rupted. If 'BusyAction' is 'cancel', the callback is discarded; if 'queue’,
the callback is processed after the noninterruptible callback finishes.

The ice_WindowButtonUpFcn function uses the mechanism just de-
scribed to suspend temporarily (i.e., during output image computations) the
user’s ability to manipulate mapping function control points. The sequence

set(handles.ice, 'Interruptible', 'off');
set(handles.ice, 'Pointer', 'watch');

set(handles.ice, 'Pointer', 'arrow');
set(handles.ice, 'Interruptible', 'on');

in internal function render sets the ice figure window’s 'Interruptible’
property to 'off ' during the mapping of the output image and pseudo- and
full-color bars. This prevents users from modifying mapping function control

B.2 ® Programming the ICE Interface 549

points while a mapping is being performed. Note also that the figure’s
'Pointer' property is set to 'watch' to indicate visually that ice is busy
and reset to 'arrow' when the output computation is completed.

B.2.4 Object Callback Functions

The final nine lines of the starting GUI M-file at the beginning of Section B.2
are object callback function stubs. Like the automatically generated figure call-
backs of the previous section, they are initially void of code. Fully developed
versions of the functions follow. Note that each function processes user inter-
action with a different ice uicontrol object (pushbutton, etc.) and is named
by concatenating its Tag property with string '_Callback'. For example, the
callback function responsible for handling the selection of the displayed map-
ping function is named the component_popup_Callback.Itis called when the
user activates (i.e., clicks on) the popup selector. Note also that input argu-
ment hObject is the handle of the popup graphics object—not the handle of
the ice figure (as in the figure callbacks of the previous section). ICE’s object
callbacks involve minimal code and are self-documenting.

R e e e e LR T PP P PR PP R PP % ice
function component_popup_Callback(hObject, eventdata, handles) Object Callbacks
% Accept color component selection, update component specific b

% parameters on GUI, and draw sthe selected mapping function.

c = get(hObject, 'Value');

handles.cindex = c;

handles.curve = strcat('set', num2str(c));
guidata(hObject, handles);

set(handles.smooth_checkbox, 'Value', handles.smooth(c));
set(handles.slope_checkbox, 'Value', handles.slope(c));
set(handles.pdf_checkbox, 'Value', handles.pdf(c));
set(handles.cdf_checkbox, 'Value', handles.cdf(c));
graph(handles);

function smooth_checkbox_Callback(hObject, eventdata, handles)
% Accept smoothing parameter for currently selected color
% component and redraw mapping function.

if get(hObject, 'Value')
handles.smooth(handles.cindex) = 1;
nodes = getfield(handles, handles.curve);
nodes = spreadout(nodes);
handles = setfield(handles, handles.curve, nodes);
else
handles.smooth(handles.cindex) = 0;
end
guidata(hObject, handles);
set(handles.ice, 'Pointer', 'watch');
graph(handles); render (handles);
set(handles.ice, 'Pointer', 'arrow');

550 Appendix B @ ICE and MATLAB Graphical User Interfaces

function reset_pushbutton_Callback(hObject, eventdata, handles)
% Init all display parameters for currently selected color
% component, make map 1:1, and redraw it.

handles = setfield(handles, handles.curve, [0 O; 1 1]);
¢ = handles.cindex;
handles.smooth(c) = 0; set(handles.smooth_checkbox, 'Value', 0);

handles.slope(c) = 0; set(handles.slope_checkbox, 'Value', 0);
handles.pdf(c) = 0; set(handles.pdf_checkbox, 'Value', 0);
handles.cdf(c) = 0; set(handles.cdf_checkbox, 'Value', 0);

guidata(hObject, handles);
set(handles.ice, 'Pointer', 'watch');

graph(handles); render(handles);
set(handles.ice, 'Pointer', 'arrow');
BB = = m e e e e %

function slope_checkbox_Callback(hObject, eventdata, handles)
% Accept slope clamp for currently selected color component and
% draw function if smoothing is on.

if get(hObject, 'Value')
handles.slope(handles.cindex)

else
handles.slope(handles.cindex)

end

guidata(hObject, handles);

if handles.smooth(handles.cindex)
set(handles.ice, 'Pointer', 'watch');
graph(handles); render(handles);
set(handles.ice, 'Pointer', ‘'arrow');

end

E

0;

function resetall_pushbutton_Callback(hObject, eventdata, handles)
% Init display parameters for color components, make all maps 1:1,
% and redraw display.

for c = 1:4
handles.smooth(c) = 0; handles.slope(c) = 0;
handles.pdf(c) = 0; handles.cdf(c) = 0;
handles = setfield(handles, ['set' num2str(c)], [0 0; 1 1]);
end

set(handles.smooth_checkbox, 'Value', 0);
set(handles.slope_checkbox, 'Value', 0);
set(handles.pdf_checkbox, 'Value', 0);
set(handles.cdf_checkbox, 'Value', 0);
guidata(hObject, handles);
set(handles.ice, 'Pointer', 'watch');
graph(handles); render(handles);
set(handles.ice, 'Pointer', 'arrow');

B.2 ® Programming the ICE Interface

function pdf_checkbox_Callback(hObject, eventdata, handles)

% Accept PDF (probability density function or histogram) display
% parameter for currently selected color component and redraw

% mapping function if smoothing is on. If set, clear CDF display.

if get(hObject, 'Value')
handles.pdf(handles.cindex) = 1;
set(handles.cdf_checkbox, 'Value', 0);
handles.cdf (handles.cindex) = 0;

else
handles.pdf (handles.cindex) = 0;
end
guidata(hObject, handles); graph(handles);
BBm = m = mm = e e e e e e e %

function cdf_checkbox_Callback(hObject, eventdata, handles)

% Accept CDF (cumulative distribution function) display parameter
% for selected color component and redraw mapping function if

% smoothing is on. If set, clear CDF display.

if get(hObject, 'Value')
handles.cdf(handles.cindex) = 1;
set(handles.pdf_checkbox, 'Value', 0);
handles.pdf(handles.cindex) ‘= 0;

else
handles.cdf(handles.cindex) = 0;
end
guidata(hObject, handles); graph(handles);
R LR LR LE e %

function mapbar_checkbox_Callback(hObject, eventdata, handles)
% Accept changes to bar map enable state and redraw bars.

handles.barmap = get(hObject, 'Value');
guidata(hObject, handles); render (handles);

function mapimage_checkbox_Callback(hObject, eventdata, handles)
% Accept changes to the image map state and redraw image.

handles.imagemap = get(hObject, 'Value');
guidata(hObject, handles); render(handles);

551

