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CHAPTER

EIGHT
HIGHER-LEVEL VISION

The artist is one who giyes
form to difficult visions.
Theodore Gill

8.1 INTRODUCTION

For the purpose of categorizing the various techniques and approaches used in
machine vision, we introduced in Sec. 7.1 three broad subdivisions: low-,
medium-, and high-level vision. Low-level vision deals with basic sensing and
preprocessing, topics which were covered in some detail in Chap. 7. We may
view the material in that chapter as being instrumental in providing image and
other relevant information that is in a form suitable for subsequent intelligent
visual processing. ,

-Although the concept of “intelligence” is somewhat vague, .particularly when
one is referrmg to a machine, it is not difficult to conceptualize the type of
behavior that we may, however grudgingly, characterize as mte]hgent Several
characteristics come unmedlately to mind: (1) the ability to extract pertinent infor-
mation from a background of irrelevant details, (2) the capability to learn from
examples and to generalize this knowledge so that it will apply in new and
different circumstances, (3) the ability to infer facts from incomplete information,
and (4) the capability to generate self-motlvated goals and to formulate plans for
meeting these goals.

While it is: possible to design and implement a vision system with these
characteristics in a [imited environment, we do not yet know how to endow it with
a range and depth of adaptive performance that comes even close to emulating
human vision. Although research in biological systems is continually uncovering
new and promising concepts, the state of the art in machine vision is for the most
part based on analytical formulations tailored to meet specific tasks. The time
frame in whlch we may have machines that approach human visual and other sen-
sory capablhnes is open to speculation. It is of interest to note, however, that imi-
tating nature is not the only solution to this problem. The reader is undoubtedly
familiar with early experimental alrplanes equipped with flapping wings and other
birdlike features. Given that the objective is to fly between two points, our present
solution is quite different from the examples provided by nature. In terms of
speed and achievable altitude, this solution exceeds the capabilities of these exam-
ples by a wide margin.
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HIGHER-LEVEL VISION 363

As indicated in Sec. 7.1, medium-level vision deals with topics in segmenta-
tion, description, and recognition of individual objects It will be seen in the fol-
lowing sections that these topics encompass. a variety of approachies that are well-
fourided on analytical concepts. High-level vision deals with issues such as those
discussed in the preceding paragraph. Our knowledge of these areas and their
relauonshlp to low- and medium-level vision is significantly more vague and
speculative, leading to the formulauo_n of constraints and idealizations intended to
simplify the complexity of this task:

The material discussed in this chapter introduces the: reader to a broad range
of topics in state-of-the-art machine vision, with a strong orientation toward tech-
niques that are suitable for robotic vision. The material is subdivided into four
principal areas. We begin the discussion with a detailed treatment of segmentation.
This is followed by a discussion of object description techniques. We then discuss
" the principal approaches used in the recognition stage of a vision system. We con-
clude the chapter with a discussion of issues on the interpretation of visual infor-
mation.

8.2 SEGMENTATION

Segmentation is the process that subdivides a sensed scene into its constituent parts
or objects. Segmentation is one of the most important elements of an automated
vision system because it is at this stage of processing that objects are extracted
from a scene for subsequent recognition and analysis. Segmentation algorithms are
generally based on one of two basic principles: discontinuity and similarity. The
principal approach in the first category is based on edge detection; the principal
approaches in the second category are based on thresholding and region growing.
These concepts are applicable to both static and dynamic (time-varying) scenes. In
the latter case, however, motion can often be used as a powerful cue to improve
the performance of segmentation algorithms.

8.2.1 Edge Linking and Boundary Detection

The techniques discussed in Sec. 7.6.4 detect irtensity discontinuities. Ideally,
these techniques should yield only pixels lying on the boundary between objects
and the background. In practice, this set of pixels seldom characterizes a boun-
dary completely because of noise, breaks in the boundary due to nonuniform
illumination, and other effects that introduce spurious intensity discontinuities.
Thus, edge detection algorithms are typically followed by linking and other boun-
dary detection procedures designed to assemble edge pixels into a meaningful set
of object boundaries. In the following discussion we consider several techniques
suited for this purpose.

Local Analysis. One of the simplest apprdaches for linking edge points is to
analyze the characteristics of pixels in a small neighborhood (e.g., 3 X 3 or 5 X 5)
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about every point (x, y) in an image that has undergone an edge detection pro-
cess. All points that are similar- (as defined below) are linked, thus forming a
boundary of pixels that share some common properties. o

There are two principal properties used for establishing similarity of edge pix-
els in this kind of analysis: (1) the strength of the response of the gradient operator
used to produce the edge pixel, and (2) the direction of the gradient. The first
property is given by the value of G[f(x, y)], as defined in Egs. (7.6-38) or (7.6-
39). Thus, we say that an edge pixel with coordinates (x’, y) and in the predefined
neighborhood of (x, y) is similar in magnitude to the pixel at (x, y) if

IGLf(x, W1 — GLF, V)| < T  82-1)

where T is a threshold.
The direction of the gradient may be established from the angle of the gradient
vector given in Eq. (7.6-37). That is,

9 = tan~! [-C—;’-J (8.2-2)

where 0 is the angle (measured with respect to the x axis) along which the rate of
change has the greatest magnitude, as indicated in Sec. 7.6.4. Then, we say that
an edge pixel at: fx ¥") in the predefined neighborhood of (x, y) has an angle
similar to the pixel at (x, y) if

6 — 0| < 4 (8.2-3)

where A is an angle threshold. It is noted that the direction of the edge at (x, y)
is, in reality, perpendicular to the direction of the gradient vector at that point.
‘However, for the purpose of comparing directions, Eq. (8.2-3) yields equivalent
results.

Based on the foregoing concepts, we link a point in the predefined neighbor-
hood of (x, y) to the pixel at (x, y) if both the magnitude and direction criteria
are satlsﬁed This process is repeated for every location in the image, keeping a
record of hnked points as the center of the neighborhood is moved from pixel to
pixel. A s:mple bookkeeping procedure is to assign a different gray level to each
set of linked edge pixels.

Example As an illustration of the foregoing procedure, consider Fig. 8.la,
which shows an image of the rear of a vehicle. The objective is to find rec-
tangles whose sizes makes them suitable license plate candidates. The forma-
tion of these rectangles can be accomplished by detecting strong horizontal and
vertical edges. Figure 8.1b and ¢ shows the horizontal and vertical com-
ponents of the Sobel operators discussed in Sec. 7.6.4. Finally, Fig. 8.1d
shows the results of linking all points which, simultaneously, had a gradient
value greater than 25 and whose gradient directions did not differ by more

J
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Figure 8.1 (a) Input image. (b) Horizontal component of the gradient. (¢) Vertical com-
ponent of the gradient. (d) Result of edge linking. (Courtesy of Perceptics Corporation.)

than 15°. The horizontal lines were formed by sequentially applying these
criteria to every row of Fig. 8.1c, while a sequential column scan of Fig. 8.1b
yielded the vertical lines. Further processing consisted of linking edge seg-
ments separated by small breaks and deleting isolated short segments. a

Global Analysis via the Hough Transform. In this section we consider the link-
ing of boundary points by determining whether or not they lie on a curve of
specified shape. Suppose initially that, given n points in the xy plane of an image,
we wish to find subsets that lie on straight lines. One possible solution is to first
find all lines determined by every pair of points and then find all subsets of points
that are close to particular lines. The problem with this procedure is that it
involves finding n(n — 1)/2 ~ n? lines and then performing n[n(n — 1)1/2 ~ n3



366 ROBOTICS: CONTROL, SENSING, VISION, AND INTELLIGENCE

comparisons of every point to all lines. This is computationally prohibitive in all
but the most trivial applications.

This problem may be viewed in a different way using an approach proposed
by Hough [1962] and commonly referred to as the Hough transform. Consider a
point (x;, y;) and the general equation of a straight line in slope-intercept form,
¥; = ax; + b. There is an infinite number of lines that pass through (x;, y;), but
they all satisfy the equation y; = ax; + b for varying values of a and b. How-
ever, if we write this equation as b = —x;a + y;, and consider the ab plane (also
called parameter space), then we have the equation of a single line for a fixed pair
(x;, y:). Furthermore, a second point (xj, y;) will also have a line in parameter
space associated with it, and this line will intersect the line associated with (x;, y;)
at (a’, b") where a’ is the slope and b’ the intercept of the line containing both
(%, y;) and (x;, y;) in the xy plane. In fact, all points contained on this line will
have lines in parameter space which intercept at (a’, ’). These concepts are illus-
trated in Fig. 8.2. ‘ '

The computational attractiveness of the Hough transform arises from subdivid-
ing the parameter space into so-called accumulator cells, as illustrated in Fig. 8.3,
where (@max, Gmin) and (bpax, bmin) are the expected ranges of slope and intercept
values. Accumulator cell A(i, j) corresponds to the square associated with param-
eter space coordinates (a;, b;). Initially, these cells are set to zero. Then, for
every point (x;, Y) in the image plane, we let the parameter a equal each of the
allowed subdivision values on the a axis and solve for the corresponding b using
the equation b = —xa + y,. The resulting b’s are then rounded off to the
nearest allowed value in the b axis. If a choice of a, results in solution b,, we let
A(p, q) = A(p, q) + 1. At the end of this procedure, a value of M in cell
A(i, j) corresponds to M points in the xy plane lying on the line y = ax + b;.
The accuracy of the colinearity of these points is established by the number of sub-
divisions in the ab plane.

(@) (b)

Figure 8.2 (a) xy Plane. (b) Parameter space.
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b, a
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Amin 0 Amax

Figure 8.3 Quantization of the parameter plane into cells for use in the Hough transform.

It is noted that if we subdivide the a axis into K increments, then for every
point (x;, y;) we obtain K values of b corresponding to the K possible values of
a. Since there are n image points, this involves nK computations. Thus, the pro-
cedure just discussed is linear in n, and the product nK does not approach the
number of computations discussed at the beginning of this section unless K
approaches or exceeds n.

A problem with using the equation y = ax + b to represent a line is that
both the slope and intercept approach infinity as the line approaches a vertical
position. One way around this difficulty is to use the normal representation of a
line, given by

xcosf + ysinf = p (8.2-4)

The meaning of the parameters used in Eq. (8.2-4) is illustrated in Fig. 8.4a. The
use of this representation in constructing a table of accumulators is identical to the
method discussed above for the slope-intercept representation; the only difference
is that, instead of straight lines, we now have sinusoidal curves in the 6p plane.
As before, M colinear points lying on a line xcos6; + y sinf; = p; will yield M
sinusoidal curves which intercept at (6;, p;) in the parameter space. When we use
the method of incrementing 6 and solving for the corresponding p, the procedure
will yield M entries in accumulator A(Z, j) associated with the cell determined by
(6;, p;). The subdivision of the parameter space is illustrated in Fig. 8.4b.

Example: An illustration of using the Hough transform based on Eq. (8.2-4)
is shown in Fig. 8.5. Figure 8.5a shows an image of an industrial piece, Fig.
8.5b is the gradient image, and Fig. 8.5¢ shows the 6p plane displayed as an
image in which brightness level is proportional to the number of counts in the
accumulators. The abscissa in this image corresponds to 8 and the ordinate to
p, with ranges +90° and =p;,,, respectively. In this case, py.x Wwas set
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Figure 8.4 (a) Normal representation of a line. (b) Quantization of the 6p plane into cells.

equal to the distance from corner to corner in the original image. The center
of the square in Fig. 8.5¢ thus corresponds to § = 0° and p = 0. It is of
interest to note the bright spots (high accumulator counts) near 0° correspond-
ing to the vertical lines, and near =+ 90° corresponding to the horizontal lines
in Fig. 8.5b. The lines detected by this method are shown in Fig. 8.5d super-
imposed on the original image. The discrepancy is due to the quantization
error of § and p in the parameter space. O

Although our attention has been focused thus far on straight lines, the Hough
transform is applicable to any function of the form g(x, ¢) = 0, where x is a
vector of coordinates and ¢ is a vector of coefficients. For example, the locus of
points lying on the circle

x-—a)+(-al=d (8.2-5)

can easily be detected by using the approach discussed above. The basic
difference is that we now have three parameters, c;, c,, and c;, which result in a
three-dimensional parameter space with cubelike cells and accumulators of the
form A(i, j, k). The procedure is to increment c; and c,, solve for the c; that
satisfies Eq. (8.2-5), and update the accumulator corresponding to the cell associ-
ated with the triple (¢;, ¢;, ¢3). Clearly, the complexity of the Hough transform
is strongly dependent on the number of coordinates and coefficients in a given
functional representation.

Before leaving this section, we point out that further generalizations of the
Hough transform to detect curves with no simple analytic representations are possi-
ble. These concepts, which are extensions of the material presented above, are
treated in detail by Ballard [1981].
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Figure 8.5 (a) Image of a work piece. (b) Gradient image. (c) Hough transform table.
(d) Detected lines superimposed on the original image. (Courtesy of D. Cate, Texas Instru-
ments, Inc.)

Global Analysis via Graph-Theoretic Techniques. The method discussed in the
previous section is based on having a set of edge points obtained typically through
a gradient operation. Since the gradient is a-derivative, it enhances sharp varia-
tions in intensity and, therefore, is seldom suitable as a preprocessing step in situa-
tions characterized by high noise content. We now discuss a global approach based
on representing edge segments in the form of a graph structure and searching the
graph for low-cost paths which correspond to significant edges. This representa-
tion provides a rugged approach which performs well in the presence of noise. As
might be expected, the procedure is considerably more complicated and requires
more processing time than the methods discussed thus far.

We begin the development with some basic definitions. A graph G = (N, A)
is a finite, nonempty set of nodes N, together with a set A of unordered pairs of
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distinct elements of N. Each pair (n;, n;) of A is called an arc. A graph in which
its arcs are directed is called a directed graph. If an arc is directed from node n; to
node n;, then n; is said to be a successor of its parent node n;. The process of
identifying the successors of d node is called expansion of the node. In each graph
we will define levels, such that level O consists of a sinigle node, called the start
node, and the nodes in the last level are called goal nodes. A cost c(n;, n;) can be
associated with every arc (;, n; ;). A sequence of nodes ny, ny, ... ,m with
each node n; being a successor of node n;_, is called a path from n; to m, and the
cost of the path is given by :

c(ni_y, my) (82:6) -

o
Rl
™~

2

Finally, we define an edge element as the boundary between two pixels p and g,
such that p and g are 4-neighbors, as illustrated in Fig. 8.6. In this context, an
edge is a sequence of edge elements.

In order to illustrate how the foregoing concepts apply to edge detection, con-
sider the 3 x 3 image shown in Fig. 8.7, where the outer numbers are pixel coor-
dinates and the numbers in parentheses represent intensity. With each edge ele-
ment defined by pixels p and g we associate the cost

c(p, ) = H = [f(p) — f(9)] (8.2-7)

where H is the highest intensity value in the image (7 in this example), f(p) is the
intensity value of p, and f(q) is the intensity value of q. As indicated above, p
and g are 4-neighbors.

The graph for this problem is shown in Fig. 8.8. Each node in this graph
corresponds to an edge element, and an arc exists between two nodes if the two
corresponding edge elements taken in succession can be part of an edge. The cost
" of each edge element, computed using Eq. (8.2-7), is shown by the arc leading into
it, and goal nodes are shown in double rectangles. Each path between the start
node and a goal node is a possible edge. For simplicity, it has been assumed that
the edge starts in the top row and terminates in the last row, so that the first ele-

] [ ) [ ]
. Pe eq
[ ] (] [ ]

Figure 8.6 Edge element between pixels p and q.
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_ Figure 8.7 A 3 x 3 image.

ment of an edge can only be [(0, 0), (0, 1)] or [(0, 1), (0, 2)] and the last ele-
ment [(2, 0), (2, 1)] or [(2, 1), (2, 2)]. The minimum-cost path, computed
using Eq. (8.2-6), is shown dashed, and the corresponding edge is shown in Fig.
8.9.

In general, the problem of finding a minimum-cost path is not trivial from a
computational point of view. Typically, the approach is to sacrifice optimality for
the sake of speed, and the algorithm discussed below is representative of a class of

Figure 8.8 Graph used for finding an edge in the image of Fig. 8.7. The pair (a, b)(c, d)
in each box refers to points p and g, respectively. Note that p is assumed to be to the right
of the path as the image is traversed from top to bottom. The dashed lines indicate the
minimum-cost path. (Adapted from Martelli [1972], © Academic Press.)
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. Figure 8.9 Edge corresponding to minimum-cost path in Fig. 8.8.

) procedures which use heuristics in order to reduce the search effort. Let r(n) be
- _an estimate of the cost of a minimum-cost path from the start node s to a goal
node, where the path is constrained to go through n. This cost can be expressed
as the estimate of the cost of a minimum-cost path from s to n, plus an estimate of
the cost of that path from n to a goal node; that is,

r(n) = g(n) + h(n) " (8.2-8)

Here, g(n) can be chosen as the lowest-cost path from s to n found so far, and
h(n) is obtained by using any available heuristic information (e.g., expanding only
certain nodes based on previous costs in getting to that node). An algorithm that
uses r(n) as the basis for performing a graph search is as follows:

Step 1. Mark the start node OPEN and set g(s) = 0.

Step 2. If no node is OPEN, exit with failure; otherwise continue.

Step 3. Mark CLOSED the OPEN node n whose estimate r(n) computed from
Eq. (8.2-8) is smallest. (Ties for minimum r values are resolved arbi-
trarily, but always in favor of a goal node.)

Step 4. If n is a goal node, exit with the solution path obtained by tracing back
through the pointers; otherwise continue.

Step 5. Expand node n, generating all its successors. (If there are no successors,
go to step 2.)

Step 6. If a successor n; is not marked, set

r(n;) = g(n) + c(n, n;)

mark it OPEN, and direct pointers from it back to n.
Step 7. If a successor n; is marked CLOSED or OPEN, update its value by letting

g'(n;) = min[g(n;), g(n) + c(n, n;)]

Mark OPEN those CLOSED successors whose g’ values were thus lowered
and redirect to n the pointers from all nodes whose g’ values were
lowered. Go to step 2.
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Figure 8.10 (a) Noisy image. (b) Result of edge detection by using the heuristic graph

search. (From Martelli [1976], © ACM.)

In. general, this algorithm is not guaranteed to find a minimum-cost path; its
advantage is speed via the use of heuristics. It can be shown, however, that if
h(n) is a lower bound on the cost of the minimal-cost path from node n to a goal
node, then the procedure will indeed find an optimal path to a goal (Hart et al.
[1968]). If no heuristic information is available (i.e., # = 0) then the procedure
reduces to the uniform-cost algorithm of Dijkstra [1959].

Example: A typical result obtainable with this procedure is shown in Fig.
8.10. Part (a) of this figure shows a noisy image and Fig. 8.10b is the result
of edge segmentation by searching the corresponding graph for low-cost paths.
Heuristics were brought into play by not expanding those nodes whose cost

exceeded a given threshold.

-0
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8.2.2 Thresholding

The concept of thresholding was introduced in Sec. 7.6.5 as an operation involving
tests against a function of the form

T = T[x: Y, p(x’ )’), f(xr }’)] (82'9)

“where f(x, y) is the intensity of point (x, y) and p(x, y) denotes some local pro-
perty measured in a neighborhood of this point. A thresholded image, g(x, y) is
created by defining

1 iffx,y)>T '
g(x, y) = { (8.2-10)
0 iff(x,y)<T

" so that pixels in g(x, y) labeled 1 correspond to objects, while pixels labeled O
correspond to the background. Equation (8.2-10) assumes that the intensity of
objects is greater than the intensity of the background. The opposite condition is
handled by reversing the sense of the inequalities.

Global vs. Local Thresholds. As indicated in Sec. 7.6.5, when T in Eq. (8.2-9)
depends only on f(x, y), the threshold is called global. If T depends on both
f(x, y) and p(x, y), then it is called a local threshold. If, in addition, T depends
on the spatial coordinates x and y, it is called a dynamic threshold.

Global thresholds have application in situations where there is clear definition
between objects and background, and where illumination is relatively uniform.
The backlighting and structured lighting techniques discussed in Sec. 7.3 usually
yield images that can be segmented by global thresholds. For the most part, arbi-
trary illumination of a work space yields images that, if handled by thresholding,
require some type of local analysis to compensate for effects such as nonuniformi-
ties in illumination, shadows, and reflections.

In the following discussion we consider a number of techniques for selecting
segmentation thresholds. Although some of these techniques can be used for glo-
bal threshold selection, they are usually employed in situations requiring local
threshold analysis.

Optimum Threshold Selection. It is often possible to consider a histogram as
being formed by the sum of probability density functions. In the case of a bimodal
histogram the overall function approximating the histogram is given by

p(z) = P1pi(2) + P,py(2) (8.2-11)

where z is a random variable denoting intensity, p; (z) and p,(z) are the probabil-
ity density functions, and P; and P, are called a priori probabilities. These last
two quantities are simply the probabilities of occurrence of two types of intensity
levels in an image. For example, consider an image whose histogram is shown in
Fig. 8.11a. The overall histogram may be approximated by the sum of two proba-
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Figure 8.11 (a) Intensity histogram. (b) Approximation as the sum of two probability
density functions.

bility density functions, as shown in Fig. 8.11b. If it is known that light pixels
represent objects and also that 20 percent of the image area is occupied by object
pixels, then P; = 0.2. It is required that

P, +P, =1 (8.2-12)

which simply says that, in this case, the remaining 80 percent are background pix-
els.
Let us form two functions of z, as follows:

di(z) = Pip1(2) (8.2-13)

and dy)(2) = Pyp,y(2) (8.2-14)

It is known from decision theory (Tou and Gonzalez [1974]) that the average error
of misclassifying an object pixel as background, or vice versa, is minimized by
using the following rule: Given a pixel with intensity value z, we substitute that
value of z into Egs. (8.2-13) and (8.2-14). Then, we classify the pixel as an object
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pixel if d;(z) > d,(z) or as background pixel if d,(z) > d;(z). The optimum
threshold is then given by the value of z for which d;(z) = d,(z). That is, set-
ting z = T in Egs. (8.2-13) and (8.2-14), we have that the optimum threshold
satisfies the equation

P pi(T) = P,py(T) - (8.2-15)

. Thus, if the functional forms of p; (z) and p,(z) are known, we can use this equa-
tion to solve for the optimum threshold that separates objects from the background.
Once this threshold is known, Eq. (8.2-10) can be used to segment a given image.

As an important illustration of the use of Eq. (8.2-15), suppose that p; (z) and
P, (2) are gaussian probability density functions; that is,

1 (z — m)?
= - =7 2-16
P1(2) N exp [ 29 ] (8.2-16)
1 (z — m)?
= - | =7 2-17
and P2(2) Vonos exp ': 207 ] 8.2-17)

Letting z = T in these expressions, substituting into Eq. (8.2-15), and simplifying
yields a quadratic equation in T:

AT> + BT+ C =0 ~ (8.2-18)

where

A =0l - 42

B

Um0} — myad) (8.2-19)

0,P,
C = o¥m? — o?m? + 20?63 In

0167

The possibility of two solutions indicates that two threshold values may be
required to obtain an optimal solution.

If the standard deviations are equal, ¢; = 0, = o, a single threshold is
sufficient:

m + m 2 P
! 2 g In == (8.2-20)
2 my, — my Pl

T =

If o =0 or P, = P,, the optimum threshold is just the average of the means.
The former condition simply means that both the object and background intensities
are constant throughout the image. The latter condition means that object and
background pixels are equally likely to occur, a condition met whenever the
number of object pixels is equal to the number of background pixels in an image.



HIGHER-LEVEL VISION 377

Example: As an illustration of the concepts just discussed, cons1der the seg-
mentation of the mechanital parts shown in Fig. 8. 12a, where, for the
moment, we ignore the grid superimposed on the image. Figure 8.12b shows
the result of computing a global histogram, fitting it with a bj imodal gaussian
density, establishing an optimum global threshold, and finally dsmg this thres-
hold in Eq. (8.2-10) to segment the image. As expected, the variations in
intensity rendered this approach virtually useless. A similar approach, how-
ever, can be carried out on a local basis by subdividing the image into subim-
ages, as defined by the grid in Fig. 8.124. ,

After the image has been subdivided, a histogram is computed for each
subimage and a test of bimodality is conducted. The bimodal histograms are
fitted by a mixed gaussian density and the corresponding optimum threshold is
computed using Egs. (8.2-18) and (8.2-19). No thresholds are computed for
subimages without bimodal histograms; instead, these regions are assigned
thresholds computed by interpolating the thresholds from neighboring subim-
ages that are bimodal. The histograms for each subimage are shown in Fig.
8.12¢, where the horizontal lines provide an indication of the relative scales of
these histograms. At the end of this procedure a second interpolation is car-
ried out on a point-by-point manner using neighboring thresholds so that every
point is assigned a threshold value, T(x, y). Note that this is a dynamic thres-
hold since it depends on the spatial coordinates (x, y). A display of how
T(x, y) varies as a function of position is shown in Fig. 8.12d.

Finally, a thresholded image is created by comparing every pixel in the
original image against its corresponding threshold. The result of using this
method in this particular case is shown in Fig. 8.12¢. The improvement over
a single, global threshold is evident. It is of interest to note that this method
involves local analysis to establish the threshold for each cell, and that these
local thresholds are interpolated to create a dynamic threshold which is finally
used for segmentation. O

The approach developed above is applicable to the selection of multiple thres-
holds. Suppose that we can model a multimodal histogram as the sum of n proba-
bility density functions so that

p(z) = Pypy(2) + - -+ + Ppp,(2) (8.2-21)

Then, the optimum thresholding problem may be viewed as classifying a given
pixel as belonging to one of n possible categories. The minimum-error decision
rule is now based on n functions of the form

di(z) = P;p;(2) i=12,...,n (8.2-22)

A given pixel with intensity z is assigned to the kth category if di(z) > d;(2),
J=1,2,...,n;j # k. As before, the optimum threshold between category k
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Figure 8.12 (a) Image of mechanical parts showing local-region grid. (b) Result of global
thresholding. (c) Histograms of subimages. (d) Display of dynamic threshold. (¢) Result of
dynamic thresholding. (From Rosenfeld and Kak [1982], courtesy of A. Rosenfeld.)
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and category j, denoted by T,;, is obtained by solving the equation

Ppi(Ty;) = Pipi(Ty;) (8.2-23)

~ As indicated in Sec. 7.6.5, the real problem with using multiple histogram thres-
holds lies in establishing meaningful histogram modes.

~ Threshold Selection Based on Boundary Characteristics. One of the most
lmportant aspects of selecting a threshold is the capability to reliably identify the
mode peaks in a given histogram. This is particularly important for automatic
threshold selection in situations where image characteristics can change over a
- -~broad range of intensity distributions. Based on the discussion in the last two sec-
-.tions, it is intuitively evident that the chances of selecting a “good” threshold
should be considerably enhanced if the histogram peaks are tall, narrow, sym-
metric, and separated by deep valleys. ‘

One approach for improving the shape of histograms is to consider only those
pixels that lie on or near the boundary between objects and the background. One
immediate and obvious improvement is that this makes histograms less dependent
on the relative size between objects and the background. For instance, the inten-
sity histogram of an image composed of a large, nearly constant background area
and one small object would be dominated by a large peak due to the concentration
of background pixels. If, on the other hand, only the pixels on or near the boun-
dary between the object and the background were used, the resulting histogram
would have peaks whose heights are more balanced. In addition, the probability
that a given pixel lies near the edge of an object is usually equal to the probability
that it lies on the edge of the background, thus improving the symmetry of the his-
togram peaks. Finally, as will be seen below, using pixels that satisfy some sim-
ple measures based on gradient and Laplacian operators has a tendency to deepen
the valley between histogram peaks.

The principal problem with the foregoing comments is that they implicitly
assume that the boundary between objects and background is known. This infor-
mation is clearly not available during segmentation since finding a division
between objects and background is precisely the ultimate goal of the procedures
discussed here. However, we know from the material in Sec. 7.6.4 that an indica-
tion of whether a pixel is on an edge may be obtained by computing its gradient.
In addition, use of the Laplacian can yield information regarding whether a given
pixel lies on the dark (e.g., background) or light (object) side of an edge. Since,
as discussed in Sec. 7.6.4, the Laplacian is zero on the interior of an ideal ramp
edge, we may expect in practice that the valleys of histograms formed from the
pixels selected by a gradient/Laplacian criterion to be sparsely populated. This
property produces the highly desirable deep valleys mentioned earlier in this sec-
tion. ‘

The gradient, G[f(x, y)], at any point in an image is given by Eq. (7.6-38)
or (7.6-39). Similarly, the Laplacian L[ f(x, y)] is given by Eq. (7.6-47). We may
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use these two quantities to form a three-level image, as follows:

0 if G[f(x, )1 < T
s(x, y) = { + if G[f(x, )] > Tand L[f(x, y)] > 0 (8.2-24)
- i Glf(x, )] > Tand L[f(x, y)] < 0

where the symbols 0, +, and — represent any three distinct gray levels, and T is
a threshold. Assuming a dark object on a light background, and with reference to
Fig. 7-34b, the use of Eq. (8.2-24) produces an image s(x, y) in which all pixels -
which are not on an edge (as determined by G[f(x, y)] being less than T) are
labeled “0,” all pixels on the dark side of an edge are labeled “+,” and all pixels '
on the light side of an edge are labeled “—.” The symbols + and — in Eq. (8.2-
24) are reversed for a light object on a dark background. Figure 8.13 shows the
labeling produced by Eq. (8.2-24) for an image of a dark, underlined stroke writ-
ten on a light background.

The information obtained by using the procedure Just discussed can be used to
generate a segmented, binary image in which 1’s correspond to objects of interest
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Figure 8. 13 Image of a handwritten stroke coded by usmg Eq (8.2-24). (From White and
Rohrer [1983], ©IBM)
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and 0’s correspond to the background. First we note that the transition (along a
horizontal or vertical scan line) from a light background to a dark object must be
characterized by the occurrence of a — followed by a + in s(x, y). The interior
of the object is composed of pixels which are labeled either O or +. Finally, the
transition from the object back to the background is characterized by the
occurrence of a + followed by a —. Thus we have that a horizontal or vertical
scan line containing a section of an object has the following structure:

(- )= +)Oor +)(+,=)(--+)

where ( - .- ) represents any combination of +, —, or-0. The innermost
parentheses contain object points and are labeled 1. All other pixels along the
same scan line are labeled 0, with the exception of any sequence of (0 or +)
bounded by (—, +) and (+, —). .

Example: As an illustration of the concepts just discussed, consider Fig.
8.14a which shows an image of an ordinary scenic bank check. Figure 8.15
shows the histogram as a function of gradient values for pixels with gradients
greater than 5. It is noted that this histogram has the properties discussed ear-
lier. That is, it has two dominant modes which are symmetric, nearly of the
same height, and are separated by a distinct valley. Finally, Fig. 8.14b shows
the segmented image obtained by using Eq. (8.2-24) with T near the midpoint
of the valley. The result was made binary by using the sequence analysis dis-
cussed above. O

(a)

Figure 8.14 (@) Original image. (b) Segmented image. (From White and Rohrer [1983],
©IBM.)
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Figure 8.15 Histogram of pixels with gradients greater than 5. (From White and Rohrer
[1983, ©IBM].)

Thresholds Based on Several Variables. The techniques discussed thus far deal
with thresholding a single intensity variable. In some applications it is possible to
use more than one variable to characterize each pixel in an image, thus enhancing
the capability to differentiate not only between objects and background, but also to
distinguish between objects themselves. A notable example is color sensing, where
red, green, and blue (RGB) components are used to form a composite color image.
In this case, each pixel is characterized by three values and it becomes possible to
construct a three-dimensional histogram. The basic procedure is the same as that
used for one variable. For example, given three 16-level images corresponding to
the RGB components of a color sensor, we form a 16 X 16 X 16 grid (cube) and
insert in each cell of the cube the number of pixels whose RGB components have
intensities corresponding to the coordinates defining the location of that particular
cell. Each entry can then be divided by the total number of pixels in the image to
form a normalized histogram.

"~ The concept of threshold selection now becomes that of finding clusters of
points in three-dimensional space, where each “tight” cluster is analogous to a
dominant mode in a one-variable histogram. Suppose, for example, that we find
two significant clusters of points in a given histogram, where one cluster
corresponds to objects and the other to the background. Keeping in mind that each
pixel now has three components and, therefore, may be viewed as a point in
three-dimensional space, we can segment an image by using the following pro-
cedure: For every pixel in the image we compute the distance between that pixel
and the centroid of each cluster. Then, if the pixel is closer to the centroid of the
object cluster, we label it with a 1; otherwise, we label it with a 0. This concept
is easily extendible to more pixel components and, certainly, to more clusters.
The principal difficulty is that finding meaningful clusters generally becomes an
increasingly complex task as the number of variables is increased. The reader
interested in further pursuing techniques for cluster seeking can consult, for exam-
ple, the book by Tou and Gonzalez [1974]. This and other related techniques for
segmentation are surveyed by Fu and Mui [1981].



HIGHER-LEVEL VISION 383

Example: As an illustration of the multivariable histogram approach, consider
Fig. 8.16. Part (a) of this image is a monochrome image of a color photo-
graph. The original color image was composed of three 16-level RGB images.
For our purposes, it is sufficient to note that the scarf and one of the flowers
were a vivid red, and that the hair and facial colors were light and different in
spectral characteristics from the window and other background features.
Figure 8.16b was obtained by thresholding about a histogram cluster
which was known to contain RGB components representative of flesh tones. It
- is important to note that the window, which in the monochrome image has a
"~ range of intensities close to those of the hair, does not appear in the seg-
mented image because “its ‘multispectral characteristics are quite different. The
~ fact that some small regions on top of the subject’s hair appear in the seg-
_ mented image indicates that their color is similar to flesh tones. Figure 8.16¢
was obtained by thresholding about a cluster close to the red axis. In this case

Figure 8.16 Segmentation by multivariable threshold approach. (From Gonzalez and Wintz
[1977], © Addison-Wesley. )
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only the scarf, the red flower, and a few isolated points appeared in the seg-
mented image. The threshold used to obtain both results was a distance of
one cell. Thus, any pixels whose components placed them within a unit dis-
tance from the centroid of the cluster under consideration were coded white.
All other pixels were coded black. O

8.2.3 Region-Oriented Segmentation

Basic Formulation. The objective of segmentation is to partition an image into
regions. In Sec. 8.2.1 we approached this problem by finding boundaries between
regions based on intensity discontinuities, while in Sec. 8.2.2 segmentation was
accomplished via thresholds based on the distribution of pixel properties, such as

intensity or color. In this section we discuss segmentation techniques that are

based on finding the regions directly.
Let R represent the entire image region. We may view segmentation as a pro-
cess that partitions R into n subregions, Ry, R;, . . . , R,, such that

n

i=1

R; is a connected region, i = 1,2, ... ,n
R,NR; =¢foralliand j, i # j

. P(R;)) = TRUEfori =1,2,...,n

. P(R; U R;) = FALSE fori # j

PN

where P(R;) is a logical predicate defined over the points in set R;, and ¢ is the
null set.

Condition 1 indicates that the segmentation must be complete; that is, every
pixel must be in a region. The second condition requires that points in a region
must be connected (see Sec. 7.5.2 regarding connectivity). Condition 3 indicates
that the regions must be disjoint. Condition 4 deals with the properties that must
be satisfied by the pixels in a segmented region. One simple example is: P(R;) =
TRUE if all pixels in R; have the same intensity. Finally, condition 5 indicates
that regions R; and R; are different in the sense of predicate P. The use of these
conditions in segmentation algorithms is discussed in the following subsections.

Region Growing by Pixel Aggregation. As implied by its name, region growing
is a procedure that groups pixels or subregions into larger regions. The simplest
of these approaches is pixel aggregation, where we start with a set of “seed”
points and from these grow regions by appending to each seed point those neigh-
boring pixels that have similar properties (e.g., intensity, texture, or color). As a
simple illustration of this procedure consider Fig. 8.17a, where the numbers inside
the cells represent intensity values. Let the points with coordinates (3, 2) and (3,
4) be used as seeds. Using two starting points will result in a segmentation con-
sisting of, at most, two regions: R, associated with seed (3, 2) and R, associated
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1 2 3 4 5
1 0 0 5 6 7
2 1 1 5 8 7
3 0 1 6 7 7
4 2 0 7 6 6
5 0 1 5 6 5
(@
a a b b b
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a a b b b
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a a a a a
a a a a a
a a a a a
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Figure 8.17 Example of region growing using known starting points. (a) Original image
array. (b) Segmentation result using an absolute difference of less than 3 between intensity
levels. (c¢) Result using an absolute difference less than 8. (From Gonzalez and Wintz
[1977], © Addison-Wesley.) ‘

with seed (3, 4). The property P that we will use to include a pixel in either
region is that the absolute difference between the intensity of the pixel and the
intensity of the seed be less than a threshold T (any pixel that satisfies this pro-
perty simultaneously for both seeds is arbitrarily assigned to regions R;). The
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/

result obtained using T = 3 is shown in Fig. 8.17b. In this case, the segmenta-
tion consists of two regions, where the points in R; are denoted by a’s and the
points in R, by b’s. It is noted that any starting point in either of these two result-
ing regions would have yielded the same result. If, on the other hand, we had
chosen T = 8, a single region would have resulted, as shown in Fig. 8.17c.

The preceding example, while simple in nature, points out some important
problems in region growing. Two immediate problems are the selection of initial
seeds that properly represent regions of interest and the selection of suitable pro-
perties for including points in the various regions during the growing process.
- Selecting a set of one or more starting points can often be based on the nature of
the problem. For example, in military applications of infrared imaging, targets of
interest are hotter (and thus appear brighter) than the background. Choosing the °
brightest pixels is then a natural starting point for a region-growing algorithm.
When a priori information is not available, one may proceed by computing at
every pixel the same set of properties that will ultimately be used to assign pixels
to regions during the growing process. If the result of this computation shows
clusters of values, then the pixels whose properties place them near the centroid of
these clusters can be used as seeds. For instance, in the example given above, a
histogram of intensities would show that points with intensity of 1 and 7 are the
most predominant.

The selection of similarity criteria is dependent not only on the problem under
consideration, but also on the type of image data available. For example, the
analysis of land-use satellite imagery is heavily dependent on the use of color.
This problem would be significantly more difficult to handle by using monochrome
images alone. - Unfortunately, the availability of multispectral and other comple-
mentary image data is the exception, rather than the rule, in industrial computer
vision. Typically, region analysis must be carried out using a set of descriptors
based on intensity and spatial properties (e.g., moments, texture) of a single image
source. A discussion of descriptors useful for region characterization is given in
Sec. 8.3. .

It is important to note that descriptors alone can yield misleading results if
connectivity or adjacency information is not used in the region growing process.
An illustration of this is easily visualized by considering a random arrangement of
pixels with only three distinct intensity values. Grouping pixels with the same
intensity to form a “region” without paying attention to connectivity would yield a
segmentation result that is meaningless in the context of this discussion.

Another important problem in region growing is the formulation of a stopping
rule. Basically, we stop growing a region when no more pixels satisfy the criteria
for inclusion in that region. We mentioned above criteria such as intensity, tex-
ture, and color, which are local in nature and do not take into account the ‘his-
tory” of region growth. Additional criteria that increase the power of a region-
growing algorithm incorporate the concept of size, likeness between a candidate
pixel and the pixels grown thus far (e.g., a comparison of the intensity of a candi-
date and the average intensity of the region), and the shape of a given region being
grown. The use of these types of descriptors is based on the assumption that a
model of expected results is, at least, partially available.
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Region Splitting and Merging. The procedure discussed above grows regions
starting from a given set of seed points. An alternative is to initially subdivide an
image into a set of arbitrary, disjoint regions and then merge and/or split the
regions in an attempt to satisfy the conditions stated at the beginning of this sec-
tion. A split and merge algorithm which iteratively works toward satisfying these
constraints may be explained as follows. ' ’

“Let R represent the entire image region, and select a predicate P. Assuming a
square image, one approach for segmenting R is to successively subdivide it into
smaller and smaller quadrant regions such that, for any region R; P(R;) =
TRUE. The procedure starts with the entire region R. If P(R) = FALSE, we
divide the image into quadrants. If P is FALSE for any quadrant, we subdivide
that quadrant into subquadrants, and so on. This particular splitting technique has
a convenient representation in the form of a so-called quadtree (i.e., a tree in
which each node has exactly four descendants). A simple illustration is shown in
Fig. 8.18. It is noted that the root of the tree corresponds to the entire image and
that each node corresponds to a subdivision. In this case, only R, was subdivided
further.

R, R,

Ry

(@)

®)

Figure 8.18 (@) Partitioned image. (b) Corresponding quadtree.
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If we used only splitting, it is likely that the final partition would contain adja-
cent regions with identical properties. This may be remedied by allowing merg-
ing, as well as splitting. In order to satisfy the segmentation conditions stated ear-
lier, we merge only adjacent regions whose combined pixels satisfy the predicate
P; that is, we merge two adjacent regions R; and R; only if P(R; U R;) =
TRUE. S
 The preceding discussion may be summarized by the following procedure in
which, at any step, we '

N

1. Split into four disjoint quadrants any region R; for which P(R;) = FALSE
2. Merge any adjacent regions R; and R; for which P(R; U R,) = TRUE
3. Stop when no further merging or splitting is possible

A number of variations of this basic theme are possible (Horowitz and Pavlidis
[1974]). For example, one possibility is to initially split the image into a set of
square blocks. Further splitting is carried out as above, but merging is initially
limited to groups of four blocks which are descendants in the quadtree representa-
tion and which satisfy the predicate P. When no further mergings of this type are
possible, the procedure is terminated by one final merging of regions satisfying
step 2 above. At this point, the regions that are merged may be of different sizes.
The principal adyantage of this approach is that it uses the same quadtree for split-
ting and merging, until the final merging step.

Example: An illustration of the split and merge algorithm discussed above is
shown in Fig. 8.19. The image under consideration consists of a single object
and background. For simplicity, we assume that both the object and back-
ground have constant intensities and that P(R;) = TRUE if all pixels in R;
have the same intensity. Then, for the entire image region R, it follows that
P(R) = FALSE, so the image is split as shown in Fig. 8.19a. In the next
step, only the top left region satisfies the predicate so it is not changed, while
the other three quadrant regions are split into subquadrants, as shown in Fig.
8.19b. At this point several regions can be merged, with the exception of the
two subquadrants that include the lower part of the object; these do not satisfy
the predicate and must be split further. The results of the split and merge
operation are shown in Fig. 8.19c. At this point all regions satisfy P, and
merging the appropriate regions from the last split operation yields the final,
segmented result shown in Fig. 8.19d. a

8.2.4 The Use of Motion

Motion is a powerful cue used by humans and other animals in extracting objects
of interest from the background. In robot vision, motion arises in conveyor belt
applications, by motion of a sensor mounted on a moving arm or, more rarely, by
motion of the entire robot system. In this subsection we discuss the use of motion
for segmentation from the point of view of image differencing.
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@ ®)

© @
Figure 8.19 Example of split and merge algorithm.

Basic Approach. One of the simplest approaches for detecting changes between
two image frames f(x, y, ;) and f(x, y, t;) taken at times #; and ¢;, respectively,
is to compare the two images on a pixel-by-pixel basis. One procedure for doing
this is to form a difference image.

Suppose that we have a reference image containing only stationary com-
ponents. If we compare this image against a subsequent image having the same
environment but including a moving object, the difference of the two images will
cancel the stationary components, leaving only nonzero entries that correspond to
the nonstationary image components.

A difference image between two images taken at times #; and t; may be
defined as

{1 if lf(x! Y, ti) - f(x’ Y, tj)' >0
x, y) = (8.2-25)

0 otherwise
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and then ignore any region that has less than a predetermined number of entries.

In dynamic image analysis, all pixels in d;;(x, y) with value 1 are considered
the result of object motion. This approach is applicable only if the two images are
registered and the illumination is relatively constant within the bounds established

(x, y) only if the intensity difference between the two images is appreciably
by 6. In practice, 1-valued entries in d;;(x, y) often arise as a result of noise.

different at those coordinates, as determined by the threshold 6.
chances that the remaining entries in the differerice image are truly due to motion.

approach for their removal is to form 4- or 8-connected regions of 1’s in d;;(x, y)
This may result in ignoring small and/or slow-moving objects, but it enhances the

where 6 is a threshold. It is noted that d;;(x, y) has a 1 at spatial coordinates
Typically, these will be isolated points in the difference’ image and a simple
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Figure 8.20 (a) Image taken at time t. (b) Image taken at time

(From Jain [1981], ©IEEE.)
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The foregoing concepts are illustrated in Fig. 8.20. Part (a) of this figure
shows a reference image frame taken at time #; and containing a single object of
constant intensity that is moving with uniform velocity over a background surface,
also of constant intensity. Figure 8.20b shows a current frame taken at time L,
and Fig. 8.20c shows the difference image computed using Eq. (8.2-25) with a
threshold larger than the constant background intensity. It is noted that two disjoint
regions were generated by the differencing process: one region is the result of the
leading edge and the other of the trailing edge of the moving object.

“Accumulative Differences. As indicated above, a difference image will often con-
‘tain isolated entries that are due to noise. Although the number of these entries
can be reduced or completely eliminated by a thresholded connectivity analysis,
this filtering process can also remove small or slow-moving objects. The approach
discussed in this section addresses this problem by considering changes at a pixel
location on several frames, thus introducing a “memory” into the process. The
basic idea is to ignore those changes which occur only sporadically over a frame
sequence and can, therefore, be attributed to random noise.

Consider a sequence of image frames f(x, y,4), f(x, ¥, ),...,
f(x, y, t,), and let f(x, y, t;) be the reference image. An accumulative difference
image is formed by comparing this reference image with every subsequent image
in the sequence. A counter for each pixel location in the accumulative image is
incremented every time that there is a difference at that pixel location between the
reference and an image in the sequence. Thus, when the kth frame is being com-
pared with the reference, the entry in a given pixel of the accumulative image
gives the number of times the intensity at that position was different from the
corresponding pixel value in the reference image. Differences are established, for
example, by use of Eq. (8.2-25). v

The foregoing concepts are illustrated in Fig. 8.21. Parts (a) through (e) of
this figure show a rectangular object (denoted by 0’s) that is moving to the right
with constant velocity of 1 pixel/frame. The images shown represent instants of
time corresponding to one pixel displacement. Figure 8.21a is the reference image
frame, Figs. 8.21b to d are frames 2 to 4 in the sequence, and Fig. 8.21e is the
eleventh frame. Figures 8.21f to i are the corresponding accumulative images,
which may be explained as follows. In Fig. 8.21f, the left column of 1’s is due to
differences between the object in Fig. 8.21a and the background in Fig. 8.21b.
The right column of 1’s is caused by differences between the background in the
reference image and the leading edge of the moving object. By the time of the
fourth frame (Fig. 8.21d), the first nonzero column of the accumulative difference
image shows three counts, indicating three total differences between that column in
the reference image and the corresponding column in the subsequent frames.
Finally, Fig. 8.21a shows a total of 10 (represented by “A” in hexadecimal)
changes at that location. The other entries in that figure are explained in a similar
manner.

It is often useful to consider three types of accumulative difference images:
absolute (AADI), positive (PADI), and negative (NADI). The latter two quantities
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Figure 8.21 (a) Reference image frame. (b) to (¢) Frames 2, 3, 4, and 11. (f) to (i) Accu-
mulative difference images for frames 2, 3, 4, and 11. (From Jain [1981], © IEEE.)

are obtained by using Eq. (8.2-25) without the absolute value and by using the
reference frame instead of f(x, y, ;). Assuming that the intensities of an object
are numerically greater than the background, if the difference is positive, it is com-
pared with a positive threshold; if it is negative, the difference is compared with a
negative threshold. This definition is reversed if the intensities of the object are
less than the background.

Example: Figure 8.22a to ¢ show the AADI, PADI, and NADI for a 20 x 20
pixel object whose intensity is greater than the background, and which is mov-
ing with constant velocity in a south-easterly direction. It is important to note
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that the spatial growth of the PADI stops when the object is displaced from its
original position. In other words, when an object whose intensities are greater
than the background is completely displaced from its position in the reference
image, there will be no new entries generated in the positive accumulative
difference image. Thus, when its growth stops, the PADI gives the initial
location of the object in the reference frame. As will be seen below, this pro-
perty can be used to advantage in creating a reference from a dynamic
sequence of images. It is also noted in Fig. 8.22 that the AADI contains the
regions of both the PADI and NADI, and that the entries in these images give
an indication of the speed and direction of object movement. The images in
Fig. 8.22 are shown in intensity-coded form in Fig. 8.23. ]

Establishing a Reference Image. A key to the success of the techniques discussed
in the previous two sections is having a reference image against which subsequent
comparisons can be made. As indicated earlier, the difference between two imagés
in a dynamic imaging problem has the tendency to cancel all stationary
components, leaving only image elements that correspond to noise and to the mov-
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Figure 8.22 (a) Absolute, (b) positive, and (c) negative accumulative difference images for
a 20 x 20 pixel object with intensity greater than the background and moving in a south—
easterly direction. (From Jain [1983], courtesy of R. Jain.)
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Figure 8.23 Intensity-coded accumulative difference images for Fig. 8.22. (@) AADI, (b)
PADI, and (¢) NADI. (From Jain [1983], courtesy of R. Jain.)

ing objects. The noise problem can be handled by the filtering approach discussed
earlier or by forming an accumulative difference image.

In practice, it is not always possible to obtain a reference image with only sta-
tionary elements and it becomes necessary to build a reference from a set of
images containing one or more moving objects. This is particularly true in situa-
tions describing busy scenes or in cases where frequent updating is required. One
procedure for generating a reference image is as follows: Suppose that we consider
the first image in a sequence to be the reference image. When a nonstationary
component has moved completely out of its ‘position in the reference frame, the
corresponding background in the present frame can be duplicated in the location
originally occupied by the object in the reference frame. When all moving objects
‘have moved completely out of their original positions, a reference image contain-
ing only stationary components will have been created. Object displacement can
be established by monitoring the growth of the PADI.



HIGHER-LEVEL VISION 395

- Figure 8.24 Two image frames of a traffic scene. There are two principal moving objects:
a-white car in the middle of the picture and a pedestrian on the lower left. (From Jain
[1981], ©IEEE.) -

Example: An illustration of the approach just discussed is shown in Figs. 8.24
and 8.25. Figure 8.24 shows two image frames of a traffic intersection. The
first image is considered the reference, and the second depicts the same scene
some time later. The principal moving features are the automobile moving
from left to right and a pedestrian crossing the street in the bottom left of the
picture. Removal of the moving automobile is shown in Fig. 8.25a. The
pedestrian is removed in Fig. 8.25b. 0O

8.3 DESCRIPTION

The description problem in vision is one of extracting features from an object for
the purpose of recognition. Ideally, descriptors should be independent of object
size, location, and orientation and should contain enough discriminatory informa-

Figure 8.25 (a) Image with automobile removed and background restored. (b) Image with
pedestrian removed and background restored. The latter image can be used as a reference.
- (From Jain [1981], ©IEEE.)
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9

tion to uniquely identify one object from another. Description is a central issue in

the design of vision systems in the sense that descriptors affect not only the com-

plexity of recognition algorithms but also their performance. In Secs. 8.3.1, 8.3.2,

and 8.4, respectively, we subdivide descriptors into three principal categories:

boundary descriptors, regional descriptors, and descriptors suitable for representing
. three-dimensional structures.

- 8. 3.1 Boundary Descrlptors

Cham Codes. Cham codes are used to represent a boundary as a set of straight

~ line segments of specified length and direction. Typically, this representation is
established on a rectangular grid using 4- or 8-connectivity, as shown in Fig. 8.26.
The length of each segment is established by the resolution of the grid, and the
directions are given by the code chosen. It is noted that two bits are sufficient to
represent all directions in the 4-code, and three bits are needed for the 8-code. Of
course, it is possible to specify chain codes with more directions, but the codes
shown in Fig. 8.26 are the ones most often used in practice.

To generate the chain code of a given boundary we first select a grid spacing,
as shown in Fig. 8.27a. Then, if a cell is more than a specified amount (usually
50 percent) inside the boundary, we assign a 1 to that cell; otherwise, we assign it
a 0. Figure 8.27b illustrates this process, where cells with value 1 are shown
dark. Finally, we code the boundary between the two regions using the direction
codes given in Fig. 8.26a. The result is shown in Fig. 8.27¢, where the coding
was started at the dot and proceeded in a clockwise direction. An alternate pro-
cedure is to subdivide the boundary into segments of equal length (i.e., each seg-
ment having the same number of pixels), connecting the endpoints of each segment
with a straight line, and assigning to each line the direction closest to one of the
allowed chain-code directions. An example of this approach using four directions
is shown in Fig. 8.28.

(@) ®

' Figure 8.26 (a) 4-directional chain code. (b) 8-directional chain code.
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Chain code: 0330011033323~

(©)
Figure 8.27 Steps in obtaining a chain code. The dot in (c¢) indicates the starting point.

It is important to note that the chain code of a given boundary depends upon
the starting point. It is possible, however, to normalize the code by a straight-
forward procedure: Given a chain code generated by starting in an arbitrary posi-
tion, we treat it as a circular sequence of direction numbers and redefine the start-
ing point so that the resulting sequence of numbers forms an integer of minimum
magnitude. We can also normalize for rotation by using the first difference of the
chain code, instead of the code itself. The difference is computed simply by
counting (in a counterclockwise manner) the number of directions that separate two
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130322211

Figure 8.28 Generation of chain code by boundary subdivision.

adjacent elements of the code. For instance, the first difference of the 4-direction
chain code 10103322 is 3133030. If we treat the code as a circular sequence, then
the first element of the difference is computed using the transition between the last
and first components of the chain. In this example the result is 33133030. Size
normalization can be achieved by subdividing all object boundaries into the same
number of equal segments and adjusting the code segment lengths to fit these sub-
division, as illustrated in Fig. 8.28. ’

The preceding normalizations are exact only if the boundaries themselves are
invariant to rotation and scale change. In practice, this is seldom the case. For
instance, the same object digitized in two different orientations will in general have
different boundary shapes, with the degree of dissimilarity being proportional to
image resolution. This effect can be reduced by selecting chain elements which
are large in proportion to the distance between pixels in the digitized image or by
orienting the grid in Fig. 8.27 along the principal axes of the object to be coded.
This is discussed below in the section on shape numbers.

Signatures. A signature is a one-dimensional functional representation of a
boundary. There are a number of ways to generate signatures. One of the sim-
plest is to plot the distance from the centroid to the boundary as a function of
angle, as illustrated in Fig. 8.29. Signatures generated by this approach are obvi-
ously dependent on size and starting point. Size normalization can be achieved
simply by normalizing the r(#) curve to, say, unit maximum value. The starting-
point problem can be solved by first obtaining the chain code of the boundary and
then using the approach discussed in the previous section.

Distance vs. angle is, of course, not the only way to generate a signature. We
could, for example, traverse the boundary and plot the angle between a line
tangent to the boundary and a reference line as a function of position along the
boundary (Ambler et al. [1975]). The resulting signature, although quite different
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Figure 8.29 Two simple boundary shapes and their corresponding distance vs. angle signa-
tures. In (@), r() is constant, while in (b), r(f) = A sec 6.

* from the r(8) curve, would carry information about basic shape characteristics.
For instance, horizontal segments in the curve would correspond to straight lines
along the boundary since the tangent angle would be constant there. A variation
of this approach is to use the so-called slope density function as a signature (Nahin
[1974]). This function is simply a histogram of tangent angle values. Since a his-
togram is a measure of concentration of values, the slope density function would
respond strongly to sections of the boundary with constant tangent angles (straight
or nearly straight segments) and have deep valleys in sections producmg rapidly
varying angles (corners or other sharp inflections).

Once a signature has been obtained, we are still faced with the problem of
describing it in a way that will allow us to differentiate between signatures
corresponding to different boundary shapes. This problem, however, is generally
easier because' we are now dealing with one-dimensional functions. An approach
often used to characterize a signature is to compute its moments. Suppose that we
treat a as a discrete random variable denoting amplitude variations in a signature,
and let p(a;), i = 1, 2,...,K, denote the corresponding histogram, where K is
the number of discrete amplitude increments of a. The nth moment of a about its
mean is defined as

K

pa(a) = ¥ (a; — m)"p(a;) (8.3-1)

i=1
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where

K
m = E a;p(a;) v(8.3-2)

i=1

The quantity m is recognized as the mean or average value of a and pz as its vari-
ance. Only the first few moments are generally required to differentiate between
signatures of clearly distinct shapes.

Polygonal Approximations. A digital boundary can be approximated with arbi-
trary accuracy by a polygon. For a closed curve, the approximation is exact when
the number of segments in the polygon is equal to the number of points in the
boundary so that each pair of adjacent points defines a segment in the polygon. In

__practice, the goal of a polygonal approximation is to capture the “essence” of the
boundary shape with the fewest possible polygonal segments. Although this prob-
lem is in general not trivial and can very quickly turn into a time-consuming
iterative search, there are a number of polygonal approximation techniques whose
modest complexity and processing requirements makes them well-suited for robot
vision applications. Several of these techniques are presented in this section.

We begin the discussion with a method proposed by Sklansky et al. [1972] for
finding minimum-perimeter polygons. The procedure is best explained by means
of an example. With reference to Fig. 8.30, suppose that we enclose a given
boundary by a set of concatenated cells, as shown in Fig. 8.30a. We can visual-
ize this enclosure as consisting of two walls corresponding to the outside and
inside boundaries of the strip of cells, and we can think of the object boundary as
a rubberband contained within the walls. If we now allow the rubberband to
shrink, it will take the shape shown in Fig. 8.30b, thus producing a polygon of
minimum perimeter which fits in the geometry established by the cell strip. If the
cells are chosen so that each cell encompasses only one point on the boundary,
then the error in each cell between the original boundary and the rubberband
approximation would be at most v2d, whefe d is the distance between pixels. This
error can be reduced in half by forcing each cell to be centered on its correspond-
ing pixel.

Merging techniques based on error or other criteria have been applied to the
problem of polygonal approximation. One approach is to merge points along a
boundary until the least-squares error line fit of the points merged thus far exceeds

_ a preset threshold. When this occurs, the parameters of the line are stored, the
error is set to zero, and the procedure is repeated, merging new points along the
boundary until the error again exceeds the threshold. At the end of the procedure
the intersections of adjacent line segments form the vertices of a polygon. One of
the principal difficulties with this method is that vertices do not generally
correspond to inflections (such as corners) in the boundary because a new line is
not started until the error threshold is exceeded. If, for instance, a long straight
line were being tracked and it turned a corner, a number (depending on the thres-
hold) of points past the corner would be absorbed before the threshold is exceeded.
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Figure 8.30 (a) Object bouridary enclosed by cells. (b) Minimum-perimeter polygbn.

It is possible, however, to use splitting along with merging to alleviate this
difficulty.

One .approach to boundary segment splitting is to successively subdivide a seg-
ment into two parts until a given criterion is satisfied. For instance, we might
require that the maximum perpendicular distance from a boundary segment to the
line joining its two endpoints not exceed a preset threshold. If it does, the furthest
point becomes a vertex, thus subdividing the initial segment into two subsegments.
This approach has the advantage that it “seeks” prominent inflection points. For a
closed boundary, the best starting pair of points is usually the two furthest points
in the boundary. An example is shown in Fig. 8.31. Part (a) of this figure shows
an object boundary, and Fig. 8.31b shows a subdivision of this boundary (solid
line) about its furthest points. The point marked c has the largest perpendicular
distance from the top segment to line ab. Similarly, point d has the largest dis-
tance in the bottom segment. Figure 8.31c shows the result of using the splitting
procedure with a threshold equal to 0.25 times the length of line ab. Since no

point in the new boundary segments has a perpendicular distance (to its
~ corresponding straight-line segment) which exceeds this threshold, the procedure
terminates with the polygon shown in Fig. 8.314.
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Figure 8.31 (@) Original boundary. (b) Boundary subdivided along furthest points. (c) Join-
ing of vertices by straight line segments. (d) Resulting polygon.

We point out before leaving this section that a considerable amount of work
has been done in the development of techniques which combine merging and split-
ting. A comprehensive discussion of these methods is given by Pavlidis [1977].

Shape Numbers. A chain-coded boundary has several first differences, depending
on the starting point. The shape number of such a boundary, based on the 4-
directional code of Fig. 8.26a is defined as the first difference of smallest magni-
tude. The order, n, of a shape number is defined as the number of digits in its
representation. It is noted that n is even for a closed boundary, and that its value
limits the number of possible different shapes. Figure 8.32 shows all the shapes of
orders 4, 6, and 8, along with their chain-code representations, first differences,
and corresponding shape numbers. Note that the first differences were computed
by treating the chain codes as a circular sequence in the manner discussed earlier.
Although the first difference of a chain code is independent of rotation, the
coded boundary in general will depend on the orientation of the coding grid shown
in Fig. 8.27a. One way to normalize the grid orientation is as follows. The major
axis of a boundary is the straight-line segment joining the two points furthest away
from each other. The minor axis is perpendicular to_the major axis and of length
such that a box could be formed that just encloses the boundary. The ratio of the
major to minor axis is called the eccentricity of the boundary, and the rectangle
just described is called the basic rectangle. In most cases a unique shape number
will be obtained by aligning the chain-code grid with the sides of the basic rectan-
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Order 4 Order 6
Chain code: 0321 003221
Difference: 3333 303303
Shape number: 3333 033033
Order 8
Chaincode: 00332211 03032211 00032221
Difference: 30303030 33133030 30033003
Shape number: 03030303 03033133 00330033

Figure 8.32 All shapes of order 4, 6, and 8. The directions are from Fig. 8.26, and the
dot indicates the starting point.

gle. Freeman and Shapira [1975] give an algorithm for finding the basic rectangle
of a closed, chain-coded curve.

In practice, given a desired shape order, we find the rectangle of order n
whose eccentricity best approximates that of the basic rectangle, and use this new
rectangle to establish the grid size. For example, if n = 12, all the rectangles of
order 12 (i.e., those whose perimeter length is 12) are 2 X 4, 3 x 3, and 1 X 5. If
the eccentricity of the 2 X 4 rectangle best matches the eccentricity of the basic
rectangle for a given boundary, we establish a 2 X 4 grid centered on the basic
rectangle and use the procedure already outlined to obtain the chain code. The
shape number follows from the first difference of this code, as indicated above.
Although the order of the resulting shape number will usually be equal to n
because of the way the grid spacing was selected, boundaries with depressions
comparable with this spacing will sometimes yield shape numbers of order greater
than n. In this case, we specify a rectangle of order lower than n and repeat the
procedure until the resulting shape number is of oider n.

Example: Suppose that we specify n = 18 for the boundary shown in Fig.
8.33a. In order to obtain a shape number of this order we follow the steps
discussed above. First we find the basic réctangle, as shown in Fig. 8.33b.
The closest rectangle of order 18 is a 3 X 6 rectangle, and so we subdivide
the basic rectangle as shown in Fig. 8.33¢, where it is noted that the chain
code directions are aligned with the resulting grid. Finally, we obtain the
chain code and use its first difference to compute the shape number, as shown
in Fig. 8.33d. O



404 ROBOTICS: CONTROL, SENSING, VISION, AND INTELLIGENCE

(@ ®

Chain code: 000030032232221211

Difference: 300031033013003130
Shape number: 000310330130031303
)

Figure 8.33 Steps in the generation of a sHapc number.

Fourier Descriptors. The discrete, one-dimensional Fourier transform given in
Eq. (7.6-4) can often be used to describe a two-dimensional boundary. Suppose
that M points on a boundary ‘are available. If, as shown in Fig. 8.34, we view this
boundary as being in the complex plane, then edch two-dimensional boundary point
(x, y) is reduced to the one-dimensional complex number x + jy. The sequence
of points along the boundary forms a function whose Fourier transform is
Fu),u =0,1,2,... ,M— 1. If M is an integer power of 2, F(u) can be
computed using an FFT algorithm, as discussed in Sec. 7.6.1. The motivation for
this approach is that only the first few components of F(u) are generally required
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“Figure 8.34 Representation of a region boundary in the frequency domain.

to distinguish between shapes that are reasonably distinct. For example, the
objects shown in Fig. 8.35 can be differentiated by using less than 10 percent of
the elements of the complete Fourier transform of their boundaries.

The Fourier transform is easily normalized for size, rotation, and starting
point on the boundary. To change the size of a contour we simply multiply the
components of F(u) by a constant. Due to the linearity of the Fourier transform
pair, this is equivalent to multiplying (scaling) the boundary by the same factor.
Rotation by an angle 6 is similarly handled by multiplying the elements of F(u) by
exp (j). Finally, it can be shown that shifting the starting point of the contour in
the spatial domain corresponds to multiplying the kth component of F(u) by
exp (jkT), where T is in the interval [0, 27]. As T goes from O to 2, the start-
ing point traverses the entire contour once. This information can be used as the
basis for normalization (Gonzalez and Wintz [1977]).

Figure 8.35 Two shapes easily distinguishable by Fourier descriptors. (From Persoon and
Fu [1977], ©IEEE.)
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8.3.2 Regional Descriptors

A region of interest can be described by the shape of its boundary, as discussed in
Sec. 8.3.1, or by its internal characteristics, as indicated in the following discus-
sion. It is thus important to note that the methods developed in both of these sec-
tions are applicable to region descriptions.

Some Simple Descriptors. A number of existing industrial vision systems are
based on regional descriptors which are rather simple in nature and thus are attrac-
tive from a computational point of view. As might be expected, the use of these
descriptors is limited to situations in which the objects of interest are so distinct .
that a few global descriptors are sufficient for their characterization.

The area of a region is defined as the number of pixels contained within its
‘boundary. This is a useful descriptor when the viewing geometry is fixed and
objects are always analyzed approximately the same distance from the camera. A
typical application is the recognition of objects moving on a conveyor belt past a
vision station.

The major and minor axes of a region are defined in terms of its boundary
(see Sec. 8.3.1) and are useful for establishing the orientation of an object. The
ratio of the lengths of these axes, called the eccentricity of the region, is also an
important global descriptor of its shape.

The perimeter of a region is the length of its boundary. Although the perime-
ter is sometimes used as a descriptor, its most frequent apphéatlon is in establish-
ing a measure of compactness of a region, defined as perimeter %/area. It is of
interest to note that compactness is a dimensionless quantity (and thus is insensitive
to scale changes) and that it is minimum for a disk-shaped region.

A connected region is a region in which all pairs of points can be connected
by a curve lying entirely in the region. For a set of connected regions, some of
which may have holes, it is usefulto consider the Euler number as a descriptor.
The Euler number is defined simply as the number of connected regions minus the
number of holes. As an example, the Euler numbers of the letters A and B are 0
and —1, respectively. A number of other regional descriptors are discussed
below.

Texture. The identification of objects or regions in an image can often be accom-
plished, at least partially, by the use of texture descriptors. Although no formal
definition of texture exists, we intuitively view this descriptor as providing quanti-
tative measures of properties such as smoothness, coarseness, and regularity (some
examples are shown in Fig. 8.36). The two principal approaches to texture
description are statistical and structural. Statistical approaches yield characteriza-
tions of textures as being smooth, coarse, grainy, and so on. Structural tech-
niques, on the other hand, deal with the arrangement of image primitives, such as
the description of texture based on regularly spaced parallel lines.

One of the simplest approaches for describing texture is to use moments of the
intensity histogram of an image or region. Let z be a random variable denoting
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Figure 8.36 Examples of (a) smooth, (b) coarse, and (c) regular texture.

discrete image intensity, and let p(z;),i = 1,2,...,L, be the corresponding
histogram, where L is the number of distinct intensity levels. As indicated in Sec.
8.3.1, the nth moment of z about the mean is defined as
L
m(z) = ¥ (z — m)"p(z) (8.3-3)

i=1

where m is the mean value of z (i.e., the average image intensity):

L
m = E zip(z) 8.34)
i=1
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It is noted from Eq. (8.3-3) that ug = 1 and u; = 0. The second moment
[also called the variance and denoted by ¢*(z)] is of particular importance in tex-
ture description. It is a measure of intensity contrast which can be used to estab-
lish descriptors of relative smoothness. For example, the measure

1 . .
R=1—- ——— 8.3-5
1 1 + 6%(2) ( )

is O for areas of éonstantvintensity [0*(z) = 0 if all z; have the same value] and
- approaches 1 for large values of 0%(z). The third moment is a measure of the
~ skewness of the histogram while the fourth moment is a measure of its relative
flatness. The fifth and higher moments are not so easily related to histogram

.. __shape, but they do provide further quantitative discrimination of texture content.

Measures of texture computed using only histograms suffer from the limitation
that they carry no information regarding the relative position of pixels with respect
to each other. One way to bring this type of information into the texture analysis
process is to consider not only the distribution of intensities but also the positions
of pixels with equal or nearly equal intensity values. Let P be a position operator
and let A be a k X k matrix whose element g;; is the number of times that points
. with intensity z; occur (in the position specified by P) relative to points with inten-
sity z;, with 1 < i, j < k. For instance, consider an image with three intensities,
71 =0,z =1, and z3 = 2, as follows:

0001 2
11011
22100
11020
0 01 011

If we define the position operator P as “one pixel to the right and one pixel
below,” then we obtain the following 3 X 3 matrix A:

A =

[=J0 S I N
N W
O N =

where, for example, a;; (top left) is the number of times that a point with intensity
level z; = O appears one pixel location below and to the right of a pixel with the
same intensity, while a3 (top right) is the number of times that a point with level
z; = 0 appears one pixel location below and to the right of a point with intensity
z3 = 2. It is important to note that the size of A is determined strictly by the
number of distinct intensities in the input image. Thus, application of the concepts
discussed in this section usually require that intensities be requantized into a few
bands in order to keep the size of A manageable.
. Let n be the total number of point pairs in the image which satisfy P (in the
above example n = 16). If we define a matrix C formed by dividing every ele-
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ment of A by n, then ¢;; is an estimate of the jomt probability that a pair of points
satisfying P will have values (z;, z;). The matrix C is called a gray-level co-
occurrence matrix, where ‘“‘gray level” is used interchangeably to denote the
intensity of a monochrome pixel or image. Since C depends on P, it is possible to
detect the presence of given texture patterns by choosing an appropriate position
operator. For instance, the operator used in the above example is sensitive to
bands of constant intensity running at —45° (riote that the highest value in A was
a;; = 4, partlally due to a streak of points with 1nten51ty 0 and running at
-=45°). In a more general situation, the problem is to analyze a given C matrix
in order to categorize the texture of the région over which C was computed. A
set of descriptors proposed by Haralick [1979] include

1. Max1mum probablhty
max (cy)
2. Element-difference moment of order &:
L L= ey
i
3. Inverse element-difference moment of order k:
L e
4. Entropy:
—-; ? cij log ¢;;

5. Uniformity:
LLq
i

The basic idea is to characterize the “content” of C via these descriptors. For
example, the first property gives an indication of the strongest response to P (as in
the above example). The second descriptor has a relatively low value when the
high values of C are near the main diagonal since the differences (i — j) are
smaller there. The third descriptor has the opposite effect. The fourth descriptor
is a measure of randomness, achieving its highest value when all elements of C
are equal. Conversely, the fifth descriptor is lowest when the c;; are all equal.
One approach for using these descriptors is to “teach” a system representative
descriptor values for a set of different textures. The texture of an unknown region
is then subsequently determined by how closely its descriptors match those stored
in the system memory. This approach is discussed in more detail in Sec. 8.4.
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The approaches discussed above are statistical in nature. As mentioned at the
beginning of this section, a second major category of texture description is based
on Structural concepts. Suppose that we have a rule of the form § — aS which
indicates that the symbol S may be rewritten as aS (e.g., three applications of this

- rule would yield the string aaaS). If we let a represent a circle (Fig. 8.37a) and
assign the meaning of “circles to the right” to a string of the form aaa - - - , then

- the rule § — aS allows us to generate a texture pattern of the form shown in Fig.
8.37b.

~ Suppose next that we add some new rules to this scheme: S — b4, A — cA,

A —c, A—bS, S — a, such that the presence of a b means “circle down”-and
the presence of a ¢ means “circle to the left.” We can now generate a string of the -
form aaabccbaa which corresponds to a three-by-three matrix of circles. Larger
texture patterns, such as the one shown in Fig. 8.37¢ can easily be generated in the
same way. (It is noted, however, that these rules can also generate structures that
are not rectangular).

The basic idea in the foregoing discussion is that a simple “texture primitive”
can be used to form more complex texture patterns by means of some rules which
limit the number of possible arrangements of the primitive(s). These concepts lie
at the heart of structural pattern generation and recognition, a topic which will be
treated in considerably more detail in Sec. 8.5.

()

Figure 8.37 (a) Texture primitive. (b) Pattern generated by the rule S — aS. (c) Two-
dimensional texture pattern generated by this plus other rules.
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Skeleton of a Region. An important approach for representing the structural shape
of a plane region is to reduce it to a graph. This is often accomplished by obtain-
ing the skeleton of the region via a thinning (also called skeletonizing) algorithm.
Thinning procedures play a central role in a broad range of problems in computer
vision, ranging from automated inspection of printed circuit boards to counting of
asbestos fibers on air filters.

The skeleton of a region may be defined via the medial axis transformation
(MAT) proposed by Blum [1967]. The MAT of a region R with border B is as
follows. For each point p in R, we find its closest neighbor in B. If p has more
than one such neighbor, then it is said to belong to the medial axis (skeleton) of R.
It is important to note that the concept of ‘“‘closest” depends on the definition of a
distance (see Sec. 7.5.3) and, therefore, the results of a MAT operation will be
influenced by the choice of a given metric. -Some. examples using the euclidean
_distance are shown in Fig. 8.38. S

Although the MAT of a region yields an intuitively pleasing skeleton, a direct
implementation of the above definition is typically prohibitive from a computational
point of view because it potentially involves calculating the distance from every
interior point to every point on the boundary of a region. A number of algorithms
have been proposed for improving computational efficiency while, at the same
time, attempting to produce a medial axis representation of a given region.
Typically, these are thinning algorithms that iteratively delete edge points of a
region subject to the constraints that the deletion of these points (1) does not
remove endpoints, (2) does not break connectedness, and (3) does not cause exces-
sive erosion of the region. Although some attempts have been made to use skele-
tons in gray-scale images (Dyer and Rosenfeld [1979], Salari and Siy [1984]) this
type of representation is usually associated with binary data.

In the following discussion, we present an algorithm developed by Naccache
and Shinghal [1984]. This procedure is fast, straightforward to implement, and,
as will be seen below, yields skeletons that are in many cases superior to those
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Figure 8.38 Medial axes of three simple regions.
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obtained with other thinning algorithms. We begin the development with a few
definitions. As$uming binary data, region points will be denoted by 1’s and back-
ground points by 0’s. These will be called dark and light points, respectively. An
edge point is a dark point which has at least one light 4-neighbor. An endpoint is
a dark point which has one and only one dark 8-neighbor. A breakpoint is a dark
point whose deletion would break connectedness. As is true with all thinning algo-
rithms, noise and other spurious variations along the boundary can significantly
alter the resulting skeleton (Fig. 8.38b shows this effect quite clearly). Conse-
quently, it is assumed that the boundaries of all regions have been smoothed prior
to thinning by using, for example, the procedure discussed in Sec. 7.6.2.

With reference to the neighborhood arrangement shown in Fig. 8.39, the thin- .
ning algorithm identifies an edge point p as one or more of the following four
types: (1) a left edge point having-its left neighbor n, light; (2) a right edge point
having n, light; (3) a top edge point having n, light; and (4) a bottom edge point
having ng light. It is possible for p to be classified into more than one of these
types. For example, a dark point p having ny and n, light will be a right edge
point and a left edge point simultaneously. The following discussion initially
addresses the identification (flagging) of left edge points that should be deleted.
The procedure is then extended to the other types.

An edge point p is flagged if it is not an endpoint or breakpoint, or if its dele-
tion would cause excessive erosion (as discussed below). The test for these condi-
tions is carried out by comparing the 8-neighborhood of p against the windows
shown in Fig. 8.40, where p and the asterisk are dark points and d and e are
“don’t care” points; that is, they can be either dark or light. If the neighborhood
of p matches windows (a) to (c), two cases may arise: (1) If all d’s are light, then
p is an endpoxr;t or (2) if at least one of the d’s is dark, then p is a breakpoint.
In either case p'ishould not be flagged.

The analysis of window (d) is slightly more complicated. If at least one d
and e are dark, then p is a break point and should not be flagged. Other arrange-
ments need to be considered, however. Suppose that all d’s are light and the e’s
can be either dark or light. This condition yields the eight possibilities shown in
Fig. 8.41. Configurations (a) through (c) make p an endpoint, and configuration
(d) makes it a breakpoint. If p were deleted in configurations (e) and (f), it is
_easy to show by example that its deletion would cause excessive erosion in slanting
regions of width 2. In configuration (g), p is what is commonly referred to as a

n3 n | n

ng | p | no

ns | ne | ng

Figure 8.39 Notation for the neighbors of p used by the thinning algorithm. (From Nac-
cache and Shinghal [1984], © IEEE.)
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Figure 8.40 If the 8-neighborhood of a dark point p matches any of the above windows,
then p is not flagged. The asterisk denotes a dark point, and d and e can be either dark or
light. (From Naccache and Shinghal [1984], © IEEE.)

spur, typically due to a short tail or protrusion in a region. Since it is assumed
that the boundary of the region has been smoothed initially, the appearance of a
spur during thinning is considered an important description of shape and p should
not be deleted. Finally, if all isolated points are removed initially, the appearance
of configuration (k) during thinning indicates that a region has been reduced to a
single point; its deletion would erase the last remaining portion of the region.
Similar arguments apply if the roles of d and e were reversed or if the d’s and e’s
were allowed to assume dark and light values. The essence of the preceding dis-
cussion is that any left edge point p whose 8-neighborhood matches any of the
windows shown in Fig. 8.40 should not be flagged.

Testing the 8-neighborhood of p against the four windows in Fig. 8.40 has a
particularly simple boolean representation given by ’

By =ng +(ng +mp +nsg +n7)+(nyg +m) (s +ng) (83-6)

p p p p
* * * * *
(@) ) () )

p p p p

* * * * * * *

(e) 6] ® (O]

Figure 8.41 All the configurations that could exist if 4 is light in Fig. 8.40, and e can be
dark, *, or light. (From Naccache and Shinghal [1984], © IEEE.)
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where the subscript on B indicates that n, is light (i.e., p is a left edge point),
“+” is the logical AND, “+” is the logical OR, “—" is the logical COMPLE-
MENT, and the n’s are as defined in Fig. 8.39. Equation (8.3-6) is evaluated by
letting dark, previously unflagged points be valued 1 (TRUE), and light or flagged
points be valued 0 (FALSE). Then if B, is 1 (TRUE), we flag p. Otherwise, p is
left unflagged. It is not difficult to show that these conditions on B, implement all
four windows in Fig. 8.40 simultaneously.

' Similar expressions are obtained for right edge points,

By =ng «(np +n3 +ns +ng) (ng +1) (7 +ny) (83-7)
for top edge points,
B, =ng +(ng +ny +ns +n7)(ng +nay) (3 +ng) (838
and for the bottom edge points,
Bsg =n «(ng + n + n +n4),°(n4 + fis)  (ng + 1) (8.3-9)

Using the above expressions, the thinning algorithm iteratively performs two
scans through the data. The scanning sequence can be either along the rows or
columns of the image, but the choice will generally affect the final result. In the
first scan we use B, and B, to flag left and right edge points; in the second scan
we use B, and Bg to flag top and bottom edge points. If no new edge points were
flagged during the two scans, the algorithm stops, with the unflagged points consti-
tuting the skeleton; otherwise, the procedure is repeated. It is again noted that
previously flagged dark points are treated as O in evaluating the boolean expres-
sions. An alternate procedure is to set any flagged point at zero during execution
of the algorithm, thus producing only skeleton and background points at the end.
This approach is easier to implement, at the cost of losing all other points in the
region.

Example: Figure 8.42a shows a binary region, and Fig. 8.42b shows the
skeleton obtained by using the algorithm developed above. As a point of
interest, Fig. 8.42c shows the skeleton obtained by applying to the same data
another, well-known thinning algorithm (Pavlidis [1982]). The fidelity of the
skeleton in Fig. 8.42b over that shown in Fig. 8.42¢ is evident. O

Moment Invariants. It was noted in Sec. 8.3.1 that Fourier descriptors which are
insensitive to translation, rotation, and scale change can be used to describe the
boundary of a region. When the region is given in terms of its interior points, we
can describe it by a set of moments which are invariant to these effects.

Let f(x, y) represent the intensity at point (x, y) in a region. The moment of
order (p + q) for the region is defined as

myy = ¥ ¥ xPyif(x, y) ‘ (8.3-10)
x y
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Figure 8.42 (a) Binary region. (b) Skeleton obtained using the thinning algorithm discussed
in this section. (c) Skeleton obtained by using another algorithm. (From Naccache and
Shinghal [1984], © IEEE.)

where the summation is taken over all spatial coordinates (x, y) of points in the
region. The central moment of order (p + q) is given by

Bpg = X L (x — DP(y — »f(x, y) (8.3-11)
x

where

g=0 _Tn (8.3-12)
Mmoo myo

I
Mg = — (8.3-13)

where

=2*4 4y

> for(p+4q) =2,3,... (8.3-14)

The following set of moment invariants can be derived using only the normal-
ized central moments of orders 2 and 3:

1 =m0 + M2 (8.3-15)

by = (0 — 12)* + 40 (8.3-16)
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b3 = (m30 — 3112)> + (3ny — n3)? (8.3-17)
b5 = (0 + 120> + (m21 + 103)? (8.3-18)
¢s = (130 = 312)(m0 + m2)[(m30 + 112)* = 3(may + m3)*]

+ Gr2 = 103) (M1 + 103)[3(ms0 + M12)* = (ma1 + ne3)*] (8.3-19)
b6 = (120 — 102)[(m30 + 112)* — (21 + p3)?] |

+ 4nu(nso + n12)(mar + mo3) (8.3-20)
b7 = Bmar = m03)(m0 + M2)[(ms0 + M12)® — 3(m21 + 713)%]

+ Gniz = m0)(m21 + 103)[3(m30 + 112)2 — (M1 + 103)*] (8.3-21)

This set of moments has been shown to be invariant to translation, rotation, and
scale change (Hu [1962]).

- 8.4 SEGMENTATION AND DESCRIPTION OF
THREE-DIMENSIONAL STRUCTURES

Attention was focused in the previous two sections on techniques for segmenting
and describing two-dimensional structures. In this section we consider the problem
of performing these tasks on three-dimensional (3D) scene data.

As indicated in Sec. 7.1, vision is inherently a 3D problem. It is thus widely
accepted that a key to the development of versatile vision systems capable of
operating in unconstrained environments lies in being able to process three-
dimensional scene information. Although research in this area spans more than a

* 10-year history, we point out that factors such as cost, speed, and complexity have
inhibited the use of three-dimensional vision techniques in industrial applications.

Three-dimensional information about a scene may be obtained in three princi-
pal forms. If range sensing is used, we obtain the (x, ¥, z) coordinates of points
on the surface of objects. The use of stereo imaging devices yields 3D coordi-
nates, as well as intensity information about each point. In this case, we represent
each point in the form f(x, y, z), where the value of f at (x, y, z) gives the
intensity of that point (the term voxel is often used to denote a 3D point and its
intensity). Finally, we may infer 3D relationships from a single two-dimensional
image of a scene. In other words, it is often possible to deduce relationships
between objects such as “above,” “behind,” and “in front of.” Since the exact 3D
location of scene points generally cannot be computed from a single view, the rela-
tionships obtained from this type of analysis are sometimes referred to as 2% D
information.
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8.4.1 Fitting Planar Patches to Range Data

One of the simplest approaches for segmenting and describing a three-dimensional
structure given in terms of range data points (x, y, z) is to first subdivide it into
small planar “patches” and then combine these patches into larger surface elements
according to some criterion. This approach is particularly attractive for polyhedral
objects whose surfaces are smooth with respect to the resolution of the sensed
scene. :

We illustrate the basic concepts underlying this approach by means of the
example shown in Fig. 8.43. Part (a) of this figure shows a simple scene and Fig.
8.43b shows a set of corresponding 3D points. These points can be assembled into
small surface elements by, for example, subdividing the 3D space into cells and
grouping points according to the cell which contains them. Then, we fit a plane to
the group of points in each cell and calculate a unit vector which is normal to the
blane and passes through the centroid of the group of points in that cell. A planar

&, 5, 2)

'xx] oooalo-o]

@ ’ ®) ©

P1

c2
R9

/]

@) (e) 0)]

Figure 8.43 Three-dimensional surface description based on planar patches. (From Shirai
[1979], © Plenum Press.)



418 ROBOTICS: CONTROL, SENSING, VISION, AND INTELLIGENCE

patch is established by the intersection of the plane and the walls of the cell, with
the direction of the patch being given by the unit normal, as illustrated in Fig.
8.43c. All patches whose directions are similar within a specified threshold are
grouped into elementary regions (R), as shown in Fig. 8.43d. These regions are
then classified as planar (P), curved (C), or undefined (U) by using the directions
of the patches within each region (for example, the patches in a planar surface will
all point in essentially the same direction). This type of region classification is
illustrated in Fig. 8.43e. Finally (and this is the hardest step), the classified
regions are assembled into global surfaces by grouping adjacent regions of the
same classification, as shown in Fig. 8.43f. It is noted that, at the end of this pro-
cedure, the scene has been segmented into distinct surfaces, and that each surface

has been assigned a descriptor (e.g., curved or planar). '

8.4.2 Use of the Gradient

When a scene is given in terms of voxels, the 3D gradient can be used to obtain
patch representations (similar to those discussed in Sec. 8.4.1) which can then be
combined to form surface descriptors. As indicated in Sec. 7.6.4, the gradient
vector is normal to the direction of maximum rate of change of a function, and the
magnitude of this vector is proportional to the strength of that change. These con-
cepts are just as applicable in three dimensions and they can be used to segment
3D structures in a manner analogous to that used for two-dimensional data.

Given a function f(x, y, z), its gradient vector at coordinates (x, y, z) is
given by

r ﬂ 7]
G, ox
= — af
Glf(x, » )1 = |G, | = 3y (8.4-1)
G, of
| o |
The magnitude of G is given by
GLf(x, y, 2)1 = (G} + G + G}H)'? (8.4-2)

which, as indicated in Eq. (7.6-39), is often approximated by absolute values to
simplify computation:

Glf(x, y, 2)] = IGxI + IGyI + IGz

The implementation of the 3D gradient can be carried out using operators
analogous in form to those discussed in Sec. 7.6.4. Figure 8.44 shows a
3 X 3 X 3 operator proposed by Zucker and Hummel [1981] for computing G,.
The same operator oriented along the y axis is used to compute G,, and oriented
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along the z axis to compute G,. A key property of these operators is that they
yield the best (in a least-squares error sense) planar edge between two regions of
different intensities in a 3D neighborhood.

The center of each operator is moved from voxel to voxel and applied in
exactly the same manner as their two-dimensional counterparts, as discussed in
- Sec. 7.6.4. That is, the responses of these operators at any point (x, y, z) yield
G,, G,, and G,, which are then substituted into Eq. (8.4-1) to obtain the gradient
vector at (x, y, z) and into Eq. (8.4-2) or (8.4-3) to obtain the magnitude. It is of
interest to note that the operator shown . in Fig. 8.44 yields a zero output in a
3 X 3 X 3 region of constant intensity.

It is a straightforward procedure to utilize the gradient approach for segment-
ing a scene into planar patches analogous to those discussed in the previous sec-

~ “tion. It is not difficult to show that the gradient vector of a plane

ax + by + cz = 0-has components G, = a, G, = b, and G, = c. Since the
operators discyssed -above yield an optimum planar fit in a 3 X 3 X 3 neighbor-
hood, it follows that the components of the vector G establish the direction of a
planar patch in each neighborhood, while the magnitude of G gives an indication
of abrupt changes of intensity within the patch; that is, it indicates the presence of
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Figure 8.44 A 3 X 3 X 3 operator for computmg the gradlent component G,. (Adapted
from Zucker and Hummel [1981], © IEEE.)
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Figure 8.45 Planar patch approijation of a cube using the gradient. (From Zucker and
Hummel [1981], ©IEEE.)

«

an intensity edge within the patch. "An example of such a patch representation
using the gradient operators is shown in Fig. 8.45. Since each planar patch sur-
face passes through the center of a voxel, the borders of these patches may not
always coincide. Patches that coincide are shown as larger uniform regions in Fig.
8.45.

~ Once patches have been obtained, they can be grouped and described in the
form of global surfaces as discussed in Sec. 8.4.1. Note, however, that additional
information in the form of intensity and intensity discontinuities is now available to
aid the rrferging and description process.

8.4.3 Line and Junction Labeling

With reference to the discussion in the previous two sections, edges in a 3D scene
are detetmined by discontinuities: in range and/or intensity data. Given a set of
surfaces and the edges between ';them, a finer description of a scene may be
obtained by labeling the lines corresponding to these edges and the junctions which
they form.- '

 As illustrated in Fig. 8.46, we consider basic types of lines. A convex line
(labeled +) is formed by the intersection of two surfaces which are part of a con-
vex solid (e.g., the line formed by the intersection of two sides of a cube). A con-
cave line (labeled —) is formed by the intersection of two surfaces belonging to
two different solids (e.g., the intersection of one side of a cube with the floor). An
occluding line (labeled with an arrow) is the edge of a surface which obscures a
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Floor

Convex line
Concave line
———<e— Occluding line

Figure 8.46 Three basic line labels.

surface. The occluding matter is to the right of the line looking in the direction of
the arrow, and the occluded surface is to the left.

After the lines in a scene have been labeled, their junctions provide clues as to
the nature of the 3D solids in the scene. Physical constraints allow only a few
possible combinations of line labels at a junction. For example, in a polyhedral
scene, no line can change its label between vertices. Violation of this rule leads to
impossible physical objects, as illustrated in Fig. 8.47.

The key to using junction analysis is to form a dictionary of allowed junction
types. For example, it is easily shown that the junction dictionary shown in Fig.
8.48 contains all valid labeled vertices of trihedral solids (i.e., solids in which
exactly three plane surfaces come together at each vertex). Once the junctions in a
scene have been classified according to their match in the dictionary, the objective
is to group the various surfaces into objects. This is typically accomplished via a
set of heuristic rules designed to interpret the labeled lines and sequences of neigh-
boring junctions. The basic concept underlying this approach can be illustrated
with the aid of Fig. 8.49. We note in Fig. 8.49b that the blob is composed
entirely of an occluding boundary, with the exception of a short concave line,

Figure 8.47 An impossible physical object. Note that one of the lines changes label from
occluding to convex between two vertices.
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Figure 8.48 Junction dictionary for trihedral solids.

}

indicating where it touches the base. Thus, there is nothing in front of it and it
can be extracted from the scene. We also note that there is a vertex of type (10)
from the dictionary in Fig. 8.48. This is strong evidence (if we know we are deal-
ing with trihedral objects) that the three surfaces involved in that vertex form a
cube. Similar comments apply to the base after the cube surfaces are removed.
Removing the base leaves the single object in the background, which completes the
decomposition of the scene.

Although the preceding short explanation gives an overall view of how line
and junction analysis are used to describe 3D objects in a scene, we point out that
formulation of an algorithm capable of handling more complex scenes is far from a

- trivial task. Several comprehensive efforts in this area are referenced at the end of
this chapter.
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Figure 8.49 (a) Scene. (b) Labeled lines. () Decomposition via line and junction analysis.
(Adapted from Shirai [1979], © Plenum Press.)

8.4.4 Generalized Cones

A generalized cone (or cylinder) is the volume described by a planar cross section
as it is translated along an arbitrary space curve (the spine), held at a constant
angle to the curve, and transformed according to a sweeping rule. In machine
vision, generalized cones provide viewpoint-independent representations of three-
dimensional structures which are useful for description and model-based matching
purposes. : -

Figure 8.50 illustrates the procedure for generating generalized cones. In Fig.
8.50a the cross section is a ring, the spine is a straight line and the sweeping rule
is to translate the cross section normal to the spine while keeping its diameter con-
stant. The result is a hollow cylinder. In Fig. 8.50b we have essentially the same
situation, with the exception that the sweeping rule holds the diameter of the cross
section constant and then allows it to increase linearly past the midpoint of the
spine. ‘
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Figure 8.50 Cross sections, spines, and their corresponding generalized cones. In (a) the
cross section remained constant during the sweep, while in (b) its diameter increased
linearly past the midpoint in the spine.

When matching a set of 3D points against a set of known generalized cones,
we first determine the center axis of the points and then find the closest set of
cross sections that will fit the dafa as we travel along the spine. In general, con-
siderable trial and error is required, particularly when one is dealing with incom-
plete data.

8.5 RECOGNITION

Recognition is a labeling process; that is, the function of recognition algorithms is
to identify each segmented object in a scene and to assign a label (e.g., wrench,
seal, bolt) to that object. For the most part, the recognition stages of present
industrial vision systems operate on the assumption that objects in a scene have
been segmented as individual units. Another common constraint is that images be
acquired in a known viewing geometry (usually perpendicular to the work space).
This decreases variability in shape characteristics and simplifies segmentation and
description by reducing the possibility of occlusion. Variability in object orienta-
tion is handled by choosing rotation-invariant descriptors or by using the principal
axis of an object to orient it in a predefined direction.
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Recognition approaches in use today can be divided into two principal
categories: decision-theoretic and structural. As will be seen in the following dis-
cussion, decision-theoretic methods are based on quantitative descriptions (e.g., sta-
tistical texture) while structural methods rely on symbolic descriptions and their
relationships (e.g., sequences of directions in a chain-coded boundary). With a
few exceptions, the procedures discussed in this section are generally used to
recognize two-dimensional object representations.

8.5.1 Decision-Theoretic Methods

Decision-theoretic pattern recognition is based on the use of decision (discriminant)
functions. Let x = (x;, X3, ...,x,)T represent a column pattern vector with
~real components, where x; is the ith descriptor of a given object (e.g., area, aver-
age intensity, perimeter ‘length). Given M object classes, denoted by
Wy, Wy, . . . ,wyy, the basic problem in decision-theoretic pattern recognition is to
identify M decision functions, d; (x), d, (X)), . ,dy(x), with the property that
the following relationship holds for any pattern vector x* belonging to class w;:

di(x*) > di(x*)  j=1,2,... ,Mj#i (8.5-1)

In other words, an unknown object represented by vector x* is recognized as
belonging to the ith object class if, upon substitution of x* into all decision func-
tions, d;(x*) yields the largest value.

The predominant use of decision functions in industrial vision systems is for
matching. Suppose that we represent each object class by a prototype (or average)
vector:

1 N
m=gy L% i=L2....M 852)

where the x; are sample vectors known to belong to class ;. Given an unknown
x*, one way to determine its class membership is to assign it to the class of its
closest prototype. If we use the euclidean distance to determine closeness, the
problem reduces to computing the following distance measures:

Di(x*) = |x* - m)| j=12,...,M (8.5-3)

where ||a|| = (a’a)!? is the euclidean norm. We then assign x* to class w; if
D;(x*) is the smallest distance. It is not difficult to show that thlS is equivalent to
evaluating the functions

di(x*) = (x)'m; — ¥bm'm; j=1,2,...,M (8.5-4)

and selecting the largest value. This formulation agrees with the concept of a
decision function, as defined in Eq. (8.5-1).
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Another application of matching is in searching for an instance of a subimage
w(x, y) in a larger image f(x, y). At each location (x, y) of f(x, y) we define
the correlation coefficient as

E E [W(S, t) - mw][f(s: t) - mf]

s t

Y T L G 0 - mIL L e 0 - TR

(8.5-5)

‘where it is assumed that w(s, ) is centered at coordinates (x, y). The summa-
tions are taken over the image coordinates common to both regions, m,, is the
- average intensity of w, and my is the average intensity of f in the region coincident
with w. It is noted that, in general, y(x, y) will vary from one location to the
“next and that its values are in the range [ —1, 1], with a value of 1 corresponding
‘to a perfect match. The procedure, then, is to compute y(x, y) at each location

Figure 8.51 (a) Subimage w(x, y). (b) Image fix, ¥). (c) Location of the best match of w in
Jf; as determined by the largest correlation coefficient.
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(x, y) and to select its largest value to determine the best match of w in f [the
procedure of moving w(x, y) throughout f(x, y) is analogous to Fig. 7.20].

The quality of the match can be controlled by accepting a correlation
coefficient only if it exceeds a preset value (for example, .9). Since this method
consists of directly comparing two regions, it is clearly sensitive to variations in
object size and orientation. Variations in intensity are normalized by the denomi-
nator in Eq. (8.5-5). An example of matching by correlation is shown in Fig.
8.51.

-8.5.2 Structural Methods

The techniques discussed in Sec. 8.5.1 deal with patterns on a dquantitative basis,
ignoring any geometrical relationships which may be inherent in the shape of an
object. Structural methods, on the other hand, attempt to achieve object discrimi-
nation by capitalizing on these relationships.

Central to the structural recognition approach is the decomposition of an
- object into pattern primitives. This idea is easily explained with the aid of Fig.
8.52. Part (a) of this figure shows a simple object boundary, and Fig. 8.52b
shows a set of primitive elements of specified.length and direction. By starting at
the top left, tracking the boundary in a clockwise direction, and identifying
instances of these primitives, we obtain the coded boundary shown in Fig. 8.52c.
Basically, what we have donme is represent the boundary by the string
aaabcbbbcdddcd. The known length and direction of these primitives, together
with the order in which they occur, establishes the structure of the object in terms
of this particular representation. The objective of this section is to introduce the
reader to techniques suitable for handling this and other types of structural pattern
descriptions.

Start o —2 4 Cd
d b
c c
d b
a b c d
- J b
d b

(a) (b) ()

Figure 8.52 (a) Object boundary. (b) Primitives. (c) Boundary coded in terms of primitives,
resulting in the string aaabcbbbcdddcd.
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Matching Shapé Numbers. A procedure ailalogous to the minimum-distance con-
cepi introduced in Sec. 8.5.1 for vector representations can be formulated for the
comparison of two -object boundaries that are described in terms of shape numbers.
With reference to the discussion in Sec. 8.3.1, the degree of similarity k between
"~ two object boundaries, A and B, is defined as the largest order of which
" their shape numbers . still coincide. That is, we have s4(4) = s4(B),
s56(4) = s6(B), s3(A) = s3(B), ..., s(4) = s;(B), Sp42(4) * Sp42(B),
- Sg4+4(A) # Skea(B), . . ., where s indicates shape number and the subscript indi-
cates the order. The distance between two shapes A and B is defined as the
inverse of their degree of similarity:

1

D(4, B) = n (8.5-6)
This distance satisfies the following properties:
(a) D(4, B) 2 0
(b)) D(4,B) =0 iff A =B (8.5-7)

() D(#, €) < max [D(4, B), D(B, O)]

In order to compare two shapes, we can use either k£ or D. If the degree of
similarity is used, then we know from the above discussion that the larger  is, the
more similar L_&@ shapes are (nmote that k is infinite for identical shapes). The
reverse is true When the distance measure is used.

Exaimple: As an illustration of the preceding concepts, suppose that we wish
to find which of the five shapes (4, B, D, E, F) in Fig. 8.53a best matches
shape C. This is analogous to having five prototype shapes whose identities
are known and trying to determine which of these constitutes the best match to
an unknown shape. The search may be visualized with the aid of the similar-
ity tree shown in Fig. 8.53b. The root of the tree corresponds to the lowest
degree of similarity considered, which in this example is 4. As shown in the
tree, all shapes are identical up to degree 6, with the exception of shape A.
That is, the degree of similarity of this shape with respect to all the others is
6. Proceeding down the tree we find that shape D has degree 8 with respect
to the remaining shapes, and so on. In this particular case, shape F turned out
to be a unique match for C and, furthermore, their degree of similarity is
higher than any of the other shapes. If E had been the unknown, a unique
match would have also been found, but with a lower degree of similarity. If
A had been the unknown, all we could have said using this method is that it is
similar to the other five figures with degree 6. The same information can be
summarized in the form of a similarity matrix, as shown in Fig. 8.53c. O
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Figure 8.53 (a) Shapes. (b) Similarity tree. (¢) Similarity matrix. (From Bribiesca and
Guzman [1980], © Pergamon Press.)

String Matching. Suppose that two object contours C; and C, are coded into
strings a;a, - - - a, and byb, - - - b,, respectively. Let A represent the number
of matches between the two strings, where we say that a match has occurred in the
Jth position if a; = b;. The number of symbols that do not match up is given by

B = max (|G|, |G]) — 4 (8.5-8)

where |C| is the length (number of symbols) of string C. It can be shown that
B = 0 if and only if C; and C, are identical.

A simple measure of similarity between strings C; and C, is defined as the
ratio

A A '
R=~—=—= 8.5-9
B~ max(IG, 1G] - 4 8->9)
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Based on the above comment regarding B, R is infinite for a perfect match and
zero when none of the symbols in C; and C, match (i.e., A = 0 in this case).
Since the matching is done on a symbol-by-symbol basis, the starting point on each
boundary when creating the string representation is important. Alternatively, we
can start at arbitrary points on each boundary, shift one string (with wraparound),
and compute Eq. (8.5-9) for each shift. The number of shifts required to perform
all necessary comparisons is max (|C; |, |G, |).

Example: Figure 8.54a and b shows a sample boundary from éach of two

classes of objects. The boundaries were approximated by a polygonal fit (Fig.
8.54c¢ and d) and then strings were formed by computing the interior angle °

(@ - ®)

= (==

© (d)

A/B| la | 1b|1lc|1d]le A/B|2.a | 2b | 2.c|2d]2e

1.b_|[16.0 2.b |133.5

l.c [ 9.6 |26.3 2.c || 4.75|5.8

1d || 5.07| 8.1]10.3 2d || 3.6 [4.23]19.3

l.e || 4.67] 7.2[10.3|14.2 2e || 2.83|13.25]| 9.17| 18.3

1.f || 4.67| 7.2]10.3| 8.5[23.7 2.f || 2.63]3.0 | 7.71|13.5[27.0
(e) (0]

A/B|la |1b|lc|1d | le]| Lf
2.a ||1.24|1.5 |1.32]|1.47[1.55/1.48
2b ||1.18 1143 |1.32|1.47(1.55|1.48
2.c J[1.02|1.181.19]1.32[1.39 148
2d ||1.021.181.19|1.32|1.39 | 1.40
2e [[093]11.07)1.08]1.19({1.24|1.25
2.f ]10.8911.02[1.02|1.14|1.11[1.18

®

Figure 8.54 (a), (b) Sample boundaries of two different object classes. (c), (d) Their
~ corresponding polygonal approximations. (e)-(g) Tabulations of R = A/B. (Adapted from
Sze and Yang [1981], ©IEEE.) )
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between the polygon segments as the polygon was traversed in a clockwise
direction. Angles were coded into one of eight possible symbols which cor-
respond to 45° increments, §;:0°< 6 <45° 5,:45°<60<90° ,...
sg:315° < 6 < 360°.

The results of computing the measure R for five samples of object 1
against themselves are shown in Fig. 8.54¢, where the entries correspond to
values of R = A/B and, for example, the notation 1.c refers to the third string
for object class 1. Figure 8.54f shows the results-for the Strings of the second -
object class. Finally, Fig. 8.54g-is a tabulation of R values obtained by com-
paring strings of one class against the other. The important thing to note is
that all values of R in this last table are considerably smaller than any entry in
the preceding two tables, indicating that the R measure achieved a high degree
of discrimination between the two classes of objects. For instance, if string
1.a had been an unknown, the smallest value in comparing it with the other
strings of class 1 would have been 4.67. By contrast, the largest value in a
comparison against class 2 would have been 1.24. Thus, classification of this
string into class 1 based on the maximum value of R would have been a sim-
ple, unambiguous matter. O

’

Syntactic Methods. Syntactic techniques are by far the most prevalent concepts
used for handling structural recognition problems. Basically, the idea behind syn-
tactic pattern recognition is the specification of structural pattern primitives and a
set of rules (in the form of a grammar) which govern their interconnection. We
consider first string grammars and then extend these ideas to higher-dimensional
grammars.

String Grammars. Suppose that we have two classes of objects, w; and w,,
which are represented as strings of primitives, as outlined at the beginning of Sec.
8.5.2. We may interpret each primitive as being a symbol permissible in some
grammar, where a grammar is a set of rules of syntax thence the name syntactic
pattern recognition) for the generation of sentences formed from the given sym-
bols. In the context of the present discussion, these sentences are strings of sym-
bols which in turn represent patterns. It is further possible to envision two gram-
mars, G; and G,, whose rules are such that G, only allows the generation of sen-
tences which correspond to objects of class w; while G, only allows generation of
sentences corresponding to objects of class w,. The set of sentences generated by
a grammar G is called its language, and denoted by L(G).

Once the two grammars G; and G, have been established, the syntactic pat-
tern recognition process is, in principle, straightforward. Given a sentence
representing an unknown pattern, the problem is one of deciding in which
language the pattern represents a valid sentence. If the sentence belongs to L(G, ),
we say that the pattern belongs to object class w;,. Similarly, we say that the
object comes from class w, if the sentence is in L(G,). ‘A unique decision cannot
be made if the sentence belongs to both L(G;) and L(G,). If the sentence is
found to be invalid over both languages it is rejected.
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When there are more than two pattern classes, the syntactic classification
approach is the same as described above, except that more grammars (at least one
per class) are involved in the process. In this case the pattern is assigned to class
w; if it is a sentence of only L(G;). A unique decision cannot be made if the sen-
tence belongs to more than one language, and (as above) a pattern is rejected if it
does not belong to any of the languages under consideration.

When dealing with strings, we define a grammar as the four-tuple

G=(N,L,PYJS) (8.5-10)
whefe
N = finite set of nonterminals or variables
Y = finite set of terminals or constants

P = finite set of productions or rewriting rules
S in N = the starting symbol

It is required that N and I be disjoint sets. In the following discussion nonter-
minals will be denoted by capital letters: 4, B, ... ,S, ... . Lowercase letters
at the beginning of the alphabet will be used for terminals: a, b, ¢, . . . . Strings
of terminals will be denoted by lowercase letters toward the end of the alphabet:
v, w, X, ¥, z. Strings of mixed terminals and nonterminals will be denoted by
lowercase Greek letters: «, 8, 8, . . . . The empty sentence (the sentence with no
symbols) will be denoted by A. Finally, given a set V of symbols, we will use the
notation V* to denote the set of all sentences composed of elements from V.

String grammars are characterized primarily by the form of their productions.
Of particular interest in syntactic pattern recognition are regular grammars, whose
productions are always of the form A — aB or A — a with A and B in N, and a
in X, and context-free grammars, with productions of the form A — « with 4 in
N, and « in the set (N U I)* — X; that is, o can be any string composed of ter-
minals and nonterminals, except the empty string.

Example: The preceding concepts are best clarified by an example. Suppose
that the object shown in Fig. 8.55a is represented by its skeleton, and that we
define the primitives shown in Fig. 8.55b to describe the structure of this
and similar skeletons. Consider the grammar G = (N, L, P, S) with
N = {4, B, S}, L = {a, b, c}, and production rules

1. S — ad
2. A — bA
3. A — bB
4. B - ¢

where the terminals a, b, and ¢ are as shown in Fig. 8.55b. As indicated
earlier, S is the starting symbol from which we generate all strings in L(G).
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Figure 8.55 (a) Object represented by its skeleton. (b) Primitives. (c) Structure générated
using a regular string grammar.

If, for instance, we apply production 1 followed by two applications of
production 2, we obtain: S = ad = abA > abbA, where “ = ” indi-
cates a string derivation starting from S and using production rules from P. It
is noted that we interpret the production § — a4 and 4 — bA as “S can be
rewritten as aA”” and “A can be rewritten as bA.” Since we have a nonterminal
in the string abbA and a rule which allows us to rewrite it, we can continue
the derivation. For example, if we apply production 2 two more times, fol-
lowed by production 3 and then production 4, we obtain the string abbbbbc
which corresponds to the structure shown in Fig. 8.55c. It is important to
note that no nonterminals are left after application of production 4 so the
derivation terminates after this production is used. A littie thought will reveal
that the grammar given above has the language L(G) = {ab"c|n > 1},
where b" indicates n repetitions of the symbol 5. In other words, G-is capable
of generating the skeletons of wrenchlike structures with bodies of arbitrary
length within the resolution established by the length of primitive b. . O

Use of Semantics. In the above example we have implicitly assumed that the

interconnection between primitives takes place only at the dots shown in- Fig.
8.55b. In more complicated situations the rules of connectivity, as well as other
information regarding factors such as primitive length and direction, and the
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number of times a production can be applied, must be made explicit. This is usu-
ally accomplished via the use of semantics. Basically, syntax establishes the struc-
ture of an object or expression, while semantics deal with its meaning. For exam-
ple, the FORTRAN statement A = B/C is syntactically correct, but it is semanti-
cally correct only if C # 0. ,

In order to fix these ideas, suppose that we attach semantic information to the
wrench grammar just discussed. This information may be attached to the produc-
- tions as follows:

- Production Semantic information

S — ad Connections to a are made only at the dot. The direction of a, denoted by 6,
is given by the direction of the perpendicular bisector of the line joining the
endpoints of the two undotted segments. These line segments are 3 cm each.

A — bA  Connections to b are made only at the dots. No multiple connections are
allowed.. The direction of b must be the same as that of a and the length of b
is 0:25 cm. This production cannot be applied more than 10 times.

A — bB  The direction of @ and b must be the same. Connections must be simple and
made only at the dots.

B - The direction of ¢ and a must be the same. Connections must be simple and
made only at the dots.

It is noted that, by using semantic information, we are able to use a few rules of
syntax to describe a broad (although limited as desired) class of patterns. For
instance, by specifying the direction 6, we avoid having to specify primitives for
each possible object orientation. Similarly, by requiring that all primitives be
oriented in the same direction, we eliminate from consideration nonsensical
wrenchlike structures.

Recognition. Thus far, we have seen that grammars are generators of
patterns. In the following discussion we consider the problem of recognizing if a
given pattern string belongs to the language L(G) generated by a grammar G.
The basic concepts underlying syntactic recognition can be illustrated by the
development of mathematical models of computing machines, called automata.
Given an input pattern string, these automata have the capability of recognizing
whether or not the pattern belongs to a specified language or class. We will focus
attention only on finite automata, which are the recognizers of languages generated
by regular grammars.

A finite automaton is defined as a five-tuple

A=(0ZL 8 q.F) (8.5-11)

‘where Q is a finite, nonempty set of states, L is a finite input alphabet, 6 is a map-
ping from Q X I (the set of ordered pairs formed from elements of Q and L) into
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the collection of all subsets of Q, qo is the starting state, and F (a subset of Q) is
a set of final or accepting states. The terminology and notation associated with
Eq. (8.5-11) are best illustrated by a simple example.

Example: Consider an automaton given by Eq. (8.5-11) where Q =

{do, 91, @2}, LT = {a, b}, F = {qo}, and the mappings are given by °
8(q0, @) = {@}, 8(q0. b) = {@1}, 8(qi, a) = {@}, 8(q1, b) = {q},
8(qz, a) = {q0}, 8(q2, b) = {q1}: If, for example, the automaton is in
state go and an a is input, its state changes to ¢,. Similarly, if a b is input
next, the automaton moves to state q;, and so forth. It is noted that, in this
case, the initial and final states are the same. O

A state diagram for the automaton just discussed is shown in Fig. 8.56. The
state diagram consists of a node for each state, and directed arcs showing the pos-
sible transitions between states. The final state is shown as a double circle and
each arc is labeled with the symbol that causes that transition. A string w of ter-
minal symbols is said to be accepted or recognized by the automaton if, starting in
state g, the sequence of symbols in w causes the automaton to be in a final state
after the last symbol in w has been input. For example, the automaton in Fig.
8.56 recognizes the string w = abbabb, but rejects the string w = aabab.

There is a one-to-one correspondence between regular grammars and finite
automata. That is, a language is recognized by a finite automaton if and only if it
is generated by a regular grammar. The procedure for obtaining the automaton
corresponding to a given regular grammar is straightforward. Let the grammar be
denoted by G = (N, L, P, X;), where X, = S, and suppose that N is composed
of X, plus n additional nonterminals X;, X;,...,X,. The state set Q for the
automaton is formed by introducing n + 2 states, {go, q1, - - - »qn» Gn + 1} Such
that g; corresponds to X; for 0 < i < n and g, , ; is the final state. The set of

b
a b

Figure 8.56- A finite automaton.
p
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input symbols is identical to the set of terminals in G. The mappings in 6 are
defined by two rules based on the production of G; namely, for each i and
,0ig<n0Kjsn

1. If X; — aXj is in P, then 6 (g;, a) contains g;.
" 2.IfS; — aisin P, then 6 (gq;, @) contains g, .

On the other hand, given a finite automaton A = (Q, L, §, ¢g, F), we obtain
the corresponding regular grammar G = (N, I, P, X;) by letting N be identified
with the state set 0, with the starting symbol X, corresponding to g, and the pro-
~ ~ductions of G obtained as follows:

1. If g; is in 6(g;, a), there is a production X; — aX; in P.
2. If a state in F is in 6(g;, a), there is a production X; — a in P.

Example: The finite automaton corresponding to the wrench grammar given
earlier is obtained by writing the productions as X, — aXj, X; — bX;, X; —
bX,, X, — c. Then, from the above discussion, we have
4= (Q’ E: 61 90, F) with Q = {qOJ 915> 92> q3}9 L= {a’ b' C},
F = {g:}, and 'mappings &(qo, @) = {q:1}, &q1,b) = {q1, 2},
6(q2, ¢) = {g3}. For completeness, we can write 8(qy, b) = 8(qp, ¢) =
6(qy, a) = 8(qy, ¢) = 8(q, a) = 6(qz, b) = ¢, where ¢ is the null set,
_indicating that these transitions are not defined for this automaton. O

Higher-Dimensional Grammars. The grammars discussed above are best
suited for applications where the connectivity of primitives can be conveniently
expressed in a stringlike manner. In the following discussion we consider two
examples of grammars capable of handling more general interconnections between
primitives and subpatterns.

A tree grammar is defined as the five-tuple

G=(NZX P r3S) (8.5-12)

where N and T are, as before, sets of nonterminals and terminals, respectively; S
is the start symbol which can, in general, be a tree; P is a set of productions of
the form 7; — T;, where T; and T; are trees; and r is a ranking function which
denotes the number of direct descendants of a node whose label is a terminal in
the grammar. An expansive tree grammar has productions of the form

A—a
A - A,

where 4, A, ... ,A, are nonterminals, and a is a terminal.
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Example: The skeleton of the structure shown in Fig. 8.57a can be generated
by means of a tree grammar with productions

M S—a @ 4—-b @ 4 -—c

| |
A A A, A

@ 4H—d () A—e O A3—e () A3—a

| |
4 A

where connectivity between linear primitives is head to tail, and connections to
the circle primitive can be made anywhere on its circumference. The ranking
functions in this case are r(a) = {0, 1}, r(b) = r(d) = r(e) = {1},
r(c) = {2}. It is noted that restricting the use of productions 2, 4, and 6 to

O FAC/N

Figure 8.57 (a) An object and (b) primitives used for representing the skeleton by means of
a tree grammar.
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S
A

Figure 8.58 Vertex primitives. (From Gips [1974], © Pergamon Press.)

be applied the same number of times generates a structure in which all three
legs are of the same length. Similarly, requiring that productions 4 and 6 be
applied the same number of times produces a structure that is symmetrical
about the vertical axis in Fig. 8.57a. O

We conclude this section with a brief discussion of a grammar proposed by
Gips [1974] for generating three-dimensional objects consisting of cube structures.
As in the previous discussion, the key to object generation by syntactic techniques
is the specification of a set of primitives and their interconnections. In this case,
the primitives are the vertices shown in Fig. 8.58. Vertices of type T are further
classified as either T; or T3, using local information. If a T vertex is contained in
a parallelogram of vertices it is classified as type 7;5. If a T vertex is not con-

tained in a parallelogram of vertices, it is classified as type 7. Figure 8.59 shows
this classification.

[

®)

NN

~ Figure 8.59 Further classification of T vertices.
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The rules of the grammar consist of specifying valid interconnections between
structures, as detailed in Fig. 8.60. The vertices denoted by double circles denote
central vertices of the end cube of an object where further connections can be
made. This is illustrated in Fig. 8.61 which shows a typical derivation using the
rules of Fig. 8.60. Figure 8.62 illustrates the range of structures that can be gen-
erated with these rules.

~ 8.6 INTERPRETATION

system with a higher level of cognition about its environment than that offered by
any of the concepts discussed thus far. When viewed in this way, interpretation
clearly encompasses all these methods as an integral part of understanding a visual
scene. Although this is one of the most active research topics in machine vision,
the reader is reminded of the comments made in Secs. 7.1 and 8.1 regarding the
fact that our understanding of this area is really in its infancy. In this section we
touch briefly upon a number of topics which are representative of current efforts
toward advancing the state of the art in machine vision.

The power of a machine vision system is determined by its ability to extract
meaningful information from a scene under a broad range of viewing conditions
and using minimal knowledge about the objects being viewed. There are a number
of factors which make this type of processing a difficult task, including variations
in illumination, occluding bodies, and viewing geometry. In Sec. 7.3 we spent
considerable time discussing techniques designed to reduce variability in illumina-
tion and thus provide a relatively constant input to a vision system. The back- and
structured-lighting approaches discussed in that section are .indicative of the
extreme levels of specialization employed by current industrial systems to reduce
the difficulties associated with arbitrary lighting of the work space. Among these
difficulties we find shadowing effects which complicate edge finding, and the intro-
duction of nonuniformities on smooth surfaces which often results in their being
detected as distinct bodies. Clearly, many of these problems result from the fact
that relatively little is known about modeling the illumination-reflectance properties
of 3D scenes. The line and junction labeling techniques discussed in Sec. 8.4
represent an attempt in this direction, but they fall short of explaining the interac-
tion of illumination and reflectivity in quantitative terms. A more promising
approach is based on mathematical models which attempt to infer intrinsic relation-
ships between illumination, reflectance, and surface characteristics such as orienta-
tion (Horn [1977]; Marr [1979]; Katsushi and Horn [1981]).

Occlusion problems come into play when we are dealing with a multiplicity of
objects in an unconstrained working environment. Consider, for example, the

_scene shown in Fig. 8.63. A human observer would have little difficulty, say, in
determining the presence of two wrenches behind the sockets. For a machine,
“however, interpretation of this scene is a totally different story. Even if the system
were able to perform a perfect segmentation of object clusters from the back-



Rule 1

Rule 2

" Rule 3

Rule 4

Figure 8.60 Rules used to generate three-dimensional structures. The blank circles indicate
~that more than one vertex type is allowed. (Adapted from Gips [1974], © Pergamon Press.)
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Figure 8.60 (continued)

ground, all the two-dimensional procedures discussed thus far for description and
recognition would perform poorly on most of the occluded objects. The three-
dimensional descriptors discussed in Sec. 8.4 would have a better chance, but even
they would yield incomplete information. For instance, several of the sockets
would appear as partial cylindrical surfaces, and the middle wrench would appear
as two separate objects.

Processing scenes such as the one shown in Fig. 8.63 requires the capability to
obtain descriptions which inherently carry shape and volumetric information, and
procedures for establishing relationships between these descriptions, even when
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Figure 8.61 Sample derivation using the rules in Fig. 8.60. (Adapted from Gips [1974],
© Pergamon Press.)

they are incomplete. Ultimately, these issues will be resolved only through the
development of methods capable of handling 3D information obtained either by
means of direct measurements or via geometric reasoning techniques capable of
Tinferring (but not necessarily quantifying) 3D relationships from intensity imagery.

As an example of this type of reasoning, the reader would have little difficulty
in arriving at a detailed interpretation of the objects in Fig. 8.63 with the exception
of the object occluded by the screwdriver. The capability to know when interpre-
tation of a scene or part of a scene is not an achiévable task is just as important as
correctly analyzing the scene. The decision to look at the scene from a different
viewpoint (Fig. 8.64) to resolve the issue would be a natural reaction in an intelli-
gent observer. _

One of the most promising approaches in this direction is research in model-
driven vision (Brooks [1981]). The basic idea behind this approach is to base the
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Figure 8.62 Sample three-dimensional structures generated by the rules given in Fig. 8.60.
(From Gips [1974], © Pergamon Press.)

interpretation of a scene on discovering instances of matches between image data
and 3D models of volumetric primitives or entire objects of interest. Vision based
on 3D models has another important advantage: It provides an approach for han-
dling variances in viewing geometry. Variability in the appearance of an object
when viewed from different positions is one of the most serious problems in
machine vision. Even in two-dimensional situations where the viewing geometry is
fixed, object orientation can strongly influence recognition performance if not han-
dled properly (the reader will recall numerous comments made about this in Sec.
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Figure 8.63 Oblique view of a three-dimensional scene.

Figure 8.64 Another view of the scene shown in Fig. 8.63.
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8.3). One of the advantages of a model-driven approach is that, depending on a
known viewing geometry, it is possible to project the 3D model onto an imaging
plane (see Sec. 7.4) in that orientation and thus simplify the match between an
unknown object and what the system would expect to see from a given viewpoint.

~ 8.7 CONCLUDING REMARKS

machine vision with a strong bias toward industrial applications. As indicated in
Sec 8.2, segmentation is one of the most important processes in the early stages of
_a machine vision system. Consequently, a significant portion of this chapter is

dedlcated to this topic. Following segmentation, the next task of a vision system is —
to form a set of descriptors which will uniquely identify the objects of a particular

class. As indicated in Sec. 8.3, the key in selecting descriptors is to minimize
their dependence on object size, location, and orientation.

Although vision is inherently a three-dimensional problem, most present indus-
trial systems operate on image data which are often idealized via the use of spe-
cialized illumination techniques and a fixed viewing geometry. The problems
encountered when these constraints are relaxed are addressed briefly in Secs. 8.4
and 8.6.

Our treatment of recognition techniques has been at an introductory level.
This is a broad area in which dozens of books and thousands of articles have been
written. The references at the end of this chapter provide a pointer for further
reading on both the decision-theoretic and structural aspects of pattern recognition
and related topics.
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theoretic techniques is based on two papers by Martelli [1972, 1976]. Another
interesting approach based on a minimum-cost search is given in Ramer [1975].
Additional reading on graph searching techniques may be found in Nilsson [1971,
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point of view. For further details on this topic see Ballard and Brown [1982].

The optimum thresholding approach discussed in Sec. 8.2.2 was first utilized
_by Chow and Kaneko [1972] for detecting boundaries in cineagiograms (x-ray
pictures of a heart which has been injected with a dye). Further reading on
optimum discrimination may be found in Tou and Gonzalez [1974]. The book by
Rosenfeld and Kak [1982] contains a number of approaches for threshold selection
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structural pattern recognition see the books by Pavlidis [1977], Gonzalez and Tho-
mason [1978], and Fu [1982].

Further reading for the material in Sec. 8.6 may be found in Dodd and Rossol
[1979] and in Ballard and Brown [1982]. A set of survey papers on the topics dis-
cussed in that section has been compiled by Brady [1981].

PROBLEMS

8.1 (a) Develop a general procedure for ‘obiaining the normal representation of a.line glveh
its -slope-intercept equation y = ax + b. (b) Find the normal representation of the lme
y.=-2x+ 1.

8.2 (a) Superimpose on Fig. 8.7 all the possible edges given by the graph in Fig.”8.8. (b)
Compute the cost of the minimum-cost path.

8.3 Find the edge corresponding to the minimum-cost path in the subimage shown below,
where the numbers in parentheses indicate intensity. Assume that the edge starts on the first
column and ends in the last column.

2) 1) (O
m @ @
6 () ()

8.4 Suppose that an image has the following intensity distributions, where p;(z)
corresponds to the intensity of objects and p,(z) corresponds to the intensity of the back-
ground. Assuming that P; = P,, find the optimum threshold between object and back-
ground pixels.

P22 pi(2)

8.5 Segment the image on page 448 using the split and merge procedure discussed in Sec.
8.2.3. Let P(R;) = TRUE if all pixels in R; have the same intensity. Show the quadtree
corresponding to your segmentation.
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- 8.6 (a) Show that redefining the starting point of a chain code so that the resulting sequence
of numbers forms an integer of minimum magnitude makes the code independent of where
we initially start on the boundary. (b) What would be the normalized starting point of the
chain code 11076765543322?

8.7 (a) Show that using the first difference of a chain code normahzes it to rotation, as
explained in Section 8.3.1. (b) Compute the first difference of the code
0101030303323232212111.

8.8 (a) Plot the signature of a square boundary using the tangent angle method discussed in
Sec. 8.3.1. (b) Repeat for the slope density function. Assume that the square is aligned
with the x and' y axes and let the x axis be the reference line. Start at the corner closest to
the origin.

8.9 Give the fewest number of moment descriptors that would be needed to differentiate
between the shapes shown in Fig. 8.29.

8.10 (a) Show that the rubberband polygonal approximation approach discussed in Sec.
~ 8.3.1 yields a polygon with minimum perimeter. (b) Show that if each cell corresponds to a
pixel on the boundary, then the maximum possnble error in that cell is V2d, where d is the
grid distance between pixels.

8.11 (a) What would be the effect on the resultmg polygon if the error threshold were set
to zero in the merging method discussed in Sec. 8.3.1? (b) What would be the effect on the
splitting method? '

8.12 (@) What is the order of the shape number in each of the following figures?
(b) Obtain the shape number for the fourth figure.

) @ 3 ' @

8.13 Compute the mean and variance of a four-level image with histogram p(z;) = 0.1,
P(z2) =04, p(z3) = 03, p(zg) = 02. Assume that z; =0, zp = 1, z3 = 2, and
z = 3. :

'8.14 Obtain the gray-level co-occurrence matrix of a 5 X 5 image composed of a checker-

board of alternating 1’s and O’s if (a) P is defined as “one pixel to the right,” and (b) “two
pixels to the right.” Assume that the top, left pixel has value 0.
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8.15 Consider a checkerboard image composed of alternating black and white squares, each
of size m X m. Give a position operator that would yield a diagonal co-occurrence matrix?
8.16 (a) Show that the medial axis of a circular region is a single point at its center. (b)
Sketch the medial axis of a rectangle, the region between two concentric circles, and an
equilateral triangle.

8.17 (a) Show that the boolean expression given in Eq. (8.3-6) implements the conditions
given by the four windows in Fig. 8.40. (b) Draw the windows corresponding to By in Eq.
(8.3-7). :

8.18 Draw a trihedral object which has a junction of the form

8.19 Show that using Eq. (8.5-4) to classify an unknown pattern vector x* is equivalent to
using Eq. (8.5-3).
8.20 Show that D(A, B) = 1/k satisfies the three conditions given in Eq. (8.5-7).

8.21 Show that B = max (|C,|, |C,|) — A in Eq. (8.5-8) is zero if and only if C; and
G,-are identical strings.



