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Texture

Texture is a phenomenon that is widespread, easy to recognise and hard to define. Typically,
whether an effect is referred to as texture or not depends on the scale at which it is viewed. A leaf
that occupies most of an image is an object, but the foliage of a tree is a texture. Texture arises
from a number of different sources. Firstly, views of large numbers of smail objects are often best
thought of as textures. Examples include grass, foliage, brush, pebbles and hair. Secondly, many
surfaces are marked with orderly patterns that look like large numbers of small objects. Examples
include: the spots of animals like leopards or cheetahs; the stripes of animals like tigers or zebras;
the patterns on bark, wood and skin.
There are three standard problems to do with texture:

* Texture segmentation is the problem of breaking an image into components within
which the texture is constant. Texture segmentation involves both representing a texture,
and determining the basis on which segment boundaries are to be determined. In this
chapter, we deal only with the question of how textures should be represented (Sec-
tion 9.1); chapters 14 and 16 show how to segment textured images using this represen-
tation.

Texture synthesis seeks to construct large regions of texture from small example im-
ages. We do this by using the example images to build probability models of the texture,
and then drawing on the probability model to obtain textured images. There are a vari-
ety of methods for building a probability model; three successful current methods are
described in Section 9.3.

Shape from texture involves recovering surface orientation or surface shape from image
texture. We do this by assuming that texture “looks the same” at different points on a
surface; this means that the deformation of the texture from point to point is a cue to
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Figure 9.1 A set of texture examples, used in experiments with human subjects
to tell how easily various types of textures can be discriminated. Note that these
textures are made of quite stylized subelements, repeated in a meaningful way.
Reprinted from A Computational Model of Texture Segmentation, J. Malik and P.
Perona, Proc. Computer Vision and Pattern Recognition, 1989, © 1989, IEEE

the shape of the surface. In Section 9.4, we describe the main lines of reasoning in this
(rather technical) area.

9.1 REPRESENTING TEXTURE

Image textures generally consist of organised patterns of quite regular subelements (sometimes
called textons). For example, one texture in Figure 9.1 consists of triangles. Similarly, another
texture in that figure consists of arrows. One natural way to try and represent texture is to find
the textons, and then describe the way in which they are laid out.

The difficulty with this approach is that there is no known canonical set of textons, meaning
that it isn’t clear what one should look for. Instead of looking for patterns at the level of arrow-

Figure 9.2 Typical textured images. For materials such as brush, grass, foliage
and water, our perception of what the material is is quite intimately related to the
texture (for the figure on the left, what would the surface feel like if you ran your
fingers over it? is it wet?, etc.). Notice how much information you are getting
about the type of plants, their shape, etc. from the textures in the figure on the
right. These textures are also made of quite stylized subelements, arranged in a
rough pattern.
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heads and triangles, we could look for even simpler pattern elements—dots and bars, say—and
then reason about their spatial layout. The advantage of this approach is that it is easy to look for
simple pattern elements by filtering an image.

9.1.1 Extracting Image Structure with Filter Banks

In Section 7.5, we saw that convolving an image with a linear filter yields a representation of the
image on a different basis. The advantage of transforming an image to the new basis given by
convolving it with a filter, is that the process makes the local structure of the image clear. This is
because there is a strong response when the image pattern in a neighborhood looks similar to the
filter kernel, and a weak response when it doesn’t.

This suggests representing image textures in terms of the response of a collection of filters.
The collection of different filters would consist of a series of patterns—spots and bars are usual—
at a collection of scales (to identify bigger or smaller spots or bars, say). The value at a point in
a derived image represents the local “spottiness” (“barriness”, etc.) at a particular scale at the
corresponding point in the image. While this representation is now heavily redundant, it exposes
structure (“‘spottiness”, “barriness”, etc.), in a way that has proven helpful.

Generally, spot filters are useful because they respond strongly to small regions that differ
from their neighbors (for example, on either side of an edge, or at a spot). The other attraction
is that they detect non-oriented structure. Bar filters, on the other hand, are oriented, and tend to
respond to oriented structure.

Spots and Bars by Weighted Sums of Gaussians But what filters should we
use? There is no canonical answer. A variety of answers have been tried. By analogy with the
human visual cortex, it is usual to use at least one spot filter and a collection of oriented bar
filters at different orientations, scales and phases. The phase of the bar refers to the phase of a
cross-section perpendicular to the bar, thought of as a sinusoid (i.e., if the cross section passes
through zero at the origin, then the phase is 0°).

One way to obtain these filters is to form a weighted difference of Gaussian filters at dif-
ferent scales; this technique was used for the filters of Figure 9.3. The filters for this example
consist of

* A spot, given by a weighted sum of three concentric, symmetric Gaussians, with weights
1, —2 and 1, and corresponding sigmas 0.62, 1 and 1.6.

* Another spot, given by a weighted sum of two concentric, symmetric Gaussians, with
weights 1 and —1, and corresponding sigmas 0.71 and 1.14.

* A series of oriented bars, consisting of a weighted sum of three oriented Gaussians,
which are offset with respect to one another. There are six versions of these bars; each
is arotated version of a horizontal bar. The Gaussians in the horizontal bar have weights
—1, 2 and —1. They have different sigma’s in the x and in the y directions; the o, values

are all 2, and the o, values are all 1. The centers are offset along the y axis, lying at
(0, 1), (0,0) and (0, —1).

You should understand that the details of the choice of filter are almost certainly immate-
rial. There is a body of experience that suggests that there should be a series of spots and bars at
various scales and orientations—which is what this collection provides—but very little reason to
believe that optimizing the choice of filters produces any major advantage.

" Figures 9.4 and 9.5 illustrate the absolute value of the responses of this bank of filters to
an input image of a butterfly. Notice that, while the bar filters are not completely reliable bar
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Figure 9.3 A set of eight filters used for expanding images into a series of
responses. These filters are shown at a fixed scale, with zero represented by a
mid-grey level, lighter values being positive and darker values being negative.
They represent two distinct spots, and six bars; the set of filters is that used
by Malik and Perona (1990).

Figure 9.4 At the top, an image of a butterfly at a fine scale, and below, the
result of applying each of the filters of Figure 9.3 to that image. The results
are shown as absolute values of the output, lighter pixels representing stronger
responses, and the images are laid out corresponding to the filter position in the
top row.
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Figure 9.5 The input image of a butterfly and responses of the filters of Fig-
ure 9.3 at a coarser scale than that of Figure 9.4. Notice that the oriented bars
respond to the bars on the wings, the antennae, and the edges of the wings; the
fact that one bar has responded does not mean that another will not, but the size
of the response is a cue to the orientation of the bar in the image.

detectors (because a bar filter at a particular orientation responds to bars of a variety of sizes and
orientations), the filter outputs give a reasonable representation of the image data. Generally, bar
filters respond strongly to oriented bars and weakly to other patterns, and the spot filter responds
to isolated spots.

How Many Filters and at What Orientation? 1t is not known just how many filters
are “best” for useful texture algorithms. Perona (19935) lists the number of scales and orientation
used in a variety of systems; numbers run from four to eleven scales and from two to eighteen
orientations. The number of orientations varies from application to application and does not seem
to matter much, as long as there are at least about six orientations. Typically, the “spot” filters are
Gaussians and the “bar” filters are obtained by differentiating oriented Gaussians.

Similarly, there does not seem to be much benefit in using more complicated sets of filters
than the basic spot and bar combination. There is a tension here: using more filters leads to a
more detailed (and more redundant representation of the image); but we must also convolve the
image with all these filters, which can be expensive. One way to simplify the process is to control
the amount of redundant information we deal with, by building a pyramid.

9.1.2 Representing Texture Using the Statistics of Filter Outputs

A set of filtered images, in itself, is not a representation of texture, because we need some rep-
resentation of the overall distribution of texture elements. For example, a field of yellow flowers
may consist of many small yellow spots, with some vertical green bars; a zebra may consist of
black stripes on a white background. We are implicitly assuming a scale over which the texture is
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being described. A small image window on a field of yellow flowers may contain only a flower;
on a zebra it may consist of a constant black or white region. Similarly, a window that is too large
may contain some background as well as the relevant texture. Notice that there are two scales
here: firstly, the scale of the filters and secondly, the scale over which we consider the distribution
of the filters.

Assume that we know the size of the relevant image window in which we wish to represent
a texture. A typical representation involves a set of statistics of filter outputs for that window.
Outputs are commonly squared (among other things, this has the advantage of counting black
next to white stripes in the same way as white next to black stripes). For example, in Figure 9.6,
we illustrate a putative representation in terms of horizontal and vertical textures. This represen-
tation is obtained by taking the outputs of horizontal (resp. vertical) bar filters and squaring them.
We then smooth the result at a coarse scale. This smoothing is equivalent to estimating the mean
of the squared filter outputs in some window. Finally, the smoothed outputs are passed to a clas-
sifier that describes the texture. In the example of Figure 9.6, the texture is placed in one of four
classes, depending on whether the vertical or the horizontal output or both or neither are large.

squared responses

vertical

classification

horizontal

smoothed mean

Figure 9.6 A putative texture representation in terms of filter outputs. We have
sharply reduced the number of filters (there are two derivative filters, one vertical
and one horizontal). The image on the left is the input; notice it has components
that could reasonably be described as horizontal, vertical and fuzzy. The images
in the center left column show the squared values of the filter outputs (which
have been squared so that black-to-white transitions count the same as white-to-
black transitions). The values are shown on the same linear scale, with lighter
points indicating stronger responses. These have been smoothed to yield the im-
ages on the center right (which can be interpreted as the mean of the squared
response over a small window). The mean response to vertical stripes is strong
in the vertical map, and that to horizontal stripes in the horizontal map. Finally,
we have thresholded these two images and combined them to get the image on
the right (black values are neither horizontal nor vertical, dark grey values are
horizontal; light grey values are vertical; and white values are “both™).
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The Choice of Statistic The question of what statistics should be collected depends
to some extent on what we intend to represent. However, work on texture synthesis has indicated
some constraints on appropriate choices of model, which is why we spend so much ink on the
topic in Section 9.3. Assume, for the moment, that the scale of the window over which statistics
should be collected has been set. One strategy is to compute the mean of the squared filter outputs
for a range of filters (Malik and Perona, 1989). A window is then described by a vector of
numbers, each of which is the mean of the squared response of some filter over the window. This
approach can tell, for example, spotty windows—mwhere the mean response of the spot filters will
be high—from stripey windows—where the mean response of the bar filters will be high. This is
the approach of Figure 9.6, but with a richer set of filters.

An alternative approach is to compute the mean and standard deviation of the filter out-
puts over the window, and use these for the feature vector (Ma and Manjunath, 1996). Texture
descriptions of this form can be used to recover image windows based on examples (Figure 9.7).
This is useful, because in a satellite image, whether a region depicts housing or vegetation can be
determined from the texture. This means that, if we can match textures, we can find all regions of,
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Figure 9.7 Textures can be represented as the mean and standard deviation
of filter outputs taken over a window. If we use a collection of different filters,
this yields a vector of numbers to represent the window; spotty textures will
have large mean spot filter outputs, stripey textures will have large mean bar
filter outputs, and so on. This means that an image window can be compared to
others by computing a distance based on the feature vector. A pure Euclidean
distance yields acceptable results (left), but modifying the distance function can
yield very good results (right). Reprinted from “Texture Features and Learning
Similarity,” by W.Y. Ma and B.S. Manjunath, Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 1996, © 1996, IEEE
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say, vegetation in a satellite image. Two textures with quite different feature vectors may appear
to be similar; this can be dealt with by modifying the way that we measure differences between
feature vectors.

Neither mean nor mean and standard deviation is an ideal representation, because the rela-
tionships between filter responses can be significant. For example, imagine a texture that consists
of small spots arranged in stripes—an aerial view of a field of cabbages, say. In a texture like this,
the small spot filter will respond strongly and the large bar filter will respond strongly, but the
responses are correlated—the large bar filter responds where the small spot filter responds. In
the case of a texture consisting of many large bars scattered around with small spots in the back-
ground, the small spot filter will respond strongly and the large bar filter will respond strongly,
but the responses may not be correlated. We could try and record the covariance of the filter
outputs—which would handle the example of the field of cabbages—but there will generally be
too many terms to form an accurate estimate. Instead, one typically identifies some covariance
terms that may be useful in a particular application and uses those.

The Choice of Scale Another question that is typically dealt with as a practical matter
is the choice of the scale to use in representing a texture. Generally, one chooses a small window
at the point of interest and then increases the size of the window until an increase does not cause
a significant change. For example, imagine selecting a pixel on an image of a zebra. In a very
small window around that pixel, the image has a constant value, say black. As the window gets
slightly larger, there is a sharp change and there are some black and some white pixels in the
window. Once the window is somewhat larger and contains several stripes, enlarging the window
further will produce no significant change—it will just be a bigger, stripey window.

One statistic that can be used to determine when to stop expanding the window is the
polarity. We first determine the dominant orientation of the window—the average direction of
the gradient. Now for each gradient vector, we form the dot product between the gradient vector
and the dominant orientation. We then form a smoothed average of the positive dot products and
a smoothed average of the magnitude of the negative dot products, and take the difference of the
two. This measures the extent to which gradients in a region point along the dominant orientation
(positive dot products) vs. against the dominant orientation (negative dot products).

We can measure this statistic for any particular window scale. We do so for a range of
window sizes, and then start at the finest scale and look at increasingly large windows until the
polarity has not changed when the scale changed. Notice that there is some possibility that this
criterion is not unique. For example, imagine a very high resolution photograph of a zebra. If we
start with a sufficiently small window (which may span a single hair), this criterion will select
a scale at which a window contains several hairs. If we start with a somewhat larger window,
containing many hairs, the criterion should select a scale that encompasses several stripes.

9.2 ANALYSIS (AND SYNTHESIS) USING ORIENTED PYRAMIDS

Representing texture using the statistics of a series of filter outputs requires convolving the image
with many filters at many scales. There are quite good methods for doing this systematically,
which we describe in this section. Many readers may be content to leave this issue unexamined,
and such readers should skip to Section 9.3.

The process of convolving an image with a range of filters is referred to as analysis; con-
volving an image with a collection of oriented filters is sometimes, rather loosely, described as
analyzing orientation or representing orientation. The Gaussian pyramid (Section 7.7.1) is an
example of image analysis by a bank of filters—in this case, smoothing filters. The Gaussian
pyramid handles scale systematically by subsampling the image once it has been smoothed. This
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means that generating the next coarsest scale is easier, because we don’t process redundant in-
formation.

In fact, the Gaussian pyramid is a highly redundant representation because each layer is a
low pass filtered version of the previous layer—this means that we are representing the lowest
spatial frequencies many times. A layer of the Gaussian pyramid is a prediction of the appearance
of the next finer scale layer—this prediction isn’t exact, but it means that it is unnecessary to store
all of the next finer scale layer. We need keep only a record of the errors in the prediction. This
is the motivating idea behind the Laplacian pyramid.

The Laplacian pyramid will yield a representation of various different scales that has fairly
low redundancy, but it doesn’t immediately deal with orientation. By thinking about pyramids
in the Fourier domain, we obtain a method for encoding orientation as well (Section 9.2.2). In
Section 9.2.3, we will sketch a method that obtains a representation of orientation as well.

9.2.1 The Laplacian Pyramid

The Laplacian pyramid makes use of the fact that a coarse layer of the Gaussian pyramid predicts
the appearance of the next finer layer. If we have an upsampling operator that can produce a
version of a coarse layer of the same size as the next finer layer, then we need only store the
difference between this prediction and the next finer layer itself.

Clearly, we cannot create image information, but we can expand a coarse scale image by
replicating pixels. This involves an upsampling operator ST which takes an image at level n + 1
to an image at level . In particular, S*(Z) takes an image, and produces an image twice the size
in each dimension. The four elements of the output image at (2j — 1,2k — 1); (2j, 2k — 1);
(2j — 1,2k); and (2, 2k) all have the same value as the j, kth element of 7.

Analysis—Building a Laplacian Pyramid from an Image The coarsest scale
layer of a Laplacian pyramid is the same as the coarsest scale layer of a Gaussian pyramid.
Each of the finer scale layers of a Laplacian pyramid is a difference between a layer of the Gaus-
sian pyramid and a prediction obtained by upsampling the next coarsest layer of the Gaussian
pyramid. This means that:

Py Laplacian(I)m = P, Gaussian(I)m

(where m is the coarsest level) and

PLaplacian (D = Pgaussian (D — ST(PGaussian(I)kﬁ—I)
=(ld - STSlGa)PGaussian(I)k

All this yields Algorithm 9.1. While the name “Laplacian” is somewhat misleading—there are no
differential operators here—it is not outrageous, because each layer is approximately the result
of a difference of Gaussian filter.

Each layer of the Laplacian pyramid can be thought of as the response of a band-pass
filter. This is because we are taking the image at a particular resolution, and subtracting the
components that can be predicted by a coarser resolution version—which corresponds to the low
spatial frequency components of the image. This means in turn that we expect that an image of a
set of stripes at a particular spatial frequency would lead to strong responses at one level of the
pyramid and weak responses at other levels (Figure 9.8).

‘Because different levels of the pyramid represent different spatial frequencies, the Lapla-
cian pyramid can be used as a reasonably effective image compression scheme.
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Algorithm 9.1: Building a Laplacian Pyramid from an Image

Form a Gaussian pyramid

Set the coarsest layer of the Laplacian pyramid to be
the coarsest layer of the Gaussian pyramid

For each layer, going from next to coarsest to finest
Obtain this layer of the Laplacian pyramid by

upsampling the next coarser layer, and subtracting

it from this layer of the Gaussian pyramid

end )

Figure 9.8 A Laplacian pyramid of images, running from 512x512to 8 x 8. A
zero response is coded with a mid-grey; positive values are lighter and negative
values are darker. Notice that the stripes give stronger responses at particular
scales, because each layer corresponds (roughly) to the output of a band-pass
filter.
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Synthesis—Recovering an Image from its Laplacian Pyramid Laplacian pyra-
mids have one important feature. It is easy to recover an image from its Laplacian pyramid. We
do this by recovering the Gaussian pyramid from the Laplacian pyramid, and then taking the
finest scale of the Gaussian pyramid (which is the image). It is easy to get to the Gaussian pyra-
mid from the Laplacian. Firstly, the coarsest scale of the Gaussian pyramid is the same as the
coarsest scale of the Laplacian pyramid. The next-to-coarsest scale of the Gaussian pyramid is
obtained by taking the coarsest scale, upsampling it, and adding the next-to-coarsest scale of the
Laplacian pyramid (and so on up the scales). This process is known as synthesis and is described
i Algorithm 9.2.

Algorithm 9.2: Synthesis: Obtaining an Image from a Laplacian Pyramid

Set the working image to be the coarsest layer
For each layer, going from next to coarsest to finest
Upsample the working image and add the current layer
to the result
Set the working image to be the result of this operation
end
The working image now contains the original image

9.2.2 Filters in the Spatial Frequency Domain

The convolution theorem (that convolution in the spatial domain is the same as multiplication in
the Fourier domain) yields some intuition about what filters do and what information pyramids
contain. We shall illustrate this theorem by showing a natural analogy between smoothing and
low-pass filtering; that some kinds of band-pass filter naturally respond to oriented structure; and
that a form of local spatial frequency analysis can be obtained using a particular family of filters.

Smoothing and Low-Pass Filters The convolution theorem yields that convolving
an image with an isotropic Gaussian with standard deviation o is the same as multiplying the
Fourier transform of the image by an isotropic Gaussian of standard deviation 1/0. Now a Gaus-
sian falls off quite quickly, particularly if its standard deviation is large. This means that the
Fourier transform of the result will have relatively little energy at high spatial frequencies, where
a high spatial frequency is a few multiples of 1/c. We can interpret this as a low-pass filter—one
that has a high gain for low spatial frequencies and a low gain for high spatial frequencies. This
is quite a satisfactory interpretation: if we smooth with a Gaussian with a very small standard
deviation, all but the highest spatial frequencies are preserved; and if we smooth with a Gaussian
with a very large standard deviation, the result will be pretty much the average value of the im-
age. This means that a Gaussian pyramid is, in essence, a set of low-pass filtered versions of the
image.

Band-Pass Filters and Orientation Selective Operators A band-pass filter is
one that has high gain for some range of spatial frequencies and a low gain for higher and for
lower spatial frequencies. One type of band-pass filter is insensitive to orientation. A natural
example of such a filter is to smooth an image with the difference of two isotropic Gaussians; one
with a small standard deviation and one with a large standard deviation. In the Fourier domain,
the kernel of this filter looks like an annulus of large values (the left half of Figure 9.9); this means
that it selects a range of spatial frequencies, but is not selective to orientations (because points at
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Figure 9.9 Each layer of the Laplacian pyramid consists the elements of a
smoothed and resampled image that are not represented by the next smoother
layer. Assuming that a Gaussian is a sufficiently good smoothing filter, each layer
can be thought of as représenting the image components within a range of spatial
frequencies—this means that the Fourier transform of each layer is an annulus of
values from the Fourier transform space (1, v) space (recall that the magnitude
of (u, v) gives the spatial frequency). The sum of these annuluses is the Fourier
transform of the image, so that each layer cuts an annulus out of the image’s
Fourier transform. An oriented pyramid cuts each annulus into a set of wedges.
If (u, v) space is represented in polar coordinates, each wedge corresponds to an
interval of radius values and an interval of angle values (recall that arctan(u/v)
gives the orientation of the Fourier basis element).

the same distance from the origin in Fourier space refer to basis elements of the frequency, but at
different orientations). While an ideal bandpass filter would have a unit value within the annulus
and a zero value outside, such a filter would have infinite spatial support—making it difficuit
to work with—and the difference of Gaussians appears to be a satisfactory practical choice. Of
course, this difference of Gaussians is the filter used to obtain the Laplacian pyramid, so the
Laplacian pyramid consists of a set of band-pass filtered versions of the image.

An alternative type of band-pass filter has a Fourier transform that is large within a wedge
of the annulus, and small outside (the right half of Figure 9.9)—this filter is orientation selec-
tive, meaning that it responds most strongly to signals that have a particular range of spatial
frequencies and orientations.

Local Spatial Frequency Analysis and Gabor Filters One difficulty with the
Fourier transform is that Fourier coefficients depend on the entire image; the value of the Fourier
transform for some particular (1, v) is computed using every image pixel. This is an inconvenient
way to think of images, because we have lost all spatial information. For example, the stripes of
Figure 9.12 get wider as one moves across the image. If we think in terms of spatial frequency
only locally defined, then we can think of this phenomenon in terms of the spatial frequency
content of the image changing as we move across it. In some window around a point, the narrow
stripes look like high spatial frequency terms and the wide stripes look like low spatial frequency
terms. .

Gabor filters achieve this. The kernels look like Fourier basis elements that are multiplied
by Gaussians, meaning that a Gabor filter responds strongly at points in an image where there are
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components that locally have a particular spatial frequency and orientation. Gabor filters come
in pairs, often referred to as quadrature pairs; one of the pair recovers symmetric components in
a particular direction, and the other recovers antisymmetric components. The mathematical form
of the symmetric kernel is

x2 4 y2
Gsymmetric(x» )’) = COoSs (kxx -+ kyy) exp — { __20—2‘))}
and the antisymmetric kernel has the form »
) x2 4 y?
Gantisymmeuic(x, y) = sin (kox + ki y) exp — [ _207_ ]

The filters are illustrated in Figures 9.10 and 9.11; (k,, k,) give the spatial frequency to which
the filter responds most strongly, and o is referred to as the scale of the filter. In principle,
by applying a very large number of Gabor filters at different scales, orientations and spatial
frequencies, one can analyze an image into a detailed local description. There is an analogy
between Gabor filtering with ¢ = oo and a Fourier transform; this explains why there are two
types of filter, and indicates why we can think of a Gabor filter as performing a local spatial
frequency analysis.

Figure 9.10 Gabor filter kernels are the product of a symmetric Gaussian with
an oriented sinusoid; the form of the kernels is given in the text. The images show
Gabor filter kernels as images, with mid-grey values representing zero, darker
values representing negative numbers and lighter values representing positive
numbers. The top row shows the antisymmetric component, and the bottom row
shows the symmetric component. The symmetric and antisymmetric components
have a phase difference of /2 radians, because a cross-section perpendicular to
the bar (horizontally, in this case) gives sinusoids that have this phase difference.
The scale of these filters is constant, and they are shown for three different spatial
frequencies. Figure 9.11 shows Gabor filters at a finer scale.
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Figure 9.11 The images shows Gabor filter kernels as images, with mid-grey
values representing zero, darker values representing negative numbers and lighter
values representing positive numbers. The top row shows the antisymmetric
component, and the bottom row shows the symmetric component. The scale of
these filters is constant, and they are shown for three different spatial frequencies.
These filters are shown at a finer scale than those of Figure 9.10.

9.2.3 Oriented Pyramids

A Laplacian pyramid does not contain enough information to reason about image texture, be-
cause there is no explicit representation of the orientation of the stripes. A natural strategy for
dealing with this is to take each layer and decompose it further, to obtain a set of components
each of which represents a energy at a distinct orientation. Each component can be thought of
as the response of an oriented filter at a particular scale and orientation. The result is a detailed
analysis of the image, known as an oriented pyramid (Figure 9.13).

A comprehensive discussion of the design of oriented pyramids would take us out of our
way. The first design constraint is that the filter should select a small range of spatial frequencies
and orientations, as in Figure 9.9. There is a second design constraint for our analysis filters:
synthesis should be easy. If we think of the oriented pyramid as a decomposition of the Lapla-
cian pyramid (Figure 9.14), then synthesis involves reconstructing each layer of the Laplacian
pyramid, and then synthesizing the image from the Laplacian pyramid. The ideal strategy is to
have a set of filters that have oriented responses and where synthesis is easy. It is possible to
produce a set of filters such that reconstructing a layer from its components involves filtering the
image a second time with the same filter (as Figure 9.15 suggests). An efficient implementation
of these pyramids is available at http://www.cis.upenn.edu/~eero/steerpyr.html. The
design process is described in detail in Karasaridis and Simoncelli (1996) and Simoncelli and
Freeman (1995). '

9.3 APPLICATION: SYNTHESIZING TEXTURES FOR RENDERING

Renderings of object models look more realistic if they are textured (it’s worth thinking about
why this should be true, even though the point is widely accepted as obvious). There are a va-
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Figure 9.12 The image on the top shows a detail from an image of a zebra,
chosen because it has a stripes at somewhat different scales and orientations.
This has been convolved with the kernel in the center, which is a Gabor filter
kernel. The image at the bottom shows the absolute value of the result; notice
that the response is large when the spatial frequency of the bars roughly matches
that windowed by the Gaussian in the Gabor filter kernel (i.e., the stripes in the
kernel are about as wide as, and at about the same orientation as, the three stripes
in the kernel). When the stripes are larger or smaller, the response falls off; thus,
the filter is performing a kind of local spatial frequency analysis. This filter is one
of a quadrature pair (it is the symmetric component). The response of the anti-
symmetric component is similarly frequency selective. The two responses can be
seen as the two components of the (complex valued) local Fourier transform, so
that magnitude and phase information can be extracted from them.

riety of techniques for texture mapping; the basic idea is that when an object is rendered, the
reflectance value used to shade a pixel is obtained by reference to a texture map. Some system
of coordinates is adopted on the surface of the object to associate the elements of the texture
map with points on the surface. Different choices of coordinate system yield renderings that look
quite different, and it is not always easy to ensure that the texture lies on a surface in a natural
way (for example, consider painting stripes on a zebra—where should the stripes go to yield a
natural pattern?). Despite this issue, texture mapping seems to be an important trick for making
rendered scenes look more realistic.

Texture mapping demands textures, and texture mapping a large object may require a sub-
stantial texture map. This is particularly true if the object is close to the view, meaning that
the texture on the surface is seen at a high resolution, so that problems with the resolution of
the texture map will become obvious. Tiling texture images can work poorly, because it can be
difficult to obtain images that tile well—the borders have to line up, and even if they did, the
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Figure 9.13 An oriented pyramid, formed from the image at the top left,
with four orientations per layer. This is obtained by firstly decomposing an
image into subbands which represent bands of spatial frequency (as with the
Laplacian pyramid), and then applying oriented filters (top right) to these
subbands to decompose them into a set of distinct images, each of which
represents the amount of energy at a particular scale and orientation in the
image. Notice how the orientation layers have strong responses to the edges
in particular directions, and weak responses at other directions. Code for con-
structing oriented pyramids, written and distributed by Eero Simoncelli, can be
found at http://www.cis.upenn.edu/~eero/steerpyr.html. Reprinted
from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, © 1992, IEEE
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Figure 9.14 The oriented pyramid is obtained by taking layers of the Laplacian
pyramid, and then applying oriented filters (represented in this schematic draw-
ing by boxes). Each layer of the Laplacian pyramid represents a range of spatial
frequencies; the oriented filters decompose this range of spatial frequencies into
a set of orientations.

Chap. 9
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Figure 9.15 In the oriented pyramid, synthesis is possible by refiltering the lay-
ers and then adding them, as this schematic indicates. This property is obtained
by appropriate choice of filters.

resulting periodic structure can be annoying. It is possible to buy image textures from a variety
of sources, but an ideal would be to have a program that can generate large texture images from
a small example. Quite sophisticated programs of this form can be built, and they illustrate the
usefulness of representing textures by filter outputs.

9.3.1 Homogeneity

The general strategy for texture synthesis is to think of a texture as a sample from some proba-
bility distribution and then to try and obtain other samples from that same distribution. To make
this approach practical, we need to obtain a probability model from the sample texture. The first
thing to do is assume that the texture is homogenous. This means that local windows of the texture
“look the same”, from wherever in the texture they were drawn. More formally, the probability
distribution on values of a pixel is determined by the properties of some neighborhood of that
pixel, rather than by, say, the position of the pixel.

An assumption of homogeneity means that we can construct a model for the texture out-
side the boundaries of our example region, based on the properties of our example region. The
assumption often applies to natural textures over a reasonable range of scales. For example, the
stripes on a zebra’s back are homogenous, but remember that those on its back are vertical and
those on its legs, horizontal. We can use the example texture to obtain the probability model for
the synthesized texture in various ways; we describe only one here.

9.3.2 Synthesis by Sampling Local Models

As Efros and Leung (1999) point out, the example image can serve as a a probability model.
Assume for the moment that we have every pixel in the synthesized image, except one. To obtain
a probability model for the value of that pixel, we could match a neighborhood of the pixel to
the example image. Every matching neighborhood in the example image has a possible value for
the pixel of interest. This collection of values is a conditional histogram for the pixel of interest.
By drawing a sample uniformly and at random from this collection, we obtain the value that is
consistent with the example image.

Finding Matching Image Neighbourhoods The essence of the matter is to take
some form of neighbourhood around the pixel of interest, and to compare it to neighbourhoods
in the example image. The size and shape of this neighbourhood is significant, because it codes
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Figure 9.16 Efros’ texture synthesis algorithm (Algorithm 9.3) matches neigh-
bourhoods of the image being synthesized to the example image, and then
chooses at random amongst the possible values reported by matching neighbour-
hoods. This means that the algorithm can reproduce complex spatial structures,
as these examples indicate. The small block on the left is the example texture;
the algorithm synthesizes the block on the right. Note that the synthesized text
looks like text; it appears to be constructed of words of varying lengths that
are spaced like text; and each word looks as though it is composed of letters
(though this illusion fails as one looks closely). Figure from Texture Synthesis by
Non-parametric Sampling, A. Efros and TK. Leung, Proc. Int. Conf. Computer
Vision, 1999 © 1999, IEEE
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Figure 9.17 The size of the image neighbourhood to be matched makes a sig-
nificant difference in Algorithm 9.3. In the figure, the textures at the right are
synthesized from the small blocks on the left, using neighbourhoods that are
increasingly large as one moves to the right. If very small neighbourhoods
are matched, then the algorithm cannot capture large scale effects easily. For
example, in the case of the spotty texture, if the neighbourhood is too small
to capture the spot structure (and so sees only pieces of curve), the algorithm
synthesizes a texture consisting of curve segments. As the neighbourhood gets
larger, the algorithm can capture the spot structure, but not the even spacing.
With very large neighbourhoods, the spacing is captured as well. Figure from
Texture Synthesis by Non-parametric Sampling, A. Efros and T K. Leung, Proc.
Int. Conf. Computer Vision, 1999 © 1999, IEEE .
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the range over which pixels can affect one another’s values directly (see Figure 9.17). Efros uses
a square neighborhood, centered at the pixel of interest.

The similarity between two image neighbourhoods can be measured by forming the sum
of squared differences of corresponding pixel values. This value is small when the neighbour-
hoods are similar, and large when they are different (it is essentially the length of the difference
vector). Of course, the value of the pixel to be synthesized is not counted in the sum of squared
differences.

Synthesizing Textures using Neighbourhoods Now we know how to obtain the
value of a single missing pixel: choose uniformly and at random amongst the values of pixels in
the example image whose neighborhoods match the neighbourhood of our pixel (i.e., where the
sum of squared differences between the two neighbour hoods is smaller than some threshold).

Generally, we need to synthesize more than just one pixel. Usually, the values of some
pixels in the neighborhood of the pixel to be synthesized are not known—these pixels need to be
synthesized too. One way to obtain a collection of examples for the pixel of interest is to count
only the known values in computing the sum of squared differences, and to adjust the threshold
pro rata. The synthesis process can be started by choosing a block of pixels at random from the
example image, yielding Algorithm 9.3.

Algorithm 9.3: Non-parametric Texture Synthesis

Choose a small square of pixels at random from the example image
Insert this square of values into the image to be synthesized
Until each location in the image to be synthesized has a value
For each unsynthesized location on
the boundary of the block of synthesized values
Match the neighborhood of this location to the
example image, ignoring unsynthesized
locations in computing the matching score
Choose a value for this location uniformly and at random
from the set of values of the corresponding locations in the
matching neighborhoods
end
end

9.4 SHAPE FROM TEXTURE

A patch of texture of viewed frontally looks very different from a same patch viewed at a glancing
angle, because foreshortening causes the texture elements (and the gaps between them!) to shrink
more in some directions than in others. This suggests that we can recover some shape information
from texture, at the cost of supplying a texture model. This is a task at which humans excel
(Figure 9.18). Remarkably, quite general texture models appear to supply enough information to
infer shape. This is most easily seen for planes (Section 9.4.1); while the details remain opaque
in the case of curved surfaces, the general isspes remain the same.
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Figure 9.18 Humans obtain information about the shape of surfaces in space
from the appearance of the texture on the surface. The figure on the left shows
one common use for this effect—away from the contour regions, our only source
of information about the surface depicted is the distortion of the texture on the
surface. On the right, the texture of the bushes gives a sense they form rounded
surfaces.

9.4.1 Shape from Texture for Planes

If we know we are viewing a plane, shape from texture boils down to determine the configuration
of the plane relative to the camera. Assume that we hypothesize a configuration; we can then
project the image texture back onto that plane. If we have some model of the “uniformity” of the
texture, then we can test that property for the backprojected texture. We now obtain the plane
with the “best” backprojected texture on it. This general strategy works for a variety of texture
models. We will confine our discussion to the case of an orthographic camera. If the camera is
not orthographic, the arguments we use will go through, but require substantially more work and
more notation, We discuss other cases in the commentary.

Representing a Plane Now assume that we are viewing a single textured plane in
an orthographic camera. Because the camera is orthographic, there is no way to measure the
depth to the plane. However, we can think about the orientation of the plane. Let us work in
terms of the camera coordinate system. We need to know firstly, the angle between the normal
of the textured plane and the viewing direction—sometimes called the slant-—and secondly, the
angle the projected normal makes in the camera coordinate system—sometimes called the #iit
(Figure 9.19). In an image of a plane, there is a tilt direction—the direction in the plane parallel
to the projected normal.

Isotropy Assumptions An isorropic texture is one where the probability of encoun-
tering a texture element does not depend on the orientation of that element. This means that a
probability model for an isotropic texture need not depend on the orientation of the coordinate
system on the textured plane.

If we assume that the texture is isotropic, both slant and tilt can be read from the image.
We could synthesize an orthographic view of a textured plane by first rotating the coordinate
system by the tilt and then secondly contracting along one coordinate direction by the cosine of
the slant—call this process a viewing transformation. The easiest way to see this is to assume



Sec. 8.4

Shape from Texture 209

Viewing
direction

Plane

normal
Image
plane
Projected
normal
—_—

Textured
plane

Figure 9.19 The orientation of a plane with respect to the camera plane can
be given by the slant—which is the angle between the normal of the textured
plane and the viewing direction—and the tilt—which is the angle the projected
normal makes with the camera coordinate system. The figure illustrates the tilt,
and shows a circle projecting to an ellipse.

that the texture consists of a set of circles, scattered about the plane. In an orthographic view,
these circles will project to ellipses, whose minor axes will give the tilt, and whose aspect ratios
will give the slant (see the exercises and Figure 9.19).

An orthographic view of an isotropic texture is not isotropic (unless the plane is parallel to
the image plane). This is because the contraction in the slant direction interferes with the isotropy
of the texture. Elements that point along the contracted direction get shorter. Furthermore, ele-
ments that have a component along the contracted direction have that component shrunk. Now
corresponding to a viewing transformation is an inverse viewing transformation (which turns
an image plane texture into the object plane texture, given a slant and tilt). This yields a strategy
for determining the orientation of the plane: find an inverse viewing transformation that turns the
image texture into an isotropic texture, and recover the slant and tilt from that inverse viewing
transformation.

There are variety of ways to find this viewing transformation. One natural strategy is to
use the energy output of a set of oriented filters. This is the squared response, summed over
the image. For an isotropic texture, we would expect the energy output to be the same for each
orientation at any given scale, because the probability of encountering a pattern does not depend
on its orientation. Thus, a measure of isotropy is the standard deviation of the energy output as a
function of orientation. We could sum this measure over scales, perhaps weighting the measure
by the total energy in the scale. The smaller the measure, the more isotropic the texture. We
now find the inverse viewing transformation that makes the image looks most isotropic by this
measure, using standard methods from optimization.

Notice that this approach immediately extends to perspective projection, spherical projec-
tion, and other types of viewing transformation. We simply have to search over a larger family
of transformations for the transformation that makes the image texture look most isotropic. One
does need to be careful, however. For example, scaling an isotropic texture will lead to another
isotropic texture, meaning that it isn’t possible to recover a scaling parameter, and it’s a bad idea
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to try. The main difficulty with using an assumption of isotropy to recover the orientation of a
plane is that there are very few isotropic textures in the world.

Homogeneity Assumptions It isn’t possible to recover the orientation of a plane
in an orthographic view by assuming that the texture is homogeneous (the definition is in Sec-
tion 9.3.1). This is because the viewing transformation takes one homogeneous texture into an-
other homogeneous texture. However, if we assume that the view is perspective, it becomes
possible. g

To see this, first notice that homogeneity means that, if a large even grid is imposed on
the plane, the number of events that occur in each box should be (approximately) the same. For
example, if a texture consists of a homogenous pattern of spots, the expected number of spots
per box is the same for any box. However, if we were to see a perspective view of a textured
plane with a grid superimposed, then some grid elements would project to large quadrilaterals
and others to very small quadrilaterals (unless the view is frontal). In turn, this means that the
projected texture cannot be homogenous in the image plane—because some elements in a grid of
boxes on the image plane will have many projected quadrilaterals and hence many texture events
in them, and others will have few. For the example of the spotted plane, this just means that the
spots that project close to the plane’s horizon appear small. The appropriate strategy is now to
choose a transformation that will make the image plane texture “most homogenous”; notice that
we can determine the orientation of the plane with respect to the camera plane, but not its depth,
because a frontal view of a homogenous texture is homogenous—everything scales by the same
amount.

We have aggressively compressed the texture literature in this chapter. Over the years, there
have been a wide variety of techniques for representing image textures, typically looking at the
statistics of how patterns lie with respect to one another. The disagreements are in how a pattern
should be described, and what statistics to look at. While it is a bit early to say that the approach
that represents patterns using linear filters is correct, it is currently dominant, mainly because it is
very easy to solve problems with this strategy. Readers who are seriously interested in texture will
probably most resent our omission of the Markov Random Field model, a choice based on the
amount of mathematics required to develop the model and the absence of satisfactory inference
algorithms for MRF’s. We refer the interested reader to Chellappa and Jain (1993), Cross and
Jain (1983), Manjunath and Chellappa (1991), or Speis and Healey (1996).

Another important omission is the discussion of wavelet methods for representing texture.
While these methods follow the rather rough lines given above—represent a texture by thinking
about the output of a lot of filters—there is a comprehensive theory behind those filters. We refer
the interested reader to Ma and Manjunath (1995), (1996) or Manjunath and Ma (19965,¢).

Filters, Pyramids and Efficiency

If we are to represent texture with the output of a large range of filters at many scales and orienta-
tions, then we need to be efficient at filtering. This is a topic that has attracted much attention; the
usual approach is to try and construct a tensor product basis that represents the available families
of filters well. With an appropriate construction, we need to convolve the image with a small
number of separable kernels, and can estimate the responses of many different filters by com-
bining the results in different ways (hence the requirement that the basis be a tensor product).
Significant papers include Freeman and Adelson (1991), Greenspan, Belongie, Perona, Good-
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man, Rakshit and Anderson (1994), Hel-Or and Teo (1996), Perona (1992), (1995), Simoncelli
and Farid (1995), and Simoncelli and Freeman (1995).

Texture Synthesis

Texture synthesis exhausted us long before we could exhaust it. The most significant omission,
apart from MRF’s, is the work of Zhu, Wu and Mumford (1998), which uses sophisticated en-
tropy criteria to firstly choose filters by which'to represent a texture and secondly construct
probability models for that texture.

Shape from Texture

There are surprisingly few methods for recovering a surface model from a projection of a texture
field that is assumed to lie on that surface. Global methods attempt to recover an entire surface
model, using assumptions about the distribution of texture elements. Appropriate assumptions are
isotropy (Witkin, 1981) (the disadvantage of this method is that there are relatively few natural
isotropic textures) or homogeneity (Aloimonos, 1986, Blake and Marinos, 1990). Methods based
around homogeneity assume that texels are the result of a homogenous Poisson point process on a
plane; the gradient of the density of the texel centers then yields the plane’s parameters. However,
deformation of individual texture elements is not accounted for.

Local methods recover some differential geometric parameters at a point on a surface (typ-
ically, normal and curvatures). This class of methods, which is due to Garding (1992), has been
successfully demonstrated for a variety of surfaces by Malik and Rosenholtz (1997) and Rosen-
holtz and Malik (1997); a reformulation in terms of wavelets is due to Clerc and Mallat (1999).
The methods have a crucial flaw; it is necessary either to know that texture element coordinate
frames form a frame field that is locally parallel around the point in question, or to know the
differential rotation of the frame field (see Garding, 1995 for this point, which is emphasized
by the choice of textures displayed in Rosenholtz and Malik, 1997, the assumption is known as
texture stationarity). For example, if one were to use these methods to recover the curvature of
a doughnut dipped in chocolate sprinkles, it would be necessary to ensure that the sprinkles were
all parallel on the surface (or that the field of angles from sprinkle to sprinkle was known). As a
result, the method can be demonstrated to work only on quite a small class of textured surfaces.
A second, important, difficulty lies in the data recovered; these methods all make local estimates
of normal and curvature. But curvature is a derivative of the normal; as a result, while one local
estimate may be helpful, there is no reason to believe that a collection of local estimates will be
consistent. This is a problem of integrability. Surface interpolation methods have largely fallen
out of fashion in computer vision, due to the uncertainty regarding the semantic status of surface
patches in regions where data is absent. Shape from texture is a problem where an interpolate
has an unquestionably useful role—it expresses the fact that, because one has a prior belief that
surfaces are relatively slowly changing, incomplete local measurements of the surface normal
can constrain one another and lead to good global estimates of the normal at some points.

9.1. Show that a circle appears as an ellipse in an orthographic view, and that the minor axis of this ellipse
is the tilt direction. What is the aspect ratio of this ellipse?

9.2. We will study measuring the orientation of a plane in an orthographic view, given the texture consists
of points laid down by a homogenous Poisson point process. Recall that one way to generate points
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according to such a process is to sample the x and y coordinate of the point uniformly and at random.

We assume that the points from our process lie within a unit square.

(a) Show that the probability that a point will land in a particular set is proportional to the area of that
set.

(b) Assume we partition the area into disjoint sets. Show that the number of points in each set has a
multinomial probability distribution.

We will now use these observations to recover the orientation of the plane. We partition the image

texture into a collection of disjoint sets.

(c) Is the area of each set, backprojected onio the textured plane, a function of the orientation of the
plane?

(d) Ts it possible to determine the plane’s orientation using this information? Use the result of (c).

Programming Assignments

Texture synthesis: Implement the non-parametric texture synthesis algorithm of Section 9.3.2. Use

your implementation to study:

(a) the effect of window size on the synthesized texture;

(b) the effect of window shape on the synthesized texture;

(c¢) the effect of the matching criterion on the synthesized texture (i.e., using weighted sum of squares
instead of sum of squares, etc.).

Texture representation: Implement a texture classifier that can distinguish between at least six types
of texture; use the scale selection mechanism of Section 9.1.2, and compute statistics of filter outputs.
We recommend that you use at least the mean and covariance of the outputs of about six oriented bar
filters and a spot filter. You may need to read up on classification in chapter 22; use a simple classifier
(nearest neighbor using Mahalanobis distance should do the trick).



