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Geometric Camera
Calibration

This chapter addresses the problem of estimating the intrinsic and extrinsic parameters of a cam-
era, a process known as geometric camera calibration. We assume throughout that the camera
observes a set of features such as points or lines with known positions in some fixed world coor-
dinate system (Figure 3.1): In this context, camera calibration can be modeled as an optimization
process, where the discrepancy between the observed image features and their theoretical po-
sitions (as predicted by the perspective projection equations derived in chapter 2) is minimized
with respect to the camera’s intrinsic and extrinsic parameters.
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Figure 3;1 Camera calibration setup: In this example, the calibration rig is
formed by three grids drawn in orthogonal planes. Other patterns could be used
as well, and they may involve lines or other geometric figures.

38



Sec. 3.1 Least-Squares Parameter Estimation ' 39

We start with an overview of least-squares techniques aimed at solving this type of opti-

mization problems before presenting several linear and nonlinear approaches to calibration. Once

_ a camera has been calibrated, it is possible to associate with any image point a well-defined ray

passing through this point and the camera’s optical center as well as perform accurate three-

dimensional measurements from digitized pictures. An application to mobile robot localization
is briefly discussed at the end of the chapter.

3.1 LEAST-SQUARES PARAMETER ESTIMATION

As already mentioned, calibrating a camera amounts to estimating the intrinsic and extrinsic
parameters that minimize the mean-squared deviation from predicted to observed image features.
This section introduces a class of optimization techniques, known as least-squares methods, for
solving this kind of problem. They prove useful on several other occasions in the rest of this
book.

3.1.1 Linear Least-Squares Methods

Let us first consider a system of p linear equations in g unknowns:

unx) +upxy+-+ UlgXg = Y1

U1 X1 + UgpXp + -+ -+ UggXg = V2 = Ux =y. 3.1
Up1X1 +UpaXy + -+ UpgXg = Yp
In this equation,
' up up - Uy x1\ »
U=|¥1 ¥n Mg % and y= Y2
Upl Upy -+ Upg Xgq Yp

We know from linear algebra that (in general)

* when p < g, the set of solutions to this equation forms a (g — p)-dimensional vector
subspace of RY;

* when p = g, there is a unique solution; .

* when p > g, there is no solution.

This statement is true when the rank (i.e., the maximum number of independent rows or
columns) of U/ is maximal—that is, equal to min(p, g) (this is what we mean by in general).
When the rank is smaller than min(p, q), the existence of solutions to Eq. (3.1) depends on the
value of y and whether it belongs to the range of U (i.e., the subspace of R? spanned by its
columns).

Normal Equations and the Pseudoinverse The rest of this section focuses on the
overconstrained case p > g and assumes that /{ has maximal rank gq. Since there is no exact
solution in this case, we content ourselves with finding the vector x that. minimizes the error
measure

’ .
def
E= Z(uilxl o uigxg — yi)? = Ux —y|

i=1



Geometric Camera Calibration Chap. 3

E is proportional to the mean-squared error associated with the equations, hence the name
of least-squares methods given to techniques for minimizing it.

) def ..

Now, we can write E=e- e, where e = Ux — y. To find the vector x minimizing E, we
write that the derivatives of this error measure with respect to the coordinates x; i = 1,...,q)
of x must be zero—that is,

oFE de .

—=2——e=0 for i=1,...,q.

Bx,- axi
But if the columns of U are the vectors ¢; = (u1;, ... ,umj)T (j=1,...,q),wehave
ge _ 0 ! ? er+- o+ )
—_— = c e C e —_ = —(x1C .. X,Cp — =C;.
dx;  Ox; ! 1 %, Y 0x; ok a¢a ™Y

In particular, writing that E/dx; = 0 implies that ciT Ux — y) = 0, and stacking the
constraints associated with the g coordinates of x yields the normal equations associated with
our least-squares problem—that is,

0=1--- (z,{x_y)=uT(Z,{x—y)<=>L{TL(x=LITy.
T
cq ‘

When U/ has maximal rank ¢, the matrix UTU is easily shown to be invertible, and the
solution of the normal equations is x = Uty with " [ UTU)UT]. The g x q matrix U1 is
called the pseudoinverse of U. It coincides with /! when the matrix I is square and nonsingu-
lar. Linear least-squares problems can be solved without explicitly computing the pseudoinverse,
using, for example, QR decomposition or singular value decomposition (more on the latter in
chapter 12), which are known to be better behaved numerically.

Homogeneous Systems and Eigenvalue Problems Let us now consider a vari-
ant of our original problem, where we have again a system of p linear equations in ¢ unknowns,
but the vector y is zero—that is,

unxy +upxy + - +ugxy =0
f.t.z.lxl +upxy+ -t uyx, =0 — Ux = 0. 3.2)
Up1X1 + UppXy + -+ Upgxg =0

This is a homogeneous equation in x (i.e., if x is a solution, so is A x for any A 7 0). When
p = q and the matrix I/ is nonsingular, Eq. (3.2) admits as a unique solution x = 0. Conversely,
when p > g, nontrivial (i.e., nonzero) solutions may only exist when U is singular with rank
strictly smaller than g. In this context, minimizing E = |Ux|? only makes sense when some
additional constraint is imposed on x since the value x = 0 yields the zero global minimum of
E. By homogeneity, we have E(Ax) = A2E(x), and it is reasonable to choose the constraint
|x|?> = 1, which avoids the trivial solution and forces the uniqueness of the result.

The error E can be rewritten as |Ux|> = xT UTU)x. The g x g matrix UTU is by con-
struction symmetric positive semidefinite (i.e., its eigenvalues are all positive or zero), and it can
be diagonalized in an orthonormal basis of eigenvectors e; (i = 1, ..., q) associated with the
eigenvalues 0 < A; < --- < A,. Thus we can write any unit vector as X = u1e1 + -+ + [qg€q
with u? + - - + 2 = 1. In particular,
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E@)—E(er) =x" U Ux —ef UTUey = Mul + -+ M2u2 — 2%
=M@+ +pg - =0

It follows that the unit vector x minimizing E is the eigenvector e; associated with the min-
imum eigenvalue of 27U, and the corresponding minimum value of E is A2. Various methods
are available for computing the eigenvectors and eigenvalues of a symmetric matrix, including
Jacobi transformations and reduction to tridiagonal form followed by QR decomposition. Singu-
lar value decomposition can also be used to compute the eigenvectors and eigenvalues without
actually constructing the matrix UTU.

Before illustrating the use of homogeneous linear least-squares techniques with an
example, let us pause for a minute to consider the slightly more general problem of minimizing
|Ux|? under the constraint |Vx|?> = 1, where V is an r x ¢ matrix (this reduces to homogeneous
linear least squares when V = Id). A vector x and a scalar A such that

UTux = VT Vx

are called a generalized eigenvector and the corresponding generalized eigenvalue of the g X q
symmetric matrices Y71/ and VTV. As shown in the exercises, the solution of our constrained
optimization problem is precisely the unit generalized eigenvector associated with the minimum
generalized eigenvalue (which is in this case guaranteed to be positive or zero by construction).
As before, effective methods for computing the generalized eigenvectors and eigenvalues of a
pair of symmetric matrices are available.

Example 3.1 Fitting a line to points in a plane.

Consider n points p; (i = 1,...,n) in a plane, with coordinates (x;, y;) in some fixed coordinate
system (Figure 3.2). What is the straight line that best fits these points? To answer this question, we
must first quantify how well a line § fits a set of points or, equivalently, define some error function E
measuring the discrepancy between this line and the points. The best-fitting line can then be found
by minimizing E.

A reasonable choice for the error function is the mean-squared distance between the points and
the line (Figure 3.2). We saw in chapter 2 that the equation of a line with unit normal n = (a, b)T
lying at a distance d from the origin is ax + by = d. It is in fact easy to show that the perpendicular
distance between a point with coordinates (x, y)7 and this line is |ax + by — d|. We can therefore

Figure 3.2 The line that best fits n points in the plane can be defined as the line
& that minimizes the mean-squared perpendicular distance to these points (i.e., in
this diagram, the mean-squared length of the short parallel line segments joining
é to the points).
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use

E(a,b,d) =) (ax; +by; — d’

i=1

as our error measure, and the line-fitting problem reduces to the minimization of E with respect to
a, b, and d under the constraint a® + b*> = 1. Differentiating E with respect to d shows that, at a
minimum of this function, we must have 0 = dE/dd = —2 Z:;l (ax; + by; — d), thus

1 n 1 n
d = ax + by, h X = — ; and y=-— iy 33
ax +by, where x n;x, y n;y 3.3)

and the two scalars X and y are simply the coordinates of the center of mass of the input points.
Substituting this expression for d in the definition of E yields

n X1—% y-—Jy
E=)Y la(u -5 +b0i - 9P = Unf* where U= --. ... |,
i=1 Xn =X Yo=Y

and our original problem finally reduces to minimizing |[/{n|? with respect to r under the constraint
[n|> = 1. We recognize a homogeneous linear least-squares problem, whose solution is the unit
eigenvector associated with the minimum eigenvalue of the 2 x 2 matrix 47U. Once a and b have
been computed, the value of d is immediately obtained from Eq. (3.3). Note that LTI/ is easily shown
to be equal to

n

n
fo — nx? in yi —nxy
i1 i=1
n n
in)’i —nxy Z)’xz —ny*
i=1 i1

that is, the matrix of second moments of inertia of the points p;. In fact, the line best fitting these
points in the sense defined in this section is simply their axis of least inertia as defined in elementary
mechanics.

’

3.1.2 Nonlinear Least-Squares Methods

Let us now consider a general system of p equations in g unknowns:

Sfi(xy, xz, ... ,xq)=0
Sl 3 =00 g o, (3.4)
fp(xl,)C2,... ,xq)=0

Here, f; denotes, fori =1, ..., p, a (possibly nonlinear) differentiable function from R? to R,
and we take f = (f1,..., f)T andx = (x1, ..., x,)7. In general,

* when p < g, the solutions form a (¢ — p)-dimensional subset of RY;
* when p = g, there is a finite set of solutions;
* when p > g, there is no solution.

Let us emphasize the main differences with the linear case: In general, the dimension of
the solution set is still ¢ — p in the underconstrained case, but this set does not form a vector
space anymore. Its structure depends on the nature of the functions f;. Likewise, there is usually
a finite number of solutions instead of a unique one in the case p = g. A precise definition of
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the general conditions that a family of functions f; (i = 1,..., p) has to satisfy for the prior
statement to be true is unfortunately beyond the scope of this book.

There is no general method for finding all the solutions of Eq. (3.4) when p = g or for
finding the global minimum of the least-squares error

def 2 “ 2
E@ S If@lP =) ffe)
i=1

when p > g. Instead, we present next a number of iterative methods that linearize the problem
in hope of finding at least one suitable solution. They all rely on a first-order Taylor expansion of
the functions f; in the neighborhood of a point x:

af; afi
fi(x +68x) = f;(x) +3x15x£1(x) +e +5xq5£—(x) +0(8x*) ~ fi(x) + V f;(x) - 8x.
q

Here, V fi(x) = (3f;/9x1, ..., aﬁ/axq)T is the gradient of f; at the point x, and we have
neglected the second-order term O (|8x|?). It follows immediately that

fOe+8x) ~ f0x) + Tp(x)bx, (3.5)

where J¢(x) is the Jacobian of f—that is, the p x g matrix

i, o
o (V@ o ) P
Tfx) = .. =
VfT(x) afp afp
P 5x—l(x) E E(x)

Newton’s Method: Square Systems of Nonlinear Equations  As mentioned ear-
lier, Eq. (3.4) admits (in general) a finite number of solutions when p = ¢g. Although there is
no general method for finding all of these solutions when f is arbitrary, Eq. (3.5) can be used as
the basis for a simple iterative algorithm for finding one of these solutions: Given some current
estimate x of the solution, the idea is to compute a perturbation dx of this estimate such that
f(x + 8x) =~ 0, or, according to Eq. (3.5),

Jfx)ox = — f(x).

When the Jacobian is nonsingular, éx is easily found as the solution of this g x g system of linear
equations, and the process is repeated until convergence.

Newton’s method converges rapidly once close to a solution: It has a quadratic convergence
rate (i.e., the error at step k + 1 is proportional to the square of the error at step k). When started
far from a solution, Newton’s method as presented here may be unreliable. Various strategies can
be used to improve its robustness, but their discussion is beyond the scope of this book.

Newton’s Method: Overconstrained Systems of Nonlinear Equations When
D is greater than g, we seek a local minimum of the least-squares error E. Newton’s method can
be adapted to this case by noting that such a minimum is a zero of the error’s gradient. More
precisely, we introduce F(x) = %VE (x) and use Newton’s method to find the desired minimum
as a solution of the g x g system of nonlinear equations F(x) = 0. Differentiating E shows that

FO) = TF @ @), 3.6)



44

Geometric Camera Calibration Chap. 3

and differentiating this expression shows in turn that the Jacobian of F is

P
Tr () = Tf T @) + Y iH; (). 37
i=1
In this equation, H f, (x) denotes the Hessian of f;—that is, the g x g matrix of second derivatives
3 f; 3 f;
'5;%'(35) " B )
Hyx) & Nt
3 f; 3°fi
B, ) - qu(x)
The term 8x in Newton’s method satisfies Jr(x)dx = —F(x). Equivalently, combining

Eqgs. (3.6) and (3.7) shows that 8x is the solution of

p
[Jf @I + Y LM, (x)] sx = T () f(0). (3.8)
i=1

The Gauss—Newton and Levenberg—Marquardt Algorithms Newton’s method
requires computing the Hessians of the functions f;, which may be difficult and/or expensive. We
discuss here two other approaches to nonlinear least-squares that do not involve the Hessians. Let
us first consider the Gauss—-Newton algorithm: In this approach, we use again a first-order Taylor
expansion of f to minimize E, but this time we seek the value of éx that minimizes E (x + 8x)
for a given value of x. Substituting Eq. (3.5) into Eq. (3.4) yields

E(x +8x) = | f(x + 8x) > ~ | f(x) + Tf(x)éx|*.

At this point, we are back in the linear least-squares setting, and the adjustment 5x can be
computed as the solution of J} (x)8x = — f(x) or, equivalently, according to the definition of the
pseudoinverse,

JIf 0 Tr®)sx = —Jf x) f(x). (3.9

Comparing Egs. (3.8) and (3.9), we see that the Gauss—Newton algorithm can be thought
of as an approximation of Newton’s method where the term involving the Hessians H, has
been neglected. This is justified when the values of the functions f; at a solution (the residuals)
are small since the matrices H s, are multiplied by these residuals in Eq. (3.8). In this case, the
performance of the Gauss—Newton algorithm is comparable to that of Newton’s method, with
(nearly) quadratic convergence close to a solution. When the residuals at the solution are too
large, however, it may converge slowly or not at all.

When Eq. (3.9) is replaced by

[T} @) T () + pldléx = —J7 ) f(x), (3.10)

where the parameter u is allowed to vary at each iteration, we obtain the Leévenberg-Marquardt
algorithm, popular in computer vision circles. This is another variant of Newton’s method where
the term involving the Hessians is this time approximated by a multiple of the identity matrix.
The Levenberg—Marqardt algorithm has convergence properties comparable to its Gauss—Newton
cousin, but it is more robust: For example, unlike that algorithm, it can be used when the Jacobian
J f does not have maximal rank and its pseudoinverse does not exist.
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3.2 ALINEAR APPROACH TO CAMERA CALIBRATION

It is now time to go back to geometric camera calibration. We assume in this section that a calibra-
tion rig is observed by a camera and that the image positions (u;, v;) of n points P, (i = 1, ... ,n)
with known homogeneous coordinate vectors P; have been found in a picture of the rig, either
automatically or by hand. We decompose the calibration process into (a) the computation of the
perspective projection matrix M associated with the camera in this coordinate system, followed
by (b) the estimation of the intrinsic and extrinsic parameters of the camera from this matrix.
Degenerate point configurations for which the first step of this process may fail are identified in
Section 3.2.3. As shown shortly, writing that the points p; are the perspective images of the points
P; imposes a set of n linear constraints on the 11 independent coefficients of the corresponding
projection matrix. When n > 11, these equations generally do not admit a common root, but the
techniques introduced in Section 3.1.1 can be used to effectively construct their solution in the
least-squares sense.

3.2.1 Estimation of the Projection Matrix

Let us assume that our camera has nonzero skew. According to Theorem 1 from chapter 2, the
matrix M is not singular, but otherwise arbitrary. Clearing the denominators in the perspective
projection Eq. (2.16) yields

(my — uim3) - P =0,
(mz - U,'”l3) -P=0.

Collecting the constraints associated with our n points yields a system of 2n homogeneous linear
equations in the twelve coefficients of the matrix M-—namely, Pm = 0, where

P{ 0T —MIP{

w0 P P w [™
P = and m=|m;|=0.
T o T
P, 0 —unP, ms

o’ P,l: -—-v,,PZ:

When n > 6, homogeneous linear least-squares can be used to compute the value of the
unit vector m (hence the matrix M) that minimizes |Pm|? as the solution of an eigenvalue prob-
lem.

3.2.2 Estimation of the Intrinsic and Extrinsic Parameters

Once the projection matrix M has been estimated, its expression in terms of the camera intrinsic
and extrinsic parameters (Eq. [2.17] in chapter 2) can be used to recover these parameters as
follows: We write as before M = (A b), with al, aZ, and af denoting the rows of A. We
obtain

arl —acotfrl + ugr?

T
a;

oA B)=k(R )=old|=| Littwl |
al T

where p is an unknown scale factor introduced here to account for the fact that the recovered
matrix M has unit Frobenius form since M| = [m| = 1.
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In particular, using the fact that the rows of a rotation matrix have unit length and are
perpendicular to each other yields immediately

e =¢/las,

r3 = pas,

uo = p*(ar - as),
vo = p*(ay - a3),

where & = Fl. (3.11)

Since 0 is always in the neighborhood of /2 with a positive sine, we have

p%(ay X a3) = —ar, — acotfry, plla; x as| = I.O!_l’

sin @
s xa) = B and M (3.12)

228 = ing & p3lay x az] = —.

sin 6

Thus,
- (ay x
cos9=—(a1 X a3) - (az X a3)

la; X asllay x a3| ’
o = p?la; x as|siné,
B = p*la; x a3|sin6,

(3.13)

since the sign of the magnification parameters « and 8 is normally known in advance and can be
taken to be positive.
We can now compute r; and r, from the second part of Eq. (3.12) as

2 .
__ p~sinb _ 1
r = —B——(az X az) = m(az X as), (3.14)
rp =r3 Xri.

N
Note that there are two possible choices for the matrix R depending on the value of &.
The translation parameters can now be recovered by writing Kt = pb, and hence t = pK~'b.
In practical situations, the sign of t, is often known in advance (this corresponds to knowing
whether the origin of the world coordinate system is in front or behind the camera), which allows
the choice of a unique solution for the calibration parameters.

3.2.3 Degenerate Point Configurations

We now examine the degenerate configurations of the points P; (i = 1, ..., n) that may cause
the failure of the camera calibration process. We focus on the (ideal) case where the data points
p; (i =1,...,n) can be measured with zero error, and we identify the nullspace of the matrix
P (i.e., the subspace of R'? formed by the vectors I such that PI = 0).

Let I be such a vector. Introducing the vectors formed by successive quadruples of its
coordinates (i.e., A = (I1, I, I, 1), p = (s, ls, 17, 1g) T, and v = (lg, L10, l11, [12)T) allows us to
write

PT o7 —u P! PIX —uPlv
o Pl —uPT| /X PTy—vPly

0=Pl=|... ... pl= i (3.15)
PT o7 —u,PT|\v PIX\ —u,PTv

of pT —v,,Pf; P,{ m— vnP,{ v

n
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Combining Eqgs. (2.16) and (3.15) yields

T .
PiTA—T—IT—%—PiTV=O,
m3T, for i=1,...,n.

m .
Ply— —=2LPTy=0,
P 1 mip,

After clearing the denominators and rearranging the terms, we finally obtain

{ Pl (Am} —mvT)P; =0,

P (uml —mpT)P, =0, O =L (3.16)

As expected, the vector [ associated with A = m;, u = my, and v = m3 is a solution of
these equations. Are there other solutions?

Let us first consider the case where the points P; (( = 1,...,n) all lie in some plane
IT—that is, according to Eq. (2.2), IT - P; = O for some 4-vector II. Clearly, choosing (A, y, v)
equal to (II, 0, 0), (0,11, 0), or (0,0, II), or any linear combination of these vectors yields a
solution of Eq. (3.16). In other words, the nullspace of P contains the four-dimensional vector
space spanned by these vectors and m. In practice, this means that the fiducial points P; should
not all lie in the same plane.

In general, for a given nonzero value of the vector [/, the points P; that satisfy Eq. (3.16)
must lie on the curve where the two quadric surfaces defined by the corresponding equations
intersect. A closer look at Eq. (3.16) reveals that the straight line where the planes defined by
m3-P = 0 and v-P = O intersect lies on both quadrics. It can be shown that the intersection curve
of these two surfaces consists of this line and a twisted cubic curve I" passing through the origin.
A twisted cubic is entirely determined by six points lying on it, and it follows that seven points
chosen at random do not fall on I'. Since this curve passes through the origin, choosing n > 6
random points generally guarantees that the matrix P has rank 11 and the projection matrix can
be recovered in a unique fashion.

3.3 TAKING RADIAL DISTORTION INTO ACCOUNT

We have assumed so far that our camera is equipped with a perfect lens. As shown in chapter 1,
real lenses suffer from a number of aberrations. In this section, we show how to account for radial
distortion, a type of aberration that depends on the distance separating the optical axis from the
point of interest. We assume that the image center is known so that we can take ug = vp = 0 and

model the projection process as
1 (1/» 0 0
rp=-10 1/» 0|MP, 3.17)

Z\o o0 1

where A is a polynomial function of the squared distance d? between the image center and the
image point p. In most applications, it is sufficient to use a low-degree polynomial (e.g., A = 1+

7 1 Kpd??, with g < 3) and the distortion coefficients k, (p = 1, ... , q) are normally assumed
to be small. Note that d? is naturally expressed in terms of the normalized image coordinates of
the point p (i.e., d*> = @? + 92). Substituting uy = 0 and vy = 0 in Eq. (2.13) allows us, after
some algebraic manipulation, to rewrite d2 as a function of # and v instead—namely,

u2 v2 uv

2
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Using Eq. (3.18) to write A as an explicit function of u and v in Eq. (3.17) yields highly
nonlinear constraints on the g + 11 camera parameters. Although these parameters in principle
can all be found using the general nonlinear least-squares techniques introduced in the next sec-
tion, we prefer here a two-stage approach tailored to the calibration problem: Eliminating A from
Eq. (3.17) first allows us to use linear least squares to estimate nine of the camera parameters.
The q+2 remaining ones are then computed from Eqs. (3.17) and (3.18) by a simple nonlinear
process.

3.3.1 Estimation of the Projection Matrix

Geometrically, radial distortion changes the distance between the image center and the image
point p, but it does not affect the direction of the vector joining these two points. This is the
radial alignment constraint introduced by Tsai (1987a), and it can be expressed algebraically by
writing

m -P
P
A(:) - zz p | = v -P)—u(m;-P)=0. (3.19)

m3-P

Given 7 fiducial points, we obtain n linear equations in the eight coefficients of the vectors
m; and m,—namely,

def

v Pt —uPT
On=0, where Q= .

m
and n= (ml). (3.20)
v,PT  —u,PT 2

Note the similarity with the previous case. When n > 8, this system of equations is in
general overconstrained, and a solution with unit norm can be found using linear least squares.

3.3.2 Estimation of the Intrinsic and Extrinsic Parameters

Once m; and m; have been estimated, we can define as before the corresponding values of a1, a»
and write

=| s

T T T
(alT) ar; —acotfr; + uor;
sin 6

al rl + vor]
Calculating the norm and dot product of the vectors a; and a, immediately yields the aspect
ratio and the skew of the camera as

a a-a
B_lal 4 coso=_21% (3.21)
a ai la1|las]

Using the fact that rg is the second row of a rotation matrix, and thus has unit norm, now
yields

o =¢gpla;|sinf and B = eplay|sinb, (3.22)

where, as before, ¢ = F1. After some simple algebraic manipulation, we obtain
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. e 1 a + cos@a
' i \ag T Tlaal )

rn=—a
27

Using these equations and r3 = r; x r, allows us to recover the rotation matrix R up to a
twofold ambiguity. Two of the translation parameters can also be recovered by writing

at, — o cotft, b
ﬂ t =p (b;)’
sing

where by and b, are the first two coordinates of the vector b, which in turn allows us to compute

these parameters f, and ¢, as
€ by b, cos 6
tx - — T + T ’
sin6€ \ |a;] |az|

8b2

t, = —=.
77 ay

Without further constraints, it is impossible to recover ¢, and the absolute scale of the
magnification parameters, or equivalently, the value of p, from the values of m; and m; only.
To estimate these parameters, it is necessary to go back to the original projection equations: We
rewrite the left side of Eq. (3.19) as

(my — Avms) -P =0, (3.23)

[ (m1 — )\,uM3) -P =0,
Here m; and m; are known and, according to Eq. (2.17),m} = (r] t,), where r; is also known.
Now, combining the expression for d? given in Eq. (3.18) with the expressions for o, 8, and cos 6
given in Eqgs. (3.21) and (3.22) yields

po L luaz— va; |
P lay x @)

and substituting this value in Eq. (3.23) yields a nonlinear equation in p, ¢,, and the distortion
parameters k, (p = 1, ..., g). Given enough data points, the nonlinear least-squares techniques
that have been presented in Section 3.1.2 can be used to solve for these parameters. These meth-
ods are iterative and require initial guesses for all unknowns. Here, a reasonable estimate for p
and ¢, can be found using linear least squares by first assuming that A = 1. Likewise, zero values
are reasonable initial guesses for the distortion parameters. As before, the twofold ambiguity can
be resolved when the sign of ¢, is known in advance.

3.3.3 Degenerate Point Configurations
Let us determine the degenerate point configurations for which the vectors m; and m, cannot be

uniquely determined. Given a vector [ in the nullspace, we define the vectors A = (1, Iz, I3, l4)”
and pu = (Is, I, I7, Ig)T and write

viP{  —uiP{ A viPTA — Pl
o=or=| .. .. ()

vnPZ: —-u,,P,{ vnPf A— unP,{ n
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Taking into account the values of u; and v;, rearranging the terms, and clearing the denom-
inators yields

Pl mAT —mip")P; =0 for i=1,...,n. (3.24)

The vector I associated with A = m; and 4 = m; is of course a solution of these
equations (in the noise-free case; i.e., when all image positions are exact). When the points P;
(i =1,...,n) all lie in some plane IT or, equivalently, II - P; = 0 for some 4-vector II, we can
choose (A, p) equal to (I1, 0), (0, IT), or any linear combination of these two vectors, and con-
struct a solution of Eq. (3.24). The nullspace of Q contains the three-dimensional vector space
spanned by these vectors and /. Thus, as before, points that all lie in the same plane cannot be
used in this calibration method. }

More generally, for a given value of XA and u, the points P; form a degenerate configuration
when they lie on the quadric surface defined by Eq. (3.24). Note that this surface contains the
four straight lines definedby AP = p-P=0,A-P=m -P=0,p-P=my-P =0
and m; - P = m;, - P = 0. Therefore, it must consist of two planes or be a cone, hyperboloid of
one sheet, or hyperbolic paraboloid. In any case, for a large enough number of points in general
position, our least-squares problem admits a unique solution.

3.4 ANALYTICAL PHOTOGRAMMETRY

The techniques presented so far ignore some of the constraints associated with the calibration
process. For example, the camera skew was assumed to be arbitrary instead of (very close to) zero
in Section 3.2. We present in this section a nonlinear approach to camera calibration that takes
into account all the relevant constraints. This approach is borrowed from photogrammetry—
an engineering field whose aim is to recover quantitative geometric information from one or
several pictures, with applications in cartography, military intelligence, city planning, and so on.
For many years, photogrammetry relied on a combination of geometric, optical, and mechanical
methods to recover three-dimensional information from pictures, but the advent of computers in
the 1950s has made a purely computational approach to this problem feasible. This is the domain
of analytical photogrammetry, where the intrinsic parameters of a camera define its interior
orientation, and the extrinsic parameters define its exterior orientation.

In this setting, we assume once again that we observe n fiducial points P; ({ = 1, ... ,n)
whose positions in some world coordinate system are known, and we minimize the mean-squared
distance between the measured positions (u;, v;) of their images and the positions (#;, 7;) pre-
dicted by the perspective projection equation with respect to a vector of camera parameters
E=(¢,..., Sq)T (g = 11) that may include various distortion coefficients in addition to the
usual intrinsic and extrinsic parameters. The least-squares error can be written as

E@©) =Y [ —u)* + @& — v,
i=1

where

oS MO P e m© P
m3(§) - P; m3(§) - P;

Contrary to the cases studied so far, the dependency of each error term on the unknown
parameters £ is not linear. Instead, it involves a combination of polynomial and trigonomet-
ric functions, and minimizing the overall error measure involves the use of the nonlinear least
squares algorithms discussed in Section 3.1.2. To follow the notation introduced in that section,
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we rewrite our error function as

2n ~
_ 2 _ 2 f2i-1(€) = ;(€) — u; .
E® =f®]= j;fj (&), where [fz,-(s) — 5 v fori=1,...,n.

The Gauss—Newton and Levenberg-Marquard techniques described in Section 3.1.2 re-
quire the gradient of the functions f;, and Newton’s method requires both their gradient and
Hessian. Here we only calculate the gradient or, equivalently, the Jacobian of f. Let us drop the
£ argument for conciseness and define X; =m;-P;,y; =my-P;and Z; =m3-P; (i = 1,... ,n),
soU; = X;/Z; and U; = y;/7Z;. We have

e =i B =z (G Py =g ).
2—?]—? = g—; - zlgg—] - gf—g—% - -Zl— (gz—j(mrz’i)—ﬁ,-a%(mafi)),
which is easily rewritten as
At 1 /pT of T
i |22 & Sp)m
0§;

where m is as before the vector of R!? associated with M, and Jp, denotes its Jacobian with
respect to €. We finally obtain the Jacobian of f as

. 3
—pT o7 _Ilpr
71 21
. ¢
o7 —pr _2tpT
21 21
Jf= v |NTIm
1 i
—pPT o —ZpT
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1 3
of _—pf _ZpT
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In this expression, &;, U;, Z;, and P; depend on the point considered, but Jz; only depends
on the intrinsic and extrinsic parameters of the camera. Note that this method requires an explicit
parameterization of the matrix R. Such a parameterization in terms of three elementary rotations
about coordinate axes was mentioned in chapter 2. Many other parameterizations can be used as
well (see Exercises and chapter 21).

3.5 AN APPLICATION: MOBILE ROBOT LOCALIZATION

The calibration methods presented in this chapter can be used in a variety of applications, from
metrology to stereo vision and object localization in robotic tasks. Here we briefly describe the
nonlinear approach to camera calibration proposed by Devy et al. (1997) and its application
to mobile robot localization. Unlike the techniques discussed so far, this method uses several
images (up to 20 in the experiments presented here) of a planar rectangular grid to calibrate a
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Figure 3.3 Calibration experiments. Left: One of the 20 input pictures; note
the strong radial distortion. Note the mobile robot at the top of the photograph
with its characteristic LED pattern. Right: Average and maximum reprojections
errors (in pixels) in the 20 images. Calibration and localization software courtesy
of Michel Devy. Experiments courtesy of Fred Rothganger.

static camera (Figure 3.3). One of these pictures is taken with the grid lying on the ground, and
it is used to define the world coordinate system. After a rough manual localization, the corners
of the grid are found in each picture with a precision of 1/10 pixel using a parametric model of
the gray-level surface in the neighborhood of a corner.

The imaging geometry is modeled as in Section 3.3, with three radial distortion coeffi-
cients and zero skew. The calibration algorithm recovers a single set of intrinsic parameters,
and one set of extrinsic parameters per input image. An initial guess for the intrinsic parame-
ters can be obtained from information supplied by the camera and frame-grabber manufacturers.
An initial guess for the extrinsic parameters can be obtained for each image using a variant of
Tsai’s (1987a) algorithm. Briefly, the projection matrix is estimated via linear least squares by
choosing the z coordinate axis of the world reference frame perpendicular to the calibration grid.
Accordingly, Eq. (3.20) now becomes

vixy V11 U1 Tuixp —upyr U
Q/nlz(), where Q/_—_
UnXn  UnYn Un —UnpXp —UIYn —Up

and n’ = (myy1, mi2, Mya, Ma1, Map, Mas)T .

Note that explicitly imposing that z; = 0 avoids the degeneracies encountered by the previ-
ously discussed algorithms for coplanar points. Once n’ is known, since the intrinsic parameters
are assumed to be (roughly) known, it is a simple matter to compute the extrinsic parameters (see
Exercises). Once initial guesses for both the intrinsic and extrinsic parameters are available, non-
linear optimization (in this case, the Levenberg—Marquardt algorithm) can be used to minimize
as usual the mean-squared distance between predicted and observed image features.

Figure 3.3 shows the result of experiments conducted with a 576 x 768 camera equipped
with a 4.5 mm lens and plots the errors found when reprojecting the corners of the calibration
grid model into the 20 images. Once the camera has been calibrated, it can be used to monitor
the position and orientation of mobile robots in the coordinate system attached to the ground
reference image. Each robot carries an array of infrared LEDs forming a distinctive pattern (Fig-
ure 3.3). During localization experiments, the camera is equipped with an infrared filter that
effectively blocks out all incoming light except for that from the LEDs. Each robot is identified
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using a simple pattern matching algorithm, and its position and orientation are deduced from the
image position of the LEDs and the camera parameters. With the camera mounted 4 m above the
ground, typical localization errors within the entire field of view of the camera are below 2 cm in
position and 1° in orientation, with maximum errors that may reach 5 cm and 5°.

The linear calibration technique described in Section 3.2 is detailed in Faugeras (1993). Its
variant that takes radial distortion into account is adapted from Tsai (1987a). Haralick and
Shapiro (1992) present a concise introduction to analytical photogrammetry. The Manual of Pho-
togrammetry is of course the gold standard, and newcomers (such as the authors of this book)
will probably find the ingenious mechanisms and rigorous methods described in its various edi-
tions fascinating (Thompson et al., 1966, Slama et al., 1980). We come back to photogrammetry
in the context of multiple images in chapter 10. General optimization techniques are discussed in
Luenberger (1985), Bertsekas (1995), and Heath (2002), for example. An excellent survey and
discussion of least-squares methods in the context of analytical photogrammetry can be found
in Triggs et al. (2000). The output of least-squares methods admits a statistical interpretation
in maximum-likelihood terms when the coordinates of the data points are modeled as random
variables obeying a normal distribution. We come back to this interpretation in chapter 15, where
we also revisit the problem of fitting a straight line to a set of points in the plane.

3.1. Show that the vector x that minimizes |I{x|?> under the constraint [Vx|> = 1 is the unit generalized
eigenvector associated with the minimum generalized eigenvalue of the symmetric matrices 27U and
VTy.

Hint: This problem is equivalent to minimizing (without constraints) the error E = |Ux|?/|Vx|?
with respect to x.

3.2. Show that the 2 x 2 matrix UTU involved in the line-fitting example from Section 3.1.1 is the matrix

of second moments of inertia of the points p; ( =1, ... ,n).

3.3. Extend the line-fitting method presented in Section 3.1.1 to the problem of fitting a plane to n points
in E3.

3.4. Derive an expression for the Hessian of the functions f,;_1(§) = %;(§) — u; and f5;(§) = 1;(§) — v
(i =1, ..., n)introduced in Section 3.4.

3.5. Euler angles. Show that the rotation obtained by first rotating about the z axis of some coordinate
frame by an angle «, then rotating about the y axis of the new coordinate frame by an angle 8 and
finally rotating about the z axis of the resulting frame by an angle y can be represented in the original
coordinate system by

cosacosBcosy —sinasiny —cosacosfsiny —sinwcosy cosasinf
sinacosBcosy +cosasiny —sinacosfBsiny +cosacosy sinasingf
—sinfBcosy sin Bsiny cos 8

3.6. The Rodrigues formula. Consider a rotation R of angle 6 about the axis  (a unit vector). Show that
Rx =cosbx +sinfu x x+ (1 —cos0)(u - x)u.
Hint: A rotation does not change the projection of a vector x onto the direction u of its axis and
applies a planar rotation of angle 6 to the projection of x into the plane orthogonal to u.
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3.7. Use the Rodrigues formula to show that the matrix associated with R is

Wl —c)+c wv(d—-c)—ws uw(l—c)+uvs
wl—c)+ws VA-c)+c vwld —c)—us
uw(l—c)—vs vw(d—c)+us w?(l—c)+c

where ¢ = cos@ and s = sin6.
3.8. Assuming that the intrinsic parameters of a camera are known, show how to compute its extrinsic
parameters once the vector n’ defined in Section 3.5 is known.
Hint: Use the fact that the rows of a rotation matrix have unit norm.
3.9. Assume that » fiducial lines with known Pliicker coordinates are observed by a camera.
(a) Show that the line projection matrix M introduced in the exercises of chapter 2 can be recovered
using linear least squares whenn > 9.
(b) Show that once M is known, the projection matrix M can also be recovered using linear least
squares.
Hint: Consider the rows m; of M as the coordinate vectors of three planes I1; and the rows
m; of M as the coordinate vectors of three lines, and use the incidence relationships between
these planes and these lines to derive linear constraints on the vectors m,;.

Programming Assignments

3.10. Use linear least-squares to fit a plane to z points (x;, ¥;,z:)T (i =1,... ,n)in R,

3.11. Use linear least-squares to fit a conic section defined by ax? + bxy + cy* +dx +ey+ f =0ton
points (x;, y)T (i =1,...,n)inR2,

3.12. Implement the linear calibration algorithm presented in Section 3.2.

3.13. Implement the calibration algorithm that takes into account radial distortion and that was presented in
Section 3.3.

3.14. Implement the nonlinear calibration algorithm from Section 3.4.



