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Geometric Camera Models

The fundamental laws of perspective projection were introduced in Chapter 1 in a camera-
centered coordinate system. This chapter introduces the analytical machinery necessary to es-
tablish quantitative constraints between image measurements and the position and orientation
of geometric figures measured in some arbitrary external coordinate system. We start by briefly
recalling elementary notions of analytical Euclidean geometry, including homogeneous coordi-
nates and matrix representations of geometric transformations. We then introduce the various
physical parameters (the so-called intrinsic and extrinsic parameters) that relate the world and
the camera coordinate frames and derive the general form of the perspective projection equation
in this setting. We conclude with a brief presentation of affine models of the imaging process,
that approximate pinhole perspective projection for distant objects, and include the orthographic
and weak-perspective models briefly discussed in Chapter 1.

2.1 ELEMENTS OF ANALYTICAL EUCLIDEAN GEOMETRY

We assume that the reader has some familiarity with elementary Euclidean geometry and linear
algebra. This section discusses useful analytical concepts such as coordinate systems, homoge-
neous coordinates, rotation matrices, and the like.

2.1.1 Coordinate Systems and Homogeneous Coordinates

We already used three-dimensional coordinate systems in chapter 1. This section introduces them
a bit more formally. We assume throughout a fixed system of units, say meters or inches, so unit
length is well defined.
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Figure 2.1 A right-handed coordinate system and the coordinates x, y, and z
of a point P.

Picking a point O in the physical three-dimensional Euclidean space E* and three unit
vectors i, j, and k orthogonal to each other defines an orthonormal coordinate frame (F) as the
quadruple (O, i, j, k). The point O is the origin of the coordinate system (F), and i, j, and k
are its basis vectors. We restrict our attention to right-handed coordinate systems, such that the
vectors i, j and k can be thought of as being attached to fingers of your right hand, with the thumb
pointing up, index pointing straight, and middle finger pointing left as shown in Figure 2.1.!

The coordinates x, y, and z of a point P in this coordinate frame are defined as the (signed)
lengths of the orthogonal projections of the vector OP onto the vectors i, j, and k (right side of
Figure 2.1), with

x=(—)76-i
y=_0_13~j c:ﬁzxi+yj+zk.

:=0P -k
The column vector
x
P=|y]|eR?
z

is called the coordinate vector of the point P in (F). We can also define the coordinate vector
associated with any free vector v by the lengths of its projections onto the basis vectors of (F),
and these coordinates are of course independent of the choice of the origin O. Let us now con-
sider a plane I1, an arbitrary point A in IT, and a unit vector # perpendicular to the plane. The
points lying in IT are characterized by

AP -n=0.

In a coordinate system (F), where the coordinates of the po’ﬂt) P are x, y, and z and the
coordinates of n are a, b, and c, this can be rewritten as OP - n—0A -n= 0, or

!This is the traditional way of defining right-handed coordinate systems. One of the authors, who is left-handed,
has always found it a bit confusing and prefers to identify these coordinate systems using the fact that when one looks
down the k axis at the (7, j) plane, the vector i is mapped onto the vector j by a counterclockwise 90° rotation (Figure 2.1).
Left-handed coordinate systems correspond to clockwise rotations. Left- and right-handed readers alike may find this
characterization useful as well.
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ax+by+cz—d=0, @D

where d & 04 - n is independent of the choice of the point A in IT and is simply the (signed)
distance between the origin O and the plane IT (Figure 2.2).

(0]

Figure 2.2 The geometric definition of the equation of a plane. The distance d
between the origin and plane is reached at the point H where the normal vector
passing through the origin pierces the plane.

At times, it is useful to use homogeneous coordinates to represent points, vectors, and
planes. We formally justify their definition later in this book when we introduce affine and pro-
jective geometry in chapters 12 and 13, but for the time being let us note that Eq. (2.1) can be
rewritten as '

(aa b’ c, —d)

— N < X
I
L

or, more concisely, as

H-P:O, where IIdéf and Pti—-‘if

—d

2.2)

[SYEN SR
— N X

The vector P is called the homogeneous coordinate vector of the point P in the coordinate
system (F), and it is simply obtained by adding a fourth coordinate equal to 1 to the ordinary
coordinate vector of P. Likewise, the vector II is the vector of homogeneous coordinates of the
plane IT in the coordinate frame (F), and Eq. (2.2) is called the equation of IT in that coordinate
system. Note that II is only defined up to scale since multiplying this vector by any nonzero
constant does not change the solutions of Eq. (2.2). We use the convention that homogeneous
coordinates are only defined up to scale, whether they represent points or planes (this may appear
a bit counterintuitive for points, but it is fully justified in chapter 13). To go back to the ordinary
nonhomogeneous coordinates of points, one just divides all coordinates by the fourth one.

Before proceeding, let us point out that, although our presentation focuses on three-
dimensional Euclidean geometry in this chapter, the concepts discussed throughout also apply
to planar geometry: A coordinate frame (F) is defined in the plane by its origin o and a right-
handed orthonormal basis (i, j); the coordinates of the point p in this frame are x = 0p - i and
y = 0p - j, and homogeneous coordinates can be defined as well; in particular, the equation of a
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line § in the plane is

a
ax+by—d=0<=6-p=0, where §=| b |and p=
—d

—_—<

and a, b, and d denote, respectively, the coordinates to the unit normal to § in (F) and the signed
distance from o to §.

Let us go back to three-dimensional geometry and show that homogeneous coordinates
can be used to describe more complex geometric figures than points and planes.? Consider, for
example, a sphere S of radius R centered at the origin. A necessary and sufficient condition for
the point P with coordinates x, y, and z to belong to S is of course that

x24+y 472 =R?,

which is equivalent to

1 00 O X
01 0 O

T b
00 0 —R? 1

More generally, a quadric surface is the locus of the points P whose coordinates satisfy
the equation

2 2 2
ax00x” + ajoxy + anoy” + aonyz + aon2z” + a101xz + aiox + ao10y + @001z + agoo = 0,

and it is straightforward to check that this condition is equivalent to
1 1 1
a0 34110 34101 54100
1 1 1
74110 Q020 34011 34010
PTOP=0, where Q= |2 | 2% %0 2.3)
34101 34011 Qooz 34001
1
24100 %aow %61001 ao00
In this equation, P denotes the homogeneous coordinate vector of P. Note that Q is a 4 x 4
symmetric matrix and, like the parameters a; i, it is only defined up to scale.

2.1.2 Coordinate System Changes and Rigid Transformations

When several different coordinate systems are considered at the same time, it is convenient to
follow Craig (1989) and denote by ¥ P (resp. Fv) the coordinate vector of the point P (resp.
vector v) in the frame (F)—that is,

X
Fp=FOoP=|y| < 0P =xi+yj+zk
Z

Although the superscripts and subscripts preceding points, vectors, and matrices in Craig’s
notation may be awkward at first, the rest of this section clearly demonstrates their conve-
nience. Let us now consider two coordinate systems: (A) = (Oa,ia,jy,ka) and (B) =
(OB, i, jg, kg). The rest of this section shows how to express B P as a function of 4 P. Let us

2The inquisitive reader may be wondering about lines in E*. A line can of course be defined as the intersection of
two planes. More generally, lines in E* can be defined in terms of Pliicker coordinates, see Exercises.
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Figure 2.3 Change of coordinates between two frames: pure translation.

suppose first that the basis vectors of both coordinate systems are parallel to each other (i.e.,
iy =ip, j4, = jp and k4 = kp), but the origins O4 and Op are distinct (Figure 2.3).

We say in this case that the two coordinate systems are separated by a pure translation, and
we have Og P = O 04 + O4 P, thus

Bp—=4p4180,.

When the origins of the two frames coincide (i.e., O4 = Op = O), we say that the frames
are separated by a pure rotation (Figure 2.4). Let us define the rotation matrix ER as the 3 x 3
array of numbers

ix-ip Ja-ip ka-ip

is-jp JaJp ka-jp
is-kp Jjao-kp ka-kp

By def
AR =

ip

Figure 2.4 Change of coordinates between two frames: pure rotation.
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Note that the first column of ﬁ’R, is formed by the coordinates of i in the basis (iz, jg, kp).
Likewise, the third row of this matrix is formed by the coordinates of k5 in the basis (i4, Jarka),
and so on. More generally, the matrix 2R can be written in a more compact fashion using a
combination of three column vectors or three row vectors:

ip
ﬁR_:(BiA BjA BkA)= AjBT
AkBT

It follows that 4R = 3R

As noted earlier, all these subscripts and superscripts may be somewhat confusing at first.
To keep everything straight, it is useful to remember that, in a change of coordinates, subscripts
refer to the object being described, whereas superscripts refer to the coordinate system in which
the object is described. For example, 4 P refers to the coordinate vector of the point P in the
frame (A), B j, is the coordinate vector of the vector J 4 in the frame (B), and ﬁ’R is the rotation
matrix describing the frame (A) in the coordinate system (B).

Let us give an example of pure rotation: Suppose that k4 = kp = k, and denote by 6 the
angle such that the vector i is obtained by applying to the vector i, a counterclockwise rotation
of angle 6 about k (Figure 2.5). The angle between the vectors j, and j p 1s also 6 in this case,

and we have
cosd sinf O
BR=|-sin6 cos® 0 (2.4)
0 0 1

Figure 2.5 Two coordinate frames separated by a rotation of angle 6 about
their common k basis vector. As shown in the right of the figure, i, = cig —s Js
and j, = sip + cjg, where ¢ = cos @ and s = sin6.

Similar formulas can be written when the two coordinate systems are deduced from each
other via rotations about the i4 or j, axes (see Exercises). In general, it can be shown that any
rotation matrix can be written as the product of three elementary rotations about the i, j, and k
vectors of some coordinate system.

Let us go back to characterizing the change of coordinates associated with an arbitrary
rotation matrix. Writing
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B

Ay X
0P =(ia jo k|2 | =z Jjs ks)|®y
Az By

in the frame (B) yields immediately
Bp=ERAP,

since the rotation matrix gR is obviously the identity. Note how the subscript matches the fol-
lowing superscript. This property remains true for more general coordinate changes, and it can
be used after some practice to reconstruct the corresponding formulas without calculations.

It is easy to show (see Exercises) that rotation matrices are characterized by the following
properties: (1) the inverse of a rotation matrix is equal to its transpose, and (2) its determinant is
equal to 1. By definition, the columns of a rotation matrix form a right-handed orthonormal coor-
dinate system. It follows from Properties (1) and (2) that their rows also form such a coordinate
system.

It should be noted that the set of rotation matrices, equipped with the matrix product,
forms a group, that is, (a) the product of two rotation matrices is also a rotation matrix (this is
intuitively obvious and easily verified analytically); (b) the matrix product is associative—that
is, (RRHR" = R(R'R”) for any rotation matrices R, R’ and R”; (c) there is a unit element,
the 3 x 3 identity matrix Id, that is indeed a rotation matrix and verifies RId = IdR = R for
any rotation matrix R; and (d) every rotation matrix R admits an inverse R~! = RT such that
RR! = R-I'R = Id. This group is not, however, commutative (i.e., given two rotation matrices
R and R/, the two products RR’ and R'R are in general different).

When the origins and basis vectors of the two coordinate systems are different, we say that
the frames are separated by a general rigid transformation (Figure 2.6), and we have

Bp=BRAP +80,, (2.5)

where 2R and 2 0, are defined as before. It should be clear that related formulas express co-
ordinate changes for the homogeneous coordinate vectors of planes and the symmetric matrices
associated with quadric surfaces (see Exercises).
Homogeneous coordinates can be used to rewrite Eq. (2.5) as a matrix product: Let us first
note that matrices can be multiplied in blocks—that is, if

_ .A11 .A12 _ Bll BIZ
A_(AZI A22) and B_(le 322)’ (2.6)

jA kB

P ip

Figure 2.6 Change of coordinates between two frames: general rigid transfor-
matjon.
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where the number of columns of the submatrices .4;; and A3 (resp. A2 and Ap) is equal to the
number of rows of By; and By, (resp. B; and B,;), then

AB = <A11311 + AiBa AuBiz + ApBxn
A1 By + ApBa AnBiz + AnBy )’

In particular, Eq. (2.6) allows us to rewrite the change of coordinates given by Eq. (2.5) as

B A B> B
( 1P) =§T( IP) where ﬁT‘.iéf <‘:)7T?' ?A) .7

and 0 = (0, 0, 0)7. In other words, using homogeneous coordinates allows us to write a general
change of coordinates as the product of a 4 x 4 matrix and a 4 vector. It is easy to show that the
set of rigid transformations defined by Eq. (2.7), equipped with the matrix product operation, is
also a group.

A rigid transformation maps a coordinate system onto another one. In a given coordinate
frame (F), it can also be considered as a mapping between points—that is, a point P is mapped
onto the point P’ such that

F pr F
r=rtrre= ()= (o 1)(7) @8

where R is a rotation matrix and  is an element of R* (Figure 2.7). The set of rigid transforma-
tions considered as mappings of E* onto itself and equipped with the law of composition is once
again easily shown to form a group. It is also easy to show that rigid transformations preserve
the distance between two points and the angle between two vectors. However, the 4 x 4 matrix
associated with a rigid transformation depends on the choice of (F).

For example, let us consider the rotation of angle 6 about the k axis of the frame (F). As
shown in the exercises, this mapping can be represented by

cos§ —sinf O
Fpr = RFP, where R =|sind cos® O
0 0 1

In particular, if (F’) is the coordinate system obtained by applying this rotation to (F),
we have, according to Eq. (2.4), P = ERFP and R = ﬁ'R_l. More generally, the matrix

Figure 2.7 A rigid transformation maps the point P onto the point P” through
arotation R before mapping P” onto P’ via a translation ¢. In the example shown
in this figure, R is a rotation of angle 6 about the k axis of the coordinate sys-
tem (F).
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representing the change of coordinates between two frames is the inverse of the matrix mapping
the first frame onto the second one.

What happens when R is replaced by an arbitrary nonsingular 3 x 3 matrix .4? Equation
(2.8) still represents a mapping between points (or a change of coordinates between frames), but
this time lengths and angles may not be preserved anymore (equivalently, the new coordinate
system does not necessarily have orthogonal axes with unit length). We say that the 4 x 4 matrix

A ¢t
(s 1)

represents an affine transformation. When 7 is a nonsingular but otherwise arbitrary 4 x 4 matrix,
we say that we have a projective transformation. Affine and projective transformations also form
groups. They will be given a more thorough treatment in chapters 12 and 13.

2.2 CAMERA PARAMETERS AND THE PERSPECTIVE PROJECTION

/

We saw in chapter 1 that the coordinates x, y, and z of a scene point P observed by a pinhole
camera are related to its image coordinates x” and y’ by the perspective Eq. (1.1). In reality,
this equation is only valid when all distances are measured in the camera’s reference frame, and
image coordinates have their origin at the principal point where the axis of symmetry of the
camera pierces its retina. In practice, the world and camera coordinate systems are related by a
set of physical parameters, such as the focal length of the lens, the size of the pixels, the position
of the principal point, and the position and orientation of the camera.

This section identifies these parameters. We distinguish the intrinsic parameters, which
relate the camera’s coordinate system to the idealized coordinate system used in chapter 1, from
the extrinsic parameters, which relate the camera’s coordinate system to a fixed world coordinate
system and specify its position and orientation in space.

‘We ignore in the rest of this chapter the fact that, for cameras equipped with a lens, a point
is only in focus when its depth and the distance between the optical center of the camera and its
image plane obey the thin lens Eq. (1.6). Likewise, the nonlinear aberrations associated with real
lenses are not taken into account by Eq. (1.1). We neglect these aberrations in this chapter, but
revisit radial distortion in chapter 3 when we address the problem of estimating the intrinsic and
extrinsic parameters of a camera (a process known as geometric camera calibration).

y
r
P o-ﬁ ______ 0 P
o
______ — O\~

== Pinhole
Normalized
image plane

J Physical
retina

Figure 2.8 Physical and normalized image coordinate systems.
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2.2.1 Intrinsic Parameters
It is possible to associate with a camera a normalized image plane parallel to its physical retina
but located at a unit distance from the pinhole. We attach to this plane its own coordinate system

with an origin located at the point C where the optical axis pierces it (Figure 2.8). The perspective
projection Eq. (1.1) can be written in this normalized coordinate system as

7

N N xR

= p= %(Id 0) (1:) (2.9)

SN
i

where p &f (@, 9, 1)7 is the vector of homogeneous coordinates of the projection p of the point
P into the normalized image plane.

The physical retina of the camera is in general different (Figure 2.8): It is located at a dis-
tance f # 1 from the pinhole,® and the image coordinates (u, v) of the image point p are usually
expressed in pixel units (instead of, say, meters). In addition, pixels are normally rectangular
instead of square, so the camera has two additional scale parameters k and /, and

u=kf%,
yz (2.10)

=12

v fz

Let us talk units for a second: f is a distance, expressed in meters, for example, and a pixel
has dimensions ,% X %, where k and [ are expressed in pixel x m™!. The parameters k, [, and f
are not independent and can be replaced by the magnifications @ = kf and 8 = If expressed in
pixel units.

In general, the origin of the camera coordinate system is at a corner C of the retina (e.g.,
in the case depicted in Figure 2.8, the lower left corner or sometimes the upper-left corner, when
the image coordinates are the row and column indexes of a pixel) and not at its center, and
the center of the CCD matrix usually does not coincide with the principal point Co. This adds
two parameters ug and vy that define the position (in pixel units) of Cy in the retinal coordinate
system, and Eq. (2.10) is replaced by

X
U =uo— +ug,

N (2.11)
V= ﬂ%}' + vo.

Finally, the camera coordinate system may also be skewed due to some manufacturing
error, so the angle 6 between the two image axes is not equal to (but of course not very different
from either) 90°. In this case, it is easy to show that Eq. (2.11) transforms into

u=a£—acot92+uo,

/Z3 N T @12
V= — 2;-+v0.

sin6 z

3From now on, we assume that the camera is focused at infinity so the distance between the pinhole and image
plane is equal to the focal length.
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w Combining Egs. (2.9) and (2.12) now allows us to write the change in coordinates between
the physical image frame and the normalized one as a planar affine transformation—that is,

a —acotd ug
u

p=Kp, where p=|v| ama £&|o0 £ w |. (2.13)
1 sin@
0 0 1
Putting it all together, we obtain
1 e
p=-MP, where MEZ (K 0), 2.14)
Z

and P = (x,y,z,1)T denotes this time the homogeneous coordinate vector of P in the cam-
era coordinate system. In other words, homogeneous coordinates can be used to represent the
perspective projection mapping by the 3 x 4 matrix M.

Note that the physical size of the pixels and the skew are always fixed for a given camera
and frame grabber, and in principle they can be measured during manufacturing (of course, this
information may not be available—for example, in the case of stock film footage, or when the
frame grabber’s digitization rate is unknown). For zoom lenses, the focal length may vary with
time, along with the image center when the optical axis of the lens is not exactly perpendicular
to the image plane. Simply changing the focus of the camera also affects the magnification since
it changes the lens-to-retina distance, but we continue to assume that the camera is focused at
infinity and ignore this effect in the rest of this chapter.

2.2.2 Extrinsic Parameters

Let us now consider the case where the camera frame (C) is distinct from the world frame (W).

" Noting that
°P\ _ (%R Cow\("P
1)\ 1 1
and substituting in Eq. (2.14) yields

1
p=-MP, where M=K(R ¢, (2.15)
z

R = §R is a rotation matrix, ¢ = €Oy is a translation vector, and P = (Vx, %y, "z, 1)T
denotes the homogeneous coordinate vector of P in the frame (W).

This is the most general form of the perspective projection equation. We can use it to
determine the position of the camera’s optical center O in the world coordinate system. Indeed,
as shown in the exercises, its homogenous coordinate vector O verifies MO = 0. (Intuitively, this
is rather obvious since the optical center is the only point whose image is not uniquely defined.)
In particular, if M = (A b), where A is a nonsingular 3 x 3 matrix and b is a vector in R3,
then the nonhomogeneous coordinate vector of the point O is simply —A4~1b.

It is important to understand that the depth z in Eq. (2.15) is not independent of M and P
since, if m], m}, and m} denote the three rows of M, it follows directly from Eq. (2.15) that
z =ms - P.In fact, it is sometimes convenient to rewrite Eq. (2.15) in the equivalent form:

u_ml-P
_m3-P’
_myep (2.16)
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A projection matrix can be written explicitly as a function of its five intrinsic parameters («,
B, up, vo, and 0) and its six extrinsic ones (the three angles defining R and the three coordinates
of £), namely,

arl —acotfr] +uer! at, —acotbt, + uot,

M= siﬁ@rg -+ vorg E?Ety =+ vot, , 2.17)
r! t,

wherer?, rl, and rf denote the three rows of the matrix R and t,, t,, and ¢, are the coordinates of
the vector ¢. If R is written as the product of three elementary rotations, the vectorsr; (i = 1,2, 3)
can of course be written explicitly in terms of the corresponding three angles.

2.2.3 A Characterization of Perspective Projection Matrices

This section examines the conditions under which a 3 x 4 matrix M can be written in the form
given by Eq. (2.17). Let us write without loss of generality M = (A4 b), where Aisa3 x 3
matrix and b is an element of R3, and let us denote by a3T the third row of A. Clearly, if M is
an instance of Eq. (2.17), then a3T must be a unit vector since it is equal to r{ , the last row of a
rotation matrix. Note, however, that replacing M by A M in Eq. (2.16) for some arbitrary A # 0
does not change the corresponding image coordinates. This leads us in the rest of this book to
consider projection matrices as homogeneous objects, only defined up to scale, whose canonical
form of Eq. (2.17) can be obtained by choosing a scale factor such that |a;| = 1. Note that the
parameter z in Eq. (2.15) can only rightly be interpreted as the depth of the point P when M is
written in this canonical form. Note also that the number of intrinsic and extrinsic parameters of
a camera matches the 11 free parameters of the (homogeneous) matrix M.

We say that a 3 x 4 matrix that can be written (up to scale) as Eq. (2.17) for some set of
intrinsic and extrinsic parameters is a perspective projection matrix. It is of practical interest to
put some restrictions on the intrinsic parameters of a camera since, as noted earlier, some of these
parameters are fixed and may be known. In particular, we say that a 3 x 4 matrix is a zero-skew
perspective projection matrix when it can be rewritten (up to scale) as Eq. (2.17) with 8 = /2,
and that it is a perspective projection matrix with zero skew and unit aspect-ratio when it can be
rewritten (up to scale) as Eq. (2.17) with & = 7/2 and @ = B. A camera with known nonzero
skew and nonunit aspect-ratio can be transformed into a camera with zero skew and unit aspect-
ratio by an appropriate change of image coordinates. Are arbitrary 3 x 4 matrices perspective
projection matrices? The following theorem answers this question.

Theorem 1. Let M = (A b) be a3 x 4 matrix, and letaiT (i =1, 2, 3) denote the rows
of the matrix A formed by the three leftmost columns of M.

* A necessary and sufficient condition for M to be a perspective projection matrix is that
Det(A) # 0.

* A necessary and sufficient condition for M to be a zero-skew perspective projection
matrix is that Det(A) # 0 and v

(a1 x a3) - (a2 x a3) = 0.

* A necessary and sufficient condition for M to be a perspective projection matrix with
zero skew and unit aspect-ratio is that Det(A) # 0 and

(a1 xasz) - (a; xa3) =0,
(a; X a3) - (a1 X a3) = (a2 X a3) - (@ X a@3).



32

Geometric Camera Models Chap. 2

The conditions of the theorem are clearly necessary: According to Eq. (2.15), we have
A = KR, thus the determinants of .A and K are the same and A is nonsingular. Further, a
simple calculation shows that the rows of KR in Eq. (2.17) satisfy the conditions of the theorem
under the various assumptions imposed by its statement. The theorem conditions are proved to
be sufficient in Faugeras (1993) and in the exercises.

2.3 AFFINE CAMERAS AND AFFINE PROJECTION EQUATIONS

When a scene’s relief is small compared with the overall distance separating it from the camera
observing it, affine projection models can be used to approximate the imaging process. These
include the orthographic and weak-perspective projection models introduced in chapter 1 as
well as the parallel and paraperspective models introduced in this section. Their name is justified
in chapter 12.

2.3.1 Affine Cameras

Under orthographic projection, the imaging process is simply modeled as an orthogonal pro-
jection onto the image plane. This is a reasonable approximation of perspective projection for
distant objects lying at a roughly constant distance from the cameras observing them. The par-
allel projection model subsumes the orthographic one and takes into account that the objects of
interest may lie off the optical axis of the camera. In this model, the viewing rays are parallel to
each other, but are not necessarily perpendicular to the image plane.

The weak-perspective and paraperspective projection models generalize the orthographic
and parallel projections models to allow for variations in the depth of an object relative to the
camera observing it (Figure 2.9). Let O denote the optical center of this camera, and let R denote
a scene reference point; the weak-perspective projection of a scene point P is constructed in two

b R
p
Q?
q «—eQ
, 0
P y P’
m I,

Figure 2.9 Affine projection models: (top) weak-perspective and (bottom)
paraperspective projections.
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steps: P is first projected orthographically onto a point P’ of the plane IT, parallel to the image
plane I1’ and passing through R; perspective projection is then used to map the point P’ onto
the image point p (top of Figure 2.9). Since I, is a fronto-parallel plane, the net effect of the
second projection step is a scaling of the image coordinates. The paraperspective mode] takes
into account both the distortions associated with a reference point that is off the optical axis of
the camera and possible variations in depth (bottom of Figure 2.9): Using the same notation as
before and denoting by A the line joining the optical center O to the reference point R, parallel
projection in the direction of A is first used to map P onto a point P’ of the plane IT,; perspective
projection is then used to map the point P’ onto the image point p.

2.3.2 Affine Projection Equations
Let us derive the weak-perspective projection equation. If z, denotes the depth of the reference

point R, the two elementary projection stages P — P’ — p can be written in the normalized
coordinate system attached to the camera as

x x i x/z,
yl—|y|—|?]|=|yz=]
z Zr 1 1
or, in matrix form,

B (1 00 0\(}

N Yy

1]=—10 1 0 O

1) #\o 0 0 z i

Introducing the calibration matrix K of the camera and its extrinsic parameters R and ¢
gives the general form of the projection equation—that is,

u 100 0
1
v|==xfo 10 0 (;% i)(’;) 2.18)
1 Zr 0 0 0 z

where P denotes as usual the nonhomogeneous coordinate vector of P in the world reference
frame. Finally, noting that z, is a constant and writing

e a —acotf
K={"7 Po , where K, % B and p, &f (%o
0 1 0 —_
sin @

allows us to rewrite Eq. (2.18) as
p= M(Il,), where M = (A b), 2.19)

p = (u, v)T is the nonhomogeneous coordinate vector of the point p, and M is a 2 x 4 projection
matrix (compare to the general perspective Eq. [2.15]). In this expression, the 2 x 3 matrix A
and the 2 vector b are, respectively, defined by

1 1
=—KyR; and b= —K, + p,,
2r Zr
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where R, denotes the 2 x 3 matrix formed by the first two rows of R and ¢, denotes the 2 vector
formed by the first two coordinates of £.

Note that ¢, does not appear in the expression of M, and that ¢, and p, are coupled in
this expression: The projection matrix does not change when ¢, is replaced by ¢, + a and p is
replaced by p, — zirICza. This redundancy allows us to arbitrarily choose ug = vp = 0. In other
words, the position of the center of the image is immaterial for weak-perspective projection. Note
that the values of z,, ¢, and 8 are also coupled in the expression of M, and that the value of z,
is a priori unknown in most applications. This allows us to write

1 (k
M=;<0 i)(’R,z 1), (2.20)

where k and s denote, respectively, the aspect ratio and skew of the camera. In particular, a
weak-perspective projection matrix is defined by two intrinsic parameters (k and s), five extrinsic
parameters (the three angles defining R, and the two coordinates of #;), and one scene-dependent
Structure parameter z,.

It is easy to show (see Exercises) that the paraperspective projection equations can also be
written in the general affine form of Eq. (2.19) with

I 1 0 —x/z
M=;<O 1)(<0 1 —yr/Zr)R tz), (2.21)

where x,, y,, and z, denote the coordinates of the reference point R in the normalized camera
coordinate system. Note that Eq. (2.21) reduces (as expected) to the weak-perspective projection
Eq. (2.20) when x, = y, = 0. According to Eq. (2.21), a paraperspective projection matrix is
defined by two intrinsic parameters (k, s), five extrinsic parameters (the three angles defining
‘R and the two coordinates of #,), and three structure parameters x,, y,, and z,. In practice, the
reference point R is often taken to be a point feature whose projection is observable in the image.
Its coordinates x,, y,, and z, cannot of course be measured in the image, but the coordinates u,
and v, of its projection are readily available. It is easy to rewrite Eq. (2.21) as

—_ 1 k s Uy — Ur k S
M= ;((O 1 v - vr)R (O 1)t2>‘ (2.22)

In this formulation, the paraperspective projection matrix is defined by four intrinsic parameters
(k, s, up, and vy), five extrinsic parameters (the three angles defining R and the two coordinates
of t;), and a single structure parameter z,.

The orthographic and parallel projection equations are obtained from the weak-perspective
and paraperspective ones by fixing the value of z, to be some constant (in practice, z, = 1)
in Egs. (2.20), (2.21), or (2.22). When several different orthographic (resp. parallel) cameras
observe the same scene (or, equivalently, when a zooming camera films an image sequence), the
actual image magnifications become relevant, and the simplified calibration matrices used in Eq.

(2.20) (resp. Eqgs. [2.21] or [2.22]) must be replaced by ;. ‘

2.3.3 A Characterization of Affine Projection Matrices

A 2 x 4 matrix M = (A b), where A is an arbitrary rank-2 2 x 3 matrix and b is an arbitrary
vector in R?, is called an affine projection matrix. The rank condition follows from the fact that a
rank-1 matrix would project all scene points onto a single image line; also note that the matrix A
associated with weak-perspective and paraperspective cameras has rank 2 by construction since,
according to Egs. (2.20), (2.21), and (2.22), it can be written as the product of rank-2 matrices.
Both weak-perspective and general affine projection matrices are defined by eight indepen-
dent parameters. Paraperspective projection matrices, in contrast, have 10 degrees of freedom.
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Weak-perspective and paraperspective projection matrices are, of course, affine ones. Conversely,
a simple parameter-counting argument suggests that it should be possible to write an arbitrary
affine projection matrix as a weak-perspective or a paraperspective one, but that the latter repre-
sentation is not unique unless additional constraints are imposed on its form. This is confirmed
by the following theorem.

Theorem 2. An affine projection matrix can be written uniquely (up to a sign ambiguity)
as a general weak-perspective projection matrix as defined by Eq. (2.20) or as a paraperspective
projection matrix as defined by Eq. (2.21) or (2.22) withk = 1 and s = 0.

This theorem is proven in Faugeras et al. (2001, Propositions 4.26 and 4.27) and the exer-
cises. It shows that any affine projection can be written as a weak-perspective or paraperspective
one, and that the geometric properties of these projection models apply to general affine projec-
tion. For example, as shown in chapter 12, weak-perspective projection preserves the parallelism
of lines, and Theorem 2 implies that this property also holds for arbitrary affine projection. The
fact that an arbitrary 2 x 4 matrix can always be written as a paraperspective projection matrix
with k = 1 and s = 0 should not be interpreted as meaning that the aspect ratio of a paraperspec-
tive camera or its skew are irrelevant.

Craig (1989) offers a good introduction to coordinate system representations and kinematics.
Thorough presentations of geometric camera models can be found in Faugeras (1993), Hartley
and Zisserman (2000), and Faugeras et al. (2001). The paraperspective projection model was
introduced in computer vision by Ohta, Maenobu, and Sakai (1981), and its properties have been
studied by Aloimonos (1990). The relationship between paraperspective and affine projection
models is discussed in Basri (1996). Equations for the perspective projections of straight lines
in terms of their Pliicker coordinates are derived in Faugeras and Papadopoulo (1997) and the
exercises below. The machinery introduced in this chapter is used in the next one to calibrate
a camera (i.e., to compute its intrinsic and extrinsic parameters from the image positions of
fiducial points). It is also a key to the methods for stereo vision and motion analysis presented
in chapters 10 to 13. The main equations derived in this chapter have been collected in Table 2.1
for reference.

2.1. Write formulas for the matrices 4R when (B) is deduced from (A) via a rotation of angle 6 about the
axes i, j4, and k4 respectively.

2.2. Show that rotation matrices are characterized by the following properties: (a) the inverse of a rotation
matrix is its transpose and (b) its determinant is 1.

2.3. Show that the set of matrices associated with rigid transformations and equipped with the matrix
product forms a group.

2.4. Let A7 denote the matrix associated with a rigid transformation 7 in the coordinate system (A), with
AR At
A _ ~
7= ( ; 1).
Construct the matrix 27 associated with 7" in the coordinate system (B) as a function of 47 and the

rigid transformation separating (A) and (B).

2.5. Show that if the coordinate system (B) is obtained by applying to the coordinate system (A) the
transformation matrix 7, then 2P = 714 P,
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TABLE 2.1 Reference card: geometric camera models.
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Plane equation H.P=axr+by+cz—d=0
(homogeneous)
Quadric surf a0 %auo %aml %axoo
uadric surface 1 1 1
_a - -
equation PTQP =0 with Q = | 2 1o 1‘1020 2%u %0010
(homogeneous) 34101 3411  doo2 34001
%aIOO %0010 %aoox 4000
“Rotation 5 baip Jacip kacip
matrix aR=\la"Jo Ja-Jp ka-Jp
ia-kp Jjy ks ka-kg
Change of coordinates Bp—BRAP 480,
(nonhomogeneous)
Persp.ectlve projection p= 1 MP
equation (homogeneous) z
. S o —acotfd uy
Matrix of intrinsic k=0 g/sing v
parameters 0 0 1
PersPectwe projection M=K (’R t)
matrix
Affine projection P
equation p=M(1) =AP+b
(nonhomogeneous)
Weak-perspective ( )
ak-perspecth M= )
projection matrix
Paraperspective _1(k s 1 0 —x./z
projection matrix I M= z\0 J\\0 1 —y,/z R &
Paraperspective _1/(k s wu—u, k s
projection matrix II M= zZ\\0 1 wyy—u, R 0o 1)

2.6. Show that the rotation of angle 6 about the k axis of the frame (F) can be represented by

cosé —sind O
Fp'=RFP, where R=|sinf cosf O

0 0 1

2.7. Show that the change of coordinates assocmted with a rigid transformation preserves distances and

angles.

2.8. Show that when the camera coordinate system is skewed and the angle 8 between the two image axes
is not equal to 90°, then Eq. (2.11) transforms into Eq. (2.12).

29

.

Let O denote the homogeneous coordinate vector of the optical center of a camera in some reference

frame, and let M denote the corresponding perspective projection matrix. Show that M(0) =

2.10. Show that the conditions of Theorem 1 are necessary.

2.11. Show that the conditions of Theorem 1 are sufficient. Note that the statement of this theorem is a bit
different from the corresponding theorems in Faugeras (1993) and Heyden (1995), where the condition

Det(A) # 0 is replaced by a3 # 0. Of course, Det(.4) #

0 implies a3 # 0.
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2.12. If 4TI denotes the homogeneous coordinate vector of a plane IT in the coordinate frame (A), what is
the homogeneous coordinate vector Z1I of IT in the frame (B)?

2.13. If 4Q denotes the symmetric matrix associated with a quadric surface in the coordinate frame (A),
what is the symmetric matrix ® Q associated with this surface in the frame (B)?

2.14. Prove Theorem 2.
2.15. Line Pliicker coordinates. The exterior product of two vectors u and v in R* is defined by

Uiy — UV
Uiv3 — Uz
UAY d=ef U1Vq — U4V
UV3 — U3y
UVUq4 — U4V
U3Vg — U4U3

Given a fixed coordinate system and the (homogeneous) coordinates vectors A and B associated with
two points A and B in [E?, the vector L = A A B is called the vector of Pliicker coordinates of the line
joining A to B.

(@) Let us write L = (Ly, Ly, L3, L4, Ls, Ls)T and denote by O the origin of the coordinate sys-
tem and by H its projection onto L. Let us also identify the vectors OA and OB with their
non-homogeneous coordinate vectors. Show that AB = —(Ls, Ls, Lg)T and OA x 0B =
OH x AB = (L4, —L,, L1)T. Conclude that the Pliicker coordinates of a line obey the quadratic
constraint L1 Lg — LyLs + LyLs = 0.

(b) Show that changing the position of the points A and B along the line L only changes the overall
scale of the vector L. Conclude that Pliicker coordinates are homogeneous coordinates.

(c) Prove that the following identity holds of any vectors x, y, z, and ¢ in R*:

@EAY)- @A) =&y -t) —(x-D(©-2).

(d) Use this identity to show that the mapping between a line with Pliicker coordinate vector L and
its image ! with homogeneous coordinates I can be represented by

T
B - a [ /\m3)T

pl=ML, where M= | (nsrm)T ], (2.23)
(my Amp)T

and m!, mI, and mI denote as before the rows of M and p is an appropriate scale factor.
Hint: Consider a line L joining two points A and B and denote by a and b the projections
of these two points, with homogeneous coordinates @ and b. Use the fact that the points a and b lie
on /, thus if  denote the homogeneous coordinate vector of this line, we must have l-a = [-b = 0.
(e) Given a line L with Pliicker coordinate vector L = (L, Ly, L3, Ly, Ls, Lg)T and a point P with
homogeneous coordinate vector P, show that a necessary and sufficient condition for P to lie on
L is that

0 L¢ —Ls L4
—Lg 0 Ly -L,
Ls —Ls 0 L

—L, L, —-L, 0

LP =0, where L &f

(f) Show that a necessary and sufficient condition for the line L to lie in the plane IT with homoge-
neous coordinate vector II is that

0 L, L, L,
—-L; 0 Ly Ls
-L, —-Ly 0 Lg
—-L; —-Ls —-L¢ O

LM =0, where L* def



