-

Computer Vision
A Modern Approach

\

David A. Forsyth
University of California at Berkeley

Jean Ponce
University of Illinois at Urbana-Champaign

An Alan R. Apt Book

Prentice
Hall

Prentice Hall
Upper Saddle River, New Jersey 07458

17

Tracking with Linear
Dynam/c Models

Tracking is the problem of generating an inference about the motion of an object given a se-
quence of images. Good solutions to this problem have a variety of applications:

Motion capture: If we can track a moving person accurately, then we can make an
accurate record of their motions. Once we have this record, we can use it to drive a ren-
dering process; for example, we might control a cartoon character, thousands of virtual
extras in a crowd scene, or a virtual stunt avatar. Furthermore, we could modify the mo-
tion record to obtain slightly different motions. This means that a single performer can
produce sequences they wouldn’t want to do in person.

* Recognition from motion: The motion of objects is quite characteristic. We may be
able to determine the identity of the object from its motion; we should be able to tell
what it’s doing.

Surveillance: Knowing what objects are doing can be very useful. For example, different
kinds of trucks should move in different, fixed patterns in an airport; if they do not, then
something is going wrong. Similarly, there are combinations of places and patterns of
motions that should never occur (e.g., no truck should ever stop on an active runway).
It could be helpful to have a computer system that can momtor activities and give a
warning if it detects a problem case.

* Targeting: A significant fraction of the tracking literature is oriented toward (a) deciding
what to shoot, and (b) hitting it. Typically, this literature describes tracking using radar
or infrared signals (rather than vision), but the basic issues are the same—what do we

373

374

Tracking with Linear Dynamic Models Chap. 17

infer about an object’s future position from a sequence of measurements? Where should
we aim?

In typical tracking problems, we have a model for the object’s motion and some set of measure-
ments from a sequence of images. These measurements could be the position of some image
points, the position and moments of some image regions, or pretty much anything else. They are
not guaranteed to be relevant, in the sense that some could come from the obJect of interest and
some might come from other objects or from noise.

_Tracking is properly thought of as an inference problem. The moving object has some form
of internal state, which is measured at each frame. We need to combine our measurements as ef-
fectively as possible to estimate the obJect s state. There are two important cases. Either both
dynamics and measurement are linear, in which case the inference problem is straightforward
and has a standard solution. If we are faced with nonlinear dynamics, even slight nonlinearities
in system dynamics have tremendous effects. As a result, inference can be difficult and appears
to be impossible in general. If the dimension of the state space is low, there is a useful algorithm
that often works. As tracking through nonlinear dynamics is a somewhat technical activity, we
have confined it to its own chapter which appears on the book website In this chapter, we concen-
trate on the formulation of tracking through linear dynamics. Section 17.1 sketches the overall
view of tracking as an inference problem. In Section 17.2, we deal with linear dynamics and the
Kalman filter. We then sketch out some examples of tracking applications in Section 17.5. The
most interesting current tracking application—tracking people—requires a discussion of nonlin-
ear dynamics and is discussed in the chapter on the book website.

17.1 TRACKING AS AN ABSTRACT INFERENCE PROBLEM

Much of this chapter deals with the algorithmics of tracking. In particular, we see tracking as a
probabilistic inference problem. The key technical difficulty is maintaining an accurate represen-
tation of the posterior on object position given measurements and doing so efficiently. We model
the object as having some internal state; the state of the object at the ith frame is typically written
as X;. The capital letters indicate that this is a random variable—when we want to talk about a
particular value that this variable takes, we use small letters. The measurements obtained in the
ith frame are values of a random variable Y;; we write y; for the value of a measurement, and,
on occasion, we write ¥; = y; for emphasis. There are three main problems:

* Prediction: We have seen y,, ... ,y;_;—Wwhat state does this set of measurements pre-

~ dict for the ith frame? To solve this problem, we need to obtain a representation of
PX;|Yo=yg, ..., Yi_1 =Y;_1)-

* Data association: Some of the measurements obtained from the i-th frame may tell us
about the object’s state. Typically, we use P(X; | Yo =y, ... , Y;—1 = y;_;) to identify
these measurements.

* Correction: Now that we have y,—the relevant measurements—we need to compute a
representation of P(X; | Yo =yg, ... , Yi =¥;).

17.1.1 Independence Assumptions
Tracking is difficult without the following assumptions:

* Only the immediate past matters: Formally, we require that

PX;|X1,...,Xi-1) =PX; | Xi1).

Sec. 17.1 Tracking as an Abstract Inference Problem 375

This assumption hugely sunphﬁes the deS1gn of algorithms as we shall see. Furthermore,
it isn’t terribly restrictive if we’re clever about interpreting X;, as we shall show in the
next section.

° Measurements depend only on the current state: We assume that Y; is conditionally
independent of all other measurements given X;. This means that

P, Y. Yy | X)) = P(Xi | X)P(Yj, ..., ¥ | X).

I

~ Again, this isn’t a particularly restrictive or controversial assumptlon but it yields im-
portant simplifications.

These assumptions mean that a tracking problem has the structure of inference on a hidden
Markov model (where both state and measurements may be on a continuous domain). You should
compare this chapter with Section 23.4, which describes the use of hidden Markov models in
recognition.

17.1.2 Tracking as Inference

We proceed inductively. First, we assume that we have P(Xy), which is our prediction in the
absence of any evidence. Now correcting this is egsy: When we obtam the value of Yy—which
is yo—we have

P(yq | Xo) P (Xo)

P(yy)

_ POy | X)P(Xo)
J P(g | Xo) P(Xo)dXo

o Py | Xo) P (Xo).

PXo | Yo=yy =

All this is just Bayes rule, and we either compute or ignore the constant of proportionality de-
pending on what we need. Now assume we have a representation of P(X;_1 | yg, ... ,¥i_1)-

Prediction Prediction involves representing

P(Xl IyOa‘~')yi—l)'

Our independence assumptions make it possible to write
P 1300 3i) = [POGXict 130 3K
= [PG Xirryor e 3)P Gict 1360 3K

- f P(X: | X)) PXir 1Yo, - +ys_DdXi1.

Correction Correction involves obtaining a representation of

&

PXi|yg .- Y-

376

Tracking with Linear Dynamic Models Chap. 17

Our independence assumptions make it possible to write

P(Xi,yo, e ’yi)
PXi |yg,---) = m
_ Py | Xi,¥0, -+ 2 Yic)DPXi [y0s oo s i) POos - -+ 5 Y1)
Py, .- ¥
P(yg, ... ,yi_1)

=P@l; | X))PX; |ygr---,Yi-1)
' Yo Y POy

_ POy, | X)PX; |ygs---»¥i-1)
[PO; | X)PX; |yg, ... ¥i—)dX;

17.1.3 Overview

The key algorithmic issue involves finding a representation of the relevant probability densities
that (a) is sufficiently accurate for our purposes, and (b) allows these two crucial sums to be done
quickly and easily. The simplest case occurs when the dynamics are linear, the measurement
model is linear, and the noise models are Gaussian (Section 17.2). We discuss data association
in Section 17.4, and show some examples of tracking systems in action in Section 17.5. Nonlin-
earities introduce a host of unpleasant problems; we discuss some current methods for handling
them in a chapter that appears on the website.

17.2 LINEAR DYNAMIC MODELS

There are good relations between linear transformations and Gaussian probability densities. The
practical consequence is that if we restrict attention to linear dynamic models and linear mea-
surement models, both with additive Gaussian noise, all the densities we are interested in will be
Gaussians. Furthermore, the question of solving the various integrals we encounter can usually
be avoided by tricks that allow us to determine directly which Gaussian we are dealing with.

In the simplest possible dynamic model, the state is advanced by multiplying it by some
known matrix (which may depend on the frame) and then adding a normal random variable of
zero mean and known covariance. Similarly, the measurement is obtained by multiplying the state
by some matrix (which may depend on the frame) and then adding a normal random variable of
zero mean and known covariance. We use the notation

A xNN(/-l" E)

to mean that x is the value of a random variable with a normal probability distribution with
mean g and covariance X; notice that this means that, if x is one-dimensional—we’d write
x ~ N(u, v)—that its standard deviation is ,/v. We can write our dynamic model as

x; ~ N(Dixi_1; Zg,);
yi ~ N(Mix;; Zp,).

Notice that the covariances could be different from frame to frame as could the matrices. Al-
though this model appears limited, it is in fact extremely powerful; we show how to model some
common situations next.

Sec. 17.2 Linear Dynamic Models 377
17.2.1 Drifting Points

Let us assume that x encodes the position of a point. If D; = Id, then the point is moving under
random walk—its new position is its old position plus some Gaussian noise term. This form of
dynamics isn’t obviously useful because it appears that we are tracking stationary objects. It is
quite commonly used for objects for which no better dynamic model is known—we assume that
the random component is quite large and hope we can get away with it.

This model also illustrates aspects of the measurement matrix M. The most important
thing to keep in mind is that we don’t need to measure every aspect of the state of the point at
every step. For example, assume that the point is in 3D: Now if M3, = (0,0, 1), My =
0, 1,0), and M3, = (1,0, 0), then at every third frame we measure, respectively, the z, y, or
x position of the point. Notice that we can still expect to track the point, even though we measure
only one component of its position at a given frame. If we have sufficient measurements, we can
reconstruct the state—the state is observable. We explore observability in the exercises.

17.2.2 Constant Velocity

Assume that the vector p gives the position and v the velocity of a point moving with constant
velocity. In this case, p; = pi_; + (At)v;—; and v; = v;_;. This means that we can stack the
position and velocity into a single state vector, and our model applies (Figure 17.1). In particular,

(2}

[14 (anid
D"‘{o 1d]

Notice that, again, we don’t have to observe the whole state vector to make a useful measurement.
For example, in many cases, we would expect that

Mi={1d 0}

and

l

(i.e., that we see only the position of the point). Because we know that it’s moving with constant
velocity—that’s the model—we expect that we could use these measurements to estimate the
whole state vector rather well.

17.2.3 Constant Acceleration

Assume that the vector p gives the position, vector v the velocity, and vector a the acceleration
of a point moving with constant acceleration. In this case, p; = p;_; + (At)v;_1, v = vi_1 +
(At)a;_q, and a; = a;_;. Again, we can stack the position, velocity and acceleration into a single
state vector, and our model applies (Figure 17.2). In particular,

p
xX=1 Vv
a

and

Id (AN)ld 0
Di=4{ 0 Id (At)Id
0o 0 Id

378

Tracking with Linear Dynamic Models Chap. 17
12 I I B B o——7T—71T1T"T T T T T,
11 . . 94 1k IR
»
1+ — 12 . a
09 - - - o
08 * ', 4 0 o .
07 * - 8 "’]
* *
06 o — *
' * 61 . -]
051 .
> * 4+ '* —
04 - .
03] 2—‘.]
02 L | | | |_* ob—L L L 11111
“0 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 18 20
T T T T T T T T 1
15+ ° ‘4&"_’
00 R ""
.6 (o]
10— o O,*O ° -
» (o]
o + © °
*
5+ . _
o*‘; o
*
or —
-5 ? I I N Y S |

]
0 2 4 6 8 10 12 14 16 18 20

Figure 17.1 A constant velocity dynamic model for a point on the line. In this
case, the state space is two dimensional—one coordinate for position, one for
velocity. The figure on the top left shows a plot of the state; each asterisk is a
different state. Notice that the vertical axis (velocity) shows some small change
compared with the horizontal axis. This small change is generated only by the
random component of the model, so the velocity is constant up to a random
change. The figure on the top right shows the first component of state (which is
position) plotted against the time axis. Notice we have something that is moving
with roughly constant velocity. The figure on the bottom overlays the measure-
ments (the circles) on this plot. We are assuming that the measurements are of
position only, and are quite poor; as we see, this doesn’t significantly affect our
ability to track.

Notice that, again, we don’t have to observe the whole state vector to make a useful measurement.
For example, in many cases, we would expect that

M;={1d 0 0}

(i-e., that we see only the position of the point). Because we know that it’s moving with constant
acceleration—that’s the model—we expect that we could use these measurements to estimate the
whole state vector rather well.

Sec. 17.2

Linear Dynamic Models 379
20 T T T 1 0177717 T T T T 1
18 - - *

. 140 —
L » — *
16 . 120 - R
14 — . * n 100 * -
12 - - 1 *
* 80 -]
10 * — *
* » —]
ol . 1 e .
6 L * * '] 40 B * * ’ N
41— ."] 20 .t . _
2+ : — Of» * * *]
0 T L1 1 | l | ~20 L
-20 0 20 40 60 80 100 120 140 160 0 2 4 6 8 10 12 14 16 18 20

Figure 17.2 This figure illustrates a constant acceleration model for a point
moving on the line. On the left, we show a plot of the first two components of
state—the position on the x-axis and the velocity on the y-axis. In this case, we
expect the plot to look like (2, ¢), which it does. On the right, we show a plot
of the position against time—note that the point is moving away from its start
position increasingly quickly.

17.2.4 Periodic Motion

_Assume we have a point moving on a line with a periodic movement. Typically, its position p

satisfies a differential equation like
d*p

dar -
This can be turned into a first order linear differential equation by writing the velocity as v and
stacking position and velocity into a vector # = (p, v); we then have

du 0 1

E-_(1 0)u_Su.
Now assume we are integrating this equation with a forward Euler method, where the steplength
is At; we have

du
U, =u;—1+ AIZ

=u;—1 + AtSu;i—

_ 1 At w
“\-Ar 1 -1

We can either use this as a state equation, or we can use a different integrator. If we used a
different integrator, we might have some expression in #;_i, ... , #;—,—we would need to stack
u;_1,...,U;—p into a state vector and arrange the matrix appropriately (see Exercises). This
method works for points on the plane, in 3D, and so on, as well (again, see Exercises).

17.2.5 Higher Order Models

Another way to look at a constant velocity model is that we have augmented the state vector to
get around the requirement that P(x; | x1,...,Xx;—1) = P(x; | xi—1). We could write a constant

380

Tracking with Linear Dynamic Models Chap. 17

velocity model in terms of point position alone as long as we are willing to use the position of
the i — 2th point as well as that of the i — 1th point. In particular, writing position as p, we would
have

PPy, s Pic)) = NPy + (Piy — Pi_2)» Bg;).

This model assumes that the difference between p; and p;_; is the same as the difference between
p;_, and p; ,—i.e., that the velocity is constant up to the random element. A similar remark
applies to the constant acceleration model, which is now in terms of p;_;, p;_,, and p;_5.

We augmented the position vector with the velocity vector (which represents p; _; — p;_,)
to get the state vector for a constant velocity model. Similarly, we augmented the position vector
with the velocity vector and the acceleration vector to get a constant acceleration model. In this .
model, the acceleration vector represents (p;,_; — p;_,) — (p;_, — p;_3). We might reasonably
want the new position of the point to depend on p;_, or other points even further back in the
history of the point’s track. To represent dynamics like this, all we need to do is augment the
state vector to a suitable size. Notice that it can be somewhat difficult to visualize how the model
will behave. There are two approaches to determining what D; needs to be; in the first, we know
something about the dynamics and can write it down, as we have done here; in the second, we
need to learn it from data.

17.3 KALMAN FILTERING

- An important feature of linear dynamic models is that all the conditional probability distributions

we need to deal with are normal distributions. In particular, P(X; | y;, ..., ¥;_1) is normal, as
is P(X; | yy, ... ,y;). This means that they are relatively easy to represent—all we need to do is
maintain representations of the mean and the covariance for the prediction and correction phase.
In particular, our model admits a relatively simple process where the representation of the mean
and covariance for the prediction and estimation phase are updated.

17.3.1 The Kalman Filter for a 1D State Vector

The dynamic model is now
xi ~ N(dixi-1,05);
yi ~ N(m;x;, U,%,,.)-

We need to maintain a representation of P(X; | yo, ..., yi—1) and of P(X; | yo, ... , ;). Ineach
case, we need only represent the mean and the standard deviation because the distributions are
normal.

Notation We represent the mean of P(X; | yo, ..., yi_1) as _)f,_ and the mean of P(X; |
Y0, ..., Yi)as Y:r —the superscripts suggest that they represent our belief about X; immediately
before and immediately after the ith measurement arrives. Similarly, we represent the standard
deviation of P(X; | yo,...,¥i—1) as o;” and of P(X; | yo,..., i) as a,."‘. In each case, we
assume that we know P(X;_; | yo, ... , yi—1), meaning that we know 77_1 and o,tl.

Tricks with Integrals The main reason we work with normal distributions is that their
integrals are quite well behaved. We are going to obtain values for various parameters as integrals
usually by change of variable. Our current notation can make appropriate changes a bit difficult
to spot, so we write

Sec. 17.3

Kalman Filtering 381

N (x — p)?
gx; u,v) =exp| — 5

We have dropped the constant and, for convenience, are representmg the variance (as v), rather
than the standard dev1at10n This expression allows some convenient transformations; in particu-
lar, we have

gx; p,v) = g(x — u; 0, v);
g(m;n,v) = g(n; m, v);
glax; u,v) = g(x; u/a,v/a?).
‘We also need the following fact:
0
/:oo 8(x — u; 1, va)g(u; 0, vp) du o g(x; w, v2 + v}).

There are several ways to confirm that this is true: The easiest is to look it up in tables; more
subtle is to thmk about convolution directly; more subtle st_ill is to think about the sum of two
independent random variables. We need a further identity. We have

ad+cb bd

g(’?;“’b)-g(x;c’d)zg(’ b+d 'b+d

)f(abcd)

where the form of f is not significant, but the fact that it is not a function of x is. The exercises
show you how to prove this 1dent1ty

Prediction We have
P(X; | yo,...,yi-1) = / P(Xi | Xi-)P(Xi-1 | Yo, ..., yi-1) dXi-y.

Now

P(X;|yo,...,yi-1) = / P(X; | Xi-)P(Xi—1 | Yo, -+, yi—1)dXi—1)

*© —+
0‘/ g(Xi;diXi—laU,i)g(Xi-—l; X, 1, (0F DHdXi

—00

x / B(CKs = dXi); 0,08 ((Xims = X130, (o7)Xo

o [(0 = dhtu+ T3 0. (0308050, o V)

—00

o0
x / g((X; — diw); X1, 02)g(u; 0, (o7)P)du

—00

oc/ g((X; — v); diX;_;, 02)g(v; 0, (dic l)z)dv

—00

-—+
« g(Xi; diXy, 0F + (dioit),

where we have applied various of the transformatlons given earlier, and changed variables twice.
All this means that

Tracking with Linear Dynamic Models Chap. 17

X, = diY:——l;

1

(0}_)2 = (731. + (dio'itl)z-

Correction We have

PG | X)PX; | o yie
PXilyor... yp) = LN XOPXKi | yo, -, yim1)

~ PO X)PXi | o, ..., yi)dX;
o« P(yi | Xi)P(X; | yo, ..., yi-1)-

We know _f,_ and o;”, which represent P (X; | yo,.. ee s Yie1).
Using the notation for Gaussians given earlier, we have

P(Xi|yo, . y) x gyis miXi, 02)8(Xi3 X; , (0,7)%)

= g(miX; yi,05)8(Xi; X; , (67)%)

' Yi ar%li - —\2
=8 Xi;_$ 2 g(Xl;X, ’(Oi))s
m; m

i i

Algorithm 17.1: The 1D Kalman filter updates estimates of the mean and covariance of the
various distributions encountered while tracking a one-dimensional state variable using the given

dynamic model.

Dynamic Model:

x; ~ N(dixi_1,04,)

yi ~ N(mix;, om,)
Start Assumptions: X and o, are known

Update Equations: Prediction

o = 1/‘73;- + (dio;t))?

Update Equations: Correction

e (fi_o,ﬁi +m,~y,-(a,.‘)2)

i 2 2(r—)2
o2, +mi(o))

)2
+ a’%i (ai)

Cecn

Q
Il

Sec. 17.3

Kalman Filtering . _ 383

30 —— |

()
|

15

10 1 H -
0 —#H) -
_slx 1 ! |

0 5 10~ 15 20 25

Figure 17.3 The Kalman filter for a point moving on the line under our model
of constant velocity (compare with Figure 17.1). The state is plotted with open
circles as a function of the step i. The *-s give X, which is plotted slightly to the
left of the state to indicate that the estimate is made before the measurement. The
x-s give the measurements, and the +-s give X;, which is plotted slightly to the
right of the state. The vertical bars around the *-s and the +-s are three standard
deviation bars using the estimate of variance obtained before and after the mea-
surement, respectively. When the measurement is noisy, the bars don’t contract
all that much when a measurement is obtained (compare with Figure 17.4).

and by pattern matching to our identities, we have

X+ _ Y,-—U,%i + m;y; (Gi_)z .
P 2 - 205)2 ’
O, +M; (o)

0'3” (0,'_)2

- N T
= ((o,%,,. + m,?(a:>2)>j

Figure 17.3 shows a Kalman filter tracking a constant velocity model, and Figure 17.4 shows a
Kalman filter tracking a constant acceleration model.

17.3.2 The Kalman Update Equations for a General State Vector

We obtained a 1D tracker without having to do any integration using special properties of normal
distributions. This approach works for a state vector of arbitrary dimension, but the process of
guessing integrals, and so on, is a good deal more elaborate than that shown in Section 17.3.1.
‘We omit the necessary orgy of notation—it’s a tough but straightforward exercise for those who
really care (you should figure out the identities first and the rest follows)—and simply give the
result in Algorithm 17.2.

17.3.3 Forward-Backward Smoothing
Itis irhportant to nbﬁée that P(X; |> Yo, --- ,Y;) is not the best available representation of X;;

this is because it doesn’t take into account the future behavior of the point. In particular, all
the measurements aftery; could affect our representation of X;. This is because these future

384 Tracking with Linear Dynamic Models Chap. 17

180 I , |

160 |- +,]
140} '

f
12.0 — #% -

8
T
—y—
3
%
1

_ | N I
200_ 5 10 15 20 25

Figure 17.4 The Kalman filter for a point moving on the line under our model
of constant acceleration (compare with Figure 17.2). The state is plotted with
open circles as a function of the step i. The *-s give ¥;, which is plotted slightly
to the left of the state to indicate that the estimate is made before the measure-
ment. The x-s give the measurements, and the +-s give f,‘“ , which is plotted
slightly to the right of the state. The vertical bars around the *-s and the +-s
are three standard deviation bars using the estimate of variance obtained before
and after the measurement, respectively. When the measurement is not noisy, the
bars contract when a measurement is obtained.

Algorithm 17.2: The Kalman filter updates estimates of the mean and covariance of the various
distributions encountered while tracking a state variable of some fixed dimension using the given
dynamic model.

Dynamic Model:
x; ~ NDix;_1, Zg,)
yi ~ N(Mix;, Zm;)
Start Assumptions: ¥, and ¥; are known
Update Equations: Prediction
X, = Difitl
X=X+ D,'O’itIDi
Update Equations: Correction
Ki =M [METM] + 2]
X =%+ K[y - ME]
oF =[Id - KiM]Z7

Sec. 17.3 Kalman Filtering ' 385

measurements might contradict the estimates obtained to date—perhaps the future movements
of the point are more in agreement with a slightly different estimate of the position of the point.
However, P(X; |y, ... ,y;) is the best estimate available at step i.

What we do with this observation depends on the circumstances. If our application requires
an immediate estimate of position—perhaps we are tracking a car in the opposite lane—there
isn’t much we can do. If we are tracking off-line—perhaps for forensic purposes, we need the
best estimate of what an object was doing given a videotape—then we can use all data points,
and so we want to represent P(X; |y, ... ,¥y). A common alternative is that we need a rough
estimate immediately, and can use an improved estimate that has been time-delayed by a number
of steps. This means we want to represent P (X; | y, ... ,y;,,)—Wwe have to wait until time i + k
for this representation, but it should be an improvement on P(X; | y,, ... ,¥,).

Introducing a Backward Filter Now we have

PXi,Yists - I8 Y00 - s Y)P o, - ¥0)
P 130, s yy) = — i Yittr - Iy 1Yo, YD P O, -

P(yg,....¥n)
_ POiir, - yn 1 Xy, - o ¥)PXi | ygs - - YDPWo oLy
P@o.....yn)
_ Pipt, - Yy | XD)PXi | yg, .- s YD P oy »Y;)
Po, ..., ¥N)

= PX; ly.'+1,--- DINPX |y, .- Yo

where

oo (P(yH_l,... DIYNPOg,s - ,yi))
PX)PWyy,---,¥N) ’

This term should look like a potential source of problems to you; in fact, we can avoid tangling
with it by a clever trick. What is important about this form is that we are combining P(X; |
Yos - - - »¥;)—which we know how to obtain—with P(X; | y,,,,...,yy). We actually know
how to obtain a representation of P(X; | y;,;,... ,¥x), too. We could simply run the Kalman
filter backward in time, using backward dynamics and take the predicted representatlon of X;
(we leave the details of relabeling the sequence, etc., to the exercises).

Combining Representations Now we have two representations of X;: one obtained
by running a forward filter and incorporating all measurements up to y,; and one obtained by
running a backward filter and incorporating all measurements after y;. We need to combine these
representations. Instead of explicitly determining the value of « (which should look hard), we
can get the answer by noting that this is like having another measurement. In particular, we have
a new measurement generated by X;—that is, the result of the backward filter—to combine with
our estimate from the forward filter. We know how to combine estimates with measurements
because that’s what the Kalman filter equations are for.

All we need is a little notation. We attach the superscript f to the estimate from the for-
ward filter and the superscrlpt b to the estimate from the backward filter. We write the mean of
PX; |y, »¥n) asX and the covariance of P(X; | yo, ... ,yy) as £}. We regard the repre-
sentation of X? as a measurement of X; with mean Xf) and covariance Ef’ '~ —the minus sign is
because the ith measurement cannot be used twice, meaning the backward filter predicts X; using

W - - -Yi1- This measurement needs to be combined with P(X; | y, ... ,y;), which has mean

386 Tracking with Linear Dynamic Models Chap. 17

X fit and covariance Et.f "+ (when we substitute into the Kalman equations, these take the role of

i
the representation before a measurement because the value of the measurement is now Xf).
Substituting into the Kalman equations, we find that

Kf=3x/* [z,f'* + z,?’"]_l ;
Sr=Uu-K1gH
X =X"+; X -X").
It turns out that a little manipulation (exercise!) yields a simpler form, which we give in Al-

gorithm 17.3. Forward-backward estimates can make a substantial difference as Figure 17.5
illustrates.

Algorithm 17.3: The forward-backward algorithm combines forward and backward estimates of
state to come up with an improved estimate.

Forward filter: Obtain the mean and variance of P(X; | y,...,y;) using the
Kalman filter. These are X',f " and E,.f .

Backward filter: Obtain the mean and variance of P(X; | y; 4+1s-+-»Yy) using the
Kalman filter running backward in time. These are I_(f] "~ and 57,

Combining forward and backward estimates: Regard the backward estimate as a
new measurement for X;, and insert into the Kalman fiiter equations to obtain

= [(2[’+)‘1 + (2?,—)—1]_1 :

X, =5 [&FH7RT + &R

Priors In typical vision applications, we are tracking forward in time. This leads to
an inconvenient asymmetry: We may have a good idea of where the object started, but only a
poor one of where it stopped (i.e., we are likely to have a fair prior for P(x,), but may have
difficulty supplying a prior for P(xy) for the forward-backward filter). One option is to use
P(xy | ¥g,...,yy) as a prior. This is a dubious act as this probability distribution does not
in fact reflect our prior belief about P (xy)—we’ve used all the measurements to obtain it. The
consequences can be that this distribution understates our uncertainty in x5 and so leads to a
forward-backward estimate that significantly underestimates the covariance for the later states.
An alternative is to use the mean supplied by the forward filter, but enlarge the covariance sub-
stantially; the consequences are a forward-backward estimate that overestimates the covariance
for the later states (compare Figure 17.5 with Figure 17.6).

Not all applications have this asymmetry. For example, if we are engaged in a forensic
study of a videotape, we might be able to start both the forward tracker and the backward tracker
by hand and provide a good estimate of the prior in each case. If this is possible, then we have a
good deal more information which may be able to help choose correspondences, and so on—the
forward tracker should finish rather close to where the backward tracker starts.

Sec. 17.3

Kalman Filtering 387

AT
o 1&*%{31&, . F {QHWQ% . -

B S % [S
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

10

|
x

S0 IS [N N NN I S E N —
0 2 4 6 8 10 12 14 16 18 20

Figure 17.5 Forward—backward estimation for a dynamic model of a point
moving on the line with constant velocity. We are plotting the position compo-
nent of state against time. On the top left, we show the forward estimates, again
using the convention that the state is shown with circles, the data is shown with
an x, the prediction is shown with a *, and the corrected estimate is shown with a
+; the bars give one standard deviation in the estimate. The predicted estimate is
shown slightly behind the state and the corrected estimate is shown slightly ahead
of the state. You should notice that the measurements are noisy. On the top right
we show the backward estimates. Now time is running backward (although we
have plotted both curves on the same axis) so that the prediction is slightly ahead
of the measurement and the corrected estimate is slightly behind. We have used
the final corrected estimate of the forward filter as a prior. Again, the bars give
one standard deviation in each variable. On the bottom, we show the combined
forward-backward estimate. The squares give the estimates of state. Notice the
significant improvement in the estimate.

Smoothing over an Interval Although our formulation of forward-backward smooth-
ing assumed that the backward filter started at the last data point, it is easy to start this filter a
fixed number of steps ahead of the forward filter. If we do this, we obtain an estimate of state in
real time (essentially immediately after the measurement) and an improved estimate some fixed
numbers of measurements later. This is sometimes useful. Furthermore, it is an efficient way to
obtain most of the improvement available from a backward filter if we can assume that the effect
of the distant future on our estimate is relatively small compared with the effect of the immediate

388

20

15

10

0 2 4 6 8 10 12 14 16 18 20

Figure 17.6 We now show the effects of using a diffuse prior for the position
of the final point in forward-backward estimation for a dynamic model of a
point moving on the line with constant velocity. We are plotting the position
component of state against time. On the top left, we show the forward estimates,
again using the convention that the state is shown with circles, the data is shown
with an x, the prediction is shown with a *, and the corrected estimate is shown
with a +; the bars give one stanlard deviation in the estimate. The predicted
estimate is shown slightly behind the state, and the corrected estimate is shown
slightly ahead of the state. You should notice that the measurements are noisy. On
the top right we show the backward estimates. Now time is running backward
(although we have plotted both curves on the same axis) so that the prediction is
slightly ahead of the measurement and the corrected estimate is slightly behind.
Again, the bars give one standard deviation in each variable. On the bottom, we
show the combined forward-backward estimate. The squares give the estimates
of state. Notice the significant improvement in the estimate.

Tracking with Linear Dynamic Models Chap. 17
T T T T T T 1T 1~ 20!|l|lllll‘
I QH’ : 1y t{ﬂ i]
g¥ it
L L]
S T T [S T O I |
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
V7T 717 T T 1 le éii
151 §¢ -
Thd
L adt e
5_. 4lOo —]
23
o’ —
Y I N N NN WO NN N N

future. Notice that we need to be careful about priors for the backward filter here; we might take
the forward estimate and enlarge its covariance somewhat.

17.4 DATA ASSOCIATION

Not every aspect of every measurement conveys information about the state of the object being
tracked. In fact, we have been somewhat disingenuous up to this point and have not really talked

Sec. 17.4 Data Association 389

about what is in y; at all. Usually, there are measurements that are informative and measurements
that are not informative (usually referred to as clutter).

Determining which measurements are informative is usually referred to as data associ-
ation. Typically, one wishes to map a series of measurements to a series of tracks, possibly
ignoring some—or almost all—of them. The main work in this problem relates to tracking mov-
ing objects (aeroplanes, missiles, etc., all conveniently belonging to the bad guys) with radar
returns. Typically, there may be many radar returns at any given timestep—we should like to up-
date our representations of the motion of the objects being tracked without necessarily knowing
which returns come from which object. As we have seen, tracking algorithms are complicated,
but not particularly difficult. Data association is probably the biggest source of difficulties in
vision applications, and is not often discussed in the literature. We expect this to change under
the impact of practical applications. We will confine our discussion to the case where there is
a single moving object. The problem here is that some pixels in the image are very informative
about that object, and some are not—which should we use to guide our tracking process?

17.4.1 Choosing the Nearest—Global Nearest Neighbours

In the easiest case, we need to track a single object moving in clutter. For example, we might be
tracking a ball moving on a fixed or very slowly varying background. We segment the image into
regions, with the reasonable expectation that the ball tends to produce one region, and that the
segmentation of the background might change with time. Intuitively, it would be very difficult
to confuse the ball with a background region, because we have a strong model of how the ball
is moving. This means we would have to be unlucky if there was a new background region that
(a) was easily confused with the ball region and (b) confused the dynamic model. This suggests
one fairly popular strategy for data association: the rth region offers a measurement y;, and we
choose the region with the best value of

P =Yy 1Y, +Yi_1) =/P(Yi =y 1 Xi,Y0,-- - »Yic)DPXi | Yoo - -+ 5 ¥i-1) dX;

- f P =y | X)OP X 1300« »9e1) dx:

Determining P(Y; = y; | ¥y, -.. ,y;—1) isa particularly easy calculation with the Kalman
filter. We know how ¥; is obtained from X;—we take a normal random variable with mean X :,
and covariance X, apply the linear operator D; to it, and add some other random variable. The

output of the linear operator must have mean D;X; and covariance D; X D. To this we are
going to add a random variable with zero mean and covariance X, ; the result must have mean

DX,
and covariance
D2 DT + T,

In Figure 17.7, we have plotted bounds on the position of an expected measurement for a Kalman
filter following various dynamic models.

Notice that this strategy can be relatively robust depending on the accuracy of the dynamic
model. If we are able to use a tight dynamic model, anything that is easily confused with the
object being tracked must be more similar to the predicted measurement than the real object
does. This means that an occasional misidentification may not create major problems because
one is unlikely to find a region that is both similar to the predicted measurement and able to
throw off the dynamic model badly. In Figure 17.8, we show a Kalman filter tracking the state of

390

Tracking with Linear Dynamic Models Chap. 17

180 T T T T

] 160[— h |

— 140
-] 120 \
1= GO

— 80— *P

1o -#*
— 20 #Hﬂ‘{“*#

_ 1 | l l
25 200 5 10 15 20 25

Figure 17.7 Data association for a Kalman filter for a point moving on the line
under our model of constant velocity on the left and constant acceleration on the
right. Compare with Figure 17.1 for the constant velocity model and with Fig-
ure 17.2 for the constant acceleration model. We have used the conventions of
Figure 17.3. We have now overlaid three standard deviation bars for the measure-
ment (the dashed bars passing through the state). These are obtained using the
estimate of state before a measurement and our knowledge of the variance of the
measurement process. Notice that the measurements lie within these windows.

a point by choosing the best measurement at each step; it does not always correctly identify the
point, but its estimate of state is always good.

Notice that what we are doing here is using only measurements that are consistent with
our predictions. This may or may not be dangerous: It can be easy to track nonexistent objects
this way or to claim to be tracking an object without ever obtaining a measurement from it. If
the dynamic model can give only weak predictions (i.e., the object doesn’t really behave like
that or 4, is con31stent1y large) we may have serious problems because we need to rely on the
measurements. These problems occur because the error can accumulate—it is now relatively easy
to continue tracking the wrong point for a long time, and the longer we do this the less chance
there is of recovering the right point. Figure 17.9 shows a Kalman filter becoming hopelessly
confused in this manner.

17.4.2 Gating and Probabilistic Data Association

Again, we assume that we are tracking a single object in clutter and use the example of tracking
a ball moving on a fixed or slowly varying background. Instead of choosing the region most like
the predicted measurement, we could exclude all regions that are too different and then use all
others, weighting them according to their similarity to the prediction.

The first step is called gating. We exclude all measurements that are too different from
the predicted measurement. What “too different” means rather depends on the application: If we
are too aggressive in excluding measurements, we may find nothing left. It is usual to exclude
measurements that liec more than some number—éommonly, three—of standard deviations from
the predicted mean. A more sophisticated strategy is required if the object being tracked has more
than one dynamic behavior; for example, military aircraft often engage in high-speed maneuvers.
In cases like this, it is common to have several gates and to take all measurements that lie in the
tightest gate that contains any measurements.

Sec. 17.4

Data Association 391
—
]
~04 : | [| |
0 5 10 15 20 25

Figure 17.8 Predictions of the point position can identify “good” measure-
ments for a Kalman filter. We are using a Kalman filter to identify a point, mov-
ing with constant velocity on a line, and with a small X, at every stage. There
are also 10 drifting points. This plot shows position plotted against time for the
drifting points—which are shown with a solid line—and for the point that is
being tracked. The trajectory of the point that should be tracked is shown in a
dashed line, and each measurement on this trajectory is shown with a square.
We have used the conventions of Figure 17.3 (i.e., the state is plotted with open
circles, as a function of the step i; * gives X; , which is plotted slightly to the
left of the state to indicate that the estimate is made before the measurement; x
gives the measurements, and + gives X;", which is plotted slightly to the right of
the state; the vertical bars around the * and the + are three standard deviation
bars using the estimate of variance obtained before and after the measurement,
respectively; we have overlaid one standard deviation bars in each case). This
filter chooses the measurement at each step by choosing the measurement that
maximizes P (y!|y,, ... ,Y;—;); notice that it doesn’t choose the right measure-
ment at every step (i.e., the x is not always in the square), but it maintains a good
estimate of the state (i.e., the +'s are close to the circles). |

The next step is. called probabilistic data association (PDA). Assume that, in the gate,
we have a set of N regions each producing a vector of measurements y¥, where the superscript
indicates the region. We have a set of possible hypotheses to deal with: Either no region comes
from the object, which we call ho, or region k comes from the object, which we call ;. The
measurement we reportis ‘

B i = ZP(hj 1Yo ¥ie¥ls
J ’ o

where the expectation is taken over the space of hypotheses (which is why we have given it the
subscript /). Now the probability that none of the measurements comes from the object depends
on the details of our detection process. For some detection processes, this parameter can be
calculated; for example, in chapter 4 of Blackman and Popoli (1999), there is a worked example

392 Tracking with Linear Dynamic Models Chap. 17

ST R R S
AT OAIEAR IS VB
% AV NN N
,' \ o e v, >

0 AN T T I T A N _3 | I B | ‘
2 4 6 8 10 12 14 16 18 20 .0 20 40 60 80 100 120

Figuré 17.9 If the dynamic model is not sufficiently constrained, then choosing
the measurement that gives the best P(¥]yo, - .. ,¥;_;) can lead to disaster. On
the left, 20 steps of a Kalman filter following a point moving periodically on the
line with 20 drifting points in the background. We are using the conventions of
Figure 17.3 again. Now ‘X, is relatively large for each step, and so it is easy to
follow the wrong measurement for some way. It looks as if the filter is tracking
the state well, but in fact as the figure on the right—which gives 100 steps—
shows, it quickly becomes hopelessly lost.

for a radar system. In other cases, we need to search for a value of the parameter that results
in good behavior on a set of training examples. Assume that we have calculated or learned this
parameter, which we can write as B. We must also assume that either the object is not detected
or only one measurement comes from the object. Now

Pjlye - »¥ic) =fP(hj | X)PX; | yg, ... ,y;_)dXi

= P(¥; =y{ | ¥os - - - »¥i—1) P (object detected)

=P =y 1¥0 .-, yi_)(L = B).

In what follows, we write P(h; | yo, . .. b, ¥;_1) as p;. In practice, this method is usually used
with a Kalman filter. To do so, we report the measurement

yi=Y ppl
J

to the Kalman update equations. Note that the term for not having a measurement appears here
as the factor (1 — B) in the expressioris for the p;, but our uncertainty about which measurement
should contribute to the update should also appear in the covariance update. We modify the
covariance update equations to take the form

St == p)Ud - KM T +BE]
+Ki [Z pi(H% —y)(HE —y])T —yﬁ(vﬁ)T} :
J
Here the first term is the update for the standard Kalman filter weighted by the probability that

one observation is good, the second term deals with the prospect that all observations are bad,
and the third term contributes uncertainty due to the correspondence uncertainty.

Sec. 17.5 Applications and Examples 393
17.5 APPLICATIONS AND EXAMPLES

Tracking is a technology with a number of possible applications. There are three dominant topics.

* Vehicle tracking systems could report traffic congestion, accidents, and dangerous or
illegal behavior by road users. Traffic congestion reports are useful for potential road
users—who might change their travel plans—and to authorities—who might arrange to
remove immobilised vehicles blocking lanes, etc. Accident reports can be used to alert
emergency services; if the tracking system can read vehicle number plates, it might use
reports of dangerous or illegal behavior to send a summons to the vehicle owner.

* Surveillance systems report what people are doing, usually with the aim of catching peo-
ple who are doing things they shouldn’t. The police might wish to know which member
of a sports audience threw a bottle onto the field, for example, or if the same person vis-
ited several different banks just before they were robbed. Customs might wish to know
exactly who is loading and unloading aircraft flying to foreign ports.

* Human—computer interaction systems use people’s actions to drive various devices.
For example, the living room might decide for itself, by watching what people are doing,
when low lights and soft music are appropriate. The television set might change channels
when you wave at it. Your computer might watch what you write on your whiteboard
and make a record of the contents when you tell it to.

Currently, the most convincing applications are in vehicle tracking. These systems work reliably
under a large range of circumstances. We survey vehicle tracking systems briefly here, and then
we discuss human trackers in a chapter that appears on the website.

17.5.1 Vehicle Tracking

Systems that can track cars using video from fixed cameras can be used to predict traffic volume
and flow; the ideal is to report on and act to prevent traffic problems as quickly as possible. A
number of systems can track vehicles successfully. The crucial issue is initiating a track automat-
ically. In the two systems we describe here, the problem is attacked quite differently. Sullivan,
Baker, Worrall, Attwood and Remagnino (1997) construct a set of regions of interest (ROIs) in
each frame. Because the camera is fixed, these regions of interest can be chosen to span each lane
(Figure 17.10); this means that almost all vehicles must pass directly through a region of interest
in a known direction (there are mild issues if a vehicle chooses to change lanes while in the ROI,
but these can be ignored). Their system then watches for characteristic edge signatures in the
ROI that indicate the presence of a vehicle (Figure 17.10). These signatures can alias slightly—
typically, a track is initiated when the front of the vehicle enters the ROI, another is initiated
when the vehicle lies in the ROI, and a third is initiated close to the vehicle’s leaving—because
some of the vehicle’s edges are easily mistaken for others.

Each initiated track is tracked for a sequence of frames, during which time it accumulates
a quality score—essentially, an estimate of the extent to which predictions of future position
were accurate. If this quality score is sufficiently high, the track is accepted as an hypothesis.
An exclusion region in space and time is constructed around each hypothesis, such that there
can be only one track in this region; if the regions overlap, the track with the highest quality is
chosen. The requirement that the exclusion regions do not overlap derives from the fact that two
cars can’t occupy the same region of space at the same time. Once a track has passed these tests,
the position in which and the time at which it will pass through another ROI can be predicted.
The track is finally confirmed or rejected by comparing this ROI at the appropriate time with a
template that predicts the car’s appearance. Typically, relatively few tracks that are initiated reach
this stage (Figure 17.11).

394

Tracking with Linear Dynamic Models

Chap. 17

o)

|

ULl 1N

8,(u)

cy(u)

Figure 17.10 Sullivan ez al. track vehicles in views of the road from a station-
ary camera. Their tracker uses a series of regions of interest registered to the
road, which are shown on the left. They initiate tracks by looking for character-
istic edge signatures in a particular ROI; these signatures are projected onto three
distinct coordinate axes—if the edges projected on these axes have a high enough
correlation with the expected form, then a track is initiated (right). Reprinted
from “Model-based Vehicle Detection and Classification using Orthographic
Approximations,” by G D Sullivan, et al., Proc. British Machine Vision Asso-
ciation Conference, 1996, by permission of the K.D. Baker

260 |
240
220}

Spatio-temporal conflict

Distance (pixels)

200
180
160 ¢
140 I

Frames (25 Hz)
40

Figure 17.11 In the system of Sullivan et al., tracks are continued if they are of
sufficient quality measured by comparing the prediction of the track with mea-
surements. Tracks exclude other tracks: By the time a car reaches the bottom of
the view, the system must decide which track to accept. It does so by comparing
the track prediction with another ROI. This figure plots a series of tracks (posi-
tion on the vertical axis and time on the horizontal axis). Notice that the typical
alias tracks (that arise because the front of a car and the back of a car both tend
to look rather like a registered car to the track initiation process) tend to die out
quite quickly; the real track (and its exclusion regions) is indicated. If two tracks
attempt to exclude one another, the winner is the track of the highest quality.
Reprinted from “Model-based Vehicle Detection and Classification using Ortho-
graphic Approximations,” by G D Sullivan, et al., Proc. British Machine Vision
Association Conference, 1996, by permission of the K.D. Baker

Sec. 17.5 Applications and Examples 395

An alternative method for initiating car tracks is to track individual features and then
group those tracks into possible cars. Beymer, McLauchlan, Coifman and Malik (1997) used
this strategy rather successfully. Because the road is plane and the camera is fixed, the homog-
raphy connecting the road plane and the camera can be determined. This homography can be
used to determine the distance between points; and points can lie together on a car only if this
distance doesn’t change with time. Their system tracks corner points, identified using a second
moment matrix (Section 8.3.3), using a Kalman filter. Points are grouped using a simple algo-
rithm using a graph abstraction: Each feature track is a vertex, and edges represent a grouping
relationship between the tracks. When a new feature comes into view—and a track is thereby
initiated—it is given an edge joining it to every feature track that appears nearby in that frame.
If, at some future time, the distance between points in a track changes by too much, the edge
is discarded. An exit region is defined near where vehicles leave the frame. When tracks reach
this exit region, connected components are defined to be vehicles. This grouper is successful,
both in example images (Figure 17.12) and in estimating traffic parameters over long sequences
(Figure 17.13).

The ground plane to camera transformation can provide a great deal of information. We
have already used this to determine whether points are on rigid objects (by figuring out velocity
on the ground plane and comparing velocities). This allowed us to assemble features into objects.
Now once an object has been tracked, we can use this transformation to reason about spatial
layout and occlusion. Furthermore, we can track cars from moving vehicles. In this case, there
are two issues to manage: First, the motion of the camera platform (so-called ego-motion); and
second, the motion of other vehicles. Ferryman, Maybank and Worrall (2000) estimate the ego-
motion by matching views of the road to one another from frame to frame (Figure 17.14). With
an estimate of the homography and of the ego-motion, we can now refer tracks of other moving
vehicles into the road coordinate system to come up with reconstructions of all vehicles visible
on the road from a moving vehicle (Figure 17.14).

Figure 17.12 The figure on the left shows individual tracks for the system of
Beymer et al. These tracks are obtained by tracking corner points with a Kalman
filter. Because the camera position with respect to the road plane is known, the
camera transformation can be inverted for points lying on a plane parallel to
the road plane. This means that we can determine pairs of points that remain
at a constant distance from one another. The figure on the right shows groups
of such points. These groups are assumed to represent vehicles. Reprinted from
“A Real-Time Computer Vision System for Measuring Traffic Parameters,” by D.
Beymer et al., Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
1997 © 1997, IEEE

396 Tracking with Linear Dynamic Models Chap. 17

5 minute avg flow; 44 hours of data 5 minute avg velocity; 44 hours of data

2500 - . D g0 fr]
e N : ol
—_ bt 60}
£ 2000 S -
) O U
5 - g g
o 1500 ; ,..ﬁa ¥ * <
2 ! f
o . cad Y b5
3 1000 % RO S 5
2 i 2
) ﬁ; & 3
500 7 SN U A 8 :
00 "S00 1000 1500 2000 2500 %10 20 30 40 50 60 70

ground truth q (veh/hr) ground truth v (mi/h)

Figure 17.13 The system of Beymer et al. can produce rather accurate esti-
mates of traffic flow and traffic velocity. On the left, a scatter plot of estimates of
flow versus ground truth; on the right, a scatter plot of estimates of velocity vs.
ground truth. Reprinted from “A Real-Time Computer Vision System for Mea-
suring Traffic Parameters,” by D. Beymer et al., Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, 1997 © 1997, IEEE

B S
—

gl Llgl g

Figure 17.14 Once we know the homography to a ground plane, tracks of other
vehicles obtained using the moving camera platform can be referred to the coor-
dinate system relative to the camera platform on this ground plane. This allows
detailed reconstructions of traffic geometry illustrated on the left. Furthermore,
we can use the movement of fixed objects on the ground plane (such as the white
marks) to estimate the movement of the camera platform. All this means that
we can (a) interpret traffic geometry, for example, predicting impending colli-
sion between the camera platform and some other vehicle, and (b) render views
of the traffic from some other platform (shown on the right). Reprinted from
“Visual Surveillance for Moving Vehicles,” by J.M. Ferryman, S.J. Maybank and
A.D. Worrall, Proc. 1998 IEEE Workshop on Visual Surveillance, © 1998, IEEE

Problems

17.6 NOTES

PROBLEMS

397

The Kalman filter is an extremely useful trick. It is regularly rediscovered, and appears in dif-
ferent guises in different fields. Often dynamics that are not linear can be represented as linear
dynamics well enough to fit a Kalman filter. We refer interested readers to Chui (1991), Staff of
the Analytical Sciences Corporation (1974) and West and Harrison (1997).

We have not discussed the process of fitting a linear dynamic model. The matter is rela-

tively straightforward if one knows the order of the model, a natural state space to use, and a
reasonable measurement model. Otherwise, things get tricky—there is an entire field of control
theory dedicated to the topic in this case known as system identification. We recommend, in the
first instance, Ljung (1995).

17.1.

17.2.

17.3.

17.4.

Assume we have amodelx; = D;x;_; and y; = M iTxi. Here the measurement y; is a one-dimensional
vector (i.e., a single number) for each i and x; is a k-dimensional vector. We say model is observable
if the state can be reconstructed from any sequence of ¥ measurements.

(a) Show that this requirement is equivalent to the requirement that the matrix

[MiDIM; .\ DI D] Misz... DI ... D] M)

has full rank.

(b) The point drifting in 3D, where M3, = (0, 0, 1), M3y = (0, 1, 0), and M4, = (1,0, 0) is
observable. _

(c) A point moving with constant velocity in any dimension, with the observation matrix reporting
position only, is observable.

(d) A point moving with constant acceleration in any dimension, with the observation matrix report-
ing position only, is observable.

A point on the line is moving under the drift dynamic model. In particular, we have x; ~ N(x;_1, 1).

It starts at xo = 0.

(a) What is its average velocity? (Remember, velocity is signed.)

(b) What is its average speed? (Remember, speed is unsigned.)

(c) How many steps, on average, before its distance from the start point is greater than two (i.e., what
is the expected number of steps, etc.?) :

(d) How many steps, on average, before its distance from the start point is greater than ten (i.e., what
is the expected number of steps, etc.)?

(e) (This one requires some thought.) Assume we have two nonintersecting intervals, one of length
1 and one of length 2; what is the limit of the ratio (average percentage of time spent in interval
one)/ (average percentage of time spent in interval two) as the number of steps becomes infinite?

(f) You probably guessed the ratio in the previous question; now run a simulation and see how long
it takes for this ratio to look like the right answer.

‘We said that

~ad+cb bd

gx;a,b)glx;c,d)=g (x, 51d 'bid

) f(a,b,c,d).

Show that this is true. The easiest way to do this is to take logs and rearrange the fractions.
Assume that we have the dynamics

2y.
x; ~ N(dixi-1, 04);

yi ~ N(mix;, o).

398

17.5.

17.6.

Tracking with Linear Dynamic Models Chap. 17

(@) P(x; | x;—1)-is a normal density with mean d;x;_; and variance ad What is P(x;_; | x;)?
(b) Now show how we can obtain a representation of P(x; | y;,;, ... ,yy) using a Kalman filter.

Programming Assignments

Implement a 2D Kalman filter tracker to track something in a simple video sequence. We suggest that
you use a background subtraction process and track the foreground blob. The state space should prob-
ably involve the position of the blob, its velocity, its orientation—which you can get by computing
the matrix of second moments—and its angular velocity. '

If one has an estimate of the background, a Kalman filter can 1mprove background subtraction by
tracking illumination variations and camera gain changes. Implement a Kalman filter that does this;
how substantial an improvement does this offer? Notice that a reasonable model of illumination -
variation has the background multiplied by a noise term that is near one—you can turn this into linear
dynarmcs by takmg logs

