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Affine Structure
from Motion

This chapter revisits the problem of estimating the three-dimensional shape of a scene from
multiple pictures. In the context of stereopsis, the cameras used to acquire the input images are
normally calibrated so their intrinsic parameters are known and their extrinsic ones have been
determined relative to some fixed world coordinate system. This greatly simplifies the recon-
struction process and explains the emphasis put on the binocular (or trinocular) fusion problem in
conventional stereo vision systems. We consider in this chapter a more difficult setting where the
cameras’ positions and possibly their intrinsic parameters are a priori unknown and may change
over time. This is typical of image-based rendering applications, where a video clip recorded by
a hand-held camcorder, possibly zooming during the shoot, is used to capture the shape of an
object and render it under new viewing conditions (chapter 26). This is also relevant for active
vision systems whose calibration parameters vary dynamically and planetary robot probes for
which these parameters may change due to the large accelerations at take-off and landing. Re-
covering the cameras’ positions is of course just as important as estimating the scene shape in
the context of mobile robot navigation.

We ignore the correspondence problem in the rest of this chapter, assuming that the projec-
tions of 7 points have been matched across m pictures.! We focus instead on the purely geometric
structure-from-motion problem of using image matches to estimate both the three-dimensional
positions of the corresponding scene points in some fixed coordinate system (i.e., the scene struc-
ture) and the projection matrices associated with the cameras observing them (or, equivalently,
the motion of the points relative to the cameras). This chapter is concerned with scenes whose
relief is small compared with their overall depth relative to the cameras observing them, so per-
spective projection can be approximated by the simpler affine models of the imaging process

!Methods for establishing such correspondences across both continuous image sequences and scattered views of
a scene are discussed in chapters 17 and 23.
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introduced in chapters 1 and 2. The full perspective structure-from-motion problem is discussed
in the next chapter. Concretely, given n fixed points P; (j = 1,...,n) observed by m affine
cameras and the corresponding mn (nonhomogeneous) coordinate vectors p;; of their images,
we rewrite the affine projection Eq. (2.19) as

pij=Mi<I;j>=Ain+bi for i=1,...,m and j=1,...,n, (12.1)

and define affine structure from motion as the problem of estimating the m 2 x 4 matrices M; =
(A;  b;) and the n positions P; of the points P; in some fixed coordinate system from the mn
image correspondences p;;.

When the projection matrices M; are allowed to take an arbitrary form (i.e., when the -
intrinsic and extrinsic parameters of the cameras are unknown, see chapter 2), Eq. (12.1) provides
2mn constraints on the 8m + 3n unknown coefficients defining the matrices M; and the point
positions P;. Since 2mn is greater than 8m + 3n for large enough values of m and n, it is thus
clear that a sufficient number of views of a sufficient number of points allows the recovery of the
corresponding structure and motion parameters via, say, the least-squares techniques presented
in chapter 3. However, it is important to understand that, if M; and P; are solutions of Eq. (12.1),
so are M and P;-, where

M = MQ and (’:f) - Q“(}Ij) (12.2)

and Q is an arbitrary affine transformation matrix—that is, it can be written (see chapter 2 and

next section) as
_(C d . -1 ¢! —Cc4d
Q = (OT 1) with Q = (OT 1 )a (12‘3)

where C is a nonsingular 3 x 3 matrix and d is a vector in R>. In other words, any solution
of the affine structure-from-motion problem can only be defined up to an affine transformation
ambiguity. Taking into account the 12 parameters defining a general affine transformation, we
should thus expect a finite number of solutions as soon as 2mn > 8m + 3n — 12. Form = 2,
this suggests that four point correspondences should be sufficient to determine (up to an affine
transformation) the two projection matrices and the three-dimensional position of any other point.
This is confirmed formally in Section 12.2.

When the intrinsic parameters of the cameras are known so the corresponding calibration
matrices can be taken equal to the identity, the parameters of the projection matrices M; =
(A; b;) must obey additional constraints. For example, according to Eq. (2.20), the matrix 4;
associated with a (calibrated) weak-perspective camera is formed by the first two rows of a rota-
tion matrix, scaled by the inverse of the depth of the corresponding reference point. As shown in
Section 12.4, constraints such as these can be used to eliminate the affine ambiguity when enough
images are available. This suggests decomposing the solution of the affine structure-from-motion
problem into two steps: (a) first use at least two views of the scene to construct a unique (up to
an arbitrary affine transformation) three-dimensional representation of the scene, called its affine
shape; then (b) use additional views and the constraints associated with known camera calibration
parameters and specific affine models to uniquely determine the rigid Euclidean structure of the
scene. The first stage of this approach yields the essential part of the solution: The affine shape is
a full-fledged three-dimensional representation of the scene, which, as shown in chapter 26, can
be used in its own right to synthesize new views of the scene. The second step simply amounts
to finding a Euclidean upgrade of the scene (i.e., to computing a single affine transformation that
account for its rigidity and map its affine shape onto a Euclidean one).
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Using three or more images overconstrains the structure-from-motion problem and leads to
more robust least-squares solutions. Accordingly, a significant portion of this chapter is devoted
to the problem of recovering the affine shape of a scene from several (possibly many) pictures.
We conprde with techniques for segmenting a set of data points into objects undergoing different
motions.

12.1 ELEMENTS OF AFFINE GEOMETRY

Let us start by introducing some elementary notions of affine geometry. The corresponding ge-
ometric and algebraic tools allow us to state and prove the fundamental properties of affine
projection models. They also serve as building blocks for the structure-from-motion algorithms
introduced in the rest of this chapter.

~ As noted in Snapper and Troyer (1989), affine geometry is, roughly speaking, what is
left after all ability to measure lengths, areas, and angles has been removed from Euclidean
geometry. The concept of parallelism remains, however, as well as the ability to measure the
ratio of distances between collinear points. Giving a rigorous axiomatic introduction to affine
geometry would be out of place here. Instead, we remain quite informal and recall the basic
facts about real affine spaces that are necessary to understand the rest of this chapter. The reader
familiar with notions such as barycentric cornbmatlons, affine coordinate systems, and affine
transformatlons may safely proceed to the next section.

12.1.1 Affine Spaces and Barycentric Combinations

A real affine space is a set X of points, together with a real vector space i’ and an action ¢ of the
additive group of X on X. The vector space X is said to underlie the affine space X. Informally,
the action of a group on a set maps the elements of this group onto bijections of the set. Here, the
action ¢ associates with every vector u € Xa bijection ¢, : X — X such that, for any u, v in
X and any point P in X, @u+4v(P) = ¢u o ¢, (P), po(P) = P, and for any pair of points P, Q in
X, there exists a unique vector % in X such that ¢, (P) = Q. These definitions may sound a bit
abstract, so let us give some concrete examples A familiar affine space is, of course, E>, where
X is the set of physical points and X is the set of translations of X onto itself. Another affine
space can be constructed by choosing both X and X tobe equal to R”, with the action ¢ defined
by ¢ (P) = P +u, where P and u are both elements of R" and “+” denotes the addition in that
vector space. 4

Example 12.1 R? as an affine plane.

-
X X

The vector space R? can be considered as an affine space by choosing X = X = R2 Given P =

(x,y)T and u = (a, b)7, we define ¢,(P) &£ P +u = (x +a,y + b)T. Given P = (x, y)T and
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Q = (x, ¥)T, the unique vector u such that P.+u = Qisof couseu = Q — P = P
. @ =xy =nh

Following this example, we denote from now on the point ¢, (P) by P + u and the vector
u such that ¢,(P) = Q by @ or, equivalently, by Q — P. This is justified by the fact that
choosin _g a point O as the origin of X allows us to 1dent1fy every other point P with the vector
u = O P suchthat ¢, (O) = P. Indeed,

Q=P+PY > 00=0P+P0 ad Q-P=PQ« 00-0P=F0.

The introduction of an origin is often useful for beginners who want to keep their affine notation
stralght It should be absolutely clear, however, that the point P +u and the vector T’@ =Q-P
are totally independent of the choice of any origin whatsoever. Likewise, the symbols “+” and *
“—” in these expressions are used for notational convenience and do not convey their usual
meaning of addition and subtraction in the additive group of a vector space.

Although it is possible to “add” a vector to a point and to “subtract” two points, it is not pos-
sible to “add” two points or to “multiply” a point by a scalar (see Exercises). However, a restricted

kind of “linear combination” of points can be defined: Consider m + 1 points Ag, A; ... , A, and
m + 1 weights o, a1, ... , @y sSuch that g + o3 + - - - + @ = 1; the correspondmg barycentrzc
combination of the pomts Ap to A,,, is the point
m ’ o
Za,A LA+ ) w4y, (12.4)
i=0 i=0,i#£j

where j is an integer between O and m. The right-hand side of this equation defines a point
by adding a vector (a linear combination of the vectors A; — A;) to a point (A;). It is eas-
ily shown that this definition is independent of the value of j (see Exercises), which justi-
fies the symmetrical role played by the points A; (i = 0,...,m) in the notation Z;’;O oA,
This notation is further justiﬁed by introducing an origin O and noting that > ., _O_A)i =
OA + Z i=0,i) oz,(OA,- - ﬁj) when o + a; + --- + o, = 1. However, the definition of
barycentnc combinations by Eq. (12.4) is preferable since it is obviously independent of any
choice of origin.

A familiar example of barycentric combination is the center of mass of m + 1 points,
corresponding to the case where all weights are equal to 1/(m 4 1). Any other set of weight
values adding to 1 yields a valid barycentnc combination.

12.1.2 Affme Subspaces and Affine Coordmates

An affine subspace of X is defined by a point O and a vector subspace U of X as the set of points

O+U = &ef {O+u,u € U}. Its dimension is the dimension of the associated vector subspace. Two
affine subspaces O’ + U’ and O” + U”, such that U’ is a subspace of U”, or U” is a subspace
of U’ are said to be parallel. Affine subspaces of dimension 1 and 2 are, respectively, called lines
and planes. When X is of finite dimension n, its affine subspaces of dimension n — 1 are called
hyperplanes. Affine lines, planes, and hyperplanes take their usual meaning in the affine spaces
associated with physical three-dimensional space and R”".

Example 12.2 The intersection of two affine subspaces is either empty or an affine subspace.

Consider two subspaces ¥’ = O’ + U’ and Y” = O” 4 U” of some affine space X, and denote by Z
their intersection. Let Py denote some point in Z. We have by definition Py = O’ +up = 0" + ug
for some vectors ug, in U’ and ug in U”. Likewise, given any other point P in Z, we can write
P =0'+4+u = 0" +u" for some vectors &' in U’ and #” in U”. In particular, we must have

P=P+u —uy=P+u"—ug,
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which implies that (a) u’ — uy = u” — ug is an element of U’ N U”, and (b) P is an element of
Py + U’ N U". Conversely, any point P in Py + U’ N U” can be written as P = Py + u for some
vector u in U’ N U”; thus,

P:0/+(P0—0/)+u=0/+u/+u=0”+(P0—'0”)+u=0”+u”+u,

which implies that P is an element of Z. We finally conclude that Z = Py + U’ N U”. Note that
the intersection of two affine spaces may be empty. For example two parallel lines do not intersect.
Neither do two skew lines in space of course, although they are not parallel to each other.

Affine subspaces can also be defined purely in terms of points: Let S(Ag, A1..., An)
denote the set of all barycentric combinations of m +1 points Ao, Ay, ... , Ap. Itis easy to verify
that S(Ag, A1, ... , Ap) is indeed an affine subspace (see Exercises), and that its dimension is at
most m (e.g., two distinct points define a line, three points define [in general] a plane, etc.). We
say that m + 1 points are independent if they do not lie in a subspace of dimension at mostm — 1,
som + 1 independent points define (or span) an m-dimensional subspace.

Example 12.3 Two complementary definitions of an affine plane.

Consider three noncollinear points Ao, A;, and A, in R? viewed as an affine space. These points

define the plane IT = A + U of R? associated with the point A, and the vector plane U spanned by
— —

the two vectors u; = ApA; and u; = ApA,.

u
A
uy Al

Ay Aq
Ay+ U S(A4y, A1, Ay)

Equivalently, the plane IT can be viewed as the affine subspace S(Ao, A1, A3) of R3, and any
point P in IT can be represented as a barycentric combination of the points Ag, A;, and A,.

An gffine coordinate system for O + U consists of a point Ay (called its origin) in O + U
and a coordinate system (@1, ... ,u,) for U. The affine coordinates of a point P in O + U
are defined as the coordinates of the vector Zo_ﬁ in the coordinate system (uy, ... ,Uy). It is
crucial to understand that the (Euclidean) point coordinates used in chapter 2 and in conventional
Euclidean geometry are just affine coordinates. The vectors u; (i = 1,...,m) used to define
the corresponding coordinate systems simply have the additional property of having unit length
and being orthogonal to each other. This property is not required for general affine coordinate
systems, and indeed the notions of lengths and angles may not be defined in general affine spaces.

Example 124 Affine coordinate changes.

Given some coordinate system (F) = (O, u, v, ) for the affine space E* and a point P of E? such
that OP = xu + yv + zw, we can define, using the same notation as in chapter 2, the (affine)
coordinate vector of P as F P = (x, y, 7).

Given two affine coordinate systems (A) = (Og4, Us, Va4, ws) and (B) = (Op, up, vp, wg) for
the affine space E?, let us define the 3 x 3 matrix

§C=(BVA By, BWA),
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where Za denotes the coordinate vector of the vector a in the (Vector) coordinate system (U4, V4, Wa).
It is easy to show that P = ECAP + 2 0,, or, in (affine) homogeneous coordinates,

BP\ s (%P s+ _ (5C BOA
(1)—AT(1), where AT_(OT i)

Note the obvious similarity with the formula for a change of Euclidean coordinate system in
chapter 2. Here, however, the basis vectors of the two coordinate frames do not form orthonormal
bases, s0 5C is an ordinary nonsingular 3 x 3 matrix instead of a rotation matrix, and 27 is an affine
transformation matrix.

An alternative way of defining a coordinate system for an n- d1mens1ona1 affine space X
is to pick n + 1 independent points Ag, A; ... , A, in X. The barycentric coordinates a; (i =
0,1,...,n)of apoint P in Y are uniquely deﬁned by P = apAg + ¢1A1 + - - - + ap A,. They '
are related to affine coordinates in a simple way: Choosing j = 0 in Eq. (12.4) yields

P = ooy +ondr+- oo+ and, = Ao+ 0a1(A; — Ag) + -+ + atn(Ay — Ag),

showmg that the affine coordmates of P in the basis formed by the points A; ( =0, 1, ... ,m)
are o, ..., Oy -

When an n-dimensional affine space X has been equipped with an afﬁne basis, a necessary
and sufficient condition for m + 1 points A; to define a p-dimensional affine subspace of X (with
m > p andn > p)is for the (n + 1) x (m + 1) matrix

Xor X11 ... Xml
D=
Xon Xin ... Xmn
1 1 ... 1
formed by their coordinate vectors (x;y, ... , xin)T @ =0,1,...,m)tohave rank p+ 1. Indeed,

arank lower than p + 1 means that any column of this matrix is a barycentric combination of at
most p of its columns, and a rank higher than p + 1 implies that at least p + 2 of the points are
independent.

Example 12.5 The equation of a line in the plane.

Consider three points Ag, A;, and A, in an affine plane, with coordinate vectors (xo, yo)T, (x1, y1)7,
and (x2, y2)7 in some basis of this plane. According to the previous paragraph, a necessary and
sufficient condition for these points to lie in an affine subspace of dimension 1 (i.e., be collinear) is

that the rank of the matrix
X0 X1 X2
D=y » »
1 1 1

be equal to 2, or, equivalently, that its determinant be equal to zero. Note that

. ) X1 — X X, — X
Det(D) = x1y; — x21 + X290 — XoY2 + Xoy1 — X10 = ( LT % ( 2 0),
Y1 — Yo Y2 — Yo

where “x” denotes here the operator that assocxates w1th two vectors in R? the determinants of their
coordmates Thus Det(D) = 0 is indeed equivalent to A0A1 and m being parallel or to the three
points being collinear. When the points Ay and A; are fixed, Det(D) = 0 can be seen as an equation
defining the line passing through Ao and A, in terms of the coordinates of A,, and it has of course
the form ax; + by, + ¢ = 0. This method can be generalized to affine subspaces defined by arbitrary
numbers of points: The corresponding equations are simply obtained by writing that the appropriate
minors of the matrix D have zero determinants.
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C c D

B’

A B A

Figure 12.1 An affine transformation of the plane. The points A, B, C, and D
are transformed into the points A’, B’, C’, and D’. The affine coordinates of D
in the basis of the plane formed by A, B, and C are the same as those of D’ in
the basis formed by A’, B’, and C'—namely 2/3 and 1/2.

12.1.3 Affine Transformations and Affine Projection Models

An dffine transformation between two affine spaces X and Y is a bijection from X onto Y that
maps m-dimensional subspaces of X onto m-dimensional subspaces of ¥, maps parallel sub-
spaces onto parallel subspaces, and preserves barycentric combinations (or, equivalently, affine
coordinates; Figure 12.1). It can be shown that affine transformations can also be characterized
by the (seemingly weaker) property of mapping lines onto lines and preserving the ratio of the
signed lengths of parallel line segments.

An affine transformation between two affine spaces X and Y of dimension m is completely
defined by the images By, . .. , By, of m+1 independent points Ay, ... , A,. Indeed, the image of
any other point with affine coordinates o; (i =0, ... , m) in the basis of X formed by the points
A; have the same coordinates in the basis of ¥ formed by the points B;. Conversely, it can be
shown that given any independent points By, ... , By, in Y, there is a unique affine transformation
mapping the points A; onto the points B;. It is thus clear that affine transformations do not
preserve angles or distances—a fact confirmed by Figure 12.1. In fact, it can also be shown that
affine transformations of R3 can always be written as the combination of a translation, rotation,
nonuniform scaling, and shear.

The relationship between vector and affine spaces induces a relationship between linear
and affine transformations. In particular, it is easy to show (see Exercises) that an affine transfor-
mation ¢ : X — Y between two affine subspaces X and Y associated with the vector spaces X
and ¥ can be written as

¥ (P) = ¥(0) +¥(P - 0),

where O is some arbitrarily chosen origin, and 1/7 : X — Y is a linear mapping from X onto ¥
that is independent of the choice of O. When X and Y are of (finite) dimension m and an affine
coordinate system with origin O is chosen, this yields the familiar expression

Y (P)=d+CP=CP+d,

where P denotes the coordinate vector of P in the chos;en basis, d denotes the coordinate vec-
tor of ¥ (0), and C is the m X m matrix representing v in the same coordinate system. Thus,
affine transformations as defined in chapter 2 are indeed affine transformations as defined in this
chapter.

A fundamental property of parallel projections is that they induce affine transformations
from planes onto their images. Let us first show that they preserve the ratio of signed distances
between collinear points: The triangles O Aa, OBb, and OCc in Figure 12.2(left) are similar,
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Projection
direction

Projection
direction

Figure 12.2 Parallel projection preserves: (left) the ratio of signed distances
between collinear points and (right) the parallelism of lines.

and it follows that AB/BC = ab/bc for any orientation of the lines OC and Oc. To show that
parallel projections preserve the parallelism of lines, we use the fact that the intersection of a
plane with two parallel planes consists of two parallel lines (see Exercises). Now consider the
situation depicted in Figure 12.2(right), where two parallel lines A; and A, are projected onto a
plane. The planes defined respectively by these two lines and the parallel projection direction are
parallel to each other and therefore intersect the image plane along two parallel lines §; and 6.

Weak- and paraperspective projections from one plane onto another are also affine trans-
formations. This follows immediately from the fact that they can always be written as the com-
position of a parallel projection and an affine transformation of the image plane that compounds
the effects of the inverse-depth scaling and intrinsic camera parameters. As shown by Theorem 2
in chapter 2, a general affine projection can always be written as a weak-perspective one, thus
affine projections from one plane onto another are indeed affine transformations.

It follows immediately that affine projections preserve parallel lines and barycentric com-
binations. In particular, the center of mass of a set of scene points projects onto the center of
mass of their images (which gives a simple method for selecting the reference point of a parap-
erspective camera; see chapter 2), and the ratio of signed distances between collinear points is an
affine-projection invariant (which is useful in the object recognition context; see chapter 23, for
example).

12.1.4 Affine Shape

We say that two (possibly infinite) point sets S and S’ in some affine space X are affinely equiv-
alent when there exists an affine transformation ¢ : X — X, such that S’ is the image of S
under . It is easy to show that affine equivalence is an equivalence relation, and we define the
affine shape of a point set S in X as the equivalence class of all affinely equivalent point sets.
Affine structure from motion can thus be seen as the problem of recovering the affine shape of
the observed scene (and/or the equivalence classes formed by the corresponding projection ma-
trices) from features matched in an image sequence. We now have the right tools for solving this
problem.

12.2 AFFINE STRUCTURE AND MOTION FROM TWO IMAGES -

Let us start with the case where two affine images of the same scene are available (the case
of multiple pictures is addressed in the following section). The two structure-from-motion tech-
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Figure 12.3 Geometric construction of the affine coordinates of a point P in
the basis formed by the four points A, B, C, and D. This diagram illustrates
the parallel projection case, but the reasoning used in this section is valid in the
general affine setting. :

niques discussed in this section are complementary: The first one uses geometric reasoning to un-
cover the affine shape of the scene (from which the projection matrices can be found if needed),
whereas the second one uses simple algebraic manipulations to estimate the projection matrices
(from which the positions of the scene points are easily calculated).

12.2.1 Geometric Scene Reconstruction

We already mentioned that two affine views of four points A, B, C, D should be sufficient to
compute the affine coordinates of any other point P in the basis (A, B, C, D). This is indeed
the case, and we now present the constructive proof from (Koenderink and Van Doorn, 1990).
Remember that the affine projection of a plane onto another plane is an affine transformation.
In particular, when the point P belongs to the plane IT that contains the triangle ABC, its affine
coordinates in the basis of IT formed by these three points can be directly measured in either
of the two images. Now let E (resp. Q) denote the intersection of the line passing through the
points D and d’ (resp. P and p’) with the plane IT (Figure 12.3). The projections e” and ¢” of
the points E and Q onto the plane I1” have the same affine coordinates in the basis (a”, b”, c”)
as the points d’ and p’ in the basis (a’, &', ¢’).

In addition, since the two segments ED and QP are parallel to the first projection direc-
tion, the two line segments e¢”d” and g” p” are also parallel, and we can measure the ratio
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7 _P

¢’d” ED’

(N

where AB denotes the signed distance between the two points A and B for some arbitrary (but
fixed) orientation of the line joining these points.

If we now denote by (ag, By) and (a,, By) the coordinates of the points d’ = ¢’ and
p=q in)the basis (a’, b, ¢’), we can write

ﬁ =E+Qj=ap“ﬁ+ﬂp/ﬁ+kﬁ
= (ap — Aaa)AB + (B, — ABa)AC + AAD.

In other words, the affine coordinates of P in the (A, B, C, D) basis are (ap — deg,
By — MBar, 1). This is the affine structure-from-motion theorem: Given two affine views of four
noncoplanar points, the affine shape of the scene is uniquely determined (Koenderink and Van
Doorn, 1990). Figure 12.4 shows three projections of the synthetic face used in Koenderink and
Van Doorn’s experiments, along with an affine profile view computed from two of the images.

12.2.2 Algebraic Motion Estimation

Let us now explore a completely different approach, where geometric insight is somewhat ne-
glected in favor of simple algebraic manipulations that exploit the affine ambiguity of structure
from motion to simplify the form of the projection matrices. The outcome is an extremely simple
technique for recovering these matrices and the corresponding affine shape.

Let us start by introducing the affine equivalent of the epipolar constraint. We consider two
affine images and rewrite the corresponding projection equations

p=AP+b as A p-b\(P —0
p=AP+b A p-b)\-1)="

and a necessary and sufficient condition for these equations to admit a nontrivial solution is that

A p-b)\ _
DCt(A, p/_b/)—()y

Figure 12.4 Affine reconstruction from two views. Left and middle: three
views of a face; Images 0 and 1 are overlaid on the left, and Images 1 and 2 are
overlaid in the middle part of the figure. Right: A profile view of the affine face
computed from Images 0 and 1 (the third picture is used in Section 12.4 to turn
this affine reconstruction into a Euclidean one). Reprinted with permission from
“Affine Structure from Motion,” by J.J. Koenderink and A.J. Van Doorn, Journal
of the Optical Society of America A, 8:377-385, (1990). © 1990 Optical Society
of America. >

v
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Figure 12.5 Affine epipolar geometry: Given two parallel-projection images,
a point p in the first image and the two projection directions define an epipo-
lar plane that intersects the second image along the epipolar line I’. As in the
perspective case, any match p’ for p is constrained to belong to this line.

or
au+Bv+au +pvV+8=0, (12.5)

where a, 8, o/, B/, and § are constants depending on A, b, A’, and b’. This is the affine epipolar
constraint. Indeed, given a point p in the first image, the position of the matching point p’ is
constrained by Eq. (12.5) to lie on the line I’ defined by o’u’ + B'v' + ' = 0, where y' =
au + Bv + 6 and vice versa (Figure 12.5).

Note that the epipolar lines associated with each image are parallel to each other: For
example, moving p changes y’ or, equivalently, the distance from the origin to the epipolar
line /’, but does not modify the direction of I’

The affine epipolar constraint can be rewritten in the familiar form

u 0 0 «
(u,v, DF|v' | =0, where FE¥lo o B
1 o B8

is the affine fundamental matrix. This suggests that the affine epipolar geometry can be seen as
the limit of the perspective one. Indeed, it can be shown that an affine picture is the limit of a
sequence of images taken by a perspective camera that zooms in on the scene as it backs away
from it (see Exercises for details).

Let us now show that the projection matrices can be estimated from the epipolar constraint.
The inherent affine ambiguity of affine structure from motion actually allows us to simplify the
calculations: According to Egs. (12.2) and (12.3), if M = (A b) and M’ = (A’ b') are
solutions of our problem, so are M = MQ and M’ = M’'Q, where

c d
o= (v 7)

is an arbitrary affine transformation. The new projection matrices can be written as M =
(AC Ad +b) and M’ = (A'C A'd + b’). Note that, according to Eq. (12.3), applying this
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transformation to the projection matrices amounts to applying the inverse transformation to every
scene point P, whose position P is replaced by i’ c- 1(P d).

Now let us denote by al and al (resp. a T and a, T) the two rows of A (resp. A’) and
introduce the vectors b = (b, b,)T and b’ = (', b’z)T. We can rewrite the epipolar constraint as

s
a;C

AC p—Ad—b\ _ | 4C|
ACp — Ad—b aTcl

u—ald b1

v—a2d bz
a)"d — b,
—a,"d - b,

0 = Det

1 T ’
a, Clv

(alC|u—ald—b,
C v—ald—-b _
2 2 -—Det<SCq Sd r)’

”cu —a"d -, v —d
v —ay)Td—b)
where
aj u - (b .
S=|al ]|, gq=|v]|, r=[b]. ¢=C"d), and d=a,"d+b,
all T]. u b/l
When S is nonsingular, we can choose C = S~! andd = —S~!r. If ¢ = (a, b, ¢)7, this
reduces the two projection matrices to the canonical forms
- (1000 .. {0010
M= (0 1 0 0) and M' = (a b ¢ d)’ (12.6)
and allows us to rewrite the epipolar constraint as
1 00 u:
010 v R —
Det 00 1 v =—au—-bv—cu' +v —-d=0,
a b ¢ V-d

where the coefficients a, b, ¢, and d are related to the parameters «, 8, o', 8/,and § by a : @ =
b:B=c:ad/=-1:8=d:68.

Given enough point correspondences, the coefficients a, b, ¢, and d can be estimated via
linear least squares, similar to the perspective case studied in chapter 10. Once these parame-
ters have been found, the two projection matrices are known, and the position of any point can
be estimated from its image coordinates by using once again linear least squares to solve the
corresponding system of four equations,

1 00

010 P

001 (4>‘Q (2.7
a b ¢ V-

for the three unknown coordinates of P.

Note that the first three equations in Eq. (12.7) are in principle sufficient to solve for P as
(u, v, w)T without estimating the coefficients a, b, ¢, and d and without requiring a minimum
number of matches. This is not as surprising as one may originally think: In the case of two cali-
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brated orthographic cameras with perpendicular projection directions and parallel v axes, taking
x =u,y = v, and z = ’ does yield the correct Euclidean reconstruction (have another look at
Figure 12.5, assuming orthographic projection and imagining that the epipolar lines are parallel
to the u and u’ axes). In practice, of course, using all four equations may yield more accurate
results. The proposed method reduces the first row of A’ to (0, 0, 1) via the affine transforma-
tion Q. When &S is (close to) singular, it is possible to apply instead the same reduction to the
second row of A’. When both S and the matrix constructed in that fashion are singular, the two
image planes are parallel and the scene structure cannot be recovered.

12.3 AFFINE STRUCTURE AND MOTION FROM MULTIPLE IMAGES

The methods presented in the previous section are aimed at recovering the affine scene structure
and/or the corresponding projection matrices from a minimum number of images. We now ad-
dress the problem.of estimating the same information from a potentially large number of pictures.
We first show that any fixed set of affine images of a scene exhibits an affine structure; then we
use this property to derive the factorization method of Tomasi and Kanade (1992) for estimating
the affine structure and motion of a scene from an image sequence.

12.3.1 The Affine Structure of Affine Image Sequences
We suppose in this section and the next that we observe a static scene with a fixed set of m

affine cameras and denote by py, ... , pn the m projections of the scene point P. Stacking the
corresponding m instances of Eq. (12.1) yields

q=r+ AP,
where
) 2 b,
qd=ef ], r&. .. and A¥]...
’ P b Am

If I denotes the set of all images taken by the m cameras, we have
I={r+APIPec R} =r+Vy,

where V 4 denotes the range of the 2m x 3 matrix A (i.e., the three-dimensional vector subspace
of R?™ spanned by its column vectors. In other words,  is a three-dimensional subspace of the
affine space R?"). In particular, if we consider as before n points P, ..., P, observed by m
cameras, we can define the (2m + 1) x n data matrix

p=(§ %)
and it follows frOIﬁ Section 12.1 that this matrix has (at most) rank 4.
12;3.2 A Factorization Approach to Affine Structure from Motion
’fomasi and Kanade (1992) exploited the affine structure of affine images in a robust factorization

method for estimating the structure of a scene and the corresponding camera motion through
singular value decomposition (see insert).
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Technique: Singular Value Decomposition

Let A be an m X n matrix, with m > n, then .A can always be written as
A=UmWVT,

where

e Uisanm x n column-orthogonal matrix (i.e., UTU = 1d,),

e Wis a diagonal matrix whose diagonal entries w; (i = 1, ... , n) are the singular values of A with
W =Wy = =W, 20,

e and Vis ann x n orthogonal matrix, i.e., VTV = VVT =1d,.

This is the singular value decomposition (SVD) of the matrix A, and it can be computed using the
algorithm described in Wilkinson and Reich (1971).

As shown by the following theorem, the singular value decomposition of a matrix is related to the
eigenvalues and eigenvectors of its square.

Theorem 3. The singular values of the matrix A are the eigenvalues of the matrix AT A and the
columns of the matrix V are the corresponding eigenvectors.

This theorem can be used to solve overconstrained homogeneous linear equations of the form Ax = 0
as defined in chapter 3 without explicitly computing the corresponding matrix A7 A. The solution is simply
the column vector of the matrix V in the singular value decomposition of A that is associated with the
smallest singular value.

The SVD of a matrix can also be used to characterize matrices that are rank-deficient. Suppose that
A has rank p < n. Then the matrices U, W, and V can be written as

W, | 0 A
U=[G [ Ty] W=2A Y ana V=2
n—p

and

e the columns of U, form an orthonormal basis of the space spanned by the columns of A (i.e., its
range),

e and the columns of V,_, for a basis of the space spanned by the solutions of Ax = 0 (i.e., the null
space of this matrix).

The m x p and n x p matrices U, and V, are both column-orthogonal, and we have of course
A= UprVZ .

The following theorem shows that singular value decomposition also provides a valuable approxima-
tion procedure. In both cases, I/, and V, denote as before the matrices formed by the p leftmost columns
of the matrices I/ and V, and W, is the p x p diagonal matrix formed by the p largest singular values. This
time, however, A may have maximal rank », and the remaining singular values may be nonzero.

Theorem 4. When A has a rank greater than p, L{prV; is the best possible rank-p approxima-
tion of A in the sense of the Frobenius norm.

This theorem plays a fundamental role in the factorization approach to structure from motion pre-
sented in this chapter.
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Assuming that the origin of the object coordinate system is one of the observed points or
their center of mass, say Py, we can translate the origin of the image coordinate system to the
corresponding image point, say po. The transformation p — p — p, freezes the origin of the
set of images I, which becomes the three-dimensional vector space V4. In other words, we can
write, for any point P, and fori = 1, ..., m, that p; = A;P. Equivalently, ¢ = AP, and

I ={APIP e R’} = V4.

Given m images of n points Pj, ... , P,, we can now define the 2m X n data matrix

PE(q ... ¢)=4AP, wih PE@ ... P

As the product of a 2m x 3 matrix and a 3 x » matrix, D has, in general, rank 3. If UWVT
is its singular value decomposition, this means that only three of the singular values are nonzero,
thus D = LW, V3T , where U3 and V3 denote the 2m x 3 and 3 x n matrices formed by the three
leftmost columns of the matrices &/ and V, and Wi is the 3 x 3 diagonal matrix formed by the
corresponding nonzero singular values.

We claim that we can take Ag = U3 and Py = W3V3T as representative of the true (affine)
camera motion and scene shape. Indeed, the columns of A form by definition a basis for the
range V4 of D, whereas the columns of .4y form by construction another basis for this vector
space. This implies that there exists a 3 x 3 matrix Q such that A = A, Q and, thus, P = Q™' P,.
Conversely, D = (AgQ)(Q~'P,) for any invertible 3 x 3 matrix Q. Adding to this linear ambi-
guity the degrees of freedom corresponding to the position of the origin of the world coordinate
system confirms once again the affine ambiguity of the structure-from-motion problem, and the
fact that singular value decomposition provides representative estimates of the affine motion and
scene structure.

Our reasoning so far is only valid in an idealized, noiseless situation. In practice, due to
image noise, errors in localization of feature points, and to the mere fact that actual cameras
are not affine, the equation D = AP does not hold exactly, and the matrix D has (in general)
full rank. Let us show that singular value decomposition still yields a reasonable estimate of the
affine structure and motion in this case: the best we can hope for is to minimize

def
EZ) Ip;— AP =) _lg; — AP, =D — AP
ij J

Algorithm 12.1: The Tomasi-Kanade factorization algorithm for affine shape from motion. Note
that the original algorithm, proposed in Tomasi and Kanade (1992) uses Ay = Us+/W; and Py =
VW5 VT . Both solutions are mathematically and numerically equivalent.

1. Compute the singular value decomposition D = UWV7.

2. Construct the matrices U3, V3, and W; formed by the three leftmost columns of the
matrices I/ and V, and the corresponding 3 x 3 submatrix of W.

3. Define
Ay=U; and Py =W3VI;

the 2m x 3 matrix Ay is an estimate of the camera motion, and the 3 x » matrix Py
is an estimate of the scene structure.
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with respect to the matrices A; (i = 1,... ,m)and vectors P; (j =1,..., m) or, equivalently,
with respect to the matrices A and P.

According to Theorem 4, the matrix AgP, is the closest rank-3 approximation to D. Since
the rank of AP is 3 for any rank-3 2m x 3 matrix A and rank-3 3 x n matrix P, the minimum
value of E is thus reached for A = Ay and P = Py, which confirms that 4y and Py are
the optimal estimates of the true camera motion and scene structure. This does not contradict
the inherent ambiguity of affine structure from motion: All affinely equivalent solutions yield the
same value for E. In particular, singular value decomposition can be used to estimate the affine
structure and motion from the data matrix D as shown in Algorithm 12.12.1.

12.4 FROM AFFINE TO EUCLIDEAN IMAGES

Let us assume that a rigid scene is observed by two calibrated orthographic cameras so the image
points are represented by their normalized coordinate vectors. In this case, the transformation be-
tween the coordinate systems attached to the cameras goes from affine to Euclidean (i.e., it can
be written as the composition of a rotation and a translation). Under orthographic projection, a
translation in depth has no effect, and a translation in the image plane (frontoparallel translation)
is easily eliminated by aligning the two projections of some scene point A. Any rotation about
the viewing direction is also easily identified and discarded. At this stage, the two views differ by
a rotation about some axis in a frontoparallel plane passing through the projection of A. Koen-
derink and Van Doorn (1990) showed that there exists a one-parameter family of such rotations,
determining the shape up to a depth scaling and a shear, and that the addition of a third view
finally restricts the solution to one or two pairs related through a reflection in the frontoparallel
plane (Figure 12.4). The details of this construction are a bit too involved to be included here. In-
stead, we introduce in the rest of this section a simple method for going from affine to Euclidean
structure when the cameras’ affine projection matrices have been estimated.

12.4.1 Euclidean Constraints and Calibrated Affine Cameras

Let us first have another look at the orthographic, weak-perspective, and paraperspective mod-
els of the imaging process (we do not detail the parallel projection case since it is rarely used
in practice), assuming that the cameras have been calibrated. Obviously, the affine projection
Eq. (12.1) still holds in this case, but this time there are some constraints on the components of
the projection matrix M = (A b).

Figure 12.6 Euclidean reconstruction from the three views of a face shown in
Figure 12.4. Reprinted with permission from “Affine Structure from Motion,” by
J.J. Koenderink and A.J. Van Doorn, Journal of the Optical Society of America
A, 8:377-385, (1990). © 1990 Optical Society of America.
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Recall from Eq. (2.20) in chapter 2 that a weak-perspective projection matrix can be writ-
ten as

1k s
M=o D

where R, is the 2 x 3 matrix formed by the first two rows of a rotation matrix and ¢, is a vector
in R2, When the camera is calibrated, we can use normalized image coordinates and take k = 1
and s = 0. The projection matrix becomes

~ A

~ 1
M= (.A b) = Z—(Rz tz). (12.8)

An orthographic camera is a weak-perspective camera with z, = 1, and it follows from
Eq. (12.8) that the matrix A is part of a rotation matrix, with unit row vectors &' and &2T orthogo-
nal to each other. In other words, an orthographic camera is an affine camera with the additional
constraints

a-a, =0 and |a41>=|a:>=1. (12.9)

The general weak-perspective case is similar, but the rows of the matrix A are not unit
vectors anymore. It follows that a weak-perspective camera is an affine camera with the two
constraints

G-, =0 and |&* = &) (12.10)

Finally, it is easy to use the parameterization of paraperspective cameras given by Eq.
(2.22) in chapter 2 to show (see Exercises) that a paraperspective camera is an affine camera that
satisfies the constraints

A A UrUr
a-a; =

A 2 A 12
A2 Urr  , » la| |az]
al” + a an = ,
@il v,2)| ? A+ud)  (1+1?)

— 2.1
2(1 +u?) 2(1 + (210

where (u,, v,) denote the coordinates of the perspective projection of the reference point R as-
sociated with the paraperspective projection model.

12.4.2 Computing Euclidean Upgrades from Multiple Views

Let us focus on orthographic projection and assume that we have recovered the affine shape of a
scene and the projection matrix M associated with each view. We already know that all solutions
of the structure-from-motion problem are the same up to an affine ambiguity. In particular, if the
position of a scene point in a Euclidean coordinate system is P and the corresponding projection
matrix is M = (/i 13), there must exist some affine transformation

Cc d
o= (o %)
such that M = MQ and P = C~! (P — d). Such a transformation is called a Euclidean upgrade
because it maps the affine shape of a scene onto its Euclidean one.
Let us now show how compute such an upgrade when m > 3 orthographic images are
available. Let M; = (A; b;) denote the corresponding projection matrices, estimated using
the factorization method of Section 12.3.2, for example. If M; = M;Q, we can rewrite the
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orthographic constraints of Eq. (12.9) as

& -dn =0, afiCCTa; =0

lan?=1, <<= aiCClan=1, for i=1,...,m, (12.12)
a2 —

laiz|” =1, ahCCla;p =1,

where a/; and a, denote the rows of the matrix .4;. This overconstrained system of 3m quadratic
equations in the coefﬁcmnts of C can be solved via nonlinear least squares. An alternative is to

consider Eq. (12.12) as a set of linear constraints on the matrix D &f 0CT . The coefficients of
D can be found in this case via linear least squares, and C can then be computed as /D using
Cholesky decomposition. It should be noted that this requires that the recovered matrix D be
positive definite, which is not guaranteed in the presence of noise. Note also that the solution of
Eq. (12.12) is only defined up to an arbitrary rotation. To determine Q uniquely and simplify the
calculations, it is possible to map M, (and possibly M) to its canonical form and essentially
follow the procedure given in the previous section.

Figure 12.7 shows an example, including four pictures in a video sequence of a house,
a view of the recovered scene structure, and a real picture taken from a similar viewpoint for
comparison.

The computation of a Euclidean upgrade for weak- and paraperspective projections follows
a similar path, except for the fact that the two constraints of Eq. (12.10) or Eq. (12.11) written
for m images replace the 3m constraints of Eq. (12.12). Note that in these cases it is not possible
to determine the absolute scale of the scene since the Euclidean constraints of Egs. (12.10) and

Figure 12.7 Euclidean structure from motion—experimental results. Left:
Sample images of a house in a 150-frame sequence. Right: A view of the re-
constructed structure (top) and a real picture of the house (bottom) taken from a
similar viewpoint. Reprinted from “Factoring Image Sequences into Shape and
Motion,” by C. Tomasi and T. Kanade, Proc. IEEE Workshop on Visual Motion,
(1991). © 1991 IEEE.
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(12.11) are homogeneous. In other words, the structure of the scene can only be recovered up to
an arbitrary similarity (e.g., a rigid transformation followed by an isotropic scaling). Accordingly,

we now take Euclidean shape to mean the equivalence class formed by point sets related by
similarities (some authors use instead the term metric shape to emphasize the scale ambiguity).

12.5 AFFINE MOTION SEGMENTATION
We have assumed so far that the n points observed all undergo the same motion. What happens if
these points belong instead to k objects undergoing different motions? This section presents two
methods for segmenting the data points into such independently moving objects.

12.5.1 The Reduced Row-Echelon Form of the Data Matrix

Exactly as in Section 12.3.1, we can define the data matrix

Pu -+ Pun
pml <+ Pmn
1 ... 1

This time, however, D does not have rank 4 anymore. Instead, the columns of the data
matrix corresponding to each object define a four-dimensional subspace D; (i =1, ... , k) of its
range, and the overall rank of D is (at most) 4k. As remarked by Gear (1998), constructing the
reduced row-echelon form (RREF) of D identifies the subspaces D; and the column vectors that
lie in them, providing a segmentation of the input points into rigid objects (or, more precisely,
into objects that may undergo affine deformations). ‘

The RREF of a matrix I/ is a matrix ) whose rows are linear combinations of the rows of
U and that satisfies the following conditions:

all rows consisting entirely of zeros are at its bottom;

the first nonzero entry in each row is a 1, called the leading 1;

the leading 1 in each row is to the right of all leading 1s in rows above it; and
each leading 1 is the only nonzero entry in its column.

D=

A base column is a column that contains a leading 1. By construction, the only nonzero
entries of any nonbase column are in rows in which exactly one base column has a 1. In addition,
any nonbase column v lies in the subspace spanned by the base columns v;,, ... , v;, associated
with its nonzero entries a;, ... , @, and v can be written as a1vj, + - - - + v },. The number of
base columns gives the rank r of the matrix. _

Let us illustrate these properties with a sample 7 x 6 matrix I/ and its RREF V (the entries
of U have been chosen to give V a simple form):

1 0 1 -5 2 -9 1 0100 2
2 4 10 0 1 1 01 200 O
-1 1 1 3 0 1 00010 1
U=10 1 2 -1 3 —-100|—V=]009001 -3
3 =2 -1 0 1 3 00000 O
0 5 10 2 -2 8 00000 O
-2 3 4 1 0 =3 000O0O0O O
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Let us denote by u; and v; (i = 1, ..., 6) the columns of the matrices i/ and V. There are
four base columns, v1, v2, v4, and vs, so the rank of ¢ is 4. The nonzero entries of v3 are in the
same rows as the leading 1s of base columns v; and v, indicating that v; lies in the subspace of
R7 spanned by v; and v,. The values of these entries are 1 and 2, implying that v; = v; + 2v,.
Likewise, the nonzero entries of vg are in the same rows as the leading 1s of vy, v4, and vs,
indicating that v lies in the subspace of R’ spanned by v;, v4, and vs, and the values of these
entries are 2, 1, and —3, showing that vs = 2v; + v4 — 3vs. In fact, these properties also hold for
the original matrix U (i.e., u3 = u; + 2u; and ug = 2u; + u4 — 3us, as immediately confirmed
by inspection of I{). This is due to the fact that the rows of V are linear combinations of the rows
of U.

The same properties hold for arbitrary matrices and their RREFs, and this shows that the
RREF of the data matrix D can, in theory, be used for affine motion segmentation. Indeed, it
identifies a basis for the range of D (the columns of this matrix corresponding to base columns
in its RREF) as well as all the column vectors that lie in the subspaces spanned by subsets of this
basis. When the four-dimensional subspaces D; associated with each object only intersect at the
origin (which is expected to be true for large enough values of m), the corresponding groups of
points form connected components of the graph whose nodes are the columns of the RREF and
whose arcs link pairs of columns with nonzero entries in at least one common row.

Unfortunately, the situation is more complicated in practice due to noise and numerical
errors. A plain implementation of the RREF using, say, Gauss—Jordan elimination with piv-
oting, normally results in a full-rank matrix, with none of the nonbase columns lying in a
four-dimensional subspace of the range (see Exercises). Gear (1998) gives several “robustified”
methods for computing the RREF of a matrix, including Gauss—Jordan elimination with a test for
discarding small pivot.values and QR reduction followed by Gauss—Jordan elimination applied
to the corresponding triangular matrix R, and presents successful segmentation experiments in-
volving both synthetic and real image sequences.

12.5.2 The Shape Interaction Matrix

The approach presented in the previous section relies only on the affine structure of affine im-
ages. Costeira and Kanade (1998) have proposed a different method, based on a factorization
of the data matrix. We present this technique in the case of two groups of points undergoing
different motions. The generalization to an arbitrary number of independently moving objects is
straightforward.

In the setting of motion segmentation, it is not possible to define a rank-3 data matrix for
each object since the centroid of the corresponding points is unknown. Instead, let us assume
noiseless data and define the data matrices D® (i = 1, 2) by
W P
pl) &t

P - P,
where n; is the number of points associated with object number i and n; + n, = n. Each data
matrix has rank 4 since it can be rewritten as D® = M®P® where, this time,

M(i) . .
MO ) e o (P B
MO ) R |
Let us define the 2m x n composite data matrix D &f

(DY DD) a5 well as the composite
2m x 8 (motion) and 8 x n (structure) matrices ‘
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def | af (PO 0
M= (Mu) »M@)) and P = ( 0 P(2>)'

With this notation, we have D = MP, which shows that D has (at most) rank 8. Now the
rows of the matrix P form a basis for the 8-dimensional subspace of R*" spanned by the rows of
the matrix D. As shown in Strang (1980) for example, the operator that maps any vector onto its
orthogonal projection into the space spanned by the columns of a matrix .A can be represented

by the matrix Z &f A(AT A)~1 AT, In particular, the matrix Z associated with the rows of D
(or equivalently the columns of D7) is by construction block diagonal since P7 is also block
diagonal. :

Of course, P is unknown in our case, but any other matrix whose rows form a basis for the
row space of D can be used as well. For exa.mple if the rank-8 SVD of D is Us )/VgV8 , We can use
the rows of Vs as a basis, and we obtain Z = Vg(VST Vi)~ IVs = ngg since V4 is orthogonal.
The matrix Z consu'ucted in this fashion is called the shape interaction matrix by Costeira and
Kanade (1998), and it is once again block diagonal.

The above construction assumes that the data points are ordered consistently with the object
they belong to. In general, of course, this is not the case. It can be shown that the values of the
entries of the matrix Z are independent of the order of the points. Changing this order just swaps
the columns of D and swap the rows and columns of Z accordingly. Thus, recovering the correct
point ordering (and the corresponding segmentation into objects) amounts to finding the row and
column swaps of the matrix Z that reduces it to block-diagonal form.

Costeira and Kanade have proposed several methods for finding the correct swaps in the
presence of noise. One possibility is to minimize the sum of the squares of the off-diagonal block

entries over all rows and column permutations (see Costeira and Kanade, 1998 for details). Figure

Figure 12.8 Motion segmentation—experimental results. Top-left: One frame
from a sequence of pictures of two cylinders, including feature tracks. Top-right:
The recovered shapes after motion segmentation. Bottom-left: The shape inter-
action matrix. Bottom-right: The matrix after sorting. Reprinted from “A Multi-
Body Factorization Method for Motion Analysis,” by J. Costeira and T. Kanade,
Proc. International Conference on Computer Vision, 1995. © 1995 IEEE.
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12.8 shows experimental results, including the images of two objects and the corresponding
feature tracks, a plot of the corresponding shape interaction matrix before and after sorting, and
the corresponding segmentation results.

The structure-from-motion problem was first studied in the calibrated orthographic setting by
Ullman (1979). Its first solution in the affine setting is due to Koenderink and Van Doorn (1990).
The factorization algorithm discussed in Section 12.3.2 is due to Tomasi and Kanade (1992).
As shown in this chapter, the decomposition of structure from motion into an affine and a Eu- -
clidean stage affords simple and robust methods for shape reconstruction from image sequences.
In essence, this linearizes the structure and/or motion estimation process, delaying the introduc-
tion of the nonlinear Euclidean constramts until the affine scene shape has been reconstructed.
The affine stage is also valuable by itself since it is the basis for the motion-based segmen-
tation methods introduced by Gear (1998) and Costeira and Kanade (1998) and discussed in
Section 12.5; see Boult and Brown (1991) for another other approache to the same problem. As
shown in chapter 26, other applications include interactive image synthesis in the augmented
reality domain. Variations of the affine structure of affine images or, equivalently, of the rank
4 property of the data matrix associated with an affine motion sequence include the facts that
an affine image is the linear combination of three model i images (Ullman and Basri, 1991), and
that the image trajectories of a scene point are linear combinations of the trajectories of three
reference points (Weinshall arid Tomasi, 1995). The nonlinear least-squares method for com-
puting the Euclidean upgrade matrix Q is dué to Tomasi and Kanade (1992). The Cholesky
approach to the same problem is due to Poelman and Kanade (1997); see Weinshall and Tomasi
(1995) for another variant. Various extensions of the approach presented in this chapter have
been proposed recently, including the incremental recovery of structure and motion (Weinshall
and Tomasi, 1995; Morita and Kanade, 1997), the extension of the affine/Euclidean decompo-
sition to a projective/affine/Euclidean stratification (Faugeras, 1995), along with corresponding
projective shape estimation algorithms (Faugeras, 1992; Hartley et al., 1992; see also next chap-
ter), and the generalization of the factorization approach of Tomasi and Kanade (1992) to the
perspective case (Sturm and Triggs, 1996) and various other computer vision problems that have
a natural bilinear structure (Koenderink and Van Doorn, 1997).

12.1. Explain why any definition of the “addition” of two points or of the “multiplication” of a point by a
scalar is necessarily coordinate dependent.

12.2. Show that the definition of a barycentric combination as

ia,A ‘-1-°-fAj+ i a;(A; — Aj),
i=0

i=0,i%]

is independent of the choice of j.

12.3. Prove that
B Be B A
BP=§CAP+BOA4=>(1P)=(‘8T 1")<IP>.
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Show that the set of ba.rycentric combinations of m + 1 points Ay, ... , A, in X is indeed an affine
subspace of X, and show that its dimension is at most m.

Derive the equation of a line defined by two points in R3. (Hint: You actually need two equations.)
Show that the intersection of a plane with two parallel planes consists of two parallel lines.

Show that an affine transformation ¥ : X — Y between two affine subspaces X and Y associated
with the vector spaces X and Y can be wntten as Y (P) = ¢(0) +, 1//(P 0), where O is some
arbitrarily chosen origin, and 11; X — ¥ is a linear mapping from X onto ¥ that is independent of
the choice of O.

Show that affine cameras (and the corresponding epipolar geometry) can be viewed as the limit of a
sequence of perspective images with increasing focal length receding away from the scene.

Generalize the notion of multilinearities introduced in chapter 10 to the affine case.

Prove Theorem 3.
Show that a calibrated paraperspective camera is an affine camera that satisfies the constraints
P A~ Urvr A 2 2 I&I |2 l&’&lz
a -a = 5 la]” + N 5 = N
2(1 4 u;) 2(1 +v ) A+u>) A+

where (u,, v,) denote the coordinates of the perspective projection of the point R.

What do you expect the RREF of an m x n matrix with random entries to be when m > n? What
do you expect it to be when m < n? Why?

Programming Assignments

Implement the Koenderink—Van Doorn approach to affine shape from motion.

Implement the estimation of affine epipolar geometry from image correspondences and the estima-
tion of scene structure from the corresponding projection matrices.

Implement the Tomasi—Kanade approach to affine shape from motion.

Add random numbers uniformly distributed in the [0, 0.0001] range to the entries of the matrix I/
used to illustrate the RREF and compute its RREF (using, e.g., the rref routine in MATLAB); then
compute again the RREF using a “robustified” version of the reduction algorithm (using, e.g., rref
with a nonzero tolerance). Comment on the results.



