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The GEUmetry of
Multiple Views

Despite the wealth of information contained in a photograph, the depth of a scene point along the
corresponding projection ray is not directly accessible in a single image. With at least two pic-
tures, depth can be measured through triangulation. This is of course one of the reasons that most
animals have at least two eyes and/or move their head when looking for friend or foe, as well
as the motivation for equipping an autonomous robot with a stereo or motion analysis system.
Before building such a system, we must understand how several views of the same scene con-
strain its three-dimensional structure as well as the corresponding camera configurations. This is
the goal of this chapter. In particular, we elucidate the geometric and algebraic constraints that
hold among two, three, or more views of the same scene. In the familiar setting of binocular
stereo vision, we show that the first image of any point must lie in the plane formed by its second
image and the optical centers of the two cameras. This epipolar constraint can be represented
algebraically by a 3 x 3 matrix, called the essential matrix when the intrinsic parameters of the
cameras are known and the fundamental matrix otherwise. Three pictures of the same line intro-
duce a different constraint—namely, that the intersection of the planes formed by their preimages
be degenerate. Algebraically, this geometric relationship can be represented by a 3 x 3 x 3 tri-
focal tensor. More images introduce additional constraints, for example four projections of the
same point satisfy certain quadrilinear relations whose coefficients are captured by the quadri-
focal tensor. Remarkably, the equations satisfied by multiple pictures of the same scene feature
can be set up without any knowledge of the cameras or the scene they observe, and a number of
methods for estimating their parameters directly from-image data are presented in this chapter.
Computer vision is niot the only scientific field concerned with the geometry of multiple
views: The goal of photogrammetry, already mentioned in chapter 3, is precisely to recover quan-
titative geometric information from multiple pictures. Applications of the epipolar and trifocal
constraints to the classical photogrammetry problem of transfer (i.e., the prediction of the po-
sition of a point in an image given its position in a number of reference pictures) are briefly
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216 The Geometry of Multiple Views ~ Chap. 10
discussed in this chapter, along with some examples. Many more applications in the domains of
stereo and motion analysis are presented in latter chapters.

10.1 TWO VIEWS
10.1.1 Epipolar Geometry

Consider the images p and p’ of a point P observed by two cameras with optical centers O
and O’. These five points all belong to the epipolar plane defined by the two intersecting rays
OP and O'P (Figure 10.1). In particular, the point p’ lies on the line I’ where this plane and
the retina I’ of the second camera intersect. The line I’ is the epipolar line associated with the
point p, and it passes through the point ¢’ where the baseline joining the optical centers O and
O’ intersects I1’. Likewise, the point p lies on the epipolar line / associated with the point p’,
and this line passes through the intersection e of the baseline with the plane IT.

The points e and ¢’ are called the epipoles of the two cameras. The epipole e’ is the pro-
jection of the optical center O of the first camera in the image observed by the second camera
and vice versa. As noted before, if p and p’ are images of the same point, then p’ must lie on
the epipolar line associated with p. This epipolar constraint plays a fundamental role in stereo
vision and motion analysis.

Let us assume, for example, that we know the intrinsic and extrinsic parameters of the two
cameras of a stereo rig. As shown in chapter 11, the most difficult part of stereo data analysis is
establishing correspondences between the two images (i.e., deciding which points in the second
picture match the points in the first one). The epipolar constraint greatly limits the search for these
correspondences: Indeed, since we assume that the rig is calibrated, the coordinates of the point p
completely determine the ray joining O and p, and thus the associated epipolar plane OO’p and
epipolar line /’. The search for matches can be restricted to this line instead of the whole image
(Figure 10.2). In two-frame motion analysis, each camera may be internally calibrated, but the
rigid transformation separating the two camera coordinate systems is unknown. In this case, the
epipolar geometry obviously constrains the set of possible motions. The next sections explore
several variants of this situation.

Figure 10.1 Epipolar geometry: The point P, the optical centers O and O’ of
the two cameras, and the two images p and p’ of P all lie in the same plane.
Here, as in the other figures of this chapter, cameras are represented by their
pinholes and a virtual image plane located in front of the pinhole. This is to
simplify the drawings: The geometric and algebraic arguments presented in the
rest of this chapter hold just as well for physical image planes located behind the
corresponding pinholes. :
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Figure 10.2 Epipolar constraint: Given a calibrated stereo rig, the set of possi-
ble matches for the point p is constrained to lie on the associated epipolar line /.

10.1.2 The Calibrated Case

Here we assume that the intrinsic parameters of each camera are known, so p = p. Clearly, the

epipolar constraint implies that the three vectors _0—;)7, O'p’, and 00 are coplanar. Equivalently,
one of them must lie in the plane spanned by the other two, or

We can rewrite this coordinate-independent equation in the coordinate frame associated to
the first camera as

p -t x (Rp)H], (10.1)

where p = (u, v, 1T and p =@, v, DT denote the homogeneous image coordinate vectors of
p and p’, t is the coordinate vector of the translation OO’ separating the two coordinate systems,
and R is the rotation matrix such that a free vector with coordinates w’ in the second coordinate
system has coordinates Rw’ in the first one. In this case, the two projection matrices are given in
the coordinate system attached to the first cameraby (Id 0) and (RT — RT¥).

Equation (10.1) can finally be rewritten as

pTEP =0, (10.2)

where £ = [t«]R, and [a.] denotes the skew-symmetric matrix such that [ax]x = a X x is the
cross-product of the vectors a and x. The matrix £ is called the essential matrix, and it was first
introduced by Longuet-Higgins (1981). Its nine coefficients are only defined up to scale, and
they can be parameterized by the three degrees of freedom of the rotation matrix R and the two
degrees of freedom defining the direction of the translation vector ¢.

Note that £p’ can be interpreted as the coordinate vector representing the epipolar line
associated with the point p’ in the first image: Indeed, an image line / can be defined by its
equation au +bv + ¢ = 0, where (u, v) denote the coordinates of a point on the line, (a, b) is the
unit normal to the line, and —c is the (signed) distance between the origin and /. Alternatively, we
can define the line equation in terms of the homogeneous coordinate vector p = (¥, v, 1)7 of a
point on the line and the vector ! = (a, b, ¢)T by I-p = 0, in which case the constraint a>+b% = 1
is relaxed since the equation holds independently of any scale change applied to I. In this context,
Eq. (10.2) expresses the fact that the point p lies on the epipolar line associated with the vector
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Ep’. By symmetry, it is also clear that 7 p is the coordinate vector representing the epipolar
line associated with p in the second image. It is obvious that essential matrices are singular
since ¢ is parallel to the coordinate vector e of the first epipole, so that ETe = —RT [t ]e = 0.
Likewise, it is easy to show that e’ is in the nullspace of £. As shown by Huang and Faugeras
(1989), essential matrices are in fact characterized by the fact that they are singular with two
equal nonzero singular values (see Exercises).

10.1.3 Small Motions

Let us now turn our attention to infinitesimal displacements. We consider a moving camera with
translational velocity v and rotational velocity w and rewrite Eq. (10.2) for two frames separated
by a small time interval §¢. Let us denote by p = (&, v, 0)7 the velocity of the point p or motion
field. Using the exponential representation of rotations (see Exercises), it is possible to show that
(to first order)

t=24ty,
R =1d + 6t [wx], (10.3)
p=p+dtp.

Substituting in Eq. (10.2) and neglecting all terms of order two or greater in ¢ yields:

pT(vxllwxDp — (p x p) -v =0. (10.4)

Equation (10.4) is simply the instantaneous form of the Longuet-Higgins relation (10.2),
which captures the epipolar geometry in the discrete case. Note that in the case of pure transla-
tion, we have w = 0, thus (p x p) - v = 0. In other words, the three vectors p = op, p, and
v must be coplanar. If e denotes the infinitesimal epipole or focus of expansion (i.e., the point
where the line passing through the optical center and parallel to the velocity vector v pierces the
image plane), we obtain the well-known result that the motion field points toward the focus of
expansion under pure translational motion (Figure 10.3).

10.1.4 The Uncalibrated Case

The Longuet-Higgins relation holds for internally calibrated cameras. When the intrinsic pa-
rameters are unknown (uncalibrated cameras), we can write p = Kp and p’ = K'p’, where K

Figure 10.3 Focus of expansion: Under pure translation, the motion field at
every point in the image points toward the focus of expansion.
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and K’ are 3 x 3 calibration matrices and p and p’ are normalized image coordinate vectors. The
Longuet—Higgins relation holds for these vectors, and we obtain

pTFp =0, (10.5)

where the matrix F = X-TEK'™!, called the fundamental matrix, is not, in general, an essential
matrix. It has again rank two, and the eigenvector of F (resp. 7 ) corresponding to its zero eigen-
value is as before the position e’ (resp. e) of the epipole. Note that Fp’ (resp. F7 p) represents
the epipolar line corresponding to the point p’ (resp. p) in the first (resp. second) image.

The rank two constraint means that the fundamental matrix only admits seven independent
parameters. Several choices of parameterization are possible, but the most natural one is in terms
of the coordinate vectors e = (o, 8)T and ¢’ = (o/, B)T of the two epipoles, and of the epipolar
transformation that maps one set of epipolar lines onto the other one. We examine in chapter 13
the properties of this transformation in the context of structure from motion. For the time being,
let us just note (without proof) that it can be parameterized (up to scale) by four numbers—
a, b, ¢, d—and that the fundamental matrix can be written as

b a —af — ba
F = —d —c cB +do . (10.6)
dp’ —ba' cf —aa’ —cBB —dB'a+ aBo’ + bad’

10.1.5 Weak Calibration

As mentioned earlier, the essential matrix is defined up to scale by five independent parame-
ters. It is therefore possible (at least in principle) to calculate it by writing Eq. (10.2) for five
point correspondences. Likewise, the fundamental matrix is defined by seven independent coef-
ficients (the parameters a, b, ¢, d in Eq. (10.6) are only defined up to scale) and can in principle
be estimated from seven point correspondences. Methods for estimating the essential and funda-
mental matrices from a minimal number of parameters indeed exist (see Notes), but they are far
too involved to be described here. This section addresses the simpler problem of estimating the
epipolar geometry from a redundant set of point correspondences between two images taken by
cameras with unknown intrinsic parameters—a process known as weak calibration.
Note that Eq. (10.5) is linear in the nine coefficients of the fundamental matrix F:

Fii Fio Fui3\ (W
(u, v, l) le F22 F23 v | =0. : (107)
F31 Fyp Fsi 1

Since this equation is homogeneous in the coefficients of F, we can set F33 = 1 and use eight
point correspondences p; <> p; (i = 1,...,8) to rewrite the corresponding instances of Eq.
(10.7) as an 8 x 8 system of nonhomogeneous linear equations:

/ ! ! ! /
Wiu) vy up v vvyp v Wy v Fuu
uuy Uvy Uy vpuy vy vy uy vy || Fio
usuy uavy w3 vauy vavy vy uy vy || Fis
Usl, Uuqvy Uy vauy vavy vs uy vy || Fu
usug  usvs us vsus vsvg vs us s || Fxn
/
Uslg UsVs Us Uslhg VelUs Vs Ug Vg || F23
’ / / /
L7 75 NV N 2 A VY1 77/ VL VAR V7 R T/ VEA Fs
Ugly UgVg Ug Uglg Ugly Vg Ug Vg \ng

~
~
ek ek et e ek ek b

Using this system to estimate the fundamental matrix gives the eight-point algorithm originally
proposed by Longuet-Higgins (1981) in the case of calibrated cameras. It fails when the associ-
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ated 8 x 8 matrix is singular. As shown in Faugeras (1993) and the exercises, this only happens
when the eight points and two optical centers lie on a quadric surface. Fortunately, this is quite
unlikely since a quadric surface is completely determined by nine points, which means that there
is generally no quadric that passes through 10 arbitrary points.

When n > 8 correspondences are available, F can be estimated using linear least squares
by minimizing

> (o Fpi)? (10.8)

i=1

with respect to the coefficients of F under the constraint that the vector formed by these coeffi-
cients has unit norm.

Note that both the eight-point algorithm and its least-squares version ignore the rank two
property of fundamental matrices.! To enforce this constraint, Luong et al. (1993, 1996) proposed
to use the matrix F output by the eight-point algorithm as the basis for a two-step estimation pro-
cess: First, use linear least squares to find the epipoles e and ¢’ that minimize | F7e|? and | Fe'|?;
second, substitute the coordinates of these points in Eq. (10.6): This yields a linear parameteriza-
tion of the fundamental matrix by the coefficients of the epipolar transformation, which can now
be estimated by minimizing Eq. (10.8) via linear least squares.

The least-squares version of the eight-point algorithm minimizes the mean-squared alge-
braic distance associated with the epipolar constraint (i.e., the mean-squared value of e(p, p’) =
pT Fp’ calculated over all point correspondences). This error function admits a geometric inter-
pretation: In particular, we have

e(p, p’) = Ad(p, Fp') = Nd(p, F' p),

where d(p, ) denotes the (31gned) Euclidean distance between the point p and the line I, and
Fp and FTp' are the ep1pola.r lines associated with p and p’. The scale factors A and A’ are
simply the norms of the vectors formed by the first two components of Fp’ and F7 p, and their
dependence on the pair of data points observed may bias the estimation process.

It is of course possible to eliminate the scale factors and directly minimize the mean-
squared geometric distance between the image points and the corresponding epipolar lines—
that is,

n

> [, Fp) + & (p}, FTp))].

i=1

This is a nonlinear problem regardless of the parameterization chosen for the fundamental
matrix, but the minimization can be initialized with the result of the eight-point algorithm. This
method was first proposed by Luong et al. (1993), and it has been shown to provide results vastly
superior to those obtained using the eight-point method. As an alternative, Hartley (1995) pro-
posed to normalize the linear eight-point algorithm. This approach is based on the observation
that the poor performance of the original technique is due, for the most part, to poor numerical
conditioning. This suggests translating and scaling the data so they are centered at the origin and
the average distance to the origin is +/2 pixel. In practice, this normalization dramatically im-
proves the conditioning of the linear least-squares estimation process. Concretely, the algorithm
is divided into four steps: First, transform the image coordinates using appropriate translation and
scaling operators 7 : p, — p; and 7’ : p! — p;. Second, use linear least squares to compute

!The original algorithm proposed by Longuet-Higgins ignores that essential matrices have rank two and two
equal singular values as well.
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the matrix F minimizing

Z(pT]:w/

Third, enforce the rank two constraint; this can be done using the two-step method of Luong et al.
described earlier, but Hartley uses instead a technique suggested by Tsai and Huang (1984) in the
calibrated case, which constructs the singular value decomposition F =USVT of F. Singular
value decomposition is formally defined in chapter 12. Let us just note here that S = diag(r, s, t)
is a diagonal 3 x 3 matrix with entriesr > s > 1, U, V are orthogonal 3x3 matrices, and, as
shown in chapter 12, the rank two matrix F minimizing the Frobenius norm of F — F is simply
F = Udiag(r, s, 0)V7. The last step of the algorithm sets 7 = 77 F7” as the final estimate of
the fundamental matrix.

Figure 10.4 shows weak-calibration experiments using as input data a set of 37 point corre-
spondences between two images of a toy house. The data points are shown in the figure as small
discs, and the recovered epipolar lines are shown as short line segments. Figure 10.4(a) shows the
output of the least-squares version of the plain eight-point algorithm, and Figure 10.4(b) shows
the results obtained using Hartley’s variant of this method. As expected, the results are much bet-
ter in the second case and, in fact, extremely close to those obtained using the geometric distance
criterion of Luong et al. (1993, 1996). .

Linear Least Squares '| (Hartley, 1995) | (Luong et al., 1993)
| Av. Dist. 2.33 pixels 0.92 pixel 0.86 pixel

Figure 10.4 Weak-calibration experiment using 37 point correspondences be-
tween two.images of a toy house. The figure shows the epipolar lines found by
(a) the least-squares version of the eight-point algorithm, and (b) the normal-
ized variant of this method proposed by Hartley (1995). Note, for example, the
much larger error in (a) for the feature point close to the bottom of the mug.
Quantitativé comparisons are given in the table, where the average distances be-
tween the data points and corresponding epipolar lines are shown for both tech-
niques as well as the nonlinear algorithm of Luong et al. (1993). Data courtesy
of Boubakeur Boufama and Roger Mohr. N
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10.2 THREE VIEWS

Let us now go back to the calibrated case where p = p as we study the geometric constraints
associated with three views of the same scene. Consider three perspective cameras observing the
same point P, whose images are denoted by p1, p2, and p; (Figure 10.5). The optical centers Oy,
0,, and Os of the cameras define a trifocal plane that intersects their retinas along three trifocal
lines 1, tp, and t3. Each one of these lines passes through the associated epipoles (e.g., the line
t, associated with the second camera passes through the pro_]ectlons e12 and es; of the optical
centers of the two other cameras). C .
Each pair of cameras defines an epipolar constraint—that is,

p{812p2 = 03
Pi&nps =0, ‘ _ _ - (109)
P§g31p1 = O’

where &;; denotes the essential matrix associated with the image pairs i <> j. These three con-
straints are not independent since we must have e31812e32 = e12823e13 = e23831e21 = 0 (to see
why, consider the epipoles e3; and e3;; they are the first and second images of the optical center
O3 of the third camera and are therefore in epipolar correspondence).

Any two of the equations in Eq. (10.9) are independent. In particular, when the essential
matrices are known, it is possible to predict the position of the point p; from the positions of
the two corresponding points p, and ps: Indeed, the first and third constraints in Eq. (10.9) form

0, | | 0,

Figure 10.5 Trinocular epipolar geometry. Note that the point P does not lie,
in general, in the trifocal plane defined by the points O;, O,, and O;.
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a system of two linear equations in the two unknown coordinates of p;. Geometrically, p; is
found as the intersection of the epipolar lines associated with p, and p; (Figure 10.5). Thus,
the trinocular epipolar geometry offers a solution to the problem of transfer mentioned in the
introduction.

10.2.1 Trifocal Geometry

A second set of constraints can be obtained by considering three images of a line instead of a
point: The set of points that project onto an image line [ is the plane L that contains the line and
pinhole. We can characterize this plane as follows: If M denotes a 3 x 4 projection matrix, a
point P in L projects onto the point p on/ when zp = MP, or

mMP=0, (10.10)

where P = (x,y, z,'1)7 is the 4-vector of homogeneous coordinates of P and I = (a, b, ¢)7 is
the 3-vector of homogeneous coordinates of /. Equation (10.10) is, of course, the equation of the
plane L that contains both the optical center O of the camera and the line /, and L = M7l is the
coordinate vector of this plane.

Two images /; and [, of the same line do not constrain the relative position and orientation
of the associated cameras since the corresponding planes L; and L, always intersect (unless
they are parallel, in which case they can be thought of as intersecting at infinity; more on this
in chapter 13). Let us now consider three images /;, I;, and I3 of the same line [ and denote by
L,, L,, and Lj the associated planes (Figure 10.6). The intersection of these planes forms a line
instead of being reduced to a point in the generic case. Algebraically, this means that the system

L]
LI\p=0
Ly

of three equations in three unknowns x, y, and z must be degenerate, or, equivalently, the rank of
the 3 x 4 matrix

'l { M 1
£
LEEM,
M,
must be 2, which in turn implies that the determinants of all its 3 x 3 minors must be zero. These
determinants are clearly trilinear combinations of the coordinate vectors [y, I, and I3. As shown
next, only two of the four determinants are independent.

10.2.2 The Calibrated Case

To obtain an explicit fo_rmulé for the trilinear constraints, we pick the coordinate system attached
to the first camera as the world reference frame, which allows us to write the projection matrices
asM;=(0d 0), M= (R, t;),and M3 = (R3 t3), and torewrite L as

T o
L=|0R, Lto]. (10.11)
I»J;TR:-; l§t3
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Figure 10.6 Three images of a line define it as the (degenerate) intersection of
three planes.

As shown in the exercises, three of the minor determinants can be written together as

L Gik
Lx |G| =0, (10.12)
LGl
where
Gl =uR] — Ry, for i=1,2,3, (10.13)

and Ré and Rg (i = 1,2, 3) denote the columns of R, and R3. The fourth determinant is equal
to |I; Ral, Rsls|, and it is zero when the normals to the planes L;, Ly, and L3 are coplanar.
The corresponding equation can be written as a linear combination of the three determinants in
Eq. (10.12) (see Exercises). Only two of those are linearly independent of course.

The three 3 x 3 matrices G} define the 3 x 3 x 3 trifocal tensor with 27 coefficients
(or 26 up to scale). (A tensor is the multidimensional array of coefficients associated with a
multilinear form, in the same way that matrices are associated with bilinear forms.) Since O; is
the origin of the coordinate system in which all projection equations are expressed, the vectors
t; and 3 can be interpreted as the homogeneous image coordinates of the epipoles e, and e;3. In
particular, it follows from Eq. (10.13) that IZ Gily = 0 for any pair of matching epipolar lines I,
and l3.
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Equation (10.12) can be rewritten as

LGl
Lo |EGH |, (10.14)
LG,
where we use @ « b to indicate that two vectors a and b only differ by a (nonzero) scale factor. It

follows that the trifocal tensor also constrains the positions of three corresponding points: Indeed,
suppose that P is a point on /. Its first image lies on /1, so pTl; = 0. In particular,

gl
pr| &g | =o0. (10.15)
g,

Given three point correspondences p; <> p, <> p3 (Figure 10.7), we obtain four indepen-
dent constraints by rewriting Eq. (10.15) for independent pairs of lines passing through p, and
ps (e.g, I = [1,0,—;]7 and I = [0, 1, —v;]7 for i = 2, 3). These constraints are trilinear
in the coordinates of the points p;, p2, and ps. When the tensor is known, it can thus be used
to predict the position of, say, p; from the positions of p, and ps in the other images, giving a
second solution to the transfer problem.

Figure 10.7 Given three images p;, p,, and ps3 of the same point P, and two
arbitrary image lines /; and /5 passing through p, and ps, the ray passing through
O, and p; must intersect the line where the planes L, and L; projecting onto I,
and /; meet in space.
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10.2.3 The Uncalibrated Case

We can still derive trilinear constraints in the image line coordinates when the intrinsic parame-
ters of the three cameras are unknown. Since in this case p = Kp and the image line associated
with the vector I is defined by IZp = 0, we immediately obtain I = K71 or, equivalently,
I=KTL

In particular, Eq. (10.11) holds when p; = p; and ; = ;. In the general case, we have

K, 0
L=|EBKR, LKty |,
EKsRs L Kats
and
1 g T 0
Rank(£)=2<=>Rank{£<6 1>]=Rank A Ib| =2
ZA; Ebs

where A; &f IC,-RilCl_l and b; &f Kit; for i = 2, 3. Note that the projection matrices associated
with our three cameras are now M; = (K; 0), My = (A2K;  b,), and M3 = (A3K;  b3).
In particular, b, and b3 can still be interpreted as the homogeneous image coordinates of the
epipoles ej; and e;3, and the trilinear constraints of Egs. (10.14) and (10.15) still hold when,
this time,

G1 = brA3" — Az,

where A} and A} (i = 1, 2, 3) denote the columns of A, and A;. As before, we have I2 Gil; = 0
for any pair of matching epipolar lines I, and /3.

10.2.4 Estimation of the Trifocal Tensor

We now address the problem of estimating the trifocal tensor from point and line correspon-
dences established across triples of pictures. The equations defining the tensor are linear in its
coefficients and depend only on image measurements. As in the case of weak calibration, we can
use linear methods to estimate these 26 parameters. Each triple of matching points provides four
independent linear equations, and every triple of matching lines provides two additional linear
constraints. Thus, the tensor coefficients can be computed from p points and / lines granted that
2p +1 > 13. For example, 7 triples of points or 13 triples of lines do the trick, as do 3 triples of
points and 7 triples of lines, and so on. As in the case of weak calibration, it is possible to improve
the numerical stability of the tensor estimation process by normalizing the image coordinates so
the data points are centered at the origin with an average distance from the origin of +/2 pixel.
The methods outlined so far ignore that the 26 parameters of the trifocal tensor are not
independent. This should not come as a surprise: The essential matrix only has five independent
coefficients (the associated rotation and translation parameters, the latter being only defined up to
scale) and the fundamental matrix only has seven. Likewise, the parameters defining the trifocal
tensor satisfy a number of constraints, including the aforementioned equations 12T gil3 =00 =
1, 2, 3) satisfied by any pair of matching epipolar lines /, and I3. It is also easy to show that the
matrices Qi are singular—a property we come back to in chapter 13. Faugeras and Mourrain
(1995) showed that the coefficients of the trifocal tensor of an uncalibrated trinocular stereo rig
satisfy eight independent constraints, reducing the total number of independent parameters to 18.
The method described in Hartley (1995) enforces these constraints a posteriori by recovering
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the epipoles e, and e;3 (or equivalently the vectors £, and ¢3 in Eq. [10.13]) from the linearly
estimated trifocal tensor, then recovering in a linear fashion a set of tensor coefficients that satisfy
the constraints.

10.3 MORE VIEWS

What about four views? In this section, we follow Faugeras and Mourrain (1995) and first note
that clearing the denominators in the perspective projection Eq. (2.16) derived in chapter 2 yields

3 gl
(:}‘ﬁ3 - ﬁz)P =0, (10.16)

where M1, M?, and M?> denote the three rows of the matrix M. (Note that we depart here
from our habit of denoting the rows of a projection matrix by m!, mI, and mZ. This is to avoid
possible confusions between the different rows of different matrices in the rest of this section. It
should be clear that M’ and m] denote the same row vector.)

Suppose now that we have four views, with associated projection matrices M; (j =
1,2, 3, 4). Writing Eq. (10.16) for each one of these yields

ulM? - Mi
UlM? - M%
up M3 — M}
VM3 — M2
QP =0, where Q¥ uzMg } Mg (10.17)
v3M§ - M%
usM; — M}
v4Mi - Mi

This system of eight homogeneous equations in four unknowns admits a nontrivial solu-
tion. It follows that the rank of the corresponding 8 x 4 matrix Q is at most 3, or, equivalently,
all its 4 x 4 minors must have zero determinants. Geometrically, each pair of equations in Eq.
(10.17) represents the ray R; (i = 1, 2, 3, 4) associated with the image point p;, and Q must have
rank 3 for these rays to intersect at a point P (Figure 10.8).

The matrix Q has three kinds of 4 x 4 minors:

1. Those that involve two rows from one projection matrix and two rows from another one.
The equations associated with the six minors of this type include, for example,?

ulM? - M}
3 _ MZ

pet | MMM (10.18)
u2M2 - M2
szg — M%

These determinants yield bilinear constraints on the position of the associated image points.
It is easy to show (see Exercises) that the corresponding equations reduce to the epipolar
constraints of Eq. (10.2) when we take M; = (Id 0) and M, = (RT —RTo.

2General formulas can be obtained by using, for example (u!, u?), instead of (v, v) and playing around with
indexes and tensorial notation. We abstain from this worthy exercise here.
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Figure 10.8 Four images p;, p,, ps, and p,4 of the same point P define this
point as the intersection of the corresponding rays R; (i = 1, 2, 3, 4).

2. The second type of minors involves two rows from one projection matrix and one row from

each of two other matrices. There are 48 of those, and the associated equations include, for
example, ’

ulM? —M}
le? - M%
Det =0. 10.19
s PV (1019
U3Mg - Mg

These minors yield trilinear constraints on the corresponding image positions. It is easy to
show (see Exercises) that the corresponding equations reduce to the trifocal constraints of
Eq. (10.15) when we take M; = (Id 0). In particular, they can be expressed in terms of
the matrices G} (i = 1, 2, 3). Note that this completes the geometric interpretation of the
trifocal constraints that express here that the rays associated with three images of the same
point must intersect in space.

. The last type of determinant involves one row of each matrix. The equations associated

with the 16 minors of this form include, for example,

UlM? - M%
uzM% - M%
Det =0. 10.20
v — a2 (1020

v M3 — M?
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These equations yield quadrilinear constraints on the position of the points p; (i =
1,2, 3, 4). Geometrically, each row of the matrix Q is associated with an image line or
equivalently with a plane passing through the optical center of the corresponding camera.
Thus each quadrilinearity expresses the fact that the four associated planes intersect in a
point (instead of not intersecting at all in the generic case).

Let us focus on the quadrilinear equations. Developing determinants such as Eq. (10.20)
with respect to the image coordinates reveals immediately that the coefficients of the quadrilinear
constraints can be written as

M;
M,
M;
M
where ¢;;; = F1 and i, j, k, and [ are indexed between 1 and 3 (see Exercises). These coeffi-
cients determine the quadrifocal tensor (Triggs, 1995).

Like its trifocal cousin, this tensor can be interpreted geometrically using both points and
lines. In particular, consider four pictures p; (i = 1, 2, 3, 4) of a point P and four arbitrary image
lines /; passing through these points. The four planes L; (i = 1, 2, 3, 4) formed by the preimages
of the lines must intersect in P, which implies in turn that the 4 x 4 matrix

M,
[t M,
I§M3

M,

Eijkl Det s (10.21)

must have rank 3 and, in particular, that its determinant must be zero. This obviously provides a
quadrilinear constraint on the coefficients of the four lines /; (i = 1, 2, 3, 4). In addition, since
each row L,.T = liT M,; of L is a linear combination of the rows of the associated matrix M;, the
coefficients of the quadrilinearities obtained by developing Det(L) with respect to the coordinates
of the lines /; are simply the coefficients of the quadrifocal tensor as defined by Eq. (10.21).

Finally, note that since Det(£) is linear in the coordinates of /;, the vanishing of this deter-
minant can be written as I; - g(I2, ls, I4) = 0, where ¢ is a (trilinear) function of the coordinates
of the lines /; (i = 2,3, 4). Since this relationship holds for any line /; passing through p;, it
follows that p; o q(l2, 15, l4). Geometrically, this means that the ray passing through O; and
p1 must also pass through the intersection of the planes formed by the preimages of I, I3, and
14 (Figure 10.9). Algebraically, this means that, given the quadrifocal tensor and arbitrary lines
passing through three images of a point, we can predict the position of this point in a fourth
image. This provides yet another method for transfer.

Note that the quadrifocal constraints are valid in both the calibrated and uncalibrated cases
since we have made no assumption on the form of the matrices M;. The quadrifocal tensor is
defined by 81 coefficients (or 80 up to scale), but it can be shown that these coefficients satisfy
51 independent constraints, reducing the total number of independent parameters to 29. It can
also be shown that, although each quadruple of images of the same point yields 16 indepen-
dent constraints like Eq. (10.20) on the 80 tensor coefficients, there exists a linear dependency
among the 32 equations associated with each pair of points. Thus, six point correspondences are
necessary to estimate the quadrifocal tensor in a linear fashion. Algorithms for performing this
task and enforcing the 51 constraints associated with actual quadrifocal tensors can be found in
Hartley (1998). Finally, Faugeras and Mourrain (1995) have shown that the quadrilinear tensor is
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Figure 10.9 Given four images p;, p;, ps, and p4 of some point P and three
arbitrary image lines [,, I3, and /4 passing through the points p,, ps, and py4, the
ray passing through O, and p; must also pass through the point where the three
planes L,, L3, and L, formed by the preimages of these lines intersect.

algebraically dependent on the associated essential/fundamental matrices and trifocal tensor, and
thus does not add independent new constraints. Likewise, it can be shown that additional views
do not add independent constraints either.

-

The essential matrix as an algebraic form of the epipolar constraint was discovered by Longuet—
Higgins (1981), and its properties have been elucidated by Huang and Faugeras (1989). The
fundamental matrix was introduced by Luong and Faugeras (1992, 1996). Robust methods for
estimating the fundamental matrix from point correspondences include Zhang et al. (1995). We
come back to the properties of the fundamental matrix and of the epipolar transformation in
chapter 13, when we adress the problem of recovering the structure of a scene and the motion
of a camera from a sequence of perspective images. The instantaneous version of the epipolar
constraint given by Eq. (10.4) and derived in Section 10.1.3 is only valid for calibrated cameras.
See Viéville and Faugeras (1995) for the case of cameras with varying intrinsic parameters.
The trilinear constraints associated with three views of a line were introduced independently by
Spektakis and Aloimonos (1990) and Weng, Huang and Ahuja (1992) in the context of motion
analysis for internally calibrated cameras. They were extended by Shashua (1995) and Hartley
(1997) to the uncalibrated case. The quadrifocal tensor was introduced by Triggs (1995). Its
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properties are investigated in Faugeras and Mourrain (1995), Faugeras and Papadopoulo (1997),
Hartley (1998), and Heyden (1998).

The introduction mentioned that photogrammetry is concerned with the extraction of quan-
titative information from multiple pictures. In this context, binocular and trinocular geometric
constraints are regarded as the source of condition equations that determine the intrinsic and ex-
trinsic parameters (called interior and exterior orientation parameters in photogrammetry) of a
stereo pair or triple. In particular, the Longuet—Higgins relation appears, in a slightly disguised
form, as the coplanarity condition equation, and trinocular constraints yield scale-restraint con-
dition equations that take calibration and image measurement errors into account (Thompson et
al., 1966, chapter X). In this case, the rays associated with three images of the same point are not
guaranteed to intersect anymore (Figure 10.10).

The setup is as follows: If the rays Ry and R; (i = 2, 3) associated with the image points
p1 and p; do not intersect, the minimum distance between them is reached at the points P; and
P;, such that the line joining these points is perpendicular to both R; and R;. Algebraically, this
can be written as

O1P =7,01p1 = 010; +2;0;p; + 1;(01p1 x O;p;) for i=2,3. (10.22)

Assuming that the cameras are internally calibrated so the projection matrices associated
with the second and third cameras are (RI  — RI#) and (RT — RIt3), Eq. (10.22) can be
rewritten in the coordinate system attached to the first camera as

Zip =t + zRip; + Mi(p; x Rip;) for i=23. (10.23)

O,

Figure 10.10 Trinocular constraints in the presence of calibration or measure-
ment errors: The rays R;, R,, and R; may not intersect.
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Note that a similar equation could be written as well for completely uncalibrated cameras
by including terms depending on the (unknown) intrinsic parameters. In either case, Eq. (10.23)
can be used to calculate the unknowns z;, A;, and zl in terms of p,, p; and the projection matri-
ces ass001ated with the cameras (see Exercises). The scale-restraint condition is then written as
zl = z;. Although it is more complex than the trifocal constraint (in particular, it is not trilinear
in the coordinates of the points p;, pz, and ps3), this condition does not involve the coordinates
of the observed pomt and it can be used (in principle) to estimate the tnfocal geometry directly
from image data. A pqtentlal advantage is that the error function z2 — z3 3 has a clear geometric
meaning: It is the difference between the estimates of the depth of P obtained using the pairs of
cameras 1 <> 2 and 1 <> 3. It would be interesting to further investigate the relationship between
the trifocal tensor and the scale-constraint condition, as well as its practical application to the
estimation of the trifocal geometry.

10.1. Show that one of the singular values of an essential matrix is O and the other two are equal. (Huang
and Faugeras, 1989 have shown that the converse is also true—that is, any 3 x 3 matrix with one
singular value equal to 0 and the other two equal to each other is an essential matrix.)

Hint: The singular values of £ are the eigenvalues of ££7.

10.2. Exponentlal representatlon of rotation matrices. The matrix associated with the rotation whose axis

is the unit vector @ and whose angle is § can be shown to be equal to ?@x] = &t % 1(6lax])'. Use
this representation to derive Eq. (10.3).

10.3. The infinitesimal epipolar constraint of Eq. (10.4) was derived by assuming that the observed scene
was static and the camera was moving. Show that when the camera is fixed and the scene is moving
with translational velocity v and rotational velocity w, the epipolar constraint can be rewritten as
PT(vx1lwx])p + (p x p) -v = 0. Note that this equation is now the sum of the two terms appearing
in Eq. (10.4) instead of their difference.

Hint: If R and ¢ denote the rotation matrix and translation vectors appearing in the definition
of the essential matrix for a moving camera, show that the object displacement that yields the same
motior field for a static camera is given by the rotation matrix R” and the translation vector —RT¢.

10.4. Show that when the 8 x 8 matrix associated with the eight-point algorithm is singular, the eight
points and the two optical centers lie on a quadric surface (Faugeras, 1993).

Hint: Use the fact that when a matrix is singular, there exists some nontrivial linear combi-
nation of its columns that is equal to zero. Also take advantage of the fact that the matrices repre-
senting the two projections in the coordinate system of the first camera are in this case (Id 0) and
(RT  —RTp.

10.5. Show that three of the determinants of the 3 x 3 minors of

I o gl
L=|U0R, ILjt;| canbewrittenas I, x | 5G| =0.
IR, L, 63,

Show that the fourth determinant can be written as a linear combination of these.
10.6. Show that Eq. (10.18) reduces to Eq. (10.2) when M; = (Id 0) and M, = (RT —RT¥.
10.7. Show that Eq. (10.19) reduces to Eq. (10.15) when M; = (Id 0).

10.8. Develop Eq. (10.20) with respect to the image coordinates, and verify that the coefficients can indeed
: be written in the form of Eq. (10.21).

10.9. Use Eq. (10.23) to calculate the unknowns z;, A;, and z} in terms of p,, p;, R;, and ¢; (i = 2,3).
Show that the value of A; is directly related to the epipolar constraint, and characterize the degree of
the dependency of z2 — z3 on the data points.
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Programming Assignments

Implement the eight-point algorithm for weak calibration from binocular point correspondences.
Implement the linear least-squares version of that algorithm with and without Hartley’s precondi-
tioning step.

Implement an algorithm for estimating the trifocal tensor from point correspondences.

Implement an algorithm for estimating the trifocal tensor from line correspondences.



