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Preview

The term spatial domain refers to the image plane itself, and image process-
ing methods in this category are based on direct manipulation of pixels in
an image. This is in contrast to image processing in a transform domain
which, as introduced in Section 2.6.7 and discussed in more detail in
Chapter 4, involves first transforming an image into the transform domain,
doing the processing there, and obtaining the inverse transform to bring the
results back into the spatial domain. Two principal categories of spatial pro-
cessing are intensity transformations and spatial filtering. As you will learn
in this chapter, intensity transformations operate on single pixels of an
image, principally for the purpose of contrast manipulation and image
thresholding. Spatial filtering deals with performing operations, such as
image sharpening, by working in a neighborhood of every pixel in an image.
In the sections that follow, we discuss a number of “classical” techniques for
intensity transformations and spatial filtering. We also discuss in some de-
tail fuzzy techniques that allow us to incorporate imprecise, knowledge-
based information in the formulation of intensity transformations and
spatial filtering algorithms.



3.1 ® Background

[l Background

3.1.1 The Basics of Intensity Transformations and Spatial Filtering

All the image processing techniques discussed in this section are implemented
in the spatial domain, which we know from the discussion in Section 2.4.2 is
simply the plane containing the pixels of an image. As noted in Section 2.6.7,
spatial domain techniques operate directly on the pixels of an image as op-
posed, for example, to the frequency domain (the topic of Chapter 4) in which
operations are performed on the Fourier transform of an image, rather than on
the image itself. As you will learn in progressing through the book, some image
rocessing tasks are easier or more meaningful to implement in the spatial do-
main while others are best suited for other approaches. Generally, spatial do-
main techniques are more efficient computationally and require less processing
resources to implement.
The spatial domain processes we discuss in this chapter can be denoted by
the expression

g(x,y) = T[f(x, y)] (3.1-1)

where f(x, y) is the input image, g(x, y) is the output image, and T is an oper-
ator on f defined over a neighborhood of point (x, y). The operator can apply
to a single image (our principal focus in this chapter) or to a set of images, such
as performing the pixel-by-pixel sum of a sequence of images for noise reduc-
tion, as discussed in Section 2.6.3. Figure 3.1 shows the basic implementation
of Eq. (3.1-1) on a single image. The point (x, y) shown is an arbitrary location
in the image, and the small region shown containing the point is a neighbor-
hood of (x, y), as explained in Section 2.6.5. Typically, the neighborhood is rec-
tangular, centered on (x, y), and much smaller in size than the image.
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Other neighborhood
shapes, such as digital
approximations to cir-
cles, are used sometimes,
but rectangular shapes
are by far the most
prevalent because they
are much easier to imple-
ment computationally.

FIGURE 3.1
A3X3
neighborhood
about a point

(x, y) in an image
in the spatial
domain. The
neighborhood is
moved from pixel
to pixel in the
image to generate
an output image.
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FIGURE 3.2
Intensity
transformation
functions.

(a) Contrast-
stretching
function.

(b) Thresholding
function.

The process that Fig. 3.1 illustrates consists of moving the origin of the neigh-
borhood from pixel to pixel and applying the operator T to the pixels in the
neighborhood to yield the output at that location. Thus, for any specific location
(x, y), the value of the output image g at those coordinates is equal to the result
of applying T to the neighborhood with origin at (x, y) in f. For example, sup-
pose that the neighborhood is a square of size 3 X 3, and that operator T is de-
fined as “compute the average intensity of the neighborhood.” Consider an
arbitrary location in an image, say (100, 150). Assuming that the origin of the
neighborhood is at its center, the result, g(100, 150), at that location is comput-
ed as the sum of f(100, 150) and its 8-neighbors, divided by 9 (i.e., the average
intensity of the pixels encompassed by the neighborhood). The origin of the
neighborhood is then moved to the next location and the procedure is repeated
to generate the next value of the output image g. Typically, the process starts at
the top left of the input image and proceeds pixel by pixel in a horizontal scan,
one row at a time. When the origin of the neighborhood is at the border of the
image, part of the neighborhood will reside outside the image. The procedure is
either to ignore the outside neighbors in the computations specified by 7, or to
pad the image with a border of Os or some other specified intensity values. The
thickness of the padded border depends on the size of the neighborhood. We
will return to this issue in Section 3.4.1.

As we discuss in detail in Section 3.4, the procedure just described is called
spatial filtering, in which the neighborhood, along with a predefined operatldm
is called a spatial filter (also referred to as a spatial mask, kernel, template, or
window). The type of operation performed in the neighborhood determines
the nature of the filtering process.

The smallest possible neighborhood is of size 1 X 1. In this case, g depends
only on the value of f at a single point (x, y) and T in Eq. (3.1-1) becomes an
intensity (also called gray-level or mapping) transformation function of the form

s =T(r) (3.1-2)

where, for simplicity in notation, s and r are variables denoting, respectively,
the intensity of g and f at any point (x, y). For example, if T(r) has the form
in Fig. 3.2(a), the effect of applying the transformation to every pixel of f to
generate the corresponding pixels in g would be to produce an image of
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3.2 ® Some Basic Intensity Transformation Functions

higher contrast than the original by darkening the intensity levels below k
and brightening the levels above k. In this technique, sometimes called
contrast stretching (see Section 3.2.4), values of r lower than k are com-
pressed by the transformation function into a narrow range of s, toward
black. The opposite is true for values of r higher than k. Observe how an in-
tensity value ry is mapped to obtain the corresponding value s,. In the limit-
ing case shown in Fig. 3.2(b), T(r) produces a two-level (binary) image. A
mapping of this form is called a thresholding function. Some fairly simple, yet
powerful, processing approaches can be formulated with intensity transfor-
mation functions. In this chapter, we use intensity transformations principally
for image enhancement. In Chapter 10, we use them for image segmentation.
Approaches whose results depend only on the intensity at a point sometimes
are called point processing techniques, as opposed to the neighborhood pro-
cessing techniques discussed earlier in this section.

3.1.2 About the Examples in This Chapter

Although intensity transformations and spatial filtering span a broad range of
applications, most of the examples in this chapter are applications to image
enhancement. Enhancement is the process of manipulating an image so that
the result is more suitable than the original for a specific application. The
word specific is important here because it establishes at the outset that en-
hancement techniques are problem oriented. Thus, for example, a method
that is quite useful for enhancing X-ray images may not be the best approach
for enhancing satellite images taken in the infrared band of the electromag-
netic spectrum. There is no general “theory” of image enhancement. When an
image is processed for visual interpretation, the viewer is the ultimate judge
of how well a particular method works. When dealing with machine percep-
tion, a given technique is easier to quantify. For example, in an automated
character-recognition system, the most appropriate enhancement method is
the one that results in the best recognition rate, leaving aside other consider-
ations such as computational requirements of one method over another.
Regardless of the application or method used, however, image enhancement
is one of the most visually appealing areas of image processing. By its very na-
ture, beginners in image processing generally find enhancement applications in-
teresting and relatively simple to understand. Therefore, using examples from
image enhancement to illustrate the spatial processing methods developed in
this chapter not only saves having an extra chapter in the book dealing with
image enhancement but, more importantly, is an effective approach for intro-
ducing newcomers to the details of processing techniques in the spatial domain.
As you will see as you progress through the book, the basic material developed in
this chapter is applicable to a much broader scope than just image enhancement.

Some Basic Intensity Transformation Functions

Intensity transformations are among the simplest of all image processing tech-
niques. The values of pixels, before and after processing, will be denoted by r
and s, respectively. As indicated in the previous section, these values are related
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FIGURE 3.3 Some
basic intensity
transformation
functions. All
curves were
scaled to fit in the
range shown.

by an expression of the form s = T'(r), where T is a transformation that maps a
pixel value r into a pixel value s. Because we are dealing with digital quantities,
values of a transformation function typically are stored in a one-dimensional
array and the mappings from r to s are implemented via table lookups. For an
8-bit environment, a lookup table containing the values of T will have 256 entries.

As an introduction to intensity transformations, consider Fig. 3.3, which
shows three basic types of functions used frequently for image enhance-
ment: linear (negative and identity transformations), logarithmic (log and
inverse-log transformations), and power-law (nth power and nth root trans-
formations). The identity function is the trivial case in which output intensi-
ties are identical to input intensities. It is included in the graph only for
completeness.

3.2.1 Image Negatives

The negative of an image with intensity levels in the range [0, L — 1] is ob-
tained by using the negative transformation shown in Fig. 3.3, which is given by
the expression

s=L—-1-r (3.2-1)

Reversing the intensity levels of an image in this manner produces the
equivalent of a photographic negative. This type of processing is particularly
suited for enhancing white or gray detail embedded in dark regions of an
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FIGURE 3.4

(a) Original digital
mammogram.

(b) Negative
image obtained
using the negative
transformation

in Eq. (3.2-1).
(Courtesy of G.E.

image, especially when the black areas are dominant in size. Figure 3.4
shows an example. The original image is a digital mammogram showing a
small lesion. In spite of the fact that the visual content is the same in both
images, note how much easier it is to analyze the breast tissue in the nega-
tive image in this particular case.

3.2.2 Log Transformations

The general form of the log transformation in Fig. 3.3 is
s =clog(l +7r) (3.2-2)

where c is a constant, and it is assumed that r = 0. The shape of the log curve
in Fig. 3.3 shows that this transformation maps a narrow range of low intensity
values in the input into a wider range of output levels. The opposite is true of
higher values of input levels. We use a transformation of this type to expand
the values of dark pixels in an image while compressing the higher-level val-
ues. The opposite is true of the inverse log transformation.

Any curve having the general shape of the log functions shown in Fig. 3.3
would accomplish this spreading/compressing of intensity levels in an image,
but the power-law transformations discussed in the next section are much
more versatile for this purpose. The log function has the important character-
istic that it compresses the dynamic range of images with large variations in
pixel values. A classic illustration of an application in which pixel values have
a large dynamic range is the Fourier spectrum, which will be discussed in
Chapter 4. At the moment, we are concerned only with the image characteris-
tics of spectra. It is not unusual to encounter spectrum values that range from 0
to 10 or higher. While processing numbers such as these presents no problems
for a computer, image display systems generally will not be able to reproduce
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FIGURE 3.5

(a) Fourier
spectrum.

(b) Result of
applying the log
transformation in
Eq. (3.2-2) with

c=1.

faithfully such a wide range of intensity values. The net effect is that a signifi-
cant degree of intensity detail can be lost in the display of a typical Fourier
spectrum.

As an illustration of log transformations, Fig. 3.5(a) shows a Fourier spec-
trum with values in the range 0 to 1.5 X 10°. When these values are scaled lin-
early for display in an 8-bit system, the brightest pixels will dominate the
display, at the expense of lower (and just as important) values of the spec-
trum. The effect of this dominance is illustrated vividly by the relatively small
area of the image in Fig. 3.5(a) that is not perceived as black. If, instead of dis-
playing the values in this manner, we first apply Eq. (3.2-2) (with ¢ = 1 in this
case) to the spectrum values, then the range of values of the result becomes 0
to 6.2, which is more manageable. Figure 3.5(b) shows the result of scaling this
new range linearly and displaying the spectrum in the same 8-bit display. The
wealth of detail visible in this image as compared to an unmodified display of
the spectrum is evident from these pictures. Most of the Fourier spectra seen
in image processing publications have been scaled in just this manner.

3.2.3 Power-Law (Gamma) Transformations

Power-law transformations have the basic form
=cr’ (3.2-3)

where ¢ and vy are positive constants. Sometimes Eq. (3.2-3) is written as
s = c¢(r + €)” to account for an offset (that is, a measurable output when the
input is zero). However, offsets typically are an issue of display calibration
and as a result they are normally ignored in Eq. (3.2-3). Plots of s versus r for
various values of y are shown in Fig. 3.6. As in the case of the log transforma-
tion, power-law curves with fractional values of y map a narrow range of dark
input values into a wider range of output values, with the opposite being true
for higher values of input levels. Unlike the log function, however, we notice



3.2 @ Some Basic Intensity Transformation Functions

L-1 ,
v.= 0.04
[ y=010
3L/4 vy =020
“
) v =0.40
2
Z y =067
S L2
E / Y= 1
ES y=15
3
e} y=25
L/4+- y=50 7
v =100
vy =250
0 [ |
0 L/4 L/2 3L/4 L-1

Input intensity level, r

here a family of possible transformation curves obtained simply by varying y.
As expected, we see in Fig. 3.6 that curves generated with values of y > 1
have exactly the opposite effect as those generated with values of y < 1.
Finally, we note that Eq. (3.2-3) reduces to the identity transformation when
c=y=1

A variety of devices used for image capture, printing, and display respond
according to a power law. By convention, the exponent in the power-law equa-
tion is referred to as gamma [hence our use of this symbol in Eq. (3.2-3)].
The process used to correct these power-law response phenomena is called
gamma correction. For example, cathode ray tube (CRT) devices have an
intensity-to-voltage response that is a power function, with exponents vary-
ing from approximately 1.8 to 2.5. With reference to the curve for y = 2.5 in
Fig. 3.6, we see that such display systems would tend to produce images that
are darker than intended. This effect is illustrated in Fig. 3.7. Figure 3.7(a)
shows a simple intensity-ramp image input into a monitor. As expected, the
output of the monitor appears darker than the input, as Fig. 3.7(b) shows.
Gamma correction in this case is straightforward. All we need to do is pre-
process the input image before inputting it into the monitor by performing
the transformation s = r/23 = %4 The result is shown in Fig. 3.7(c). When
input into the same monitor, this gamma-corrected input produces an out-
put that is close in appearance to the original image, as Fig. 3.7(d) shows. A
similar analysis would apply to other imaging devices such as scanners and
printers. The only difference would be the device-dependent value of
gamma (Poynton [1996]).
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FIGURE 3.6 Plots
of the equation

s = cr? for

various values of

v (c =1linall

cases). All curves
were scaled to fit

in the range

shown.
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FIGURE 3.7

(a) Intensity ramp
image. (b) Image
as viewed on a
simulated monitor
with a gamma of
2.5.(c) Gamma-
corrected image.
(d) Corrected
image as viewed
on the same
monitor. Compare
(d) and (a).
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Gamma correction is important if displaying an image accurately on a
computer screen is of concern. Images that are not corrected properly can
look either bleached out, or, what is more likely, too dark. Trying to reproduce
colors accurately also requires some knowledge of gamma correction because
varying the value of gamma changes not only the intensity, but also the ratios
of red to green to blue in a color image. Gamma correction has become in-
creasingly important in the past few years, as the use of digital images for
commercial purposes over the Internet has increased. It is not unusual that
images created for a popular Web site will be viewed by millions of people,
the majority of whom will have different monitors and/or monitor settings.
Some computer systems even have partial gamma correction built in. Also,
current image standards do not contain the value of gamma with which an
image was created, thus complicating the issue further. Given these con-
straints, a reasonable approach when storing images in a Web site is to pre-
process the images with a gamma that represents an “average” of the types of
monitors and computer systems that one expects in the open market at any
given point in time.
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#@ In addition to gamma correction, power-law transformations are useful for
general-purpose contrast manipulation. Figure 3.8(a) shows a magnetic reso-
nance image (MRI) of an upper thoracic human spine with a fracture disloca-
tion and spinal cord impingement. The fracture is visible near the vertical
center of the spine, approximately one-fourth of the way down from the top of
the picture. Because the given image is predominantly dark, an expansion of
intensity levels is desirable. This can be accomplished with a power-law trans-
formation with a fractional exponent. The other images shown in the figure
were obtained by processing Fig. 3.8(a) with the power-law transformation

EXAMPLE 3.1:
Contrast
enhancement
using power-law
transformations.

L3

FIGURE 3.8

(a) Magnetic
resonance

image (MRI) of a
fractured human
spine.

(b)-(d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ =1and

v = 0.6, 0.4, and
0.3, respectively.
(Original image
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)



114  Chopter 3 ® Intensity Transformations and Spatial Filtering

EXAMPLE 3.2:
Another
illustration of
power-law
transformations.

FIGURE 3.9

(a) Aerial image.
(b)~(d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ =1and

v = 3.0,4.0,and
5.0, respectively.
(Original image
for this example
courtesy of
NASA))

function of Eq. (3.2-3). The values of gamma corresponding to images (b)
through (d) are 0.6, 0.4, and 0.3, respectively (the value of ¢ was 1 in all cases).
We note that, as gamma decreased from 0.6 to 0.4, more detail became visible.
A further decrease of gamma to 0.3 enhanced a little more detail in the back-
ground, but began to reduce contrast to the point where the image started to
have a very slight “washed-out” appearance, especially in the background. By
comparing all results, we see that the best enhancement in terms of contrast
and discernable detail was obtained with y = 0.4. A value of y = 0.3 is an ap-
proximate limit below which contrast in this particular image would be
reduced to an unacceptable level. m

Figure 3.9(a) shows the opposite problem of Fig. 3.8(a). The image to be
processed now has a washed-out appearance, indicating that a compression
of intensity levels is desirable. This can be accomplished with Eq. (3.2-3)
using values of y greater than 1. The results of processing Fig. 3.9(a) with
Y = 3.0, 4.0, and 5.0 are shown in Figs. 3.9(b) through (d). Suitable results
were obtained with gamma values of 3.0 and 4.0, the latter having a slightly
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more appealing appearance because it has higher contrast. The result obtained
with y = 5.0 has areas that are too dark, in which some detail is lost. The dark
region to the left of the main road in the upper left quadrant is an example of
such an area. E ]

3.2.4 Piecewise-Linear Transformation Functions

A complementary approach to the methods discussed in the previous three sec-
tions is to use piecewise linear functions. The principal advantage of piecewise
linear functions over the types of functions we have discussed thus far is that
the form of piecewise functions can be arbitrarily complex. In fact, as you will
see shortly, a practical implementation of some important transformations can
be formulated only as piecewise functions. The principal disadvantage of piece-
wise functions is that their specification requires considerably more user input.

Contrast stretching

One of the simplest piecewise linear functions is a contrast-stretching trans-
formation. Low-contrast images can result from poor illumination, lack of dy-
namic range in the imaging sensor, or even the wrong setting of a lens aperture
during image acquisition. Contrast stretching is a process that expands the
range of intensity levels in an image so that it spans the full intensity range of
the recording medium or display device.

Figure 3.10(a) shows a typical transformation used for contrast stretching. The
locations of points (71, 5;) and (5, s,) control the shape of the transformation func-
tion.If ; = s;and r, = s,, the transformation is a linear function that produces no
changes in intensity levels. If r; = r,, s; = 0 and s, = L — 1, the transformation
becomes a thresholding function that creates a binary image, as illustrated in
Fig. 3.2(b). Intermediate values of (rq, s;) and (r,, s,) produce various degrees of
spread in the intensity levels of the output image, thus affecting its contrast. In gen-
eral,r; = r, and s; < s, is assumed so that the function is single valued and mo-
notonically increasing. This condition preserves the order of intensity levels, thus
preventing the creation of intensity artifacts in the processed image.

Figure 3.10(b) shows an 8-bit image with low contrast. Figure 3.10(c) shows
the result of contrast stretching, obtained by setting (rq, ;) = (*min, 0) and
(r2,82) = (Pmax, L — 1), where rp;, and r,, denote the minimum and maxi-
mum intensity levels in the image, respectively. Thus, the transformation func-
tion stretched the levels linearly from their original range to the full range
[0, L — 1]. Finally, Fig. 3.10(d) shows the result of using the thresholding func-
tion defined previously, with (ry,s;) = (m,0) and (ry, s;) = (m, L — 1),
where m is the mean intensity level in the image. The original image on which
these results are based is a scanning electron microscope image of pollen, mag-
nified approximately 700 times.

Intensity-level slicing

Highlighting a specific range of intensities in an image often is of interest. Appli-
cations include enhancing features such as masses of water in satellite imagery
and enhancing flaws in X-ray images. The process, often called intensity-level
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FIGURE 3.10
Contrast stretching.
(a) Form of
transformation
function. (b) A
low-contrast image.
(c) Result of
contrast stretching.
(d) Result of
thresholding.
(Original image
courtesy of Dr.
Roger Heady,
Research School of
Biological Sciences,
Australian National
University,
Canberra,
Australia.)
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FIGURE 3.11 (a) This
transformation
highlights intensity
range [A, B] and
reduces all other
intensities to a lower
level. (b) This
transformation
highlights range

[A, B] and preserves
all other intensity
levels.
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slicing, can be implemented in several ways, but most are variations of two basic
themes. One approach is to display in one value (say, white) all the values in the
range of interest and in another (say, black) all other intensities. This transfor-
mation, shown in Fig. 3.11(a), produces a binary image. The second approach,
based on the transformation in Fig. 3.11(b), brightens (or darkens) the desired
range of intensities but leaves all other intensity levels in the image unchanged.

L-1) ———————mmmmmmmm ; L-1

~—T(n




3.2 # Some Basic Intensity Transformation Functions 117

M Figure 3.12(a) is an aortic angiogram near the kidney area (see Section
1.3.2 for a more detailed explanation of this image). The objective of this ex-
ample is to use intensity-level slicing to highlight the major blood vessels that
appear brighter as a result of an injected contrast medium. Figure 3.12(b)
shows the result of using a transformation of the form in Fig. 3.11(a), with the
selected band near the top of the scale, because the range of interest is brighter
than the background. The net result of this transformation is that the blood
vessel and parts of the kidneys appear white, while all other intensities are
black. This type of enhancement produces a binary image and is useful for
studying the shape of the flow of the contrast medium (to detect blockages, for
example).

If, on the other hand, interest lies in the actual intensity values of the region
of interest, we can use the transformation in Fig. 3.11(b). Figure 3.12(c) shows
the result of using such a transformation in which a band of intensities in the
mid-gray region around the mean intensity was set to black, while all other in-
tensities were left unchanged. Here, we see that the gray-level tonality of the
major blood vessels and part of the kidney area were left intact. Such a result
might be useful when interest lies in measuring the actual flow of the contrast
medium as a function of time in a series of images. ]

Bit-plane slicing

Pixels are digital numbers composed of bits. For example, the intensity of each
pixel in a 256-level gray-scale image is composed of 8 bits (i.e., one byte). In-
stead of highlighting intensity-level ranges, we could highlight the contribution

SRS SR

EXAMPLE 3.3:
Intensity-level
slicing.

FIGURE 3.12 (a) Aortic angiogram. (b) Result of using a slicing transformation of the type illustrated in Fig.
3.11(a), with the range of intensities of interest selected in the upper end of the gray scale. (c) Result of
using the transformation in Fig. 3.11(b), with the selected area set to black, so that grays in the area of the
blood vessels and kidneys were preserved. (Original image courtesy of Dr. Thomas R. Gest, University of

Michigan Medical School.)
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FIGURE 3.13
Bit-plane
representation of
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made to total image appearance by specific bits. As Fig. 3.13 illustrates, an 8-bit
image may be considered as being composed of eight 1-bit planes, with plane 1
containing the lowest-order bit of all pixels in the image and plane 8 all the
highest-order bits.

Figure 3.14(a) shows an 8-bit gray-scale image and Figs. 3.14(b) through (i)
are its eight 1-bit planes, with Fig. 3.14(b) corresponding to the lowest-order bit.
Observe that the four higher-order bit planes, especially the last two, contain a
significant amount of the visually significant data. The lower-order planes con-
tribute to more subtle intensity details in the image. The original image has a
gray border whose intensity is 194. Notice that the corresponding borders of some
of the bit planes are black (0), while others are white (1). To see why, consider a

§ AEST18129A
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FIGURE 3.14 (a) An 8-bit gray-scale image of size 500 X 1192 pixels. (b) through (i) Bit planes 1 through 8,

with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.
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pixel in, say, the middle of the lower border of Fig. 3.14(a). The corresponding
pixels in the bit planes, starting with the highest-order plane, have values 1100
0010, which is the binary representation of decimal 194. The value of any pixel
in the original image can be similarly reconstructed from its corresponding
binary-valued pixels in the bit planes.

In terms of intensity transformation functions, it is not difficult to show that
the binary image for the 8th bit plane of an 8-bit image can be obtained by
processing the input image with a thresholding intensity transformation func-
tion that maps all intensities between 0 and 127 to 0 and maps all levels be-
tween 128 and 255 to 1. The binary image in Fig. 3.14(i) was obtained in just
this manner. It is left as an exercise (Problem 3.4) to obtain the intensity trans-
formation functions for generating the other bit planes.

Decomposing an image into its bit planes is useful for analyzing the rela-
tive importance of each bit in the image, a process that aids in determining
the adequacy of the number of bits used to quantize the image. Also, this type
of decomposition is useful for image compression (the topic of Chapter 8), in
which fewer than all planes are used in reconstructing an image. For example,
Fig. 3.15(a) shows an image reconstructed using bit planes 8 and 7. The recon-
struction is done by multiplying the pixels of the nth plane by the constant
2"~1. This is nothing more than converting the nth significant binary bit to
decimal. Each plane used is multiplied by the corresponding constant, and all
planes used are added to obtain the gray scale image. Thus, to obtain
Fig.3.15(a), we multiplied bit plane 8 by 128, bit plane 7 by 64, and added the
two planes. Although the main features of the original image were restored,
the reconstructed image appears flat, especially in the background. This is not
surprising because two planes can produce only four distinct intensity levels.
Adding plane 6 to the reconstruction helped the situation, as Fig. 3.15(b)
shows. Note that the background of this image has perceptible false contour-
ing. This effect is reduced significantly by adding the 5th plane to the recon-
struction, as Fig. 3.15(c) illustrates. Using more planes in the reconstruction
would not contribute significantly to the appearance of this image. Thus, we
conclude that storing the four highest-order bit planes would allow us to re-
construct the original image in acceptable detail. Storing these four planes in-
stead of the original image requires 50% less storage (ignoring memory
architecture issues).

FIGURE 3.15 Images reconstructed using (a) bit planes 8 and 7; (b) bit planes 8,7, and 6; and (c) bit planes 8,
7,6, and 5. Compare (c) with Fig. 3.14(a).
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m Histogram Processing

The histogram of a digital image with intensity levels in the range [0, L — 1]
is a discrete function h(ry) = ny, where ry is the kth intensity value and n, is
the number of pixels in the image with intensity r;. It is common practice to
normalize a histogram by dividing each of its components by the total num-
ber of pixels in the image, denoted by the product MN, where, as usual, M
and N are the row and column dimensions of the image. Thus, a normalized
histogram is given by p(ry) = r,/MN, for k =0,1,2,..., L — 1. Loosely
speaking, p(r,) is an estimate of the probability of occurrence of intensity
level r; in an image. The sum of all components of a normalized histogram is
equal to 1.

Histograms are the basis for numerous spatial domain processing tech-
niques. Histogram manipulation can be used for image enhancement, as
shown in this section. In addition to providing useful image statistics, we shall
see in subsequent chapters that the information inherent in histograms also is
quite useful in other image processing applications, such as image compression
and segmentation. Histograms are simple to calculate in software and also
lend themselves to economic hardware implementations, thus making them a
popular tool for real-time image processing.

As an introduction to histogram processing for intensity transformations,
consider Fig. 3.16, which is the pollen image of Fig. 3.10 shown in four basic in-
tensity characteristics: dark, light, low contrast, and high contrast. The right
side of the figure shows the histograms corresponding to these images. The
horizontal axis of each histogram plot corresponds to intensity values, r,. The
vertical axis corresponds to values of h(r;) = n, or p(r,) = ny/MN if the val-
ues are normalized. Thus, histograms may be viewed graphically simply as
plots of h(ry) = ny versus ry or p(ry) = ng/MN versus ry.

We note in the dark image that the components of the histogram are con-
centrated on the low (dark) side of the intensity scale. Similarly, the compo-
nents of the histogram of the light image are biased toward the high side of
the scale. An image with low contrast has a narrow histogram located typi-
cally toward the middle of the intensity scale. For a monochrome image this
implies a dull, washed-out gray look. Finally, we see that the components of
the histogram in the high-contrast image cover a wide range of the intensity
scale and, further, that the distribution of pixels is not too far from uniform,
with very few vertical lines being much higher than the others. Intuitively, it
is reasonable to conclude that an image whose pixels tend to occupy the entire
range of possible intensity levels and, in addition, tend to be distributed uni-
formly, will have an appearance of high contrast and will exhibit a large vari-
ety of gray tones. The net effect will be an image that shows a great deal of
gray-level detail and has high dynamic range. It will be shown shortly that it
is possible to develop a transformation function that can automatically
achieve this effect, based only on information available in the histogram of
the input image.
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FIGURE 3.17

(a) Monotonically
increasing
function, showing
how multiple
values can map to
a single value.

(b) Strictly
monotonically
increasing
function. This is a
one-to-one
mapping, both
ways.
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3.3.] Histogram Equalization

Consider for a moment continuous intensity values and let the variable r de-
note the intensities of an image to be processed. As usual, we assume that r is
in the range [0, L — 1], with » = O representing black and r = L — 1 repre-
senting white. For r satisfying these conditions, we focus attention on transfor-
mations (intensity mappings) of the form

s=T(r) O0=r=L-1 (33-1)

that produce an output intensity level s for every pixel in the input image hav-
ing intensity r. We assume that:

(@) T(r)is a monotonically’ increasing function in the interval 0 < r < L — 1;
and
b)Oo=sT(rysL-1for0=sr=<L-1
In some formulations to be discussed later, we use the inverse
r=T7s) 0=s=L-1

in which case we change condition (a) to

(33-2)

(a')T(r) is a strictly monotonically increasing function in the interval
O0=sr=L-1

The requirement in condition (a) that 7(r) be monotonically increasing
guarantees that output intensity values will never be less than corresponding
input values, thus preventing artifacts created by reversals of intensity. Condi-
tion (b) guarantees that the range of output intensities is the same as the
input. Finally, condition (a’) guarantees that the mappings from s back to r
will be one-to-one, thus preventing ambiguities. Figure 3.17(a) shows a function

T(r) T(r)
L-1j--——~===----- | L-1j-——— = |
Single |~ : !
value, s, : T(r) — :
T(r) ~ ‘ | |
|
Single | | 2 DE— A |
value, s, Y ' | | !
I | |
IES . |
{ ‘ I I |
\ ! I
I | J_‘ | r | r
7, -1
0 Multiple Single L — 1 0 , L
values  value

"Recall that a function T(r) is monotonically increasing if T(r,) = T(r{) for r, > ry. T (r) is a strictly mo-
notonically increasing function if T(r;) > T(ry) for r, > ry. Similar definitions apply to monotonically
decreasing functions.
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that satisfies conditions (a) and (b). Here, we see that it is possible for multi-
ple values to map to a single value and still satisfy these two conditions. That
is, a monotonic transformation function performs a one-to-one or many-to-
one mapping. This is perfectly fine when mapping from r to s. However,
Fig.3.17(a) presents a problem if we wanted to recover the values of r unique-
ly from the mapped values (inverse mapping can be visualized by reversing
the direction of the arrows). This would be possible for the inverse mapping
of s, in Fig. 3.17(a), but the inverse mapping of s, is a range of values, which,
of course, prevents us in general from recovering the original value of r that
resulted in s,. As Fig. 3.17(b) shows, requiring that T'() be strictly monotonic
guarantees that the inverse mappings will be single valued (i.e., the mapping
is one-to-one in both directions). This is a theoretical requirement that allows
us to derive some important histogram processing techniques later in this
chapter. Because in practice we deal with integer intensity values, we are
forced to round all results to their nearest integer values. Therefore, when
strict monotonicity is not satisfied, we address the problem of a nonunique in-
verse transformation by looking for the closest integer matches. Example 3.8
gives an illustration of this.

The intensity levels in an image may be viewed as random variables in the
interval [0, L — 1]. A fundamental descriptor of a random variable is its prob-
ability density function (PDF). Let p,(r) and p,(s) denote the PDFs of r and s,
respectively, where the subscripts on p are used to indicate that p, and p, are
different functions in general. A fundamental result from basic probability
theory is that if p,(r) and T(r) are known, and T'(r) is continuous and differen-
tiable over the range of values of interest, then the PDF of the transformed
(mapped) variable s can be obtained using the simple formula

ps(s) = p(r) (3.3-3)

dr
ds

Thus, we see that the PDF of the output intensity variable, s, is determined by
the PDF of the input intensities and the transformation function used [recall
that r and s are related by T'(r)].

A transformation function of particular importance in image processing has
the form

s=T(r)=(L - 1)/Orp,(w) dw (3.3-4)

where w is a dummy variable of integration. The right side of this equation is
recognized as the cumulative distribution function (CDF) of random variable
r. Because PDFs always are positive, and recalling that the integral of a func-
tion is the area under the function, it follows that the transformation function
of Eq. (3.3-4) satisfies condition (a) because the area under the function can-
not decrease as r increases. When the upper limit in this equation is
r = (L — 1), the integral evaluates to 1 (the area under a PDF curve always
is 1), so the maximum value of s is (L — 1) and condition (b) is satisfied also.
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To find the p,(s) corresponding to the transformation just discussed, we use
Eq. (3.3-3). We know from Leibniz’s rule in basic calculus that the derivative of
a definite integral with respect to its upper limit is the integrand evaluated at
the limit. That is,

ds _ dI(r)

dr  dr
= (L - 1)—;—r|iA p(w) dw:l (3.3-5)
= (L = Dp(r)

Substituting this result for dr/ds in Eq. (3.3-3), and keeping in mind that all
probability values are positive, yields

ps(s) = p,(r) %
~ 1
F ’('){(L ~Dp ) (330
1
= L——l O0=ss=<L-1

We recognize the form of p(s) in the last line of this equation as a uniform
probability density function. Simply stated, we have demonstrated that per-
forming the intensity transformation in Eq. (3.3-4) yields a random variable, s,
characterized by a uniform PDF. It is important to note from this equation that
T(r) depends on p,(r) but, as Eq. (3.3-6) shows, the resulting py(s) always is
uniform, independently of the form of p,(r). Figure 3.18 illustrates these

COl'lCCptS.
p.(r) ps(s)
A _______
—- Eq.(3.3-4) —
1
L-1
il r S
0 L-1 0 L-1

b,

FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying the transformation in
Eq. (3.3-4) to all intensity levels, r. The resulting intensities, s, have a uniform PDF,
independently of the form of the PDF of the r’s.
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# To fix ideas, consider the following simple example. Suppose that the (con- EXAMPLE 3.4:

tinuous) intensity values in an image have the PDF Illustration of
Egs. (3.3-4) and
2y (3.3-6).

2.(r) Zz,_*l)z forO0=r=L-1
H(r) = —

0 otherwise
From Eq. (3.3-4),

r2

L-1

s=T(r)=(L—1)Ap,(w)dw=zl_TAwdw=

Suppose next that we form a new image with intensities, s, obtained using
this transformation; that is, the s values are formed by squaring the corre-
sponding intensity values of the input image and dividing them by (L — 1).
For example, consider an image in which L = 10, and suppose that a pixel
in an arbitrary location (x, y) in the input image has intensity » = 3. Then
the pixel in that location in the new image is s = T(r) = r/9 = 1. We can
verify that the PDF of the intensities in the new image is uniform simply by
substituting p,(r) into Eq. (3.3-6) and using the fact that s = r2/(L — 1);

that is,
-1
dr 2r ds
Ps(s) - Pr(r) E - (L — 1)2 I:E:I
2 [a AT
(L-17?|drL-1
. 2r (L-1 1
(L — 1?2 2r L-1
where the last step follows from the fact that r is nonnegative and we assume
that L > 1. As expected, the result is a uniform PDF. ]

For discrete values, we deal with probabilities (histogram values) and sum-
mations instead of probability density functions and integrals.” As mentioned
earlier, the probability of occurrence of intensity level r, in a digital image is
approximated by

ng
= —— = N 3-
p(n) =5 k=012, 1 (3.3-7)

where MN is the total number of pixels in the image, n; is the number of pix-
els that have intensity r;, and L is the number of possible intensity levels in the
image (e.g., 256 for an 8-bit image). As noted in the beginning of this section, a
plot of p,(r;) versus r, is commonly referred to as a histogram.

"The conditions of monotonicity stated earlier apply also in the discrete case. We simply restrict the val-
ues of the variables to be discrete.
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EXAMPLE 3.5:
A simple
illustration of
histogram
equalization.

TABLE 3.1
Intensity
distribution and
histogram values
for a 3-bit,

64 X 64 digital
image.

The discrete form of the transformation in Eq. (3.3-4) is

k
se =T(r) = (L - 1)2}1&(’]‘)
iz

(3.3-8)
_@-1

MN

k
> k=012,...,L -1

j=0

Thus, a processed (output) image is obtained by mapping each pixel in the
input image with intensity r; into a corresponding pixel with level s, in the
output image, using Eq. (3.3-8). The transformation (mapping) T'(r,) in this
equation is called a histogram equalization or histogram linearization trans-
formation. It is not difficult to show (Problem 3.10) that this transformation
satisfies conditions (a) and (b) stated previously in this section.

B Before continuing, it will be helpful to work through a simple example.
Suppose that a 3-bit image (L = 8) of size 64 X 64 pixels (MN = 4096) has
the intensity distribution shown in Table 3.1, where the intensity levels are in-
tegers in the range [0, L — 1] = [0, 7].

The histogram of our hypothetical image is sketched in Fig. 3.19(a). Values
of the histogram equalization transformation function are obtained using
Eq. (3.3-8). For instance,

0
so = T(ro) =72, p:(r;) = Tp,(ro) = 1.33
j=0

Similarly,

1
sy = T(r) = 72,p(r) = Tp,(r) + Tp,(r1) = 3.08
i=o

and s, = 4.55, 53 = 5.67,54 = 6.23, 55 = 6.65, s¢ = 6.86, 57 = 7.00. This trans-
formation function has the staircase shape shown in Fig. 3.19(b).

I me  pr) = m/MN
=0 790 0.19
n=1 1023 0.25
r=2 850 021
r=3 656 0.16
re=4 329 0.08
rs=5 245 0.06
re =6 122 0.03
rn=1 81 0.02
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FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original

histogram. (b) Transformation function. (c) Equalized histogram.

At this point, the s values still have fractions because they were generated
by summing probability values, so we round them to the nearest integer:

so=133—>1 §4 = 6236
sy =3.08—3 ss = 6.65—7
55 = 4555 5 = 6.86 =7
53 =5.67T—6 s7=700—7

These are the values of the equalized histogram. Observe that there are only
five distinct intensity levels. Because ry = 0 was mapped to sy = 1, there are
790 pixels in the histogram equalized image with this value (see Table 3.1).
Also, there are in this image 1023 pixels with a value of s; = 3 and 850 pixels
with a value of s, = 5. However both r; and r, were mapped to the same
value, 6, so there are (656 + 329) = 985 pixels in the equalized image with this
value. Similarly, there are (245 + 122 + 81) = 448 pixels with a value of 7 in
the histogram equalized image. Dividing these numbers by MN = 4096 yielded
the equalized histogram in Fig. 3.19(c).

Because a histogram is an approximation to a PDF, and no new allowed in-
tensity levels are created in the process, perfectly flat histograms are rare in
practical applications of histogram equalization. Thus, unlike its continuous
counterpart, it cannot be proved (in general) that discrete histogram equaliza-
tion results in a uniform histogram. However, as you will see shortly, using Eq.
(3.3-8) has the general tendency to spread the histogram of the input image so
that the intensity levels of the equalized image span a wider range of the in-
tensity scale. The net result is contrast enhancement. |

We discussed earlier in this section the many advantages of having intensity
values that cover the entire gray scale. In addition to producing intensities that
have this tendency, the method just derived has the additional advantage that
it is fully “automatic.” In other words, given an image, the process of histogram
equalization consists simply of implementing Eq. (3.3-8), which is based on in-
formation that can be extracted directly from the given image, without the
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EXAMPLE 3.6:
Histogram
equalization.

need for further parameter specifications. We note also the simplicity of the
computations required to implement the technique.
The inverse transformation from s back to r is denoted by

re =T sx) k=01,2,...,L—-1 (3.3-9)

It can be shown (Problem 3.10) that this inverse transformation satisfies con-
ditions (a') and (b) only if none of the levels, r,, k = 0,1,2,..., L — 1, are
missing from the input image, which in turn means that none of the components
of the image histogram are zero. Although the inverse transformation is not
used in histogram equalization, it plays a central role in the histogram-matching
scheme developed in the next section.

® The left column in Fig. 3.20 shows the four images from Fig. 3.16, and the
center column shows the result of performing histogram equalization on each
of these images. The first three results from top to bottom show significant im-
provement. As expected, histogram equalization did not have much effect on
the fourth image because the intensities of this image already span the full in-
tensity scale. Figure 3.21 shows the transformation functions used to generate the
equalized images in Fig. 3.20. These functions were generated using Eq. (3.3-8).
Observe that transformation (4) has a nearly linear shape, indicating that the
inputs were mapped to nearly equal outputs.

The third column in Fig. 3.20 shows the histograms of the equalized images. It
is of interest to note that, while all these histograms are different, the histogram-
equalized images themselves are visually very similar. This is not unexpected be-
cause the basic difference between the images on the left column is one of
contrast, not content. In other words, because the images have the same con-
tent, the increase in contrast resulting from histogram equalization was
enough to render any intensity differences in the equalized images visually in-
distinguishable. Given the significant contrast differences between the original
images, this example illustrates the power of histogram equalization as an
adaptive contrast enhancement tool. [}

3.3.2 Histogram Matching (Specification)

As indicated in the preceding discussion, histogram equalization automati-
cally determines a transformation function that seeks to produce an output
image that has a uniform histogram. When automatic enhancement is de-
sired, this is a good approach because the results from this technique are
predictable and the method is simple to implement. We show in this section
that there are applications in which attempting to base enhancement on a
uniform histogram is not the best approach. In particular, it is useful some-
times to be able to specify the shape of the histogram that we wish the
processed image to have. The method used to generate a processed image
that has a specified histogram is called histogram matching or histogram
specification.
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FIGURE 3.20 Left column: images from Fig. 3.16. Center column: corresponding histogram-
equalized images. Right column: histograms of the images in the center column.
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FIGURE 3.21
Transformation
functions for
histogram
equalization.
Transformations
(1) through (4)
were obtained from
the histograms of
the images (from
top to bottom) in
the left column of
Fig. 3.20 using
Eq.(3.3-8).
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Let us return for a moment to continuous intensities r and z (considered con-
tinuous random variables), and let p,(r) and p,(z) denote their corresponding
continuous probability density functions. In this notation, » and z denote the in-
tensity levels of the input and output (processed) images, respectively. We can
estimate p,(r) from the given input image, while p,(z) is the specified probabili-
ty density function that we wish the output image to have.

Let s be a random variable with the property

s=T(r)=(L - 1)/ pr(w) dw (3.3-10)
‘ 0
where, as before, w is a dummy variable of integration. We recognize this expres-
sion as the continuous version of histogram equalization given in Eq. (3.3-4).
Suppose next that we define a random variable z with the property

G(z) = (L - 1) / sz(t) dt = s (3.3-11)
0

where ¢ is a dummy variable of integration. It then follows from these two
equations that G(z) = T(r) and, therefore, that z must satisfy the condition
7z =G T(r)] = Gs) (3.3-12)

The transformation T'(r) can be obtained from Eq. (3.3-10) once p,(r) has
been estimated from the input image. Similarly, the transformation function
G(z) can be obtained using Eq. (3.3-11) because p,(z) is given.

Equations (3.3-10) through (3.3-12) show that an image whose intensity
levels have a specified probability density function can be obtained from a
given image by using the following procedure:

1. Obtain p,(r) from the input image and use Eq. (3.3-10) to obtain the val-
ues of s.

2. Use the specified PDF in Eq. (3.3-11) to obtain the transformation function
G(2).
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3. Obtain the inverse transformation z = G*(s); because z is obtained from
s, this process is a mapping from s to z, the latter being the desired values.

4. Obtain the output image by first equalizing the input image using Eq.
(3.3-10); the pixel values in this image are the s values. For each pixel with
value s in the equalized image, perform the inverse mapping z = G7(s) to
obtain the corresponding pixel in the output image. When all pixels have
been thus processed, the PDF of the output image will be equal to the
specified PDE.

¥ Assuming continuous intensity values, suppose that an image has the inten-
sity PDF p,(r) = 2r/(L — 1) for 0 < r < (L — 1) and p,(r) = 0 for other
values of . Find the transformation function that will produce an image whose
intensity PDF is p,(z) = 3z%/(L — 1)*for0 < z < (L — 1) and p,(z) = 0 for
other values of z.

First, we find the histogram equalization transformation for the interval
[0,L —1]:

- ’ 2 r 2
S=T(')—(L_1)/)Pr(w)dw—(L_l)Awdw—(L_l)

By definition, this transformation is 0 for values outside the range [0, L — 1].
Squaring the values of the input intensities and dividing them by (L — 1)? will
produce an image whose intensities, s, have a uniform PDF because this is a
histogram-equalization transformation, as discussed earlier.

We are interested in an image with a specified histogram, so we find next

Z3

r4 B 3 K4 3
G2 =(L - 1)1 p(w)dw = —(L — 1)2/0 w? dw = W(L Ty

over the interval [0, L — 1]; this function is 0 elsewhere by definition. Finally,
we require that G(z) = s, but G(z) = /(L — 1)% so 2/(L — 1)? = s, and
we have

z= [(L - l)zs]l/3

So, if we multiply every histogram equalized pixel by (L — 1)? and raise the
product to the power 1/3, the result will be an image whose intensities, z, have
the PDF p,(z) = 3z%/(L — 1)’ in the interval [0, L — 1], as desired.

Because s = r?/(L — 1) we can generate the z’s directly from the intensi-
ties, r, of the input image:

2

173
e=[@ -1 = [(L -1y (Lr_ 1)} ~[@-12)"

Thus, squaring the value of each pixel in the original image, multiplying the re-
sult by (L — 1), and raising the product to the power 1/3 will yield an image

EXAMPLE 3.7
Histogram
specification.
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whose intensity levels, z, have the specified PDF. We see that the intermedi-
ate step of equalizing the input image can be skipped; all we need is to obtain
the transformation function T'(r) that maps r to s. Then, the two steps can be
combined into a single transformation from r to z. |

As the preceding example shows, histogram specification is straightforward
in principle. In practice, a common difficulty is finding meaningful analytical
expressions for 7(r) and G1. Fortunately, the problem is simplified signifi-
cantly when dealing with discrete quantities. The price paid is the same as for
histogram equalization, where only an approximation to the desired histogram
is achievable. In spite of this, however, some very useful results can be ob-
tained, even with crude approximations.

The discrete formulation of Eq. (3.3-10) is the histogram equalization trans-
formation in Eq. (3.3-8), which we repeat here for convenience:

k
sk =T(n) = (L — 1)21%(’;)
=0 (33-13)
(L = 1

k
2 k=0,1,2,...,.L - 1
j=0

where, as before, MN is the total number of pixels in the image, n f is the num-
ber of pixels that have intensity value T and L is the total number of possible
intensity levels in the image. Similarly, given a specific value of sy, the discrete
formulation of Eq. (3.3-11) involves computing the transformation function

q
G(zy) = (L — 1)%!&(&) (33-14)

for a value of g, so that
G(zy) = sk (3.3-15)

where p,(z;), is the ith value of the specified histogram. As before, we find the
desired value z, by obtaining the inverse transformation:

2, = G (sy) (3.3-16)

In other words, this operation gives a value of z for each value of s; thus, it per-
forms a mapping from s to z.

In practice, we do not need to compute the inverse of G. Because we deal
with intensity levels that are integers (e.g., 0 to 255 for an 8-bit image), it is a
simple matter to compute all the possible values of G using Eq. (3.3-14) for
q=0,1,2,...,L — 1. These values are scaled and rounded to their nearest
integer values spanning the range [0, L — 1]. The values are stored in a table.
Then, given a particular value of s;, we look for the closest match in the values
stored in the table. If, for example, the 64th entry in the table is the closest to
sk, then g = 63 (recall that we start counting at 0) and z¢; is the best solution
to Eq. (3.3-15). Thus, the given value s, would be associated with zg; (i.e., that
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specific value of s, would map to zg;). Because the zs are intensities used
as the basis for specifying the histogram p,(z), it follows that z, = 0,
z1=1,...,2.-1 = L — 1, s0 zs3 would have the intensity value 63. By re-
peating this procedure, we would find the mapping of each value of s, to the
value of z, that is the closest solution to Eq. (3.3-15). These mappings are the
solution to the histogram-specification problem.

Recalling that the ss are the values of the histogram-equalized image, we
may summarize the histogram-specification procedure as follows:

1. Compute the histogram p,(r) of the given image, and use it to find the his-
togram equalization transformation in Eq. (3.3-13). Round the resulting
values, s, to the integer range [0, L — 1].

2. Compute all values of the transformation function G using the Eq. (3.3-14)
forq =0,1,2,..., L — 1, where p,(z;) are the values of the specified his-
togram. Round the values of G to integers in the range [0, L — 1]. Store
the values of G in a table. '

3. For every value of s;., kK = 0,1,2,..., L — 1, use the stored values of G
from step 2 to find the corresponding value of z, so that G(z,) is closest to
sy and store these mappings from s to z. When more than one value of z,
satisfies the given sy (i.e., the mapping is not unique), choose the smallest
value by convention.

4. Form the histogram-specified image by first histogram-equalizing the
input image and then mapping every equalized pixel value, si, of this
image to the corresponding value z, in the histogram-specified image
using the mappings found in step 3. As in the continuous case, the inter-
mediate step of equalizing the input image is conceptual. It can be skipped
by combining the two transformation functions, T and G, as Example 3.8
shows.

As mentioned earlier, for G™! to satisfy conditions (a’) and (b), G has to be
strictly monotonic, which, according to Eq. (3.3-14), means that none of the val-
ues p,(z;) of the specified histogram can be zero (Problem 3.10). When working
with discrete quantities, the fact that this condition may not be satisfied is not a
serious implementation issue, as step 3 above indicates. The following example
illustrates this numerically.

B Consider again the 64 X 64 hypothetical image from Example 3.5, whose
histogram is repeated in Fig. 3.22(a). It is desired to transform this histogram
so that it will have the values specified in the second column of Table 3.2.
Figure 3.22(b) shows a sketch of this histogram.

The first step in the procedure is to obtain the scaled histogram-equalized
values, which we did in Example 3.5:

so=1 =5 s4=7 s6=7

S1=3 S3=6 S5=7 S7=7

EXAMPLE 3.8:
A simple example
of histogram
specification.
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