CHAPTER 14

Wavelet Transforms

4.1 INTRODUCTION

Considerable interest has arisen in recent years regarding new transform techniques that
specifically address the problems of image compression, edge and feature detection, and
texture analysis. These techniques come under the headings of multiresolution analysis,
time-frequency analysis, pyramid algorithms, and wavelet transforms [1].

In this chapter, we review some of the limitations of the traditional Fourier and similar
transforms and define three types of wavelet transforms that promise improved perfor-
mance for certain applications. We trace some of the developments that have led to the cur-
rent state of wavelet analysis, noting the similarities that tend to unify these different
approaches under the banner of wavelet transforms. Later in the chapter, we illustrate some
of the applications of wavelet transforms.

We restrict ourselves to transforming real-valued, measurable, square-integrable
functions of one and two dimensions, since these encompass the signals and images that are
of interest to us. As before, we introduce each concept in one dimension for simplicity and
then generalize it to two dimensions for application to images. We begin by introducing the
three basic types of wavelet transforms. Then we illustrate some particular wavelets and
some applications of wavelet transforms.

14.1.1 Waves and Wavelets

Recall that the Fourier transform uses, as its orthonormal basis functions, sinusoidal waves,
so called because they resemble the waves of the ocean and propagating waves in other
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media. For the integral transform, these functions extend to infinity in both directions. The
basis vectors of the discrete Fourier transform are also nonzero over their entire domain;
that is, they do not have compact support.

By contrast, transient signal components are nonzero only during a short interval.
Likewise, many important features in images (edges, for example) are highly localized in
spatial position. Such components do not resemble any of the Fourier basis functions, and
they are not represented compactly in the transform coefficients (i.e., the frequency spec-
trum), as discussed subsequently. This makes the Fourier and other wave transforms, such
as those mentioned in the previous chapter, less than optimal representations for compress-
ing and analyzing signals and images containing transient or localized components.

In fairness, we note that the Fourier transform can represent any analytic function—
even a narrow transient signal—as a sum of sinusoids. It does this, however, by intricately
arranging for the cancellation of sine waves (by destructive interference) to create a func-
tion that is zero over most of the interval. This is, of course, a valid way for an invertible
transform to behave, but it leaves the spectrum a rather confusing picture of the function.

To combat such a deficiency, mathematicians and engineers have explored several
approaches using transforms having basis functions of limited duration. These basis functions
vary in position as well as frequency. They are waves of limited duration and are referred to
as wavelets. Transforms based on them are called wavelet transforms. They are also called
ondelettes in the considerable amount of French-language literature on the subject.

Figure 14-1 illustrates the difference between waves and wavelets. The top two
curves are cosine waves that differ in frequency, but not in duration. The lower two are
wavelets that differ in both frequency and position along the axis.
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The Haar transform (see Sec. 13.5.4) is the earliest example of what we now call a
wavelet transform [2]. It differs from the other transforms in Chapter 13 in that its basis vec-
tors are all generated by translations and scalings of a single function. The Haar function,
which is an odd rectangular pulse pair, is the oldest and simplest wavelet.

Waves and wavelets

14.1.2 Time-Frequency Analysis

The literature on signal processing includes considerable work regarding analyzing signals
in terms of a two-dimensional time-frequency space. This approach actually preceded
wavelet transforms, but it now fits into the same modern framework. According to it, each



Sec. 14.1 Introduction 305

transient component of a signal maps to a position in the time-frequency plane that corre-
sponds to that component’s predominant frequency and time of occurrence (Figure 14-2).
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Figure 14-2 Time-frequency space:
(b) (a) signal; (b) representation

In image analysis, the space is three dimensional and can be viewed as an image stack.
A localized component will appear primarily at the level in the stack that corresponds to the
component’s predominant frequency. Figure 14-3 shows an image containing two local-
ized components being submitted to two bandpass filters. In this case the two filters almost
completely isolate the two components.

This approach began with Gabor’s [3] windowed Fourier transform, and led to the
short-time Fourier transform (STFT) and then to subband coding.

14.1.2.1 Wavelets and Music

Consider the musical notation shown in Figure 14-4. It can be viewed as depicting a two-
dimensional time-frequency space. Frequency (pitch) increases from the bottom of the scale
to the top, while time (measured in beats) advances to the right. Each note on the sheet
music corresponds to one wavelet component (tone burst) that would appear in the record-
ing of a performance of the song. The duration of each wavelet is coded by the type of note
(e.g., quarter note, half note, etc.), rather than by its horizontal extent.

If we were to analyze a recorded musical performance and write out the correspond-
ing score, we would have a type of wavelet transform. Similarly, a recording of a musician’s
performance of a song can be viewed as an inverse wavelet transform, since it reconstructs
the signal from a time-frequency representation.
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Figure 14-3 Space-frequency analysis of an image

Figure 14-4 Musical notation as a
time-frequency plane

14.1.3 Transforms

Recall that each of the coefficients in a transform is determined by taking an inner product
between the input function and one of the basis functions. This value represents, in some
sense, the degree of similarity between the input function and that particular basis function.
If the basis functions are orthogonal (or orthonormal), then an inner product taken between
two basis functions is zero, indicating that these are all completely dissimilar. So if the sig-
nal or image is made up of components that are similar to one, or a few, of the basis func-
tions, then all but one or a few of the coefficients will be small.

Similarly, the inverse transform can be viewed as reconstructing the original signal or
image by summing basis functions that are weighted in amplitude by the transform coeffi-
cients. So if the signal or image is made up of components that are similar to one or a few
of the basis functions, then this summation needs to have only a few terms of significant
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amplitude. Many of the terms can then be ignored, and the signal or image can be repre-
sented compactly by only a few transform coefficients.

Further, if the components of interest in the signal or image are similar to one or a few
of the basis functions, then those components will manifest themselves in large coefficients
for those (and only those) basis functions. They will thus be “easy to find” in the transform.
Finally, if an undesirable (noise) component is similar to one or a few basis functions, then
it, too, will be easy to find. It will be also easy to remove, simply by reducing (or setting to
zero) the corresponding transform coefficients.

We conclude from all of this that there is potential value in using transforms with
basis functions that are similar to the expected components of the signals or images to be
transformed. We also note that transient components cannot be similar to the basis functions
of the Fourier or other wave-type transforms.

14.1.3.1 Types of Transforms

Recall from Chapter 10 that there are three different, but related Fourier transformation
techniques: the Fourier integral transform, the Fourier series expansion, and the DFT.

The Fourier integral transform associates two continuous functions (a signal and its
spectrum). It and its inverse are given in one dimension by

F(s) = j Fe 7 ax and fx) = J F(s)e'" " ds ()
The Fourier series expansion represents a periodic function (or a transient function that can
be considered to be one cycle of a periodic function) as a (finite or infinite) sequence of
Fourier coefficients. It and its inverse are obtained by making s = nAs a discrete variable,
so that

[ oo
F, = F(nAs) = j f()ePH AN dx and f(x) = As Y| F,e27 50 @)
0 n=0
where L is the period and As = 1/L.

The DFT represents a sampled function by a sampled spectrum, and the number of
independent samples (degrees of freedom) is the same in both domains. It is obtained by
making x = iAx a discrete variable as well. If g (x) is bandlimited and sampled as required by
the sampling theorem (Sec. 12.2.4), then g; = g(iAx), and
j2m’§

3)

In all three transformation techniques, sines and cosines of different frequencies form a set
of orthonormal basis functions. Also, each transform coefficient is determined by an inner
product of the function being transformed and one of the basis functions. A discrete inner
product and discrete basis functions are used for the DFT, while an integral inner product
and continuous basis functions serve for the other two transforms. In each case, the inverse
transform consists of summing basis functions whose amplitudes are weighted by the
transform coefficients. This summation becomes an integral for the continuous Fourier
transform.
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The discrete transforms discussed in the previous chapter also use discrete orthonor-
mal basis functions. Thus, they behave in a manner generally similar to the way the DFT
behaves. For most of them, the basis functions are real and the forward and inverse trans-
forms are identical.

14.1.3.2 Types of Wavelet Transforms

As with the Fourier transform, the same three possibilities exist for wavelet transforms: a
continuous wavelet transform (CWT), a wavelet series expansion, and a discrete wavelet
transform (DWT). The situation is slightly more complex, however, since the wavelet basis
functions may or may not be orthonormal.

A set of wavelet basis functions can support a transform even if the functions are not
orthonormal. This means, for example, that a wavelet series expansion might represent a
bandlimited function by infinitely many coefficients. If this sequence of coefficients is trun-
cated to finite length, then we can reconstruct only an approximation of the original func-
tion. Likewise, a discrete wavelet transform might require more coefficients than the
original function has sample points in order to reconstruct it exactly, or even to an accept-
able approximation.

14.1.3.3 Notation and Definitions

Next, we introduce some definitions to clarify the concept of a wavelet transform. For the
present, we restrict the discussion primarily to transforming functions of one dimension.

In order to conform with the bulk of the literature on wavelets we use j as an integer
index in this chapter. As elsewhere in the book, we also use j to represent the imaginary unit
J-1, taking care not to use it both ways in the same equation. The distinction should be
clear from the context.

The class of functions we seek to represent by a wavelet transform is those that are
square integrable on the real line (i.e., the set of all real numbers—the x-axis). This class is
denoted as L*(R). Thus, the notation f(x) € L*(R) means

jw £ (0l2dx < oo @)

—oco

In wavelet analysis, we generate a set of basis functions by dilating and translating a single
prototype function, ¥ (x), which we call a basic wavelet. This is some oscillatory function,
usually centered upon the origin, that dies out rapidly as lxl — . Thus, y(x) € L*(R).

14.2 THE CONTINUOUS WAVELET TRANSFORM

The continuous wavelet transform (also called the integral wavelet transform) was intro-
duced by Grossman and Morlet [4].

14.2.1 Definition

If y(x) is a real-valued function whose Fourier spectrum, ¥(s), satisfies the admissibility
criterion [4,5]
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Cy = Jm I_‘Iil(ssliszoo )
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then y(x) is called a basic wavelet. Notice that, due to the s in the denominator of the inte-
grand, it is necessary that

¥0) = 0= j " w(dx = 0 (6)

Furthetmore, since ¥(c<) = 0 as well, we can see that the amplitude spectrum of an admis-
sible wavelet is similar to the transfer function of a bandpass filter. In fact, any bandpass fil-
ter impulse response with zero mean [Eq. (6)] that decays to zero fast enough with
increasing frequency [Eq. (5)] can serve as a basic wavelet for this transform.

A set of wavelet basis functions, { W, »(x)}, can be generated by translating and scal-
ing the Basic wavelet, v (x), as

Vo () = —j—aw{%b) ™

where a > 0 and b are real numbers. The variable a reflects the scale (width) of a particular
basis function, while b specifies its translated position along the x-axis.

Normally the basic wavelet, y/(x), is centered at the origin, so that y, ,(x) is centered
at x = b. Figure 14-5 shows an example of such a wavelet. This particular one is given by

2

NENE:

The continuous wavelet transform of f(x) with respect to the wavelet y(x) is then [4,5]

w(x) = (1= x2)ex"? (8)

Witeb) = (v = [ £t ©)
The wavelet transform coefficients are once again given as inner products of the function

being transformed with each of the basis functions.
Grossman and Morlet [4] showed that the inverse continuous wavelet transform is

o) = Clw j:j_:wf(a, D)V s 0% (10)
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The scale factor in front of the right-hand side of Eq. (7) ensures that the norms of the wave-
let basis functions are all equal, since

=)= T

Since the basic wavelet has zero mean [Eq. (6)], all scalings and translations 6f it [Eq. (7)]
will likewise have zero mean, and the mean of f(x) must be accounted for separately.

a

(%52 )fax = Jalscol (an

14.2.2 The Two-Dimensional CWT

The continuous wavelet transform W(a,b) of a one-dimensional function f(x) is a function
of two variables, one more than f(x). The CWT is said to be overcomplete, as it represents
a considerable increase in information content and in the volume required for data storage.
For functions of more than one variable, this transform also increases the dimensionality by
one.

If f(x, y) is a function of two dimensions, its continuous wavelet transform is

Witabob) = [ [ Wl (50 (12)

where b, and b,, specify the translation in two dimensions. The inverse two-dimensional
continuous wavelet transform is

da

= 13
= (13)

e e
floy) = C—J J j W@, by b) ¥, 5, (52 9) dbodb,
0 —o0¥ _oo

where

1 x—-b,y-b
Wa,b,,bv(x’ y) = HW(T’y y) (14)

a

and y(x, y) is a two-dimensional basic wavelet. The same generalization extends to cover
functions of more than two variables.

14.2.3 The Filter Bank Interpretation

The following exercise illustrates one way of viewing the continuous wavelet transform.
We first define the general wavelet basis function at scale a as

vt = = 3) (1s)

This is the basic wavelet scaled by a and normalized by a"2. It defines a set of functions
that become broader with increasing a. We also define

Va(x) = Yi(—x) = Aoy| X
Bl = vin = v ) 16)
which is the reflected complex conjugate of the scaled wavelet. If y(x) is real and even, as
is often the case, the reflection and conjugation have no effect.

Now we can write the continuous wavelet transform [Eq. (9)] as
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W(a, b) = j FOT(b-x)dx = f2F, 7)

For fixed a, then, Wy(a, b) is the convolution of f(x) with the reflected conjugate wavelet at
scale a.

Figure 14-6 shows the integral wavelet transform as a bank of linear (convolution)
filters acting upon f(x). Each value of a defines a different bandpass filter, and the outputs
of all the filters, taken together, comprise the wavelet transform. Further, Eq. (10) becomes

fo =L _[ J LF* Wl (0) V(b - 1)db % = lj Ferwln®d as)
Cy/ 0 v _ a C\// 0 a

which implies that the filter outputs, each filtered again by w,(x) and properly scaled, com-
bine to reconstruct f(x). This is a statement of Calderon’s identity [6,7], which predates
Grossman and Morlet by 20 years.

v
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Figure 14-6 Filter bank analogy for
Valx) ——> wi4,x)  the integral wavelet transform of a
signal

Recall from the similarity theorem (Sec. 10.2.5) that

5@y = LA 2) (19
This means that

¥, (s) = Fly,(x)} = Ja'¥(as) (20)

and the center frequencies of the bandpass filters decrease as the transfer functions become
more narrow with increasing a.

14.2.4 Two Dimensional_ Filter Banks

Figure 14-7 illustrates the filter bank approach in two dimensions. Here, each filter , (x,y)
is a two-dimensional impulse response, and its output is a bandpass-filtered version of the
image. (Recall Figure 14-3). The stack of filtered images comprises the wavelet transform.

Again, the redundancy is considerable. In fact, if ¥ (u,v), the transfer function of
y(x, y), is nonzero everywhere except at the origin, one could, theoretically, recover the
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Figure 14-7 Filter bank analogy for the integral wavelet transform of an
image

original image from any one of the filter outputs by inverse filtering (e.g., by deconvolu-
tion). Alternatively, if the image is bandlimited to an interval over which at least one
¥,(u, v) is nonzero, then f(x, y) could be recovered from that filter output alone. The con-
clusion, then, is that the potential value of the integral wavelet transform lies not in a com-
pact representation, but in decomposition and analysis of signals and images.

To illustrate this, suppose that the image in Figure 14-7 contained, for example, cir-
cular objects of different sizes and that the basic wavelet were selected to respond only (or
primarily) to circular objects of unit radius. Then an examination of the output image stack
would reveal the locations of the objects. Further, each object would appear only (or pri-
marily) in the specific output image that corresponded to its particular size.

14.3 THE WAVELET SERIES EXPANSIQON

14.3.1 Dyadic Wavelets

The second type of wavelet transform is somewhat more restrictive than the first. Again, a
basic wavelet is scaled and translated to form a set of basis functions. Here, however, the
scaling and translation are specified by integers rather than real numbers.
In this second definition, we restrict ourselves to forming the basis functions by
binary scalings (shrinking by factors of two) and dyadic translations of the basic wavelet,
¥ (x). A dyadic translation is a shift by the amount k/2/, which is an integer multiple of the
binary scale factor and thus of the width of the wavelet as well. Binary scahngs and dyadic
translations are illustrated in Figure 14-8.
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14.3.2 Definition
A function y(x) is an orthogonal wavelet if the set { y;,(x)} of functions defined by

W e(x) = 2% w(2x - k) 1)

where —eo < j,k < o0 are integers, forms an orthonormal basis of L?(R) [5]. The integer j deter-
mines the dilation, while k specifies the translation.
The preceding wavelet set forms an orthonormal basis if, first,

< ll/j, ko ufl, m) = 5], l5k, m (22)

where [ and m are integers, J; is the Kronecker delta function, and ., -) indicates the inner
product; and second, if any function f(x) € L*(R) can be written as

fx) = i i i eV, i (x) (23)

j=—so k= oo

where the transform coefficients are again given by inner products; that is,

¢ = (f(0 w0 () = zf’zj FOO (2~ Kydx 24)

Eqs. (23) and (24) specify a wavelet series expansion of f (x) relative to the wavelet y(x) [3].
Notice that here a continuous function is represented by a doubly infinite sequence,

and, in general, the transform is again overcomplete. Since the basis functions commonly

extend to infinity in both directions, a complete reconstruction must include all terms.

If w(x) is properly chosen, however, one might be able to truncate the series without
serious approximation error. If f(x) is of finite duration, and the basic wavelet is well local-
ized (i.e., it approaches zero rapidly away from the origin), then many of the coefficients
with large |k| will be negligible. Likewise, coefficients with large | j| will usually be small as
well, since the wavelet basis function then becomes extremely broad or narrow.

14.3.3 Compact Dyadic Wavelets

If we further restrict f(x) and the basic wavelet to functions that are zero outside the interval
[0,1], then the family of orthonormal basis functions can be specified by a single index, n;
that is,
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Yu(x) = 27Py(2/x - k) (25)
where j and k are actually functions of n, as follows:
n=2+k for j=0,1,... k=0,1,..,2/ -1 (26)

For any n, j is the largest integer such that 2 <n ,and k=n ~ 2.
Now the inverse transform is

F@) =Y ey(x) 27
n=0
where it is assumed that y;(x) = 1. The transform coefficients are given by the inner product

6 = (F), y(0) = 27 j T F Y@k kydx 28)

Here, a continuous function is being represented by a single infinite sequence, as with a
Fourier series representation. The tremendous redundancy of the integral wavelet transform
is absent. In fact, if one or a few of the y,(x) are similar to f(x) (or its major components),
then one might be able to truncate the series to a relatively few terms without appreciable
approximation error.

We have here, as well, the basis of the discrete wavelet transform. If f(iAf) is a dis-
crete function sampled with N points, where N is a power of two, and if y(x) is a compact
dyadic wavelet, then we can compute a discrete wavelet transform using discrete versions
of Egs. (27) and (28). Both equations become summations of N terms. The Haar transform
offers an example of this.

14.3.3.1 Example: The Haar Transform

The Haar transform [2,8,9] is one of the earliest examples of what we now call a compact,
dyadic, orthonormal wavelet transform. It differs from the other transforms mentioned in
Chapter 13 in that its basis functions are all generated by translations and dilations of a basic
wavelet. The Haar function, which is an odd rectangular pulse pair, is the simplest and old-
est orthonormal wavelet with compact support.

The basic wavelet is progressively narrowed (reduced in scale) by powers of two.
Each smaller wavelet is then translated by increments equal to its width, so that the complete
set of wavelets at any scale completely covers the interval. As the basic wavelet is scaled
down by powers of two, its amplitude is scaled up by powers of A/2 , to maintain orthonor-
mality. The result of all this is a set of orthonormal basis functions (Figure 14-9). The basis
function index, as defined in Eq. (26), differs slightly from that used in Sec. 13.5.4.

14.4 THE DISCRETE WAVELET TRANSFORM

The DWT most closely resembles the unitary transforms discussed in the previous chapter.
It promises to be the most useful for image compression, processing, and analysis. Given a
set of orthonormal basis functions, one can compute the discrete wavelet transform just as
one does any other unitary transform, such as the Haar transform. Obtaining a suitable basic
wavelet, however, requires further background material.
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} } 'r Figure 14-9 The Haar transform
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In this section, we first review three techniques that have led to the development of the
discrete wavelet transform: (1) filter bank theory, (2) multiresolution or time-scale analysis,
particularly using pyramid representations, and (3) subband coding. This discussion is fol-
lowed by an introduction to the discrete wavelet transform.

14.4.1 Filter Bank Theory

Workers in the area of speech analysis and acoustic signal processing have long used the
concept of a bank of bandpass filters for decomposing a signal into components at different
frequencies. Indeed, the method is a precursor to time-frequency analysis, in which the sig-
nal’s components are displayed in a two-dimensional space whose dimensions are time of
occurrence and frequency of oscillation. Here, we review the basics of that approach as a
step leading toward a discussion of the discrete wavelet transform.

Suppose we have a signal composed of two tone bursts (sinusoids of short duration)
embedded in random noise, as illustrated in Figure 14—10a. Suppose further that we wish to
analyze this signal to detect the number, frequency, and position of the tone bursts.

The Fourier transform will, of course, reflect the entire content of the signal, but often
not in a way that is easily interpreted. Position information, for example, is encoded in the
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phase spectrum in a complicated way. (Recall Figure 10~10.) While the amplitude spectrum
may show distinct peaks due to each of the transient signal components, this is reliable only
for transient detection when those components are large enough in amplitude and duration
to dominate the spectrum. Figure 14-10b, for example, does manifest distinct peaks at the
frequencies of the two tone bursts. The phase spectrum, however, gives little insight into the
location of these components in time. Often, the uninteresting components of the signal
(e.g., noise) complicate the spectrum to the point that a simple frequency analysis is insuf-
ficient to resolve the signal’s components.

14.4.1.1 Ideal Bandpass Filters

Suppose we partition the frequency axis into a set of disjoint (adjacent, nonoverlapping)
intervals and use this partitioning to define a set of ideal bandpass transfer functions, as
shown in Figure 14-11b. The corresponding impulse responses appear in Figure 14—11a.
Figure 14-12 shows the implementation of a bandpass filter bank. The input signal is fed
into each of the bandpass filters in parallel. The corresponding outputs are g;(x). The H,(s)
are constructed so that they sum to 1 for all frequencies, and thus, the g;(x) will sum to form
f(x). That is,

D H(s) = 1= Y g(x) = £(x) (29)
i=1 i=1
Figure 14-13 shows the output of three of the bandpass filters shown in Figure 14—12.
Notice that the two tone burst signals (recall Figure 14-10a) emerge from separate filters.
Further, their locations along the time axis are evident in those outputs. Thus, we have an
approach to decomposing the composite signal and identifying the components of interest.



Sec. 14.4 The Discrete Wavelet Transform 317

hl(x) \M\/\/MA—/

hy(x) —————\,——\,—J'\/\/\/\/\/\/\qw‘—_——

h3(x) —W\M\AJV\;—/\/\/\/\/\’MW\W
I | | | | | |

x —>
(a)
I I I T
Hy(s)
Hy(s)
Hsy(s)
| | N Figure 14-11 Generating a series of
0 0.1 02 03 04 05 bandpass filters by partitioning the
§ > frequency axis: (a) impulse responses;
(b) (b) transfer functions
Y hq(x) — g
> hy(x) > &K
S
> hs(x) > &K

A 4

hi(x) > g

Figure 14-12 Implementation of a
bandpass filter bank




318 Wavelet Transforms Chap. 14

g1(x)

8(x)

g3(x)

Figure 14-13 Bandpass filter outputs

X —>

Each of the bandpass filter outputs is formed by the convolution
ot = [ Fohe-na (30)

Since H;(s) is real and even, #;(x) will be as well. Then the reflection in the convolution inte-
gral has no effect, and the filter outputs can be written as

gi(x) = j FOm(-)dr = (F(0), by (=) 31

Hence, each point on g;(x) is the inner product of f(¢) with a version of 4;(¢) that has been
shifted to location x. We can also view {g;(x)} as a (two-dimensional) set of wavelet trans-
form coefficients, where {,(x)} is the set of wavelets. Further, {g;(x)} is sufficient to recon-
struct f(x) exactly, in view of Eq. (29).

The message borne by Eq. (31) is a significant one. The similarity between convolu-
tion, on the one hand, and taking inner products with shifted basis functions, on the other,
is what brings the disparate pieces of the wavelet transform together into a unified whole.

14.4.1.2 Smooth Bandpass Filters

The functions h;(x) in Figure 14—11a lack one of the characteristics that good wavelet basis
functions should have: They are not well localized. That is, they do not die out quickly away
from their central region. This means that /;(x — xo) will respond to strong components that
are located distant from x,. It is the sharp edges of H;(s) that give rise to the undesirable
width of A;(x).

Designing the H;(s) functions to have smoother edges will reduce the width of the
h;(x). Since the H;(s) must still sum to unity everywhere, the resulting bandpass transfer
functions will overlap at their edges. One such construction is shown in Figure 14—14. Here,
the passband edges are each araised half-cycle of the cosine. The resulting narrowing of the
impulse responses is evident.

Figure 14-15 shows the filter bank outputs with the signal of Figure 14—10a as input
and smooth bandpass filters. Notice the improvement in localization. We have thus taken a
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step toward a time-frequency analysis of the composite signal. That is, we have means of
localizing the transient components of the signal in both time (or position) and frequency.

14.4.2 Multiresolution Analysis

Many of the developments preceding wavelet analysis came in a field generally called multi-
resolution analysis. These developments were intended to combat the limitations of the Fou-
rier transform mentioned at the beginning of the chapter. We now summarize this approach
as groundwork leading to modern wavelet analysis.

Filter bank theory offers a convenient means of representing signals composed of
oscillatory components, such as musical notes and tone bursts. These components include
several (or many) cycles of the oscillation within their duration. In image analysis, however,
the localized components of interest often are not truly oscillatory, in that they include only
one cycle or even just part of a cycle. Examples include lines, edges, and spots.

The objects in an image are observed to occur at different size scales. An edge, for
example, can be either a sharp transition from black to white or one that occurs gradually
over a cansiderable distance. In general, a multiresolution approach to image representation
or analysis seeks to exploit this idea.

Cartography illustrates the approach. Maps are commonly drawn at different scales.
The scale of a map is the ratio of the size of an actual territory to that of its representation
on the map. At large scales, as on a globe, major features such as continents and oceans are
visible, while details such as individual city streets fall below the resolution of the map. At
smaller scales, the details become visible and the larger features are lost. Thus, to be able to
navigate to a point at a distant location, one needs a set of maps drawn at different scales.

Wavelet transforms have developed along these multiresolution lines. As with time-
frequency analysis, a signal is represented in a two-dimensional space, but here the vertical
axis is scale rather than frequency. Scaling is achieved by dilating and contracting the basic
wavelet to form a set of basis functions.

The basic wavelet, ¥ (x), is scaled as y(x/a) (which is broadened if a > 1 and nar-
rowed if a < 1) to form a set of basis functions. At large scale a, the dilated basis functions
search for large features, while for small a, they seek out fine detail.

14.4.2.1 Pyramid Algorithms

Suppose we generated, from one 1,024-by-1,024—pixel digital image, 10 additional images
by successively averaging 2-by-2—pixel blocks, each time discarding every second row and
column of pixels. We would be left with images of 512 by 512, 256 by 256, etc., down to 1
by 1. If we then performed edge detection, for example, on each image, using one of the
3-by-3 edge detection operators mentioned in Chapter 18, we would find small edges in the
original image, somewhat larger edges in the 512-by-512 and 256-by-256-pixel images,
and only the very large edges in the 16-by-16—pixel and smaller images.

The Haar transform represents the dawn of this approach from almost a century ago.
In its basis images (Figure 13-6), we see the concept of searching the image with edge
detectors of different scales. The principle of binary dilation is evident there as well.

One might be tempted to observe that all edges, large and small, appear in the original
1,024-by-1,024-pixel image and that no change of resolution is required to locate them. The



Sec. 14.4 The Discrete Wavelet Transform 321

problem is that large edges—those manifesting a transition in gray level that spans a con-
siderable distance—are difficult to detect with conventional (small) neighborhood opera-
tors such as the ones discussed in Chapter 18. One could scale the operators up to detect the
larger edges, but it is more efficient to scale the image down. Using a large operator to
search a high-resolution image for large edges is computational overkill.

Several forms of multiresolution analysis have been studied under different names
over the years. It is only in recent years, however, that the basic similarity between multi-
resolution and filter bank approaches has been recognized, and these have been unified
under the heading of wavelet transforms.

14.4.2.2 Laplacian Pyramid Coding

Burt and Adelson [10] introduced a pyramid coding scheme based on the Gaussian func-
tion. The image is lowpass filtered with a Gaussian impulse response, and the result is sub-
tracted from the original image. The high-frequency detail in the image is retained in this
difference image. The lowpass filtered image can then be subsampled without loss of detail.
The process is illustrated as follows.

Let f5(i, j) be the original image, and let g(i, j) be a Gaussian-shaped lowpass filter
impulse response. Then, at each step of the encoding process, the image is decomposed into
half-resolution low-frequency and full-resolution high-frequency components, f; (, j) and
hy(i, J), respectively for the first step, by

F1@ ) = [foxgl (24,2)) and hy(i, j) = fo(i, /) = [foxg] (i, )) (32)
This process is iterated each time on the subsampled image. After » iterations of an N-by-N
image, where N = 2", f, (i, ) is a single point. The encoded image pyramid consists of the
hi (i, j)’s and the final low-frequency image f, (i, j). This is shown in Figure 14-16.

Image decoding is done in the reverse order. Upsampling is the process of inserting
zeros between sample points. Each subsampled image, f; (i, j), beginning with the last one,
f»(, ), 1s upsampled and interpolated by convolution with g (, /). Then the result is added to
the next (previous) image f;_; (i, j), and the process is repeated on the resulting image. This
reconstructs the original image without error [10].

Each A, (i, j) is the difference of two images obtained by convolving a single image
with Gaussians of single and double width. This is equivalent to convolving the image with
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Figure 14-16 The Laplacian pyramid coding scheme
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the difference of two Gaussians, which, in turn, approximates the “Laplacian of a Gaussian”
highpass filter; hence the name chosen for this pyramid coding algorithm.

Although Laplacian pyramid coding increases the number of pixels required to rep-
resent the image by 33 percent, it can nevertheless accomplish a significant degree of image
compression [10]. This occurs because the A (i, j) images have significantly reduced corre-
lation and dynamic range and are thus amenable to coarse quantization and even to setting
some of the pixel values to zero. Further, the design of the Laplacian pyramid provided the
inspiration that later led to the discrete wavelet transform.

14.4.3 Subband Coding

As further background leading to the discrete wavelet transform, we now describe a time-
frequency technique called subband coding. Originally developed for compact coding of
digitized audio signals, subband coding seeks to decompose a signal (or an image) into nar-
row-band (bandpass-filtered) components and represent these, without redundancy, in such
a way that it is possible to reconstruct the original signal without error [11-13].

Given a bandlimited signal f(?), that is,

F{fD} = F(s) =0 for |52 spu (33)
we can sample the signal with uniform sample spacing Az to form
. - 1
fGAY) i =0,1,..,N=-1 spuSsy = AT (34)

(Figure 14-17a), where sy is the Nyquist (folding) frequency. (Recall Chapter 12, Eq. 22.)

We begin the analysis by partitioning the frequency axis into disjoint subintervals.
While any subinterval length could be used, we now choose sy/2, as shown in Figure 14-17b,
for reasons that will become clear later. Here, the spectrum F (s) is periodic with period 2sy.

14.4.3.1 The Lower Halfband

Figure 14-17b shows an ideal halfband lowpass filter, 4, (iAf), so called because it passes
only the frequency band [—sx/2,s,/2], which is the low-frequency half of the total frequency
band [—sy,sy]. The impulse response and transfer function of h are

= g _f_ =1l =<
ho(t) = smc(nzm) and Hy(s) = H(SN) 35)
where the rectangular pulse is
1
1 IXI < §,
o =9 1 =1 36
(x) 3 | x] 3 (36)
1
0 |x| > z
and
sinc(x) = Sn() (37)
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Figure 14-17 Subband coding, the lower halfband: (a) a sampled signal and its
bandlimited spectrum; (b) the ideal halfband lowpass filter; (c) the lowpass filtered
signal; (d) the subsampling function; (e) odd sample points replaced with zeros; (f) odd
sample points discarded
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Applying this filter to f(iAt) (Figure 14—17a) yields the signal gq(iAf) (Figure 14-17¢),
which is bandlimited at s = s5,/2. This is a low-resolution (blurred) version of f(iAf). It
retains the basic shape of f(iAt), but has lost the details.

Since g((iAt) has no energy above sy/2, it could be sampled with sample spacing as
large as 2At without introducing aliasing. In fact, we can discard every second sample and
represent g, with only the remaining N/2 samples (Figure 14-17f). This process is called
subsampling or decimation.

We can model subsampling as first multiplying the signal by a subsampling function
that drives the odd-numbered samples to zero and then discarding the odd-numbered sam-
ples. Such a subsampling function

FLGiAD) = %[1 + cos (27syiAD)] (38)
and.its spectrum
Fy(s) = %[5@) + 8(s—sy) + 6(s + 53] (39)

are shown in Figure 14-17d.

When we multiply the signal g,(iAf) by f;(iAf), we convolve its spectrum with F(s).
The result is to make the spectrum symmetric in such a way that its period is reduced from
25y to sy, as shown in Figure 14—17e. Its amplitude is also cut in half; we write

Fi(5) * Go(s) = 5Go(s) + 2Go(s + ) + 3Gols — ) (40)

Clearly, we can now discard the odd-numbered sample points without loss of information
(Figure 14-171). This reduces the folding frequency to s,/2 and leaves us with a signal that
is properly sampled with sample spacing 2A¢.

No information has been lost in the process of subsampling g, (iAz). To see this, notice
that we could recover gy (iAf) from the subsampled signal in Figure 14-17f simply by (1)
computing its (N/2-point) discrete spectrum, (2) padding it with zeros from s,/2 to sy to
reconstruct Gy (s) (Figure 14-17c), and (3) taking the inverse (N-point) DFT of G,(s) to
reconstruct g, (iAz), the signal shown in Figure 14—17c. While this is not the preferred
method, it argues that subsampling gq(iAf) produces no loss of information.

A simpler way to recover g, (iAt) can also be seen in Figure 14-17. We first upsample
the encoded lowband signal (Figure 14-17f) by inserting the zero-valued odd-numbered
samples (to form Figure 14-17e). Then we filter that signal with 2k, (iAf), the ideal halfband
lowpass filter (Figure14—17b). This will reconstruct the spectrum, and hence the signal, in
Figure 14-17c, thereby recovering g, (iAf).

In the frequency domain, we write

F(s) * Go(s) x Ho(s) =
41
[5G0 () +1Go (54 5,) +%G0(s—sN):’ xn(i) = 16y (s) (41)

Notice that the lowpass filter impulse response, k(iAf), is sinc (7x/2Af), which has zero-
crossings at even multiples of the sample spacing, except at zero (Figure14—17b). Thus, it
interpolates the intermediate (odd-numbered) values of g, (iAf), where the zeros are located,
and leaves the even-numbered samples alone.
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14.4.3.2 The Upper Halfband

Turning now to the upper halfband of f(iAf) (Figure 14—-18a), we can isolate the energy
there with an ideal halfband bandpass filter (Figure 14-18b). This filter’s impulse response
and transfer function are, respectively,

hi(2) = 5(1)—sinc(

where I1(x) is as in Eq. (36).

The filter produces a signal, g; (iAf), whose spectrum is nonzero only in the upper half-
band (Figure 14-18c). This signal contains exactly the high-frequency information that was
eliminated from f(iAf) by the lowpass filter in Figure 14-17b. Thus, gq(iAf) and g, (iA¢), taken
together, contain all the information that was present in the original signal, f(iA?). In fact,

F(iAf) = go(iAt) + g, (A1) = f(iAt) * hy(iAt) + f(iAt) * Ry (iAf) (43)

nzLAt) and H,(s) = 1-1'1(3%) (42)

since
Hy(s)+ Hi(s) = 1 (44)

Figyre 14-18d shows the subsampling function f; (iAf) that was used in the analysis in Sec.
14.4.3.1. When g, (iAf) (Figure14-18c) is subsampled by f;(iA¢), its spectrum is convolved
with F(s). This fills the interval [—s)/2,s5/2] with a replicate of its spectrum and produces
the spectrum shown in Figure 14-18e. We write

Fi5) % Gi(s) = 3Gi(5) + 3Ga(s +83) + 3Gi(s = 5n) 45)

This spectrum is now periodic with period sy/2 and could be sampled at spacing 2Az without
aliasing. Thus, we now have another signal that is confined to the lower halfband, and it can
be subsampled as before (Figure 14—18f).

This leaves the N-point signal f(iAf) encoded into two N/2-point signals. We have
seen that g, (iAf) can be recovered from the encoded lowband signal. It remains only to show
that g; ({Ar) can be recavered from the encoded highband signal to see that f(iAf) [and hence
f()] can be reconstructed without error.

Figure 14—18e shows the upsampled highband signal. Its spectrum is identical to that
in Figure 14-18f, except that, after upsampling, the folding frequency is once again sy. We
can reconstruct G, (s), and thus g; (iAr) (Figure 14-18c), simply by filtering this upsampled
signal with 2h, (iAr) (Figure 14-18b) to eliminate the low-frequency energy. We write

F(s) * Gy (s) X H((s) =

1 1 1 1 (46)
[EGI (5) +3G, (s +5,) +16, (s-—sN)} x [1 —n(;j_v)] =16,
Thus, we have, in two-channel subband coding, an invertible representation of the signal in
terms of two subsampled discrete filter outputs, and it is without redundancy (i.e., not over-
complete).

14.4.3.3 Aliasing the Upper Halfband

Clearly, subsampling g, (iAf) by discarding every other sample point will result in aliasing.
The energy at frequencies between s,/2 and sy will be aliased down to the interval [0,sy), as
indicated in Figure 14-19a. This process, however, is nondestructive, since that interval is
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Figure 14-19 Aliasing the upper halfband: (a) aliasing the spectrum in
Figure 14—18(c); (b) the result of aliasing

already vacant. It produces the spectrum shown in Figure 14-19b, which is bandlimited at
sy/2 and contains all the energy of g (iA?).

Ironically, aliasing, the bugaboo that usually threatens our ability to process contin-
uous signals and images digitally, now comes to our aid. It is only necessary to subsample
g1(iA¢) to obtain the upper subband coded signal. Furthermore, upsampling followed by fil-
tering with 2h; (iA?), recovers g (iAt).

14.4.3.4 Subband Coding and Decoding

Two-channel subband coding, then, requires only filtering f(iAf) with hy(iAf) and h, (iA?),
followed by subsampling each output. This yields the two half-length subband signals

go(kAL) =Y f(iBt)ho((—i+2Kk)Ar) 47

1

and

g1 (kAD) = z FUEADR((— i+ 2k)At) (48)

Reconstruction is effected by upsampling the lower and upper subband signals, interpolat-
ing them with 2h,(iAf) and 24, (iAf), respectively, and adding them together. This is given by

f(iAr) = 22 [go(kAY ho((— i+ 2k)At) + g1 (kAR ((— i+ 2k)A)] (49)
k
and is illustrated in Figure 14-20.

We have a slight problem at the midfrequency point s = s,/2, since encoding and
decoding entails filtering f(iAf) twice, once with hy(iAf) and once with & (iAt), and since
Hy(sy/2) = 1/2 and H|(s)/2) = 1/2. This problem could be avoided by using I1(13) = A/%
in Eq. (36). In the next section, where we use more general bandpass filters, we handle the
situation explicitly.
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Figure 14-20 Two-band subband coding dnd reconstruction

We could have chosen to partition the frequency axis into M shorter intervals of length
2s)/M, producing M subband signals of N/M points each, as is commonly done in subband
coding. Different frequency components then show up in separate subband channels. Since we
are moving toward the DWT, however, e stick with the choice of two subbands (M = 2).

14.4.4 The Fast Wavelet Transform Algorithm

Mallat [14] defined a discrete wavelet transform algorithm that is mote éfficient than com-
puting a full set of inner products. It applies two-band subband coding in an itetative fashion
and builds the wavelet transform from the bottom up, that is, computing small-scale coef-
ficients first. )

After the first step of subband coding, as outlined in Sec. 14.4.3, the lower subband
signal, go(iAt), is once again subjected to halfband subband coding. This leaves us with the
N/2-point upper halfband signal and two N/4-point subband signals corresponding to the
first and second quarters of the ihterval [0, sy]. ‘

The process is continued, at each step fetdining the upper halfband signal and further
encoding the lower halfband signal, until a one-point lowband signal is obtained. The trans-
form coefficients are then the lIowband point and the collection of subband-coded upper
halfband signals. This is shown in Figure 14-21. The first N/2 coefficients come from the
upper halfband of F'(s), the next N/4 points from the second quatterband, etc.

ho(iAL) — ho(idd) ho(idd)

hy(iAr) ——»<>—l hy(iAr) ——»@-l Iy (i) ‘—’@—l

g,(2iAr) go(4iAr) g3(8iAr)

Figure 14-21 The discrete wavelet transforrh algorithm

The impulse response, hj, doubles in scale at each iteration. Thus, we have an orthonor-
mal wavelet transform. The basic wavelet is 4 (f) = 6 (f) — sint (at), and the basis functions are
{27”2h(2t — n)} [15]. Thus, subband coding, which is basically a time-frequency transform
technique, has been employed to define a time-scale wavelet transform.

The foregoing algorithm is sometimes referred to as the fast wavelet transform
(FWT), or Mallat’s herringbone algorithm, due to the appearance of the diagram in
Figure 14-21. The inverse transform is obtained by reversing the process, as shown in

Figure 14-22.
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Figure 14-22 The inverse discrete wavelet transform

14.4.4.1 Basis Functions

We see in Figure 14-21 that each set of transform coefficients is obtained by convolving
f(iAt) repeatedly with hy(iAf) and then once with A (iAf). Thus, the basis functions of this
wavelet transform are 4; (iAt) and other functions derived by convolving A, (iAf) repeatedly
with Ay (iAf). This is explored in more detail next.

14.4.5 Discrete Wavelet Transform Design

We are now prepared to approach the design of a basic wavelet for use in a discrete wavelet
transform. As we saw in Sec. 14.4.1, it is not necessary that the filters in a filter bank imple-
mentation be ideal lowpass and bandpass filters. Similarly, for the DWT, we can use any
pair of subband coding filters that allows Eq. (49) to hold.

Writing Eq. (49) in'the frequency-domain, we have

1 1
F(5) = 2] 300(5) Ho(s) + 3G (5)Hi(5) |
(50)
1 1
= 2 SFOHo(5) Ho(s) + 3P Hy )i 5)|
which means that
F(s) = F(s) [H3(s) + Hi(s)] (51)
and the two filter transfer functions must satisfy the condition
H3(s)+ H3(s) = 1 for 0<|s|<sy (52)

The transfer functions are squared here because f(f) is convolved twice with each filter,
once during coding and once during decoding. This resolves the problem that was noted in
Sec. 14.4.3 4.

Suppose Hy(s) is a smooth-edged lowpass transfer function that we wish to use in a
wavelet transform. Clearly, the corresponding H (s) is given by

Hi(s) = 1-Hj(s) (53)
Thus, a well-selected lowpass filter is all that is required to design a discrete wavelet
transform.
14.4.5.1 Mirror Filters

Comparing Figures 14—17b and 14-18b, we see that, for the case of the ideal bandpass filter,
h, (iAt) can be viewed as hy(iAf), shifted by an amount sy, along the frequency axis. Accord-
ing to the shift theorem (Sec. 10.2.3)
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FUH(G$-a)} = ™ ()= F {H(s—sy)}
jzn(zL)iAz , (54)
=e AT h(iAL) = (=1)'h(iAf)
and such a half-period shift of the spectrum can be effected simply by changing the sign of
the odd-numbered samples of the signal. Note the use of the imaginary unit in Eq. (54).
We can use this approach in the design of more general subband filters. Selecting

hy(iAt) so that
h((N=1-i)A1) = (=1)'hy(iAD) (55)
where N is the length of Ay (iAf), we obtain the corresponding highpass filter. The filter
hy (iAt) is called the mirror filter of hy(iAr). If hy(iAt) is of short duration, we can be assured
that h; (iAr) will be short as well.
The symmetry property that Hy(s) must have in order for Eq. (53) to hold, and for this
entire approach to work, is

N S
Hé(éus) = 1-H3(3N-s) (56)

14.4.5.2 The Scaling Vector

To develop adiscrete wav{:let transform, then, we need only a discrete lowpass filter impulse
response hg (k) that meets certain conditions [16]. This impulse response is sometimes called
a scaling vector.

From h(k) we can generate a related function ¢ (z), called the scaling function. We can
also generate h; (k) and, from it and ¢ (¢), the basic wavelet, y(¢). If the scaling vector has only
a finite number of nonzero entries, then ¢ (¢), ¥ (¢), and the resulting wavelets will all have
compact support [ 16]. That is, they will be zero outside a relatively short interval on the z-axis.

Actually, if we have either (k) or ¢ (£), we can use it to generate the other. It is usu-
ally easier to start with hq(k), which must satisfy Eq. (56). Let the scaling vector be a
sequence such that

Zho(k) = /2 and Zho(k)ho(k+21) =8(1) (57)
k k

Then there exists a scaling function
0(1) = Y ho(k)9(21 —k) (58)
k

that can be built as a weighted sum of half-scale copies of itself, using (k) as the weights.
From the observation in Sec. 14.4.4.1, ¢ (¢) can also be computed numerically [16] by
repeated convolution of /iy (k) with scaled versions of the rectangular pulse function (Figure
14-23); that is,

6(x) = lim n,(x) (59)
where

m(x) = 2 ho(m)n,_(2x=n) (60)
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Figure 14-23 Constructing the scaling function (after Daubechies [16])

is a piecewise constant approximation to ¢ (f) and

,_d
=N
A

No(x) = I(x) = (61)

(e} D=

Notice that the first iteration creates a piecewise constant function having the values of
hq (k). Further, the resolution of the approximation doubles, and the approximation becomes
smoother, with each iteration. Nine iterations, for example, will take a four-point sequence
into a 1,024-point sampled function, and this is adequate for most digital implementations.
The scaling function ¢ (¢) is, then, a continuous function that has the same general shape as
the discrete lowpass filter impulse response % (k).
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If, on the other hand, we start with a scaling function ¢ (¢), it must be orthonormal
under unit shifts; that is,

(@(t=m), (t=n)) = 6, (62)
Then hy (k) can be computed from
ho(k) = (@ o(2), Po, k(1)) (63)
where
¢ (t) = 2%9(2t-k)  j=0,1,... k=01, L2011 (64)

If the scaling vector has only a finite number of nonzero entries, then the resulting wavelets
will have compact support [16].

If a desired scaling function (1) is not orthonormal, it can be used to generate one
that is orthonormal by proper normalization of its spectrum, &(s) [7]. That is,

D(s) = (65)

where C is a constant.

14.4.5.3 The Wavelet Vector

Once we have both ¢ (¢) and kg (k) in hand, we continue the development by defining a dis-
crete highpass impulse response called the wavelet vector as

hik) = (=1)*hg(—k+1) (66)
and, from that, a basic wavelet
wn) = Y k)92t —k) (67)
k

from which an orthonormal wavelet set
W (1) = 27 y(2r—k) (68)

follows.

14.4.5.4 Computing the Wavelet Transform

Given the set of orthonormal wavelets, the wavelet series expansion of the bandlimited con-
tinuous function f(t) is

e = [ 1Ow0d ad 10 = Fe w0 (69)
oo I
and the discrete wavelet transform of the sampled function is

i = 3 FUADY, (AN and  f(AD) = Y ¢; oW (IAD) (70)
i jk
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The coefficients and summations can also be indexed by the single integern=0, 1, ...,N— 1,
where

n=2+k for j=0,1,..log,(N)=1 k=01..,2-1 (71)

We refer to this as the top-down algorithm, since it computes large-scale coefficients first.
By contrast, Mallat’s herringbone algorithm computes small-scale coefficients first.

The design task, then, involves first finding a sequence Ay (k) that satisfies Eq. (56)
and then constructing the corresponding scaling function, or choosing an orthonormal scal-
ing function and determining Ay (k) from Eq. (63). A scaling function can be made orthonor-
mal by Eq. (65). Then the wavelet vector, A (k), is obtained from Eq. (66) and the basic
wavelet from Eq. (67).

The discrete wavelet transform can be implemented either directly, by Eq. (70), or
with the FWT herringbone algorithm. The latter does not require explicit construction of the
scaling function and wavelet, and it is more computationally efficient.

To be mathematically precise, the conditions in Eq. (57) establish that the wavelets
{y; ()} constitute a tight frame and thus will support an invertible transform. They are not,
however, adequate to guarantee that these basis functions will always be orthonormal. Law-
ton [17,18] and Cohen [19] give strict orthonormality conditions on A (k), but the differ-
ences between a tight frame and an orthonormal transform are so slight that digital
implementations are not affected. Thus, we can be satisfied using Eq. (57).

14.4.5.5 Examples
We illustrate the construction of a wavelet transform with three examples.

Example 1. Using ideal lowpass and bandpass filters, we have [15]

ho(k) = %sine(ng) and By (k) = 28(k) - ho(k) (72)
and
6() = sinc(nr) and w(t) = 26(20) - 6(1) (73)

This gives a discrete wavelet transform based on sinc wavelets (Figure 14-11). Notice that
these wavelets do not have compact support.

Example 2. 1f we let

1
L k=01 Aot
hok) = | 2 ’ and hy(k) =9 -1 (74)
0 otherwise 2
0 otherwise

then y (¢) is the Haar function, and we are led to the Haar transform. This scaling vector has
two nonzero entries, and, as expected, the Haar transform does have compact support.

Example 3. The sequence hq(k), having four nonzero elements and given by
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(1+43) k=0
B+B) k=1
4.2hy(k) = (3.3 k=2 (75)
(1-43) k=3
0 otherwise

satisfies Eq. (56) and is thus a scaling vector [16]. Its scaling function and wavelet, con-
structed by the procedure outlined in Figure 14-23, are shown in Figure 14-24. This is one
of a family of finite-length sequences that give rise to orthonormal wavelets having compact
support. The family is discussed further in the following section.

T T T 2 T T T
1L 20W 4 1F Mx) i
L i 0 —~—— A\
LLAN T
I ! L -2 I | .l
-2 -1 0 1 2 -2 -1 0 1 2

() (b)

Figure 14-24 Daubechies’ (a) scaling function and (b) wavelet for r =2
(after [16])

14.4.5.6 Orthonormal Wavelets with Compact Support

Daubechies [16] has constructed a family, {,¥ (x)}, of orthonormal wavelets having com-
pact support. For each integer value of the index r, the set of wavelets

{0} = {2779 (2x-k)} (76)

where j and k are integers, forms an orthonormal basis. Further, ,y/(x) is zero outside the
interval [0,2r — 1], its first » moments vanish, that is,

J‘ xX*yx)dx=0 n=0,1,..r )

and its number of continuous derivatives is approximately r/5. This describes a rather well-
behaved, or regular, group of functions. Interestingly, ; y(x) is the basic wavelet of the Haar
transform.

Table 14-1 shows the sequences A (k) that generate the orthonormal wavelets for
r=3,5,7, and 9. The construction technique was outlined in Sec. 14.4.5. Figure 14-25
shows plots of the corresponding wavelets. Notice that these functions become both broader
and more regular with increasing r.
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Figure 14-25 Orthonormal wavelets for (a) r=3,(b)r=5,(c)r=7,and (d) r =9
(after [16])

TABLE 14-1 DISCRETE FILTER SEQUENCES FOR THE ORTHONORMAL
WAVELETS IN FIGURE 14-25 (r= 3,5, 7 AND 9; FROM [16])

3327 8069 4599 -.1350 -.0854  .0352

1601 6083 7243 1384 -2423 -0322 .0776 -.0062 -.0126 .0033
0779 3965 7291 4698 -.1439 -2240 .0713

0806 -.0380 -.0166 .0126 .0004 -.0018 .0004

0381 .2438  .6048  .6573  .1332 -2933 -0968 .1485 .0307
-.0676 .0003 .0224 -.0047 -.0043 .0018 .0002 -.0003 .0000

14.4.6 The Two-Dimensional Discrete Wavelet Transform

The concepts developed for the representation of one-dimensional signals generalize easily
to two dimensions [5,7,14,16]. As with unitary image transforms, we consider the case
where the two-dimensional scaling function is separable; that is,

P(x,y) = 0(x)9(y) (78)

where ¢ (x) is a one-dimensional scaling function. If y(x) is its companion wavelet (Eq. 67),
then the three two-dimensional basic wavelets

vy = o0w(y) V(Y =)o) vy = wx)w(y) (79)
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establish the foundation for a two-dimensional wavelet transform. Note that the superscript
is used here as an index rather than an exponent. In particulat, the set of functions

Wm0} = {2y (x-2my-2m)}  j20 1=1,23 (80)
where j, I, m, and n are integers, is an orthonormal basis for L2(R?).

14.4.6.1 The Forward Transform

We begin with an N-by-N image, £ (x, ), where the subscript indicates scale and N is a
power of two. For j = 0, the scale is 2 = 2° = 1, and this is the scale of the original image.
Each larger integer value of j doubles the scale and halves the resolution. Some of the lit-
erature uses j to index the resolution rather than the scale. In that case j <0, and its sign in
the equations that follow is reversed.

The image can be expanded in terms of the two-dimensional wavelets as follows. At
each stage of the transform, the image is decomposed into four quarter-size images, as
shown in Figure 14-26. Each of the four images is formed by inner products with one of the
wavelet basis images, followed by subsampling in x and y by a factor of two. For the first
stage (j = 1), we write

fm,n) = (f(x,y), p(x~2m, y~2n))
fam,n) = (f1(x, ), y'(x-2m, y-2n))
fim,n) = (f1(x, ), y*(x~2m,y-2n))
f30m,n) = (f(x,y), ¥*(x-2m, y - 2n))

For subsequent stages (j > 1), f g,»(x, y) is decomposed in exactly the same way to form four
smaller images at scale 2*! [Figure 14-26(c)]. The final result is an arrangement like that
of the Haar transform, as shown in Figure 14-26(d).

Writing the inner products as convolutions, we have

(81

2]+I

0 (mv n) = { |: g/(x7 y) * ¢(—X, _y):l (2m> 2”)}

f21j+l(m’ n) = {[ 2Oj(-x’ Y) * Wl(—xy _y):' (2m, 2’1)}
(82)

f§j+l(m’ n) = {[ gj(xa )’) * WZ(__X, —y)] (2m, 271)}

f3ui(m.n) = {[f;(x, 3 Y x -y ] (2m, 2n>}

and the same four subsampled filtering operations are required at each stage.

Since the scaling and wavelet functions are separable, each convolution breaks down
into one-dimensional convolutions on the rows and columns of fgj(x, y). Figure 14-27
shows this in diagram form.
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A )

(a) (b)

(© (d)
Figure 14-26 The two dimensional discrete wavelet transform: (a) original;
(b) first, (c) second, (d) third step

At stage 1, for example, we first convolve the rows of the image f; (x, y) with hg(—x)
and with A, (—x) and discard the odd-numbered columns (counting the leftmost as zero) of
the two resulting arrays. The columns of each of the N/2-by-N arrays is then convolved with
ho(=x) and with i, (—x), and the odd-numbered rows are discarded (counting the top row as
zero). The result is the four N/2-by-N/2 arrays required for that stage of the transform.

The two-dimensional separable wavelet transform thus can be computed quickly. The
transform process can be carried to J stages, where the integer J < log, (N) for an N-by-N
pixel image. If the transform coefficients are computed with floating-point accuracy, the
inverse transform can reconstruct the original image with little degradation.

Figure 14-28 shows from where in the frequency plane each of the four next-higher
scale images come, if we were to use sinc wavelets (that is, ideal halfband lowpass and
bandpass filters). At each scale, f 3,~(x, y) contains the low-frequency information from the
previous stage, while f le(x, ), f ;(x, y), and f ; .(x,y) contain the horizontal, vertical,
and diagonal edge information, respectively.
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rows columns columns rows

ho(=x) ‘¢<>—

ho(=x)

A 4

PP

fgf(X'Y)

A4

hy(=0) fhxy)

r(xy)

M hy(-n) f3y)

v

hy(=x) ;\l/

hi(=0) Fixy)

Figure 14-27 The DWT image decomposition step

f%ﬁ-l féj»fl f%jd-l

fgj-ﬂ
v
2jv&-l 2/+1
f2 2

u

3e1 fha 31
T Y T Figure 14-28 DWT decomposition

in the frequency domain

14.4.6.2 The Inverse Transform

Inversion of the transform is done by a process similar to that just outlined [5,7,14,16]. This
process is diagrammed in Figure 14-29.

At each stage (e.g., the last), we upsample each of the four previous stage arrays by
inserting a column of zeros to the left of each column. Then we convolve the rows either with
ho(x) or with A, (x), as shown in the figure, and add the N/2-by-N arrays together in pairs. The
two resulting arrays are then upsampled to size N by N by adding a row of zeros above each
row. The columns of these two arrays are then convolved with Ay (x) and with A, (x), as
shown. The sum of the two resulting arrays is the result for that stage of the reconstruction.
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Figure 14-29 The DWT image reconstruction step

14.4.6.3 Examples

Figure 14-30 shows a numerical example of computing the first stage of the two-dimen-

sional discrete wavelet transform. The figure depicts an eight-by-eight pixel image of a
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Figure 14-30 Example of computing the two-dimensional discrete wavelet transform
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Gaussian-like pulse. Figure 14-31 shows the corresponding (last) stage of the inverse dis-

crete wavelet transform of the same image. (Note: Optionally, one can reverse the order of

processing rows and columns in both the forward and inverse transforms.)
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Figure 14-32 shows an example of separable two-dimensional wavelets [20]. These
were constructed from Daubechies’ r = 2 wavelet and scaling function (Figure 14-24) by
Eqgs. (78) and (79).

Figure 14-32  Separable two-dimensional wavelets constructed from Daubechies’ r = 2
wavelet and scaling function (Courtesy Marcus Gross and Lars Lippert, reprinted by
permission from [20])

14.4.7 Biorthogonal Wavelet Transforms

The functions that qualify as orthonormal wavelets with compact support lack desirable
symmetry properties. It would be convenient, for example, if y(¢) could be an even or an
odd function. By using two different wavelet bases, y(x) and ¥ (x) —one for decomposi-
tion (analysis) and the other for reconstruction (synthesis)—we can have symmetrical
waveléts with compact support [5,7,21,22,23]. The two wavelets are duals of each other,
and the wavelet families { t//jk(x)} and { l]/jk(x)} are biorthogonal; that is,

<l//j,k: l’;/l,m> = (sj,lak,m (83)

Then we have

e = (f(0), W (x) and djp = (f(x), ¥, (X)) (84)
for the decomposition, and
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F) = Y e = Y d; e (%) (85)
ik ik

for the reconstruction. Either wavelet can be used for the decomposition, provided that the
other one is used for the reconstruction. The biorthogonal wavelet transform allows the use
of symmetric (even or odd) wavelets having compact support.

14.4.7.1 Implementation

The one-dimensional biorthogonal wavelet transform requires four discrete filters (impulse
response vectors). We must choose two lowpass filters (scaling vectors), hy(n) and ho(n),
whose transfer functions satisfy

Hy(0) = Ho(0) = 1 and Hy(sy) = Ho(sy) = 0 (86)

where sy = 1/2Ax is the folding frequency. From these, we generate two bandpass filters
(wavelet vectors), as before, by half-period shifts of their transfer functions [recall Eq. (54)]:

hi(n) = (~-1)"hg(1=n)  hy(n) = (=1)"ho(1 = n) (87)

Now we can implement the FWT herringbone algorithm using these four filters, as shown
in Figure 14-33.

hl —)O-——b El J

Figure 14-33 One decomposition step and one reconstruction step of the
biorthogonal wavelet transform

v

14.4.7.2 Biorthogonal Wavelets

The conditions upon biorthogonal wavelet filters are

D ho(n) = Yho(n) = 2 and Y hy(n) = Y k(n) =0 (88)
and the perfect reconstruction property requires that
Hy(s)Ho(s) + H,()H,(s) = Hy(s)Ho(s) + Ho(s = sy) Hy(s = sy) = 1 (89)

The two scaling functions are given, in the frequency domain, by

@(2s5) = Hy(s)D(s) = Hilo(s/zn) and @(2s) = Hy(s)D(s) = HHO(S/Z") (90)
n=0 n=0
and the wavelets are then

w(x) = ﬁZhl(n+1)¢(2x—n) and g/(x)=[22izl(n+1)<}>(2x-n) 1)
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14.4.7.3 Constructing Biorthogonal Wavelets

Biorthogonal wavelet design requires developing discrete impulse responses (scaling vec-
tors) ho(n) and ho(n) whose transfer functions satisfy Eq. (86) and (89). This is an active
area of research, and several authors have catalogued such filters and the corresponding
biorthogonal wavelets.

Cohen, Daubechies, and Feauveau [21], for example, select ¢ (x) as a B-spline function
(e.g., the triangle function) and develop Hy(s) as a polynomial in cos(s). Vetterli and Herley
[22] present approaches based on the theory of diophantine equations and on the theory of
continued fractions. Generally, using longer impulse responses gives rise to more regular
wavelets, that is, those having a larger number of derivatives and vanishing moments. Table
14-2 presents three pairs of scaling vectors, and Figure 14-34 shows the corresponding bior-
thogonal wavelets, constructed by the procedure outlined in Figure 14-23.

TABLE 14-2 DISCRETE FILTER SEQUENCES FOR THE BIORTHOGONAL
WAVELETS IN FIGURE 14-33 (FROM[21] AND [22]).

Laplacian
analysis filter: h, = ﬁ[—.OS 25 6 25 —-.05]"

Laplacian
synthesis filter:h, = J2[-.0107 —0536 2607 6071 2607 —.0536 —.0107]

Spline 2 filter:  hy = 2[.25 .5 25]°

23 6 16 38 90 38 -16 -6 3

Spline 4 filter: kg e

18-point
analysis filter: h, = [.0012 -.0007 -.0118 .0117 .0713 -.0310 -.2263 .0693 .7318
7318 0693 -.2263 -.0310 .0713 .0117 -.0118 -.0007 .0012]*

18-point
synthesis filter:, = [.0012 .0007 -.0113 -.0114 .0235 .0017 -.0444 .2044 .6479
6479 2044 -.0444 .0017 .0235 -.0114 -.0113 .0007 .0012]°

14.4.7.4 Two-dimensional Biorthogonal Wavelets

The biorthogonal wavelets for the forward two-dimensional transform are given by Eq.
(79), as before. For the inverse transform, they are

V') = 00P0) V) = #00) Py = B@E)  02)
The implementation of the two-dimensional biorthogonal FWT is a straightforward exten-
sion of the orthonormal case.

14.5 WAVELET SELECTION

The ideal basic wavelet would be an oscillatory function of brief duration (i.e., having com-
pact support or small amplitude outside a short interval) where all dyadic translations of
binary scalings of the function are orthonormal. The Haar function illustrates this. Other
available wavelet functions may fail to meet all these criteria.

First, while the basic wavelet must go to zero as |x| — o at least as fast as 1/x in order
to meet the admissibility criterion, many wavelets still have infinite, rather than compact,
support. This means that they are nonzero over the entire real line, except for their zero-
crossings. It may be that dyadic translations of the wavelet at each scale are orthogonal, but
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Figure 14-34 Examples of biorthogonal wavelets: (a) Laplacian pyramid
wavelet [21]; (b) linear spline function wavelet [21]; (c) 18-point linear phase
wavelet [22]

wavelets at different scales are not. Similarly, it may be that different scales of the wavelet
are orthogonal, but some or all dyadic translations at the same scale are not.

Notice that some wavelet transforms (e.g., the CWT) are overcomplete, while others
(e.g., the DWT) are not. For overcomplete transforms, the restrictions on the basis functions
are relatively mild. For transforms involving little or no redundancy, such as the orthonormal
discrete wavelet transform, the restrictions placed on basis functions are much more severe.

The biorthogonal DWT requires two scaling vectors and two wavelet vectors rather
than one each, but this does not increase the computational burden of the process. The
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biorthogonal transform, however, affords a much wider choice of wavelet shape than the
orthonormal transform, so it is preferable in many applications.

The choice of a basic wavelet is usually governed by the application. For lossless
compression, for example, an orthonormal or biorthogonal basis is desirable or required,
since the objective is to represent the function exactly and compactly. An overcomplete
transform increases the amount of data required to represent the function exactly. If, on the
other hand, the goal is lossy compression, the detection of specific components such as
edges in an image, or noise removal, then it is more important to select a wavelet that is sim-
ilar to the components of interest.

Wavelet transforms offer the promise of compact representation and efficient detec-
tion of image components that match the waveshape of the chosen wavelet. The orthonor-
mal wavelet transform is inherently compact, but it does not behave well under slight shifts
of the image components [24]. An image component that matches a wavelet will appear
compactly in the transform if it happens to align with one of the dyadic positions of the
wavelet, but not otherwise. For this reason, non-orthonormal transforms often perform bet-
ter in detection tasks.

14.6 APPLICATIONS

Although wavelet transforms are relatively new on the image processing scene, they have
already begun to see application in practice.

14.6.1 Image Compression

The discrete wavelet transform decomposes an image into a set of successively smaller
orthonormal images. Further, while the gray-level histogram of the original image can be of
any shape, those of the wavelet transform images are commonly unimodal and symmetrical
about zero [14]. This simplifies an analysis of the statistical properties of the image.

Often, one can either coarsely quantize or eliminate entirely those coefficients having
small value. Mallat and others have studied the possibility of reconstructing an image from
only the zero-crossing locations of its wavelet transform [25]. While perfect reconstruction
is generally impossible [7], many images can be adequately approximated by this highly
compact coding.

14.6.2 Image Enhancement

The DWT decomposes an image into components of different size, position, and orienta-
tion. As with linear filtering in the Fourier frequency domain, one can alter the amplitude of
coefficients in the wavelet transform domain prior to obtaining the inverse transform. This
can selectively accentuate interesting components at the expense of undesirable ones. Fig-
ure 14-35 shows an example of edge-specific contrast enhancement [26,27]. Notice how
the four peaks in the histogram are separated by the process.

14.6.3 Image Fusion

Image fusion combines two or more registered images of the same object into a single image
that is more easily interpreted than any of the originals. This technique finds application in
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(a) (b) (c)

AN

Figure 14-35 Image enhancement by multiscale gradient: (a) original; (b) enhanced by
histogram equalization; (c) enhanced by scale-variable edge stretching. Gray-level
histograms appear below each image (Courtesy Jian Lu, reprinted by permission from [26])

multispectral image interpretation, as well as medical imaging, where images of the same
body part are obtained by several different imaging modalities.

Figure 14-36 shows two examples of image fusion using a wavelet transform [28]. In
each case, the two images were combined in the transform domain by taking the maximum-
amplitude coefficient at each coordinate. An inverse DWT of the resulting coefficients then
reconstructed the fused image. In the first case, the process combined the in-focus informa-
tion from the two input images. In the second case, the anatomic information of the MRI
image was combined with the functional information of the PET scan to produce a conve-
nient composite.

14.7 SUMMARY OF IMPORTANT POINTS

1. Abasic wavelet is an oscillatory function that dies out as [x| — co. Its spectrum resem-
bles the transfer function of a bandpass filter.

2. A set of basis functions for a wavelet transform can be generated from dilations and
translations of a basic wavelet.

3. The continuous wavelet transform represents a signal as a function of two variables:
time and scale. It represents an image as a function of three variables: two for spatial
position and one for scale.
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Figure 14-36 Wavelet transform image fusion: (a), (b) images taken at different focus settings;
(c) fused image; (d) MRI image; (e) PET image; (f) fused image (Courtesy Henry Hui Li, reprinted
by permission from [28])

4. The wavelet series expansion represents a periodic or finite-length signal with a series
of coefficients.

5. The discrete wavelet transform represents an N-point signal with N coefficients. It
represents an N-by-N image with N? coefficients.

6. The Haar transform is the simplest discrete wavelet transform.

7. The DWT can be implemented directly or, indirectly, by the fast wavelet transform
(FWT, or herringbone) algorithm.

8. The separable two-dimensional DWT can also be implemented by the FWT algorithm.

9. Biorthogonal wavelet systems permit the DWT to use less restricted (e.g., symmetric)
wavelets with compact support.

PROBLEMS

1. Which wavelet transform would you expect to perform best in detecting lines in an engineering
drawing? Why?

2. Which wavelet transform would you expect to perform best in compressing fingerprint images?
Why?
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3. Which wavelet transform would you expect to perform best in image fusion? Why?

4. Which wavelet transform would you expect to perform best in detecting stars in a telescope
image? Why?

S. Which wavelet transform would you expect to perform best in segmenting aerial photographs on
the basis of texture? Why?

PROJECTS

1. Develop a program implementing the continuous wavelet transform, and use the program to
locate the notes in a digitized recording of a simple song.

2. Develop a program for computing a wavelet series expansion of a signal,-and use the program to
compress a signal.

3. Develop a program for computing the discrete wavelet transform of a signal, and use the program
to locate transient components in a signal.

4. Develop a program for computing a continuous wavelet transform of an image, and use the pro-
gram to locate the spots in a simple image.

5. Develop a program for computing a wavelet series expansion of an image, and use the program
to compress an image.

6. Develop a program for computing the discrete wavelet transform of an image, and use the pro-
gram to locate edges in &n image.
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