CHAPTER 13

Discrete Image Transforms

13.1 INTRODUCTION

The discrete Fourier transform (DFT), introduced in Chapter 10, is but one of a number of
discrete linear transformations that prove useful in digital image processing. In this chapter,
we examine the topic more generally, developing several other transforms and some of their
properties and applications as well.

Images of interest normally occur in continuous form and must be viewed that way as
well. Since we are limited to working with a discrete representation of a continuous image,
much of digital image processing requires that we keep sampling and interpolation consid-
erations in mind while processing the discrete data. Some applications, however, allow us
to treat the digital image as a discrete entity, without particular regard for the history of its
origin or for the underlying continuous image.

One such application is image compression. Here, one wishes to encode an image into
a more compact data format, either with no loss, or with only a tolerable loss of information
content. Normally, considerations of optics, sampling, and interpolation, regarding the dig-
itization and display of the image, are not of immediate concern, and the digital image can
be treated merely as a data file.

A representation of an image is a particular embodiment of the data that defines the
image. It is a presentation of the image data in a particular form or format. A digital image
can be represented as a matrix or, with row stacking, as a vector.

281



282 Discrete Image Transforms Chap. 13

13.2 LINEAR TRANSFORMATIONS

13.2.1 One-Dimensional Discrete Linear Transformations

Definition. If x is an N-by-1 vector and T is an N-by-N matrix, then

N-1
y; = Et"’fxf or y = Tx (1
j=0
where i =0, ..., N— 1 defines a linear transformation of the vector x. The matrix T is also

called the kernel matrix of the transformation. Note that this use of the word kernel is dif-
ferent from its use in the term convolution kernel discussed in Sec. 9.3.4.

The result of the transformation is another N-by-1 vector, y. The transformation is lin-
ear because y is formed by a first-order summation of the input elements. Each element y;
is the inner product of the input vector x with the ith row of T.

Example. A simple example of a linear transformation is the rotation of a vector in
a two-dimensional coordinate system. (See Chapter 8.) Here,

Y1l _ [cos(8) —sin (6)]|x; @
Y2 sin (6) cos (8) ||x,
rotates the vector x through the angle 6. '

Inversion. After the transformation, the original vector can be recovered by the
inverse transformation

x =Ty 3
provided that T is nonsingular. As before, each element of x is an inner product, this time

between y and a row of T~!. For the foregoing example, this amounts to a rotation through
the same angle in the reverse direction.

13.2.1.1 Unitary Transforms

For a given vector length N, there are infinitely many transformation matrices T that could
be used. The more useful ones, however, belong to a class having certain properties.
If T is a unitary matrix, then

T = T* and TT* =TT*T = I )
where * indicates complex conjugation of each of the elements of T and the ’ indicates the

transpose operation. If T is unitary and has only real elements, then it is an orthogonal
matrix, and it follows that

) T!'=T and TT' =T'T =1 5)
Notice that the i, jth element of TT is the inner product of rows i and j of T. Eq. (5) implies

that this is zero unless i =, in which case it is unity. Thus, the rows of T are a set of orthonor-
mal vectors.

Example: The one-dimensional DFT. The one-dimensional DFT is an exam-
ple of a unitary transform, since
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N-1
1 . i
F, = —= ) fiex (—Jan—) or F =Wf ©6)
k J—NE) p N
where ‘W is a unitary (but not orthogonal) matrix with (complex) eleménts
wig = %v exp(—er:k]%[) %)

Interpretation. Normally, the transform matrix T is non-singular (i.e., rank(T) =
N), so as to make the transform invertible, as per Eq. (3). Then the rows of T form an
orthonormal basis (a set of orthonormal basis vectors, or unit vectors) for the N-dimensional
vector space of all N-by-1 vectors. This means that any N-by-1 sequence can be viewed as
representing a vector from the origin to a point in N-dimensional space. Furthermore, any
transform of the form of Eq. (1) can be viewed as a coordinate transformation, rotating the
vector in N-space without changing its length.

In summary, then, a unitary linear transformation generates y, a vector of N transform
coefficients, each of which is computed as the inner product of the input vector x with one
of the rows of the transform matrix T. The inverse transform is computed similarly, as a set
of inner products of the transform coefficient vector with the rows of the inverse transform
matrix.

The forward transformation is generally considered to be a process of analysis, break-
ing the signal vector down into its elemental components. These fundamental components
are naturally in the form of the basis vectors. The transform coefficients specify how much
of each component is found to be present in the mixture that comprises the particular vector
being decomposed.

The inverse transformation, on the other hand, is often considered a process of syn-
thesis, reassembling the original vector from its components via summation. Here, the
transform coefficients specify the proper amount of each basis vector that must be added to
the mixture so as to reconstruct the input vector accurately and completely.

A key to this process is the principle that any vector can be uniquely decomposed into
a set of normal basis vectors of the proper amplitude and later reconstituted by adding these
components back together to reconstruct the original. It is significant that the number of
transform coefficients is equal to the number of elements in the vector. Thus, the number of
degrees of freedom is the same before and after the transformation, and information is nei-
ther created nor destroyed by the process.

A transformed vector is a representation of the original vector. Since it contains the
same number of elements (and thus has the same number of degrees of freedom) as the orig-
inal, and since the original can be recovered from it without error, it can be considered an
alternative form of expressing the original vector. This chapter considers several alternative
ways of representing digital signals and images, and the usefulness of each.

13.2.2 Two-Dimensional Discrete Linear Transformations

In two dimensions, the general linear transformation that takes the N-by-N matrix F into the
transformed matrix G (also N by N) is
N-1N-1
Gun = 3, D Fi 30, k,m, n) 8)

i=0k=0
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where i, k, m, and n are discrete variables that range from O to N — 1 and 3(i, k, m, n) is the
kernel function of the transformation.

3 (i, k, m, n) can be thought of as an N2-by-N2 block matrix having N rows of N blocks,
each of which is an N-by-N matrix. The blocks are indexed by m, n and the elements of each
N-by-N sub-matrix Iby i, k (See Figure 13-1.)

If 3(i, k, m, n) can be separated into the product of rowwise and columnwise compo-
nent functions—that is, if

3(i, k,m,n) = T,(i,m)T.(k, n) ©)

then the transformation is called separable. This means that it can be carried out in two
steps—a rowwise operation followed by a columnwise operation (or vice versa):

N-1[N-1
Gun = Y, {2 F, i T.(k, n)} T,(i, m) (10)
i=0Lk=0
Further, if the two component functions are identical, the transform is also called symmetric
(not to be confused with a symmetric matrix). Then
30, k,m,n) = T(i, m)T(k, n) (11)
and Eq. (8) can be written as

- N-1 N-1
Gpn = ZT(i, m)|:z Fy Tk, n):l or G = TFT (12)
i=0 k=0
where T is a unitary matrix, called the kernel matrix of the transform, as before. We use this
notation throughout the chapter, to signify a general, separable, symmetric unitary transform.
The inverse transform is

F=T'GT! = T*¥GT* (13)
and it recovers F exactly.

Example: The Two-dimensional DFT. The two-dimensional DFT is a separa-
ble and symmetric unitary transform. In this case, T in Eq. (12) becomes the matrix W from
Eq. (7).

The inverse DFT uses W', which is simply the conjugate transpose of W. The dis-
crete Fourier transform pair is thus expressed as

G = WFW and F = W*'GW* (14)
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Figure 13-1 The kernel matrix
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13.2.2.1 Orthogonal Transformations

Unlike the Fourier transform, many transforms have only real elements in their kernel
matrix T. A unitary matrix with real elements is orthogonal, and the inverse transformation
becomes simply

F = T'GT’ (15)

If T is a symmetric matrix, as is often the case, then the forward and inverse transforms are
identical, so that

G = TFT and F = TGT (16)

13.3 BASIS FUNCTIONS AND BASIS IMAGES

The primary difference between any two unitary transforms is the choice of basis functions,
that is, the rows of T. Here, we examine basis functions in more detail.

13.3.1 Basis Functions

The rows of the kernel matrix form a set of basis vectors for an N-dimensional vector space.
The rows are orthonormal; that is,
N-1
TT* =1 or z T; T*i = &4 (17)
i=0
where 6, is the Kronecker delta.

While any set of orthonormal vectors will serve for a linear transform, normally the
entire set is derived from the same basic functional form. The Fourier transform, for exam-
ple, uses the complex exponential as its prototypical basis function. The individual basis

“functions differ only in frequency.

Any vector in the space can be expressed as a weighted sum of unit-length basis vec-
tors. Any one-dimensional (N-by-1) unitary transform, then, corresponds to a rotation of a
vector in an N-dimensional vector space. Further, since an N-by-N image matrix can be row-
stacked to form an N-by-1 vector, any two-dimensional, symmetric, separable unitary
transform corresponds to a rotation of a vector in an N>-dimensional vector space.

13.3.2 Basis Images

The inverse two-dimensional transform can be viewed as reconstructing the image by sum-
ming a set of properly weighted basis images. Each element in the transform matrix, G, is
the coefficient by which the corresponding basis image is multiplied in the summation.

A basis image can be generated by inverse transforming a coefficient matrix contain-
ing only one nonzero element, which is set to unity. There are N> such matrices, and these
produce N? basis images. Let one such coefficient matrix be

G711 = {6,'_1,)]'_(1} (18)

where i and j are the row and column indices and p and g are integers that specify the loca-
tion of the nonzero element. Then the inverse transform [Eq. (13)] is
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N-1 N-1
Fun= Y T m) {2 8 poi-g Tk, n)} = T(p,m)T(q, n) (19)
i=0 k=0
Thus, for a separable unitary transform, each basis image is the outer product of two rows

of the transform matrix.

As with one-dimensional signals, the basis images can be thought of as a set of basic
components into which any image can be decomposed. They are also the building blocks
from which any image can be reassembled. The forward transform does the decomposition
by determining the coefficients. The inverse transform does the reconstitution by summing
the basis images, weighted by those coefficients.

Since infinitely many sets of basis images exist, infinitely many transforms exist as
well. Thus, a particular set of basis images takes on profound importance only in the context
of a particular transform.

13.4 SINUSOIDAL TRANSFORMS

For reasons mentioned in Chapter 10, the Fourier transform has emerged as the single most
important transform in digital imaging. It has, however, several relatives that also use sinu-
soidal basis functions. These are introduced in this section, after a brief review of the dis-
crete Fourier transform. :

13.4.1 The Discrete Fourier Transform

Introduced in Chapter 10, the DFT is considered again here, in the context of separable uni-
tary transforms, to enable us to draw comparisons between it and other transforms of the

same type.
The kernel matrix for the DFT [recall Egs. (6) and (7)] is

Woo .- Won-1
W= o : (20)
WN_1,0 WN_1,N-1
where
1 —j27r£1\l]c
Wi,k = —¢ (21)

Because of the periodic nature of the imaginary exponential, ‘W is unitary.
In one dimension, the forward and inverse DFTs are

F = Wf and f=W*F (22)

where f and F are N-by-1 signal and spectrum vectors, respectively. If f is real, F will, in
general, have complex elements. Only if f has the proper symmetry (discussed next) will F
be real.
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13.4.1.1 The Spectrum Vector

Figure 13-2 shows where the different frequency components occur in the spectrum vector
F, when f is real. The zero-frequency component and the highest frequency component
(corresponding to the Nyquist frequency) appear only once. The remaining components are

“duplicated as complex conjugates. (Recall that the spectrum of a real function is a Hermite
function.) If F' is viewed as a row vector, the first N/2 + 1 elements are the rfght half of the
spectrum, while the last N/2 — 1 elements are the left half. The frequency corresponding to
the ith element of F is

ﬁﬁv 0<i<N2
5 = (23)

2(N")f N2+1<i<N-1

where fy is the Nyquist (folding) frequency (half the sampling frequency). If the last N/2 — 1
elements of f form a mirror image of elements 1 through N/2 — 1, then F is even, and F will
be real-valued.

& fN f —(N l) ﬁ fN
N N v N/, N, |
I , I { l J I | I IJ Figure 13-2  Location of the
different frequency components in the

i— N/Z spectrum vector

One can rotate the elements of F by the amount N/2, using a circular right (or left) shift
operation, to produce a vector suitable for plotting the spectrum. In that case, the zero-
frequency element is located at N/2, and frequency increases in both directions from there.
The Nyquist frequency element appears only at Fy,

The shift theorem of the Fourier transform (Sec. 10.2.3) provides another way of
achieving the same result. Applying the theorem to a shift in the frequency domain yields

Flu) o f(x) = Fu-ug) & exp(J27'cx )f(x) (24)
= exp (jax) f(x) = (-1)"f(x)

where the amount of shift is uy = N/2. This means that we have merely to change the signs
of the odd-numbered elements of f (x) prior to executing the DFT. Doing so leaves the spec-
trum properly shifted for plotting.

13.4.1.2 The Two-Dimensional DFT
In two dimensions, the forward and inverse DFTs are

G = WFW and F=W*GW* (25)

where F is an image in matrix form and G is its spectrum matrix.
Figure 13-3 shows where the various spatial frequency terms are located in the spec-
trum matrix G. Rearrangement of the four quadrants, as shown in the figure, makes
displaying the spectrum more convenient. That way, zero frequency falls at the center of
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._<—F 0.0
4 3 2
Foo —»l
2 3 4 1 Figure 13-3 Location of the various
spatial frequency terms in the spectrum
matrix: (a) after transformation; (b)
(a) (b) after rearrangement

the matrix, and frequency increases radially from there. In two dimensions, Eq. (24)
generalizes to

Fu,v) © f(x,y) = Fu-N/2,v-N2) & (-1)**7 f(x, y) (26)

and again, changing the sign of half the elements of the image matrix F effects the desired
shift. If F has the symmetry shown in Figure 13-3(a), then G will be real valued.

13.4.2 The Discrete Cosine Transform

The discrete cosine transform (DCT) is defined in two dimensions as

N-1N-1

_ ) (72i+ )m)| _ [#k+1)n
G.(m,n) = oa(m)o(n) zf)kzég(l’ k)cos o e (27)
and its inverse by
R (7Qi+ Dm] _ [1Ck+1)n]
g(i k) = 2:0 z_‘:)a(m) a(n)G.(m, n)cos R e Tl (28)
where the coefficients are
a(0) = /\/% and a(m) = «/1% for 1<m<N 29)
Like the DFT, the DCT can be expressed as a unitary matrix operation in the form
G, = CgC (30)
where the kernel matrix has elements
Cym = 0(m)cos [@J\,ﬂq 31)

Also like the DFT, the DCT can be computed by a fast algorithm [1-3]. Unlike the DFT, the
DCT is real valued. It has found wide usage in image compression, for reasons pointed out
later in the chapter.

13.4.3 The Sine Transform

Jain [4] introduced the discrete sine transform (DST), defined as
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N-1N-1

2 o [ mE+E D m+ D] L Tatk+ D(n+1)
G,(m,n) = Vil 2 Eg(z, k)sm{ Nl sin Vil (32)
i=0k=0
and
2 & 2+ D(m+ 1) ak+ 1) (n# 1)
8 k) = zozoc;s(m, n)sm[ Vo }sm[ T } (33)
The DST has unitary kernel matrix elements
o [ 2 . 7r(i+1)(k+1)}
T"k_NN+lsm[ N1l (34)

Unlike the other sinusoidal transforms, the DST is most conveniently computed for N = 27
— 1, where p is an integer. Then it can be taken as the imaginary part of a specially con-
structed (2N + 2)-point FFT [5].

The DST has a fast implementation algorithm [6] and properties that prove useful in
certain image compression problems, as discussed later in the chapter.

13.4.4 The Hartley Transform

In 1942, Hartley introduced a continuous integral transform as an alternative to the Fou-
rier transform [7]. Bracewell later defined an analogous discrete unitary transform based
on the Hartley transform [8]. The forward two-dimensional discrete Hartley transform
(DHT)

e 5 -
G = 3 2, D, 81 €88| T im + kn) (35)
i=0k=0

and the inverse two-dimensional DHT

| N-1N-1 oy -
ik = 3 z Z Gun Cas_ﬁ(im + kn)d (36)

m=0n=0

are identical and use the basis function
cas (8) = cos (8) + sin (8) = /2 cos (8 — 7/4) 37

which is a cosine shifted 45 degrees to the right.
The kernel matrix of the Hartley transform has elements

Ty = —jﬁ[cas(2ﬂ%)} | (38)

Whereas the DFT transforms N real numbers into N complex numbers with conjugate sym-
metry, the discrete Hartley transform produces N real numbers.

As one might expect, the DHT is closely related to the DFT. In Chapter 10, we saw
that the Hartley transform is simply the real part minus the imaginary part of the correspond-
ing Fourier transform. Likewise, the Fourier transform is the even part minus j times the odd
part of the Hartley transform.
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The convolution theorem of the Hartley transform is only slightly more complicated
than that of the Fourier transform. It is expressed as

g(x) = f(x) * h(x) & G(V) = F(V)H,(V) + F(=V)H,(V) (39)

where F(v) and G(v) are the Hartley transforms of f(x) and g(x), respectively, and H,(v)
and H,(v) are the even and odd components, respectively, of the Hartley transform of A (x).
(See Sec. 10.2.1 for a definition of even and odd components.)

In the common case where one of the functions is even, the second term of Eq. (39)
drops out, and convolution corresponds to multiplication in the Hartley transform domain,
just as it does with the Fourier transform in the frequency domain.

The DHT is a computational alternative to the DFT. There is a fast algorithm for the
Hartley transform [9]. For linear filtering applications—particularly if the kernel is symmet-
ric—the DHT can significantly reduce the computational work load, since it avoids complex
arithmetic.

13.4.5 Other Sinusoidal Transforms

Jain [10] has introduced a family of unitary transforms having sinusoidal basis functions.
The DFT, the DCT, and the DST belong to this family.

13.5 RECTANGULAR WAVE TRANSFORMS

Several transforms of interest in discrete image processing use basis functions that are vari-
ations of the square wave rather than sinusoids. In general, these are fast to compute, since
many of the multiplication operations become trivial.

In this section, we introduce the Hadamard, Walsh, slant, and Haar transforms. The
Haar transform differs fundamentally from the other three, and it is discussed further, in the
context of wavelet transforms, in the next chapter.

13.5.1 The Hadamard Transform

The Hadamard transform [11-15] is a symmetric, separable unitary transformation that has
only +1 and —1 as elements in its kernel matrix. It exists for N = 2", where # is an integer.
For the two-by-two case, the kernel matrix is

1 1111
~H, = — 40
N ﬁ[l —J @0

and for successively larger N, these can be generated from the block matrix form

_1_HN - _1/_: Hy, Hyp 41
A/]T[ VN HN/2 _HN/Z

For any size N = 2", the matrix contains only elements that are 1, provided that the N
factor is kept out in front. This makes the transform less expensive to compute.
For N = 8§, for example, the Hadamard kernel matrix is

=12
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r 1111111
1-1 1-1 1-1 1-1
I 1-1-1 1 1-1-1

1 j1-1-1 1 1-1-11
220101 1 1-1-1-1-1
1-1 1-1-11-1 1
I 1-1-1-1-1 11
l-1-1 1-1 1 1-1]

(42)

NN = WO

where the column to the right shows the number of sign changes along the corresponding
row. Notice that these are different for each row. This sign change count is called the
sequency of the row [16].

We can reorder the rows to make sequency increase uniformly with row number,
much as frequency increases with the Fourier kernel. This yields a transform that is
somewhat easier to interpret. The kernel of the ordered Hadamard transform, for N = 8,
is thus

111 1 1 11
11 1-1-1-1-1
1-1-1-1-1 1 1
1-1-1 1 1-1-1
“1-1 1 1-1-1 1
-1-1 1-1 1 1-1
-1 1-1-1 1-1 1
-1 1-1 1-1 1-1]

(43)

p—t
= = m, - = = =

~N N AW = O

13.5.2 The Walsh Transform

The Hadamard transform basis functions are actually Walsh functions [17]. Thus, the Had-
amard transform is also referred to as the Walsh transform.

13.5.3 The Slant Transform

The slant transform [18] was designed to have not only a constant first basis function, but
a linear second basis function as well (Figure 13-4). The slanted second basis function
matches the linearly sloping background that is present in many images.

The unitary kernel matrix for the slant transform is obtained by starting with the two-
by-two Haar or Hadamard matrix

111 1
§; = — 44
: ﬁ[l —IJ @

and iterating it according to the schema
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A RREE S S SR F TS|

o—+

1 o 1 1 1 0 |
ay bNIOI"aN leo |
S R e e = A 0
SN—% _0_0_1 _|1|_O_°_1_,1 N”: 45)
10| 0] 0 ISN/Z
Ty av i i by ey
L 0 I 0 -1

where I is the identity matrix of order N/2 — 2 and

3N? N?2-1
@y = |2 and byy= |[N=L (46)
N ANt N ANt S

The slant transform basis functions occur in all sequences from 0 through N — 1. The
slant transform also has a fast transform algorithm and has been used for image compres-
sion [18].

13.5.4 The Haar Transform

The Haar transform is a symmetric, separable unitary transformation that uses Haar func-
tions for its basis [19-21]. It exists for N = 2", where n is an integer. ‘
Whereas the Fourier transform basis functions differ only in frequency, the Haar
functions vary in both scale (width) and position. This gives the Haar transform a dual
scale-position nature that is evident in its basis functions (Figure 13-5). Such a feature
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Figure 13-5 The Haar transform
basis functions for N = 8

distinguishes it from the other transforms mentioned so far and establishes a starting point
for wavelet transforms, which are introduced in the next chapter.

Basis Function Indexing. Since the Haar functions vary in two aspects (scale
and position), they must be specified by a dual indexing scheme. The Haar functions are -
defined on the interval [0, 1] as follows. Let the integer 0 < k < N — 1 be specified (uniquely)
by two other integers, p and g, as

k=2+g-1 47)
Notice that, under this construction, not only is k a function of p and g, but p and ¢ are func-
tions of k as well. For any value of k > 0, 27 is the largest power of 2 such that 2”7 < k, and
g — 1 is the remainder.
The Haar functions are defined by

1
ho(x) = —= (48)
0 ﬁ
and
4L
2p72 g-1 <x< 2
2 " 27
1
he(x) = — 1 (49)
N 73
i) A PP
27 27
0 otherwise
Ifweletx=i/Nfori=0,1,...,N—1,this gives rise to a set of basis functions, each of which

is an odd rectangular pulse pair, except for k = 0, which, as in the case of many of the other
transforms discussed here, is constant. Further, the basis functions vary in both scale
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(width) and position (Figure 13-5). The index p specifies the scale, while g determines the
shift.

Whereas the transforms discussed so far use full-width basis functions, the Haar func-
tions are all scaled, shifted versions of a single “prototype” function, the odd rectangular
pulse pair. There are two major ramifications of this property.

First, although the basis functions are identified by the single index k, they have a dual
scale-position nature that is specified by the indices p and g. Thus, it is less enlightening to
plot the transform coefficients along the k-axis than it would be, for example, to plot a con-
ventional frequency spectrum obtained with the Fourier transform.

Second, suppose a particular feature, such as an edge, is embedded in the signal at
some position along the x-axis. The Fourier transform, for example, encodes this position
into the phase spectrum in accordance with the shift theorem (Sec. 10.2.3). While the fea-
ture position is uniquely specified and can be recovered exactly via the inverse Fourier
transform, it may not be particularly visible in any convenient display of the spectrum.
(Note: If a single feature dominates the signal, then the phase plot will be linear, with slope
related to feature position (as per the shift theorem), and this can be used to locate the fea-
ture. A multiplicity of features or the presence of noise, however, normally makes the phase
plot so complicated as to be uninterpretable.)

By contrast, the Haar transform addresses lines and edges more directly, since its
basis functions resemble these features. Recall that a signal, or a component thereof, which
approximately matches one of the basis functions will produce, in the transform, a large
coefficient corresponding to that basis function. Since the basis functions are orthonormal,
that signal will produce small coefficients elsewhere. Thus, the Haar transform can call
attention to specific line and edge features by their size and location.

The eight-by-eight unitary kernel matrix for the Haar transform is

1101 111 1 1]
11 1 111 -1 -1
22-2-02 00 0 0
Hr=-L] 00 0 02.2-2-12 (50)
Bl 22 0 000 0 o0
00 2 200 0 0
00 0 02-2 0 0
00 0 000 2 -2]

and the same pattern holds for larger N. Because of the many constant and zero entries in the
matrix, the Haar transform is very fast to compute.

The basis images for N = 8 appear in Figure 13-6. Notice that the lower right quadrant
searches for small features at all different locations in the image.

13.6 EIGENVECTOR-BASED TRANSFORMS

Two important transforms use basis functions that are derived from eigenanalysis. (For a
more complete summary of eigenanalysis, with numerical examples, see Appendix 3.)
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2l

Figure 13-6 The Haar transform basis images for N = 8

13.6.1 Eigenanalysis

Recall that for an N-by-N matrix A, there are N scalars, A, k=0, ..., N— 1, such that
A-A41 =0 (51)
The A’s are called the eigenvalues of the matrix. (See Appendix 3.) Further, the set of N
vectors v such that
Av, = A4 v, (52)

are called the eigenvectors of A. They are N by 1, and each corresponds to one of the eigen-
values. The eigenvectors form an orthonormal basis set.

13.6.2 Principal-Component Analysis

Hotelling developed a linear transformation that removes the correlation among the ele-
ments of a random vector and called it “the method of principal components” [22]. Later,
Karhunen [23] and Loéve [24] developed an analogous transformation for continuous sig-
nals. This approach leads to, among other things, a discrete image transform.
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Suppose x is an N-by-1 randoin vector; that is, each element x; of x is a random vari-
able. The mean vector of x can be estimated from a sample of L such vectors by

L
1
me=7Y % (53)
=1
and its covariance matrix by
L
. 1 . :
Ce = 8{(x-m)(x-my)'} =7 > Xx{ - m,m] (54)

I=1
The covariance matrix is N by NV, real, and symmetric. The diagonal elements are the variances
of the individual random variables, while the off-diagonal elements are their covariances.
Now let the matrix A define a linear transformation that generates a new vector y from
any vector x by

y= A(X_mx) (55)

where A is constructed so that its rows are the eigenvectors of C,. For convenience, we
arrange the rows in order of decreasing magnitude of the corresponding eigenvalues.

The transformed vector, y, is a random vector with zero mean. Its covariance matrix
is related to that of x by

C, = ACA’ (56)

Since the rows of A are eigenvectors of Cy, Cy is a diagonal matrix having the eigenvalues
of C, along its diagonal. (This is a tesult of Eq. (52).) Thus,

A O
C, = : 67
0 Ay
and the A, are the eigenvalues of C, as well.
Because the off-diagonal elements of C, are zero, the elements of y are uncorrelated.
Thus, the linear transformation A removes the correlation among the variables. Further-
more, each A is the variance of y,, the kth transformed variable.

Notice that the transform of Eq. (55) is invertible; that is, we can reconstruct a vector
x from its transformed vector y by

x=Aly+m=A'y+m (58)
The latter equality holds because A is unitary and real, and thus orthogonal.

13.6.2.1 Dimension Reduction

We can reduce the dimensionality of the y vectors by ignoring one or more of the eigen-
vectors that have small eigenvalues. Let B be the M-by-N matrix (M < N) formed by dis-
carding the lower N — M rows of A, and assume, for simplicity, that m = 0. Then the
transformed vectors are smaller (i.e., M by 1) and are given by

y = Bx (59)
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but the x vectors can still be reconstructed (approximately) by

x = By (60)
The mean square error of this approximation is
N
MSE = % X (61)
k=M+1

that is, simply the sum of the eigenvalues corresponding to the discarded eigenvectors. Nor-
mally the eigenvalues vary considerably in magnitude, and the smaller ones can be ignored
without the introduction of significant error.

13.6.3 The Karhunen-Loéve Transform

Eq. (55) defines a (one-dimensional) discrete transform. It is variously called the Karhunen-
Loéve (or K-L) transform, the Hotelling transform, the eigenvector transform, or the
method of principal components. We adhere to the common practice in the literature of call-
ing it the K-L transform.

The dimension-reducing capability of the K-L transform makes it quite useful for
image compression. Multispectral images, for example, have many gray-level values at
every pixel, each gray-level corresponding to a different spectral band. Thus, a 1,000-by-
1,000 24-channel multispéctral image can be viewed as a set of one million 24-element ran-
dom vectors (i.e., the pixels).

The K-L dimension-reducing technique can be applied to this set of vectors. Since the
correlation between the different spectral bands of a multispectral image is commonly
rather high, many of the 24 eigenvalues will be small. This means that the stack of 24 mono-
chrome images can be represented with small error by only a few principal component
images. Each of these is computed as a weighted sum of the original 24. Further, each image
in the original set can be reconstructed, approximately, as a linear combination of the few
principal-component images. This greatly simplifies the storage and distribution of, for
example, images taken from Earth satellites.

In general, the basis images of the two-dimensional K-L transform depend upon the
statistics of the particular image being transformed and cannot be written explicitly. If the
image is a first-order Markov process, however, where the correlation between pixels
decreases linearly with their separation distance, then the basis images for the K-L trans-
form can be written explicitly [5,25]. The Markov assumption often fits commonly encoun-
tered images quite well. Further, as the correlation between adjacent pixels approaches
unity, the K-L basis functions approach those of the discrete cosine transform [1,26]. Thus,
the DCT, which is easily computed, approximates the K-L transform for commonly
encountered images.

13.6.4 The SVD Transform
Any N-by-N matrix A can be expressed as
A = UAV' (62)

where the columns of U and V are the eigenvectors of AA’, and A’A respectively, and A is
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an N-by-N diagonal matrix containing the singular values of A along its diagonal. (See
Appendix 3 for more complete coverage of the topic.) Since U and V are orthogonal,

A = U'AV (63)

Eq. (63) is thus the forward, and Eq. (62) the inverse, of a unitary transform pair. This trans-
form s called singular value decomposition (SVD) transform [27]. If A is symmetric, U=V.

Notice that, unlike the transforms discussed in earlier sections, the kernel matrices U
and V depend on the image A being transformed. In general, one must compute the eigen-
vectors of AA" and AA for each image undergoing the transformation. ‘

Notice also that since A is a diagonal matrix, it has at most N nonzero elements. Thus,
we get lossless compression by at least a factor of N, and it will be greater than that if A has
some zero (or negligible) singular values. Hence, the additional computation brings with it
significant data compression.

Normally, several of the singular values are small enough to be ignored with little
error. Thus “lossy” compression is achieved by ignoring the smaller A;; values. The mean
square error that results from this truncation is simply the sum of those singular values that
are ignored.

The apparently miraculous compression power of the SVD transform is somewhat
misleading. Although the entire image can be compressed into the diagonal elements of A,
the kernel matrices U and V are unique for the image being compressed. These would have
to be transmitted, along with the image, before reconstruction could occur at the receiving
end. Possibly, however, one pair of kernal matrices could serve (approximately) for a group
of similar images.

A Numerical Example. The SVD transform is illustrated in Figure 13-7, usmg
a symmetric five-by-five pixel image.

2 1 0] (6 14 18 14 6 [147.07] [0.186 0.638 0.241 —0.695 —0.695]
431 14 36 48 36 14 1.872 0476 0.058 —0.52 —0.133 —0.128
S 4 2| A-A'= |18 48 65 48 18] A={0058 | U=| 0691 —0422 0587 0 0

431 14 36 48 36 14 0 0476 0058 -0.52 0.133 0.128
21 0] 6 14 18 14 6 | o | 1 0.186 0.638 0241 0.695 0.695

( 12585 0 0 0 0 o 1 2 1 0]
0 —1.142 0 00 1 3 4 3 1
=UAU= | 0 0 O.’557 00 A=UAU= |2 4 6 4 2
0 0 0 00 1 3 4 3 1
0 0 0 0 0] L0 1 2 1 0
Forward transform Inverse transform

Figure 13-7 The SVD transform of a symmetric five-by-five pixel image
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13.7 TRANSFORM DOMAIN FILTERING
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In Chapter 10, we saw that linear filtering—the action of a linear, shift-invariant system—
can be modeled as a multiplication of the Fourier spectrum of an image by a transfer func-
tion defined in the frequency (i.e., transform) domain. While this important result is true
only for the Fourier transform, analogous image-filtering operations can be defined for
other transforms as well.

Like the Fourier transform, the general unitary transform expands an image as a
weighted sum of basis images. The forward transformation process determines the weight-
ing coefficients, while the inverse transformation reassembles the image from the expan-
sion of the basis images.

Transform domain filtering involves modification of the weighting coefficients prior
to reconstruction of the image via the inverse transform. With linear filtering, the transform
is the Fourier transform, and the modification is effected by multiplying the spectrum by a
transfer function. In the more general filtering case, the coefficient matrix is modified (by
multiplication or other means) and the inverse transform produces the filtered image.

Clearly, it is the nature of the basis vectors (and of the resulting basis images) that estab-
lishes the different behavior of the various transforms. For example, sinusoidal noise contam-
ination appears very compactly in the transform domain of a sinusoidal transform (recall
Figure 10-8) and is thus easily removed by setting the corresponding coefficients to zero. The
rectangular-wave transforms would be less well suited for this noise removal problem, since
the contamination would not be as separable from the signal in their transform domains.

In general, if either the (desirable) signal components or the (undesirable) noise com-
ponents of the image resemble one or a few of the basis images of a particular transform,
then that transform will be useful in separating the two. This is because those components
will be represented compactly in the transform domain. The general statement applies to
problems of noise removal and signal detection as well.

The Haar transform, for example, is a good candidate for detecting vertical and hor-
izontal lines and edges, since several of its basis images specifically match such features.

13.7.1 Edge, Line, and Spot Detection

Figure 13-8 illustrates the edge-detecting ability of the Haar transform on an eight-by-eight
image. Since the transform is separable, an image feature that is a vertical or horizontal line
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Figure 13-8 Edge detection in an
Image : Harr transform eight-by-eight image
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or edge produces nonzero entries in only the first row and the first column of the transform
image, respectively.

In the Haar transform, the feature produces at most N/2 non-zero entries. The position
of the feature determines which (and how many) of the entries are nonzero. In the other
transforms, all N entries of the first row or column are, in general, nonzero.

Figure 13-9 shows several transforms of an image containing a single-pixel spike
(impulse). All N? elements of these transforms are nonzero except for those of the Haar
transform, which has only 2N nonzero entries. Again, the location of the nonzero entries is
determined by the position of the spike.

. Sine 4 Cosine

4 A
! lm%

Hadamard

(c)

Figure 13-9 Transforms of an image containing an impulse: (a) DST; (b)
DCT; (¢) Hadamard: (d) Haar. The input is an eight-by-eight matrix, zero
everywhere except the upper left element, which has value eight

13.7.2 Filter Design

Because of its close association with shift-invariant linear systems, the Fourier transform
has a well-developed theoretical background to guide its use in image-filtering applications.
The other transforms are less well supported in theory, and their use is often more experi-
mental. An understanding of the similarities and differences among these transforms helps
guide the search for workable solutions.

13.8 SUMMARY OF IMPORTANT POINTS

1. The rows of an N-by-N transformation matrix are a set or orthonormal basis vectors
for an N-dimensional vector space.
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2. A unitary linear transformation generates a vector of N transform coefficients, each of
which is the inner product of the input vector with one of the rows of the transform
matrix.

3. The inverse transform is formed similarly, by inner products of the transform coeffi-
cient vector with the rows of the inverse transform matrix.

4. The inverse transform can also be viewed as forming a weighted summation of the
basis vectors, where the transform coefficients are the weights.

5. For a two-dimensional symmetric, separable unitary transformation, the basis images
are the outer products of the rows of the transform matrix.

PROBLEMS

1. The eigenvalues of an eight-channel multispectral image are [6.1 168 0.08 13 64 214 1.2 0.2].

What will be the RMS error if you use principal component analysis for 2:1 data compression?

2. Design an 8 by 8 Haar transform filter mask that will remove small horizontal edges from an

image.
PROJECTS

1. Develop a program that implements the discrete cosine transform, and use the program to dem-
onstrate highpass filtering for image enhancement.

2. Develop a program that implements the discrete Hartley transform, and use the program to dem-
onstrate lowpass filtering for noise reduction.

3. Develop a program that uses principal-component analysis to reduce a 24-bit-per-pixel color
image to a 16-bit-per-pixel representation and back. Produce demonstration images, and com-
ment upon the resulting degradation.

4. Develop a program that implements the slant transform, and use the program to demonstrate the
removal of linear shading.

5. Develop a program that implements the Haar transform, and use the program to show the edges
in an image.
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