Some
Mathematical Tools
Appendix 1

A1.1 COORDINATE SYSTEMS

A1.1.1 Cartesian

The familiar two- and three-dimensional rectangular (Cartesian) coordinate sys-
tems are the most generally useful ones in describing geometry for computer vi-
sion. Most common is a right-handed three-dimensional system (Fig. A1.1.). The
coordinates of a point are the perpendicular projections of its location onto the
coordinate axes. The two-dimensional coordinate system divides two-dimensional
space into quadrants, the three-dimensional system divides three-space into oc-
tants.

A1.1.2 Polar and Polar Space

Coordinate systems that measure locations partially in terms of angles are in many
cases more natural than Cartesian coordinates. For instance, locations with respect

z

X Fig. A1.1 Cartesian coordinate systems.
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to the pan-tilt head of a camera or a robot arm may most naturally be described us-
ing angles. Two- and three-dimensional polar coordinate systems are shown in Fig.
Al.2,
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In these coordinate systems, the Cartesian quadrants or octants in which points fall
are often of interest because many trigonometric functions determine only an an-
gle modulo /2 or 7 (one or two quadrants) and more information is necessery to
determine the quadrant. Familiar examples are the inverse angle functions (such
as arctangent) , whose results are ambiguous between two angles.

A1.1.3 Spherical and Cylindrical

The spherical and cylindrical systems are shown in Fig. Al.3.
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Fig. A1.2 Polar and polar space
X coordinate systems.
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A1.1.4 Homogeneous Coordinates

Fig. A1.3 Spherical and cylindrical
coordinate systems.
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Homogeneous coordinates are a very useful tool in computer vision (and com-
puter graphics) because they allow many important geometric transformations to
be represented uniformly and elegantly (see Section A1.7). Homogeneous coordi-
nates are redundant: a point in Cartesian n-space is represented by a line in homo-
geneous (n + 1)-space. Thus each (unique) Cartesian coordinate point
corresponds to infinitely many homogeneous coordinates.

Cartesian Coordinates

(x, y, 2)
x Y z
w owow

Sec. A1.1 Coordinate Systems

Homogeneous Coordinates
(wx, wy, wz, w)

(x, 5,2z, w)
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Here x, y, z, and w are real numbers, wx, wy, and wz are the products of the two
reals, and x/wand so on are the indicated quotients.

A1.2. TRIGONOMETRY

A1.2.1 Plane Trigonometry

Referring to Fig. Al1.4, define
sine: sin (4) (sometimes sin 4) = %
cosine:  cos (4) (orcos 4) = -Icl

tangent:  tan (4) (ortan 4) = —%

The inverse functions arcsin, arccos, and arctan (also written sin™!, cos™!, tan™!)
map a value into an angle. There are many useful trigonometric identities; some of
the most common are the following.

sin (x) _
cos (x)

sin (x + y) = sin (x) cos (y) + cos (x) sin (y)

tan (x) = —tan(—x)

cos (x + y) = cos (x) cos (y) — sin (x) sin (»)

tan (x) F tan (y)
1 F tan (x) tan(y)

tan (x = y) =

In any triangle with angles 4, B, C opposite sides a, b, c, the Law of Sines holds:

a_ _ b _ _c
sin A sin B sin C

as does the Law of Cosines:

a?= b2+ ¢* —2bc cos A

a=bcosC +ccosB

c Fig. Al.4 Plane right triangle.
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A1.2.2. Spherical Trigonometry

The sides of a spherical triangle (Fig. A1.5) are measured by the angle they sub-
tend at the sphere center; its angles by the angle they subtend on the face of the
sphere.

Some useful spherical trigonometric identities are the following.

sind _ sinB _ sinC
sin a sin b sin ¢

cos b cos(c + 0)
cosf

cosb cosc + sinb sinc cosA =

Cosa

Where tan 8 = tan b cos 4,

cosA = —cos B cosC + sinB sin C cosa

A1.3. VECTORS

Vectors are both a notational convenience and a representation of a geometric con-
cept. The familiar interpretation of a vector v as a directed line segment allows for a
geometrical interpretation of many useful vector operations and properties. A
more general notion of an n-dimensional vector v = (v, vy, ..., v,) is that of an
n-tuple abiding by mathematical laws of composition and transformation. A vector
may be written horizontally (a row vector) or vertically (a column vector).

A point in n-space is characterized by its n coordinates, which are often writ-
ten as a vector. A point at X, Y, Z coordinates x, y, and z is written as a vector x
whose three components are (x, y, z). Such a vector may be visualized as a
directed line segment, or arrow, with its tail at the origin of coordinates and its
head at the point at (x, y, z). The same vector may represent instead the direction
in which it points—toward the point (x, y, z) starting from the origin. An impor-
tant type of direction vector is the normal vector, which is a vector in a direction
perpendicular to a surface, plane, or line.

Vectors of equal dimension are equal if they are equal componentwise. Vec-
tors may be multiplied by scalars. This corresponds to stretching or shrinking the
vector arrow along its original direction.

Ax = (A\x, Axy, ..., AX,)

A b c Fig. A1.5 Spherical triangle.
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Vector addition and subtraction is defined componentwise, only between vectors
of equal dimension. Geometrically, to add two vectors x and y, put y’s tail at x’s
head and the sum is the vector from x’s tail to y’s head. To subtract y from x, put
y’s head at x’s head; the difference is the vector from x’s tail to y’s tail.

xty=0Gjxy,x2%yy ..., % = y,)

The length (or magnitude) of a vector is computed by an n-dimensional version of
Euclidean distance. ‘

Ix|= O +x + -+ +xD*

A vector of unit length is a unit vector. The unit vectors in the three usual Carte-
sian coordinate directions have special names.

i=(1,0,0
§=0,1,0
k=10,0,1

The inner (or scalar, or dot) product of two vectors is defined as follows.
X'y= lXHYICOSO =xy1+xy2+ 0+ X0,

Here 6 is the angle between the two vectors. The dot product of two nonzero
numbers is 0 if and only if they are orthogonal (perpendicular). The projection of x
onto y (the component of vector x in the direction y) is
Ix|cosg = 2L
Iyl

Other identities of interest:
x . y = y . x
x-y+2)=x-y+x-2
Ax-y)=Qx) -y=x-Qy)
x-x=|x?

The cross (or vector) product of two three-dimensional vectors is defined as
follows.

x Xy = (X353 = X3¥2, Xay1 = X1¥3, X12 — X21)
Generally, the cross product of x and y is a vector perpendicular to both x and y.
The magnitude of the cross product depends on the angle # between the two vec-
tors.
Ix x y|=|x|[y|sin®

Thus the magnitude of the product is zero for two nonzero vectors if and only if
they are parallel.
Vectors and matrices allow for the short formal expression of many symbolic _

App. 1 Some Mathematical Tools



expressions. One such example is the formal determinant (Section Al.4) which
expresses the definition of the cross product given above in a more easily remem-

bered form.
i j k
x X y=det|x; x; X3
Y1 Y2 V3
Also,

XXy=-yXx
xX(yxz)=xXy*xxxz

AMx Xy =AxXy=xX\y

ixj=k
jxk=i
kxi=]j
The triple scalar.product is x - (y X z), and is equivalent to the value of the
determinant '
X1 X3 X3
detly; y2 3
Zy Zp Z3

The triple vector product is
xX(yxz)=(x-2y— (x:yz

A1.4. MATRICES

A matrix A4 is a two-dimensional array of elements; if it has m rows and »n columns
it is of dimension m X n, and the element in the ith row and jth column may be
named a;. If m or n = 1, a row matrix or column matrix results, which is often
- called a vector. There is considerable punning among scalar, vector and matrix
representations and operations when the same dimensionality is involved (the 1 x
1 matrix may sometimes be treated as a scalar, for instance). Usually, this practice
is harmless, but occasionally the difference is important.
A matrix is sometimes most naturally treated as a collection of vectors, and
sometimes an m X n matrix M is written as

M= [al a - a,,]

Sec. A1.4 Matrices » 471
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or

where the a’s are column vectors and the b’s are row vectors.

Two matrices 4 and B are equal if their dimensionality is the same and they
are equal elementwise. Like a vector, a matrix may be multiplied (elementwise) by
a scalar. Matrix addition and subtraction proceeds elementwise between matrices
of like dimensionality. For a scalar k and matrices 4, B, and C of like dimensional-
ity the following is true.

Two matrices A and B are conformable for multiplication if the number of
columns of 4 equals the number of rows of B. The product is defined as

C = AB where an element c;; is defined by c¢; = 3, auby
k
Thus each element of C is computed as an inner product of a row of 4 with a
column of B. Matrix multiplication is associative but not commutative in general.
The multiplicative identity in matrix algebra is called the identity matrix I Iis all
zeros except that all elements in its main diagonal have value 1 (a,-j =1ifi=j, else
= (). Sometimes the n X nidentity matrix is written 7,,.
The transpose of an m X n matrix A is the n X m matrix 47 such that the

i,jth element of A4 is the j,ith element of AT If AT = A, Ais symmetric.
The inverse matrix of an n x nmatrix 4 is written 4. If it exists, then

g4 =1
If its inverse does not exist, an n x nmatrix is called singular.
With k and p scalars, and 4, B, and C m x n matrices, the following are
some laws of matrix algebra (operations are matrix operations):
A+B=B+4
A+B)+C=4+B+0)
k(4 + B) = kA + kB
(k + p)A = kA + pA
AB # BA in general
(4B)C = A(BC)
A(B + C)=A4B + AC
(4 +B)C=A4AC + BC
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A(kB) = k(4B) = (kA)B

I,A=Al,= A
(4 +B7) =4+ BT
(4B)T= BT4T

(4B)'=B147!

The determinant of an n X n matrix is an important quantity; among other
things, a matrix with zero determinant is singular. Let 4;; be the (n—1) x (n—1)
matrix resulting from deleting the ith row and jth column from an n X nmatrix 4.
The determinant of a 1 x 1 matrix is the value of its single element. Forn > 1,

det 4 =Y, a; (=1)*/ det 4;

i=1

for any j between 1 and n. Given the definition of determinant, the inverse of a
matrix may be defined as

@) = (=1)"/ det 4;

¢y det 4

In practice, matrix inversion may be a difficult computational problem, but
this important algorithm has received much attention, and robust and efficient
methods exist in the literature, many of which may also be used to compute the
determinant. Many of the matrices arising in computer vision have to do with
geometric transformations, and have well-behaved inverses corresponding to the
inverse transformations. Matrices of small dimensionality are usually quite compu-

" tationally tractable.

Matrices are often used to denote linear transformations; if a row (column)
matrix X of dimension nis post (pre)multiplied by an n x nmatrix 4, the result X’
= XA (X' = AX) is another row (column) matrix, each of whose elements is a
linear combination of the elements of X, the weights being supplied by the values
of 4. By employing the common pun between row matrices and vectors, x' = x4
(x' = Ax) is often written for a linear transformation of a vector x.

An eigenvector of an n X n matrix A4 is a vector v such that for some scalar A
(called an eigenvalue),

vA = AV

That is, the linear transformation 4 operates on v just as a scaling operation. A ma-
trix has n eigenvalues, but in general they may be complex and of repeated values.
The computation of eigenvalues and eigenvectors of matrices is another computa-
tional problem of major importance, with good algorithms for general matrices be-
ing complicated. The r eigenvalues are roots of the so-called characteristic polyno-
mial resulting from setting a formal determinant to zero:

det (4 — \I) = 0.
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Eigenvalues of matrices up to 4 X 4 may be found in-closed form by solving the
characteristic equation exactly. Often, the matrices whose eigenvalues are of in-
terest are symmetric, and luckily in this case the eigenvalues are all real. Many al-
gorithms exist in the literature which compute eigenvalues and eigenvectors both
for symmetric and general matrices.

A1.5. LINES

474

An infinite line may be represented by several methods, each with its own advan-
tages and limitations. An example of a representation which is not often very use-
ful is two planes that intersect to form the line. The representations below have
proven generally useful.

A1.5.1 Two Points

A two-dimensional or three-dimensional line (throughout Appendix 1 this short-
hand is used for “‘line in two-space’’ and ‘‘line in three-space’’; similarly for “‘two
(three) dimensional point’’) is determined by two points on it, x1 and x2. This
representation can serve as well for a half-line or a line segment. The two points
can be kept as the rows of a (2 X n) matrix.

A1.5.2 Point and Direction

A two-dimensional or three-dimensional line (or half-line) is determined by a
point x on it (its endpoint) and a direction vector v along it. This representation is
essentially the same as that of Section A1.5.1, but the interpretation of the vectors
is different.

A1.5.3 Slope and Intercept

A two-dimensional line can often be represented by the Y value b where the line
intersects the Y axis, and the slope m of the line (the tangent of its inclination with
the x axis). This representation fails for vertical lines (those with infinite slope).
The representation is in the form of an equation making explicit the dependence of
yonx

y=mx+b

A similar representation may of course be based on the X intercept.
A1.5.4 Ratios

A two-dimensional or three-dimensional line may be represented as an equation of
ratios arising from two points x1 = (x;, y;, z;) and x2 = (x,, y,, z,)on the line.
X—x1 _yY—h»h _z—1z

X2 — X1 Y2— N 22—z
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A1.5.5 Normal and Distance from Origin (Line Equation)

This representation for two-dimensional lines is elegant in that its parts have useful
geometric significance which extends to planes (not to three-dimensional lines).
The coefficients of the general two-dimensional linear equation represent a two-
dimensional line and incidentally give its normal (perpendicular) vector and its
(perpendicular) distance from the origin (Fig. A1.6).

 From the ratio representation above, it is easy to derive (in two dimensions)
that

(x —x;)sin@ — (y—y)cosd=0
so for
d = —(x; sin @ —y, cos 0),

xsing—ycosd+d=20

This equation has the form of a dot product with a formal homogeneous vector
CE

(x, 5, 1) - (sind, —cos®, d) =0

Here the two-dimensional vector (sin 8, —cos 6) is perpendicular to the line (itisa
unit normal vector, in fact), and dis the signed distance in the direction of the nor-
mal vector from the line to the origin. Multiplying both sides of the equation by a
constant leaves the line invariant, but destroys the interpretation of d as the dis-
tance to the origin.

This form of line representation has several advantages besides the interpre-
tations of its parameters. The parameters never go to infinity (this is useful in the
Hough algorithm described in Chapter 4). The representation extends naturally to
representing n-dimensional planes. Least squared error line fitting (Section A1.9)
with this form of line equation (as opposed to slope-intercept) minimizes errors
perpendicular to the line (as opposed to those perpendicular to one of the coordi-
nate axes).

S X
d /
/ Fig. A1.6 Two-dimensional line with
/ normal vector and distance to origin.
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A1.5.6 Parametric

It is sometimes useful to be able mathematically to ‘‘walk along’’ a line by varying
some parameter ¢. The basic parametric representation here follows from the two-
point representation. If x1 and x2 are two particular points on the line, a general
point on the line may be written as

x =x1 + #(x2—x1)

In matrix terms this is .
x= [t 11L

where L is the 2 X n matrix whose first row is (x2 — x1) and whose second is x1.
Parametric representations based on points on the lines may be transformed by the
geometric point transformations (Section A1.7).

A1.6. PLANES

476

The most common representation of planes is to use the coordinates of the plane
equation. This representation is an extension of the line-equation representation
of Section A1.5.5. The plane equation may be written

ax +by+cz+d=0

which is in the form of a dot product x - p= 0. Four numbers given by
p = (a, b, ¢, d) characterize a plane, and any homogeneous point x = (x, y, z, w)
satisfying the foregoing equation lies in the plane. In p, the first three numbers
(a, b, ¢) form a normal vector to the plane. If this normal vector is made to be a
unit vector by scaling p, then d is the signed distance to the origin from the plane.
Thus the dot product of the plane coefficient vector and any point (in homogene-
ous coordinates) gives the distance of the point to the plane (Fig. A1.7).

z

</ Fig. A1.7 Distance from a point to a plane.
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Three noncollinear points x1, x2, x3 determine a plane p. To find it, write

x1

x2 8
x3 P= 1o
0001 1

If the matrix containing the point vectors can be inverted, the desired vector p is
thus proportional to the fourth column of the inverse.
Three planes pl, p2, p3 may intersect in a point x. To find it, write

pl p2 p3 0

0
1

If the matrix containing the plane vectors can be inverted, the desired point p is
given by the fourth row of the inverse. If the planes do not intersect in a point, the
inverse does not exist.

A1.7 GEOMETRIC TRANSFORMATIONS

This section contains some results that are well known through their central place
in the computer graphics literature, and illustrated in greater detail there. The idea
is to use homogeneous coordinates to allow the writing of important transforma-
tions (including affine and projective) as linear transformations. The transforma-
tions of interest here map points or point sets onto other points or point sets. They
include rotation, scaling, skewing, translation, and perspective distortion (point
projection) (Fig. A1.8). ’

A point x in three-space is written as the homogeneous row four-vector
(x, y, z, w), and postmultiplication by the following transformation matrices ac-
complishes point transformation. A set of m points may be represented as an
m x 4 matrix of row point vectors, and the matrix multiplication transforms all
points at once.

A1.7.1 Rotation

Rotation is measured clockwise about the named axis while looking along the axis

toward the origin.
Rotation by 8 about the X axis:

1 0 0
0 cosf@ —sin6
0 sin® cosé
0 0 0

—_OO O

Sec. A1.7 Geometric Transformations 477
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(a) {b) (c)

(d) (e) (f)

Fig. A1.8 Transformations: (a) original, (b) rotation, (c) scaling, (d) skewing,
(e) translation, and (f) perspective.

Rotation by 6 about the Yaxis:

cosf O sind O
0 1 0 0
—sin® 0 cosf O
0 0 0 1

Rotation by 6 about the Z axis:

cos® —sind 0 0
sin® cos® O O
0 0 10
0 0 01

A1.7.2 Scaling

Scaling is stretching points out along the coordinate directions. Scaling can
transform a cube to an arbitrary rectangular parallelepiped.
Scale by S, S, and S, in the X, Y, and Z directions:
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A1.7.3 Skewing

Skewing is a linear change in the coordinates of a point based on certain of its other
coordinates. Skewing can transform a square into a parallelogram in a simple case:

1000
d1l 00
0010
0 0 01

In general, skewing is quite powerful:

On Q—
Pk
oy X

0
0
0
1

Rotation is a composition of scaling and skewing (Section A1.7.7).
A1.7.4 Translation

Translate a point by (¢, u, v):

1 00
010
0 01

SOO

t u v 1

With a three-dimensional Cartesian point representation, this transformation is ac-
complished through vector addition, not matrix multiplication.

A1.7.5 Perspective

The properties of point projection, which model perspective distortion, were
derived in Chapter 2. In this formulation the viewpoint is on the positive Z axis at
(0, 0, £, 1) looking toward the origin: facts like a ‘‘focal length’’. The visible world
is projected through the viewpoint onto the Z = 0 image plane (Fig. A1.9).

Y

\
\\ /,/’ b, vy, 2)

X Fig. A1.9 Geometry of image formation. *

Sec. A1.7 Geometric Transformations 479



480

Similar triangles arguments show that the image plane point for any world
point (x, y, z) is given by

(U, v) =

f z

Using homogeneous coordinates, a ‘‘perspective distortion” transformation can
be written which distorts three-dimensional space so that after orthographic projec-
tion onto the image plane, the result looks like that required above for perspective
distortion. Roughly, the transformation shrinks the size of things as they get more
distant in Z. Although the transformation is of course linear in homogeneous coor-
dinates, the final step of changing to Cartesian coordinates by dividing through by
the fourth vector element accomplishes the nonlinear shrinking necessary.
Perspective distortion (situation of Fig. A1.9):
0 00
1 00
l
-1
01 7
0 01

S O O =

Perspective from a genéral viewpoint has nonzero elements in the entire fourth
column, but this is just équivalent to a rotated coordinate system and the perspec-
tive distortion above (Section A1.7).

A1.7.6 Transforming Lines and Planes

Line and plane equations may be operated on by linear transformations, just as
points can. Point-based parametric representations of lines and planes transform as
do points, but the line and plane equation representations act differently. They
have an elegant relation to the point transformation. If T'is a transformation matrix
(3 x 3 for two dimensions, 4 x 4 for three dimensions) as defined in Sections
Al.7.1to A1.7.5, then a point represented as a row vector is transformed as

x' =xT

and the linear equation (line or plane) when represented as a column vector v is
transformed by

A1.7.7 Summary

The 4 x 4 matrix formulation is a way to unify the representation and calculation of
useful geometric transformations, rigid (rotation and translation), and nonrigid
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(scaling and skewing), including the projective. The semantics of the matrix are
summarized in Fig. A1.10.

Since the results of applying a transformation to a row vector is another row
vector, transformations may be concatenated by repeated matrix multiplication.
Such composition of transformations follows the rules of matrix algebra (it is asso-
ciative but not commutative, for instance). The semantics of

x' = xABC

is that x' is the vector resulting from applying transformation 4 to x, then B to the
transformed x, then C to the twice-transformed x. The single 4 x 4 matrix D =
ABC would do the same job. The inverses of geometric transformation matrices
are just the matrices expressing the inverse transformations, and are easy to
derive.

A1.8. CAMERA CALIBRATION AND INVERSE PERSPECTIVE

Sec. A1.8

The aim of this section is to explore the correspondence between world and image
points. A (half) line of sight in the world corresponds to each image point. Camera
calibration permits prediction of where in the image a world point will appear. In-
verse perspective transformation determines the line of sight corresponding to an
image point. Given an inverse perspective transform and the knowledge that a visi-
ble point lies on a particular world plane (say the floor, or in a planar beam of
light), then its precise three-dimensional coordinates may be found, since the line
of sight generally intersects the world plane in just one point.

Scale in Skew
X
Scale in Perspective
Y
Skew Scale in
V4
Translate Zoom v
e} Fig. A1.10 The 4 x 4 homogeneous
transformation matrix.
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A1.8.1 Camera Calibration

This section is concerned with the ‘‘camera model’’; the model takes the form of a
4 x 3 matrix mapping three-dimensional world points to two-dimensional image
points. There are many ways to derive a camera model. The one given here is easy
to state mathematically; in practice, a more general optimization technique such as
hill climbing can be most effective in finding the camera parameters, since it can
take advantage of any that are already known and can reflect dependencies between
them.

Let the image plane coordinates be U and ¥, in homogeneous coordinates an
image plane point is (u,v,t). Thus

U

Nlc NI:

vV

Call the desired camera model matrix C, with elements C; and column four-
vectors C;. Then for any world point (x, y, z) a Cis needed such that
G,y zDC=(uv1)
So
u=(xy21)C
v=1>(xy21)C
t=1(xy21C;

Expanding the inner products and rewriting u — Ut = 0and v — Vt = 0,

xC“ +yC21 + ZC31 + C41 - UxC13 - UyC23 - UZC33 - UC43 =0
an + ysz + ZC32 + C42 - VxC13 - VyC23 - VZC33 - VC43 =0

The overall scaling of C is irrelevant, thanks to the homogeneous formulation, so
C43 may be arbitrarily set to 1. Then equations such as those above can be written
in matrix form:

1
yboz1 0 0 0 0 -Ulx! -yuy! -yl .
0 0 0 x' yt ' 1 —=vixl —pht -yl Cu Ul
o221 . Cn |4
| i
0 0 0 x" yr 2zt 1 —=V"™%" —=V%" —V"z"]||Cx yn
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Eleven such equations allow a solution for C. Two equations result for every
association of an (x, y, z) point with a (U, ¥) point. Such an association must be
established using visible objects of known location (often placed for the purpose).
If more than 5% such observations are used, a least-squared-error solution to the
overdetermined system may be obtained by using a pseudo-inverse to solve the
resulting matrix equation (Section A1.9).

A1.8.2 Inverse Perspective

Finding the world line corresponding to an image point relies on the fact that the
perspective transformation matrix also affects the z component of a world point.
This information is lost when the z component is projected away orthographically,
but it encodes the relation between the focal point and the z position of the point.
Varying this third component references points whose world positions vary in z but
which project onto the same position in the image. The line can be parameterized
by a variable p that formally occupies the position of that z coordinate in three-
space that has no physical meaning in imaging.
Write the inverse perspective transform P! as

(C p,l)P1 )y, p,l+§)

Rewriting this in the usual way gives these relations between the (x, y, z) points on
the line.

NS ) S j M
f+p f+p fHD

Eliminating the parameter p between the expressions for z and x and those for z
and y leaves

Oy z1)=

x = 7 y f (z f)
Thus x, y, and z are linearly related; as expected, all points on the inverse perspec-
tive transform of an image point lie in a line, and unsurprisingly both the viewpoint
(0, 0, f) and the image point (x’, y', 0) lie on it.
A camera matrix C determines the three-dimensional line that is the inverse
perspective transform of any image point. Scale C so that Cy; = 1, and let world
points be written x = (x, y, z, 1) and image pointsu = (u, v, ¢). The actual image

points are then
U=%,V+—:, sou=0Ut v+ W
Since
- u=xC,
u=Ut=xC
v=Vt=xC,
t=xC;
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Substituting the expression for tinto that for v and v gives
UxC; = xC,
VxC; = xC,
which may be written
x(C,—UC3) =0
x(C,— VCy) =0

These two equations are in the form of plane equations. For any U, V'in the image
. and camera model C, there are determined two planes whose intersection gives the
desired line. Writing the plane equations as

aix+by+cz+d =0
ax + by +ciz+dy=0
then
a=Cy—CpU ay=Cp—CuV

and so on. The direction (\, u, v) of the intersection of two planes is given by the
cross product of their normal vectors, which may now be written as

O\, 1, v) = (ay, by, c1) X (ay, by, )
= (b]Cz—bzcl, cia;— CLa,, a1b2—a2b1)
Then if v # 0, for any particular z,

_ b1 (0220 + dz) - b2 (6‘120 - dl)
ayb, — biay

X0

a, (Cl zo + dl) - ai (6220 - d2)
ayb; — bia,

Yo=

and the line may be written

X—Xp Y T"JYo _Z7T Zo

A M v

A1.9. LEAST-SQUARED-ERROR FITTING

The problem of fitting a simple functional model to a set of data points is a com-
mon one, and is the concern of this section. The subproblem of fitting a straight
line to a set of (x, y) points (‘‘linear regression”’) is the first topic. In computer vi-
sion, this line-fitting problem is encountered relatively often. Model-fitting
methods try to find the “‘best” fit; that is, they minimize some error. Methods
which yield closed-form, analytical solutions for such best fits are at issue here.

484 App. 1T Some Mathematical Tools



The relevant “‘error’’ to minimize is determined partly by assumptions of depen-
dence between variables. If x is independent, the line may be represented as y =
mx + band the error defined as the vertical displacement of a point from the line.
Symmetrically, if x is dependent, horizontal error should be minimized. If neither
variable is dependent, a reasonable error to minimize is the perpendicular distance
from points to the line. In this case the line equation ax + by + 1 = 0 can be used
with the method shown here, or the eigenvector approach of Section A1.9.2 may
be used.

A1.9.1 Pseudo-Inverse Method

In fitting an n x 1 observations matrix y by some linear model of p parameters, the
prediction is that the linear model will approximate the actual data. Then

Y=XB+FE

where X is an n X p formal independent variable matrix, Bis a p x 1 parameter
matrix whose values are to be determined, and E represents the difference
between the prediction and the actuality: itisan n x 1 error matrix.

For example, to fit a straight line y = mx + b to some data (x;, y;) points,
form Yas a column matrix of the y;.

1 X1

1 X2

X = 1 ‘X3
N )
B=|nm

Now the task is to find the parameter B (above, the b and m that determine
the straight line) that minimizes the error. The error is the sum of squared
difference from the prediction, or the sum of the elements of E squared, or ETE (if
we do not mind conflating the one-element matrix with a scalar). The mathemati-
cally attractive properties of the squared-error definition are almost universally
taken to compensate for whatever disadvantages it has over what is really meant by
error (the absolute value is much harder to calculate with, for example).

To minimize the error, simply differentiate it with respect to the elements of
B and set the derivative to 0. The second derivative is positive: this is indeed a
minimum. These elementwise derivatives are written tersely in matrix form. First
rewrite the error terms:

ETE = (Y — XB)T(Y — XB)
YTY — BTXTY — Y'XB + BTX"XB
YTy — 2B"XTY + BTX"XB
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(here, the combined terms were 1 x 1 matrices.) Now differentiate: setting the
derivative to 0 yields

0= XTXB — XTy
and thus
B= (XTX)‘_IXTY= X'y

where X7 is called the pseudo-inverse of X.

The pseudo-inverse method generalizes to fitting any parametrized model to
data (Section A1.9.3). The model should be chosen with some care. For example,
Fig. A1.11 shows a disturbing case in which the model above (minimize vertical -
errors) is used to fit a relatively vertical:swarm of points. The ‘‘best fit”’ line in this
case is not the intuitive one.

A1.9.2 Principal Axis Method

The principal axes and moments of a swarm of points determine the direction and
amount of its dispersion in space. These concepts are familiar in physics as the
principal axes and moments of inertia. If a swarm of (possibly weighted) points is
translated so that its center of mass (average location) is at the origin, a symmetric
matrix M may be easily calculated whose eigenvectors determine the best-fit line
or plane in a least-squaréd-perpendicular-error sense, and whose eigenvalues tell
how good the resulting fit is.

Given a set {x/} row of vectors with weights w’, define their ‘‘scatter matrix’’
to be the symmetric matrix M, where x' = (x{, x}, x}):

M=inrx’
i

My,=Y xixi 1<kp<3
i

Define the dispersion of the x'in a direction v (i.e., ‘‘dispersion around the
plane whose normal is v>*) to be the sum of weighted squared lengths of the x/in
the direction v. This squared error E2 is

E2=Y w (x'-9:=v (T wixTx)vT=vMvT
i i

Y
.
°
)
.
.
—_— v~
)
o ®
.
° Fig. A1.11 A set of points and the
° X <pest fit” line minimizing error in Y.

App. 1 Some Mathematical Tools



To find the direction of minimum dispersion (the normal to the best-fit line or
plane), note that the minimum of vMv7 over all unit vectors v is the minimum
eigenvalue A; of M. If v, is the corresponding eigenvector, the minimum disper-
sion is attained at v = v;. The best fit line or plane of the points goes through the
center of mass, which is at the origin; inverting the translation that brought the
centroid to the origin yields the best fit line or plane for the original point swarm.

The eigenvectors correspond to dispersions in orthogonal di\rections, and the
eigenvalues tell how much dispersion there is. Thus with a three-dimensional
point swarm, two large eigenvalues and one small one indicate a planar swarm
whose normal is the smallest eigenvector. Two small eigenvalues and one large
one indicate a line in the direction of the normal to the ‘‘worst fit plane’’, or eigen-
vector of largest eigenvalue. (It can be proved that in fact this is the best-fit line in a
least squared perpendicular error sense). Three equal eigenvalues indicate a
‘“‘spherical’> swarm.

A1.9.3 Fitting Curves by the Pseudo-Inverse Method

.Given a function f(x) whose value is known on npoints xy, ..., X,, it may be use-
ful is to fit it with a function g (x) of m parameters (b4, ..., b,). If the squared er-
ror at a point x; is defined as

(e,')2 = [f(x,') - g(x,)]2

a sequence of steps similar to that of Section A1.9.1 leads to setting a derivative to

zero and obtaining

0= GT’Gb - Gt
where b is the vector of parameters, f the vector of n values of f(x), and

[9g(x) 02 (xy)

9b; 9b;
G-25-1 |
dg(x,)
0b,,

As before, this yields

b= (GTG)! G'f

Explicit least-squares solutions for curves can have nonintuitive behavior. In
particular, say that a general circle is represented

fCo,y)=x*+y*+2Dx +2Ey + F

this yields values of D, E, and Fwhich minimize

{ e?= i S, )2

i=1
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for n input points. The error term being minimized does not turn out to accord
with our intuitive one. It gives the intuitive distance of a point to the curve, but
weighted by a factor roughly proportional to the radius of the curve (probably not
desirable). The best fit criterion thus favors curves with high average curvature,
resulting in smaller circles than expected In fitting ellipses, this error criterion
favors more eccentric ones.

The most successful conic fitters abandon the luxury of a closed-form solu-
tion and go to iterative minimization techriques, in which the error measure is ad-
justed to compensate for the unwanted weighting, as follows.

) _ S Gy
-3 [Wf(x,, ]

A1.10 CONICS

488

The conic sections are useful because they provide closed two-dimensional curves,
they occur in many images, and they are well-behaved and familiar polynomials of
low degree. This section gives their equations in standard form, illustrates how the
general conic equation may be put into standard form, and presents some sample
specific results for characterizing ellipses.

All the standard form conics may be subjected to rotation, translation, and
scaling to move them around on the plane. These operations on points affect the
conic equation in a predictable way.

Circle: r = radius  x? + y? = r?

2
Ellipse: a, b = major, minor axes x4 % =1
a

Parabola: (p, 0) = focus, p = directrix ~ y* = 4px

2

Hyperbola: vertices (+ a, 0), asymptotes y = +[ lx X X -

b2
The general conic equation is
Ax*+2Bxy + Cy* +2Dx + 2Ey + F=0

This equation may be written formally as

A B D X|
x y 1) |B C E| |y|=xMxT=0
D E FlI 1

Putting the general conic equation into one of the standard forms is a common ana-
lytic geometry exercise. The symmetric 3 X 3 matrix M may be diagonalized, thus
eliminating the coefficients B, D, and E from the equation and reducing it to be
close to standard form. The diagonalization amounts to a rigid motion that puts the
conic in a symmetric position at the origin. The transformation is in fact the 3 x 3
matrix Ewhose rows are eigenvectors of M. Recall that if v is an eigenvector of M,

vM = \v
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Then if Dis a diagonal matrix of the three eigenvalues, A{, A, A3,
EM = DE
but then
EME'= DEE'=D

and M has been transformed by a similarity transformation into a diagonal matrix
such that

xDxT=10

This general idea is of course related to the principal axis calculation given in Sec-
tion A1.9.2, and extends to three-dimensional quadric surfaces such as the ellip-
soid, cone, hyperbolic paraboloid, and so forth. The general result given above has
particular consequences illustrated by the following facts about the ellipse. Given a
general conic equation representing an ellipse, its center (x,, y.) is given by

CD—BE
X = 2_
B*—AC
5 = EA — BD
¢ B2—4C

The orientation is

6 = Jtan™! ['Z"—f—é-l
The major and minor axes are
-2@G
U+C)+[B+U-0)%

where
G=F— (4x} + B, + &)

A1.11 INTERPOLATION

Interpolation fits data by giving values between known data points. Usually, the in-
terpolating function passes through each given data point. Many interpolation
methods are known; one of the simplest is Lagrangean interpolation.

A1.11.1 One-Dimensional

Given n + 1 points (x;, y;), xg < x; < -+ < x,, the idea is to produce an nth-
degree polynomial involving »n + 1 so-called Lagrangean coefficients. It is

fx) - i L;(x)y;
j=0
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.(Xo,y1) .(Xp)’])

h T 0 (xo +qk, v, +ph)

1 —L ® (xo. Vo) ® (xy,¥)

l——- gk —>

Fig. A1.12 Four point lagrangean
! k -~ interpolation on rectangular grid.

where L;(x) is the jth coefficient;
Oc—xg) (x—xp) -+ Oc=—x-1) Ce—x;0p) -+ (x—x,)

Li(x) = O =xg) Oi—x) -+ Cg—x-p) Gg—x4p) -+ Gg—x,)

Other interpolative schemes include divided differences, Hermite interpola-
tion for use when function derivatives are also known, and splines. The use of a po-
lynomial interpolation rule can always produce surprising results if the function be-
ing interpolated does not behave locally like a polynomial.

A1.11.2 Two-Dimensional

The four-point Lagrangean method is for the situation shown in Fig. A1.12. Let f;;
= f(x,-, yj). Then

fOo+ gk, yo+ ph) = (1=p) (1=¢q) foo+ q(1=p) fro+p(A—q) for + pafu

A1.12 THE FAST FOURIER TRANSFORM
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The following routine computes the discrete Fourier transform of a one-
dimensional complex array XIn of length N = 2\°¢N and produces the one-
dimensional complex array XOut. It uses an array W of the N complex Nth roots of
unity, computed as shown, and an array Bits containing a bit-reversal table of
length N. N, LogN, W, and Bits are all global to the subroutine as written. If the
logical variable Forward is TRUE, the FFT is performed; if Forward is FALSE, the
inverse FFT is performed.

SUBROUTINE FFT (XIn, KOut, Forward)
GLOBAL W, Bits, N, LogN

LOGICAL Forward

COMPLEX XIn, Xout, W, A, B
INTEGER Bits

ARRAY (0:N) W, Bits, XIn, XOut
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DO (I =0, N—1) XOut(I) = XIn(Bits(I))
JOff = N/2
JPnt = N/2
JBk =2
IOFF=1
DO (I=1,LogN)
DO (IStart = 0,N—1, JBk)
JWPnt =20
DO (K = IStart, IStart + IOff— 1)
WHEN (Forward)
A = XOut(K + IOff) + W(JWPnt) + XOut(K)
B = XOut(K + IOff) x W(JWPnt + JOff) + XOut(K)
... FIN
ELSE
A = XOut (K + IOff) * CONJG(W(JWPnt)) + XOut(K)
B = XOut(K + IOff) x CONJG (W (JWPnt + JOff)) + XOut(K)
... FIN
XOut(K) = A
XOut(K + I0ff) =B
JWPnt = JWPnt + JPnt
... FIN
... FIN
JPnt = JPnt/2
I0ff = JBk
JBk = JBk * 2
... FIN
UNLESS (Forward)
DO (I=0,N-—1) XOut(I) = XOut(I)/N
... FIN
END

TO INIT-W
Pi = 3.14159265
DO (K=0,N-1)
Theta = 2 * Pi/N
W(K) = CMPLX(COS(Theta * K), SIN(Theta * K))
... FIN
FIN

TO BIT-REV
Bits(0) =0
M=1
DO (I=0,LogN—-1)
DO J=0,M-1)
Bits(J) = Bits(J) *2
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Bits(J + M) = Bits(J) + 1
... FIN
M=M=+«2
... FIN
FIN

A1.13 THE ICOSAHEDRON

Geodesic dome constructions provide a useful way to partition the sphere (hence
the three-dimensional directions) into relatively uniform patches. The resulting
polyhedra look like those of Fig. A1.13.

The icosahedron has 12 vertices, 20 faces, and 30 edges. Let its center be at

the origin of Cartesian coordinates and let each vertex be a unit distance from the
center. Define

¢, the golden ratio = l—tz——\/i '
Vi
a—-g,‘/‘—
1.
b=—
t 5%

1
—a+2b=—
c=a b b

t%
d=a+b=ﬁ

A = angle subtended by edge at origin = arccos(%)
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Fig. A1.13 Multifaceted polyhedra from the icosahedron.
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Then

angle between radius and an edge = b = arccos (5)
edge length = 2
distance from origin to center of edge = a

distance from origin to center of face = -%

The 12 vertices may be placed at
(0, xa, £b)
(b, 0, +a)
(xa, +b, 0)

Then midpoints of the 20 faces are given by
B(+d, +d, +d)
B( 0, +a, =+c)
B(+e, 0, *a)
Yi(xa, =c, 0)

To subdivide icosahedral faces further, several methods suggest themselves,
the simplest being to divide each edge into n equal lengths and then construct »?
congruent equilateral triangles on each face, pushing them out to the radius of the
sphere for their final position. (There are better methods than this if more uniform
face sizes are desired.)

A1.14 ROOT FINDING

Since polynomials of fifth and higher degree are not soluble in closed form, numer-
ical (approximate) solutions are useful for them as well as for nonpolynomial func-
tions. The Newton-Raphson method produces successive approximations to a real
root of a differentiable function of one variable.

xitl = xi— M
S x)
Here x'is the ith approximation to the root, and f (x?) and f’(x’) are the function
and its derivative evaluated at x’. The new approximation to the root is x'*1. The
successive generation of approximations can stop when they converge to a single
value. The convergence to a root is governed by the choice of initial approximation
to the root and by the behavior of the function in the vicinity of the root. For in-
stance, several roots close together can cause problems.

The one-dimensional form of this method extends in a natural way to solving
systems of simultaneous nonlinear equations. Given n functions F;, each of n
parameters, the problem is to find the set of parameters that drives all the func-
tions to zero. Write the parameter vector x.
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X1
X2

Xn

Form the function column vector F such that

F 1 (X)
F,(x)
Fx)=| |
1F,(x)
The Jacobean matrix Jis defined as
0F, 0F, o 9F;
dx; Ox; 0x,
e

dF, cee dF,
0x1 0x,

Then the extension of the Newton-Raphson formula is

xt = x— JU(x) F(x')

which requires one matrix inversion per iteration.

Al

Al.2

Al3
Al4
AlS

Al.6

EXERCISES

x and y are two two-dimensional vectors placed tail to tail. Prove that the area of the
triangle they define is|x x y|/2.

Show that points q in a plane defined by the three points x, y, and z are given by
q- [(y—x) X (z—x)] =x-(yxz

Verify that the vector triple product may be written as claimed in its definition.
Given an arctangent routine, write an arcsine routine.
Show that the closed form for the inverse of a 2 x 2 A matrix is

1 az —apn
det 4 [—axn an

Prove by trigonometry that the matrix transformations for rotation are correct.
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Al.7

~Al.8
Al.9
Al.10

Al.11
Al.12

Al.13

Al.14

Al.15

Al.16
Al.17

Al.18

Al.19

A1.20

Al.21
Al.22

What geometric transformation is accomplished when a44 of a geometric transfor-
mation matrix 4 varies from unity?

Establish conversions between the given line representations.
Write a geometric transform to mirror points about a given plane.

What is the line-equation representation of a line L1 through a point x and per-
pendicular to a line L2 (similarly represented) ? Parallel to L2?

Derive the ellipse results given in Section A1.10.
Explicitly derive the values of D, E, and Fminimizing the error term
n
2 lf (xi:yi)]z
i=1
in the general equation for a circle
x*+y?+2Dx +2Ep + F=10

Show that if points and lines are transformed as shown in Section A1.7.6, the
transformed points indeed lie on the transformed lines.

Explicitly derive the least-squared-error solution for lines represented as ax + by
+1=0.

If three planes intersect in a point, is the inverse of

pl p2 p3 O
0
0
1

guaranteed to exist?
What is the angle between two three-space lines?

In two dimensions, show that two lines u and v intersect at a point x given by x =
uxv.

How can you tell if two line segments (defined by their end points) intersect in the
plane?

Find a 4 x 4 matrix that transforms an arbitrary direction (or point) to lie on the Z
axis.

Derive a parametric representation for planes based on three points lying in the
plane.

Devise a scheme for interpolation on a triangular grid.
What does the homogeneous point (x, y, z, 0) represent?
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