Spatial Domain Filtering

Image origin FIGURE 3.32 The
X mechanics of
spatial filtering.
The magnified
drawing shows a
3 % 3 mask and
the image section
directly under it
the image section
is shown
displaced out
from under the
mask for ease of
readability.

Image f(x. y)

w0, 0

wil.~1 w1

Mask coefficients, showing
coordinate arrangement

Pixels of image
section under mask

Spatial Domain Filtering

O =

1 2
2 4
1 2

ab
FIGURE 3.34 Two

3 X 3 smoothing
(averaging) filter
masks. The
constant multipli
erin front of each
mask is equal to
the sum of the
values of its
coefficients, as is
required to
compute an
average.

Spatial Domain Filtering

el
I

aaaaaadaad

s |
11111

aaaaaaaad

11—

aaaaaaad

oo
-» Ao

-
]

saaaaaaad

ad
(]

.s:.l.’lélail

e L

|

T F

FIGURE 3.35 (a) Original image, of size 500 x 500 pixels. (b)—(f) Results of smoothing
with square averaging filter masks of sizes n = 3.5.9,15,and 35. respectively. The black
squares at the top are of sizes 3.5.9, 15,25, 35,45, and 55 pixels, respectively: their bor-
ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points. in
increments of 2 points: the large letter at the top is 60 points. The vertical bars are 5 pix-
els wide and 100 pixels high: their separation is 20 pixels. The diameter of the circles is
25 pixels, and their borders are 15 pixels apart: their gray levels range from 0% to 100%
black in increments of 20%. The background of the image is 10% black. The noisy rec-
tangles are of size 50 x 120 pixels.

Fourier Transform

3.1 INTRODUCTION TO THE FOURIER TRANSFORM

Let f(x) be a continuous function of a real variable x. The Fourier
transform of f(x), denoted by &{f(x)}, is defined by the equation

S{f(x)} = F(u) :f_oo f(x) exp[—j27ux] dx (3.1-1)

Example: Consider the simple function shown in Fig, 3.1(a). Its Fo
transform is obtained from Eq. (3.1-1) as follows:

AT
. [)
F(u) =f f(x) exp[—j27ux] dx
— o0
A
X
=f A exp[—j27rux] dx : oy
0 0 X
(a)
- —4 —2mx X _— A —2muX . o
J2mu [e Jo= J27u [e7/2m — 1] | £l
A)(’\\l
= ‘ muX o —jmuX | a—jauX
J2mu e/ e /mt e k
u
=4 Sin(m;X) e —JmuX —3/X —2/X —I/Xx 0 I/X 2/X 3/X
TU .
which is a comp'lex function. The Fourier spectrum is given by (b)
_ A . - » ,
‘F(“)l il |sm(7ruX)] fe ‘"’“X] _ Figure 3.1. A simple function and its Fourier spectrum.
o sin(7uX)
(muX)

A plot of [F(u)lis shown in Fig, 3.1(b).

2-D Fourier Transform

Example: The Fourier transform of the function shown in Fig, 3.2

' (x v 1F(w, v
given by ' 7ix, »)

J2a(ux + vy)] dx dy

X
. i
- X ~) . ~ Y . ‘ : :
= A] exp| —7/371.'_'”I d_\‘f exp| 7‘]27“4 dy
- k - 3 (a) \ (b)
2 Yo y T }
!" e 1-5”:4\:| [e J2mwy .l
Sl g | =2
= _’1_(»—jlmuX __] e RayY _ 1
= g 7 S | |
sin(7uX) e /X sin(mrY) e /Y
N (7uX') (7rY)

(©)

Figure 3.2. (a) A two-dimensional function, (b) its Fourier spectrum, and (c) the spe¢
trum displayed as an intensity function.

Spatial Frequency

f(x)

3

K points
A poir
7 »-X
M points —

f(x)

3

2K points

A

b——M points ——— "

Fu)|

o

AK
M

> U
F——"—M points —

Fu)|

24K _ #
M W

pooef] e

Au =

X

F———M points ———— "

ab

o fii

FIGURE 4.2 (a) A
discrete function
of M points, and
(b) its Fourier
spectrum. (¢) A
discrete function
with twice the
number of
nonzero points,
and (d) its Fourier
spectrum.

1

M Ax

Fourier Transform Shift

" Figure 3.1l. (a) A simple image. (\b) Fourier spectrum, without shifting, (c) Fourier spec-
trum shifted to the center of the frequency square.

Fourier Transform Rotation

re 3.12. Rotational properties of the Fourier transform. (a) A simple image. (b)
trum, (c) Rotated image. (d) Resulting spectrum.

Sample 2-D Fourier Transforms

TI IR
A

Power Spectra

aaaaaaadd

ab

FIGURE 4.11 (a) An image of size 500 X 500 pixels and (b) its Fourier spectrum. The
superimposed circles have radii values of 5, 15, 30, 80, and 230, which enclose 92.0,
94.6,96.4, 98.0, and 99.5% of the image power, respectively.

Image Enhancement in the
Frequency Domain

Frequency domain filtering operation

Filter
function
H(u,v)

Inverse
Fourier
transform

Fourier
transform

H(u,v)F(u,v)

flx.y) g(x.y)
Input Enhanced
image image

FIGURE 4.5 Basic steps for filtering in the frequency domain.

2-D Fourier Transform

a
b

FIGURE 4.4

(a) SEM image of
a damaged
integrated circuit.
(b) Fourier
spectrum of (a).
(Original image
courtesy of Dr. J.
M. Hudak,
Brockhouse
Institute for
Materials
Research,
McMaster
University,
Hamilton,
Ontario, Canada.)

2-D High- & Low-Pass Filters

v

\ u‘/— Origin
ab

I‘A
cd

FIGURE 4.7 (a) A two-dimensional lowpass filter function. (b) Result of lowpass filtering the image in Fig. 4.4(a).
(c) A two-dimensional highpass filter function. (d) Result of highpass filtering the image in Fig. 4.4(a).

2-D Notch Filter

FIGURE 4.6
Result of filtering
the image in

Fig. 4.4(a) with a
notch filter that
set to 0 the
F(0,0) term in
the Fourier
transform.

ab
cd
i

(<

Low-Pass Filtering in Frequency Domain

H(u,v) H(u,v)

.]H
I
-

= o || - n

- Ay s

u v D(u,v
) D,)
u

abc

FIGURE 4.10 (a) Perspective plot of an ideal lowpass filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross section.

FIGURE 4.12 (a) Original image. (b)—(f) Results of ideal lowpass filtering with cutoff
frequencies set at radii values of 5. 15, 30, 80, and 230, as shown in Fig. 4.11(b). The
power removed by these filters was 8.5.4,3.6.2, and 0.5% of the total. respectively.

.

aaaaaadaad

"

ﬂ

e
.

.o...“‘

saannnaa

@

aaaaaaaad

aaaaaadaadd

Non-linear Filtering

abc

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a
3 X 3averaging mask. (¢) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr. Joseph
E. Pascente, Lixi, Inc.)

1D Convolution

fie)

gla)

12

B I ISR s
) 1
(a) (b)
ol—a) Blx —a)

v/
i @ = ‘] a
(© (@
NMeglx — a) falg(x — a)
' nsx<l 1<x<2
1 1
il "2
[] N
o X « — x=1 Ij\"' a
(e) (n
fx)glx)
12
- X
i 2
()

Figure 3.13. Graphical illustration of convolution. The shaded areas indicate regions where
the product is not zero.

Finite Area Superposition Operator

LxL impulse
response array
rotated by 180°

-

2D Convolution

N xN data
array

p(1,1) = p(0,0)%k(0,0) + p(1,0)xk(1,0)
+ p(2,0)%k(2,0) + p(0,1)*%k(0,1)
+ p(1,1)*k(1,1) + p(2,1)*k(2,1)
+ p(0,2)%k(0,2) + p(1,2)%k(1,2)
+ p(2,2)*k(2,2)

or

2

p(1,1) = > . k(m,n)xp(m,n)

=

FIGURE 9.1-1. Relationships between input data
array and impulse response array for finite area
superposition.

Computation Requirements

2

pxy) = 2. k(m,n)xp(x+m,y+n)

mn = 0

Convolving an area of size X by Y with
a kernel of size n by m requires X*Y*nsm
multiplies and adds. Thus, a 256 by 256
image with a 3 by 3 kernel requires
589,824 multiply/add operations; this can
take a long time on a computer without
fast multiplication hardware.

2D Transforms as 1D Computations

0,00

V-1)

ftx, »)

W=D

F(u, v)

w-n_,) WD, 00
Row transforms Column |
T F(x, v) EEE) |
Multiplication by V | ' transforms |
(N-1)} (N-1)
& |
x" u

Figure 3.9. Computation of the two-dimensional Fourier transform as a series of ¢
dimensional transforms.

Sample C Code for Spatial Processing

Listing 5: A C code fragment for a 3 by 3 convolution algorithm that uses |
separate source and destination memories to avoid overlapping the output
convolution values with the inputs to the convolution.

*

/* Set up kernel for "sharpening" (high-frequency boosting)
the image x/
static int kernel[9] = §-1,-1,-1,
_13 93_10
—10—10-1-;;

/* Increment starting position and decrement image size
to accommodate the convolution edge effects x/
X+4; y++; dx-——; dy——;
/* Set up address offsets for the output =/
xx = 0; yy = 0;
/* Scan through source image, output to destination */
for (i =y ; I < y+dy ; i++) ¢

xx = @; /* Reset x output index x/

for (J = x ; J < x+dx ; Jj++) §
sum = O; /* Zero convolution sum x/
k_pointer = kernel; /* Pointer to kernel values x/

/* Inner loop to do convolution (correlation!) %/
for (n=~=1; n <=1 ; n++) §
for (m= -1 ; m <= 1 ; m++)
eiim = sum 4+ raad pixel(i+m.i+n)x(xk pointer++):

Spatial Derivatives

a
b

de

FIGURE 3.44

A 3 X 3region of
an image (the z's
are gray-level
values) and masks
used to compute
the gradient at
point labeled zs.
All masks
coefficients sum -1 0 0 -1
L0 zero, as
expected of a
derivative

(g}
]

»
29
)
>
»)

2
=
29
n
>
>

29
-~

>
>

>
)

operaltor. 0 ! I 0
-1 -2 -1 -1 0 1
0 0 0 -2 0 2

Edge Processin

i

Photo 7: An image of Devil’s Tower Photo 8: Convolution of photo 7 with
Nationql Monument in Wyoming, a kernel (shown in the upper left
before image processing. corner) that amplifies vertical edges.

More Edge Processing

oto 9: Convolution of photo 7 with
ternel (shown in the upper left

rner) that amplifies horizontal edges
you can see, this image doesn’t

ve many horizontal edges.

Second Order Derivatives

0 l 0

0 | 0

Figure 7.37 Mask used to compute the Laplacian.

2D Edge Finding

Figure 7.36 (a) Input image. (b) Result of using Eq. (7.6-44).

0 1 0 1 1 1
1 —4 1 1 -8 1
0 1 0 1 1 1
0 -1 0 -1 1 -1
-1 4 -1 -1 8 -1
0 -1 0 -1 1 1

ab
c d

FIGURE 3.39

(a) Filter mask
used to
implement the
digital Laplacian,
as defined in

Eq. (3.7-4).

(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal
neighbors. (¢) and
(d) Two other
implementations
of the Laplacian.

Edge Location

Y77

| &

/ﬁj///
%

<A
SN\

\\\\ A

N

\\
NN

Fig. 3.11 Edge models for orientation
and displacement sensitivity analyses.

ANNN \\E NN NN
AAIIHN
NN

ab

cd

FIGURE 3.40

(a) Image of the
North Pole of the
moon.

(b) Laplacian-
filtered image.
(c) Laplacian
image scaled for
display purposes.
(d) Image
enhanced by
using Eq. (3.7-5).
(Original image
courtesy of
NASA.)

Sharpening

