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Application - Traffic Tracking

We want to track
vehicles on a road

« Eg: The truck in the
images to the left

« They are moving with
a (fairly) constant
velocity

» In each frame we can
measure the position
of a feature on the
vehicle we want to
track
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State Update Equation
oo hme betwekn Theps -

* We assume the truck is X, =X tu 1
moving with a constant v=y.+v_ -4
velocity u=u

e Qur state is the truck
position (x,y) and velocity
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* Ateach time the velocity
adds on to the position
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Measurement Equation

* Ateach time we can detect
features in the image

* These make our
measurements, m,

* We can directly measure
the position of the truck,
but not the velocity
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An Initial Estimate

e The initial estimate of ~ * We also need to give

the state the (un) certainty
— We give a rough value of x - Our. e_stir{late of the
and y to say which feature position is good to
we are tracking within a few pixels
— We probably won’t have — Our motion estimate is
any idea about uand v not good, but we
- Sowewilluse = | expect the motion to be
} inthok eshimate  small

o ex — We represent this as a
covariance matrix
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Covariance Matrices

e Sowhatis a * Given a vector of
covariance matrix? variables

» It gives the x=[x1,x2,...,xk

relationships between « The covanance . C, i

sets of vanables o

\ a kxk matrix
* The variance of a « The i/ entry of Cis:
variable, x, is Cij=cov(x,y)
var(x) = E((x-x)?) " 44

) A diagonal entry, C,;,
» The covanance of two gives the varianc

variables, x and y, is the variable x,
cov(x,y) =E((xx)(y-y)) « Cis symmetric
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Covariance in Noise

The noise terms v (the
measurement noise or
error) and w (the process
noise) need to be
estimated.

— They have zero mean, and

covariance matrices R and
Q respectively.

— We need an estimate of
these matrices. Q and R say
how certain we are about
our model equations.

* To estimate Q (the process

noise)

— Our initial estimate will be
within a few pixels, say ¢
=3

— The velocity is a bit less
certain, but won't be large,
say =5

— There is no reason to think
that the errors are related,
so the covariance terms will
be zero
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a priori Estimate Covariance
Matrix

e The variances of x and y are 32=9 ‘g Hese acshmohon §
oNL M
e The variances of u and v are 52=25 prmeno

e Since we assume independence the off-diagonal
entries are alle
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Uncertainty in the model

s Our model equations « In general

have noise terms « Often the terms will
« v represents the fact be independent. If.
that our state update this is the case the *
model may not be off-diagonal entries .\
accurate will be zero
« w represents the fact « Choosing the diagonal
that measurements entries (varainces)is.

will always be noisy often more difficul

. Wepeed to estimate
their covariances




Process Noise Covariance Q

* The state update » These errors wil
equation is not probably be small

perfect « The motion is slow. #
« It assumes that the and quite smooth
motion is constant but « So the vanance in
u and v might change these terms is
over time probably a pixel or
« It assumes that all less, say o = %2
the motion is
represented by v and
v but other factors Q o

might affect x and y

whoe we gssummed the same
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Measurement Error Covariance R

» The measurements
we make will be
noisy

« The features are
located only to the
nearest pixel

» Because of image
noise, aliasing, etc,
they might be off by a
pixel or so

» These errors are ¢

bit easier to est:mafe%

« The feature is
probably in the ng
place, or a pixel off

« So the vaniance in
these terms is

probablyo? =1

R =

10
01
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1. Predict the State o oy

¢ We can now run the 1o
filter = 0 1
— First we make a prediction : 0O 0
of the state at t=1 based on
our initial estimate at t=0 _0 0
100 |
~ 1170
S =
0
| 0

1 0][100]

0 1170} g poschin
1 0 O

0 1__ 0 |

Pred!ch'on o‘ﬁ::hde

€. the et pornt

Thio 1o whone [we will ook
for nuxt state

12



2. Update the a priori Prediction
Covariance

P-=AP,A" +Q
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3a. Look for the Next Point

* The state prediction
gives us a guide to
where the feature
will be

« We expect it to be
near (100,170)

« The vanance in the x
position is 34.25

« The vaniance inthe y
position is 34.25 also

e We can use this t

restrict our searc
for a feature «,
« We are 95% certain
that the feature lies ir

a circle of radius 20 o
the prediction

0 =+34.25 ~5.85

« We look for a featur
in this region
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3b. Making the Actual
Measurement

Within the search region
We compute a value that
tells us how likely each
point is to be a feature
(Harris interest operator)

We find the point with the

s . N
largest value within this y

region We look for a feature near |
. | 103 our predicted value, and |
Thisis ™=, s the covariances tell us how .
widely to search




4. Compute the Kalman Gain

« We now combine
the prediction and
measurement

« We compute the
Kalman gain matrnx

« This takes into
account the relative
certainty of the two
pieces of information

K = P-H™ (HP-HT.

0972 0

o 0972
0702 O

o 0709

« The first components
are close to 1, which
will give more trust.

the measuremery

This begins the measurement update (“correct”)
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5. Update the a posteriori error

Covariance
P, =P +K,HP,
(3425 0 25 o | [o0972 o 3425 0 2
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3 0 2535 0 0709 0 tood 5 o
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6. Update estimate with
measurement m1,

e The new (a posteriori) state estimate based upon
measurement m, is then

5,=8, +K, (m, — HS;)

18



Iteration
e We compute the next state

* And project the error covariance ahead.

P =AP_A"+Q

Th tells vs whewto look nexd.




Iteration

We repeat this cycle
for each frame

Over time the state
predictions become
more accurate

* The Kalman gain takes

this into account and
places more weight on
the predictions

To implement the
Kalman filter

We need a lot of
matrix subroutines

These are tiresome to
code by hand, but there
are several libraries
available

Only need basic
operations: +, -,X,
transpose, and inverse
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Chapter 9
Morphological Image Processing
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FIGURE 9.1
() Twosels A
and B. (b) The
union of A and B.
(¢) The
intersection of A
and B. (d) The
compl ol A,
(¢) The dilference
between A and B.
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Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the V?)
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Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the
2000, VEB
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(i) Saimple text of
pour resulution
with broken
charactens
(magnificd view).
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FIGURE 9.7 (i) Image of squares ol size 1.3 5 7.9 and 15 pixels on the side, (b Erosion of @) with a square
structuring element of s 13 pixeds on the side. ie) Diliation of (b) with the same structuring element.
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