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Review: Probability and Random Variables

Several Random Variables (Con't)

The joint central moment of order kg involving random
variables x and y is defined as

Hig = El(x - my)*(y — my)4]

Il

j j. (x — my)*(y — my)9p(x, y)dxdy

where m, = E[x] and m, = E[y] are the means of x and y, as
defined earlier. We note that

pro = E[(x—my)?]| and |pox = E[(y —my)?]

are the variances of x and y, respectively.

© 2002 R. C. Gonzalez & R. E. Woods
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Review: Probability and Random Variables

Several Random Variables (Con't)

The moment p,

pun = Ef(x—=my)(y —my)]

N«

C’ij + j .‘. (x —my)(y — my)p(x,y)dxdy

£ 3

is called the covariance of x and y. As in the case of
correlation, the covariance is an important concept, usually
given a special symbol such as C, .

© 2002 R. C. Gonzalez & R. E. Woods
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Several Random Variables (Con't)

By direct expansion of the terms inside the expected value

brackets, and recalling the m, = E[x] and m, = E[y], it is
straightforward to show that

Cyxy = E[xy] — myE[x] — myE[y] + memy
= Elxy] — E[x]E[y]

= Ry — E[x]E[y].

From our discussion on correlation, we see that the covariance is

zero if the random variables are either uncorrelated or statistically
independent. This is an important result worth remembering.

Q.yé— t [(x~ mx‘)(uym%)} - E [Xé“ Mxy = My% + Ny My |
18 K, = ELX \E (:“\] Tha Vomable s ara wneorrel ted
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Review: Probability and Random Variables

Several Random Variables (Con't)

If we divide the covariance by the square root of the product of
the variances we obtain

_ H1l
|/,U:(1,Uu3

Y
Cyy

0'.\'(;'_\'

= /5[ (x —my) (v —my) :|

Oy Oy

The quantity 7 is called the correlation coefficient of random
variables x and y. It can be shown that y is in the range -1 <y <1
(see Problem 12.5). As discussed in Section 12.2.1, the
correlation coefficient is used in image processing for matching.

© 2002 R. C. Gonzalez & R. E. Woods
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Review: Probability and Random Variables

The Multivariate Gaussian Density

As an illustration of a probability density function of more than
one random variable, we consider the multivariate Gaussian
probability density function, defined as

i 1 %[(,\; m)’C '(&m)]
)(\) = e 2
/ (271’)”“|C|] 2

where 7 is the dimensionality (number of components) of the
random vector x, C is the covariance matrix (to be defined
below), |C| is the determinant of matrix C, m is the mean
vector (also to be defined below) and 7 indicates transposition
(see the review of matrices and vectors).

© 2002 R. C. Gonzalez & R. E. Woods
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Review: Probability and Random Variables

The Multivariate Gaussian Density (Con't)

The miean vector is defined as

/f[.\‘ 1 ]
/iv[.\‘ 2 ]

Elxs |

and the covariance matrix is defined as

C=Ex-m)(x-m)T]

© 2002 R. C. Gonzalez & R. E. Woods
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Review: Probability and Random Variables

The Multivariate Gaussian Density (Con't)

The element of C are the covariances of the elements of x, such
that

Cyj = Cyx, = /(“[('\‘l = ”11)('\7/ B ”lf)]

where, for example, x; is the ith component of x and m; is the
ith component of m.

© 2002 R. C. Gonzalez & R. E. Woods
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The Multivariate Gaussian Density (Con't)

Covariance matrices are real and symmetric (see the review of
matrices and vectors). The elements along the main diagonal of C
are the variances of the elements x, such that ¢,= ¢, >. When all
the elements of x are uncorrelated or statistically independent, ¢, =
0, and the covariance matrix becomes a dizgonal matrix. If all the
variances are equal, then the covariance matrix becomes
proportional to the identity matrix, with the constant of
proportionality being the variance of the elements of x.

©2002 R. C. Gonzalez & R. E. Woods
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The Multivariate Gaussian Density (Con't)

Example: Consider the following bivariate (n = 2) Gaussian
probability density function

/)(‘) _ ] e %[(x m) C™ (x-m) ]
(2”)”:ICl] 2
with
m
m —
m»-
and
¢l C12
C =
c21 C22

© 2002 R. C. Gonzalez & R. E. Woods
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Review: Probability and Random Variables

where, because C is known to be symmetric, ¢;, = ¢,,. A
schematic diagram of this density is shown in Part (a) of the
following figure. Part (b) is a horizontal slice of Part (a). From the
review of vectors and matrices, we know that the main directions
of data spread are in the directions of the eigenvectors of C.
Furthermore, if the variables are uncorrelated or statistically
independent, the covariance matrix will be diagonal and the
eigenvectors will be in the same direction as the coordinate axes x,
and x, (and the ellipse shown would be oriented along the x, - and
x,-axis). If, the variances along the main diagonal are equal, the
density would be symmetrical in all directions (in the form of a
bell) and Part (b) would be a circle. Note in Parts (a) and (b) that
the density is centered at the mean values (m,,m,).

© 2002 R. C. Gonzalez & R. E. Woods
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The Multivariate Gaussian Density (Con't)
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Linear Transformations of Random Variables

As discussed in the Review of Matrices and Vectors, a linear
transformation of a vector x to produce a vector y is of the form
y = Ax. Of particular importance in our work is the case when
the rows of A are the eigenvectors of the covariance matrix.
Because C is real and symmetric, we know from the discussion
in the Review of Matrices and Vectors that it is always possible
to find »n orthonormal eigenvectors from which to form A. The
implications of this are discussed in considerable detail at the
end of the Review of Matrices and Vectors, which we
recommend should be read again as a conclusion to the present

discussion.

© 2002 R. C. Gonzalez & R. E. Woods
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Pl xample: estimating points on a line

X=a¥Y+b

© 2002 R. C. Gonzalez & R. E. Woods
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1
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Fig. 8.1.1. Definition of a random variable X.

Estimate the value of X given Y by points on a straight line

Write the mean square error as
E(e*)= E{[X— x]z} = E{[x~(ar +p)T}
Set partial derivative of mean square error wrt b equal to zero to get b

%E(zz) =E{2[X-aY -b](-1)} =—2E(X)+2aE(Y)+2b=0

b=E(X)-aE(Y)=my, —am,

- 75
| 4——compiile, My, 0y
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ptochastic processes and ensembles

» A stochastic process produces an output waveform rather
than just a number

* A specific output waveform is denoted by X(t,))
* A collection of time functions X(t,£,) is called an ensemble
* Mix, Fig.6.1.1 illustrates an ensemble

© 2002 R. C. Gonzalez & R. E. Woods

-~ ‘\\_
/ \ _~
/,,.,- \  /  - Sl .
L f hn 0 om
o | ensemble .
/7 l," y
\ /
/ Y
[ i -

43



Digital Image Processing, 2nd ed.

www. i col

Mean Square Estimation

~

e Let e=X—-X where ¢ is the error between
the random variable X and our estimate X

* The mean squared error is:
E@ﬂ=EUX—XY}

+ The value of X which minimizes E (e’ )is <—f——
Thin o

the minimum mean-square estimate of X it et by
vsed m The
wenex
©2002 R. C. Gonzalez & R. E. Woods ‘F}' \ ‘\ e
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<vbshtuhng for b
« The mean square ‘error is then

E(ez)

O-Y
e or X=0319Y-05

Digital Image Processing, 2nd ed.

xample: estimating points on a line

«  We can calculate the means and variances of the data to get
=Bu_p319 b= my —am, = 0.5 - (0.319)(3.17) = 0.5

K. col

covanomiq

E(e)=E [[X—aY—mx+amy]} E{[(x my)—a(Y —m,)] \/ puoﬂ

=E (X—mx)z—/?/q—mx)(y_

» Take the derivative wrt a and set equal to zero to get a =

y)rat (Y- mY) }: 2au11+a0
My

e

© 2002 R. C. Gonzalez & R. E. Woods

Fig. 8.1.2. Estimates for X'
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b ontinuous Waveform Calculations

e The inner product (v )=

It
b
e~

—
=
o

=
—
=

=
ISy

e The norm or length ¢

1}
—
<

o
—
=
o
S

e Distance metric  a(wv.)=/[[n(©)-v.()T a

© 2002 R. C. Gonzalez & R. E. Woods
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Al Discrete Waveform Calcylations
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/ Random Variable Calculations

The inner product (XI¥)=E(xY)

The norm or length  £(x)- JE(x’)

Distance metric  a(x.r)=|x-v|=[E(x- 7))

Orthogonal requires (xr)=£(xr)=0

© 2002 R. C. Gonzal ez & R. E. Woods
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Linear estimator

d= hox(n)+ hx(n—1)+ hyx(n—2)+ hx(n— 3)+...+hpx(n -p)

where x(i) is the data, the h,’s are constants, and d is
the estimate of the output d

In general x(n)=s(n)+w(n) where s is the actual
signal and w is white noise

Extrapolation: d(n)=s(n+k) eshima@ o futune /a(u,q_\
Interpolation: d(n)=s(n—k) est\mofre o. previoue- Volue
Smoothing: d(n)=s(n) estimale The cuvvent] value

©2002 R. C. Gonzalez & R. E. Woods
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Orthogonality Principle
minimize thia by malt i

b
L x thia ®© thi eshmadld OJS !
- T s

. . - i e X
e The error ¢ is the difference between the Pk

estimate ax and the parameter d to be
estimated pctiinl-

« The length of the error vector ¢ is
minimized when the error is orthogonal to
the data x.

© 2002 R. C. Gonzalez & R. E. Woods
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Single Observation

o € <*T\ ma.tlu eom,
e Given one observation x(n) and we want to estimate s(n)A

poservation x(n)=s(n)+w(n) d(n)=s(n) ¢ \som eshmely 656 s(n)
* Require the error e(n)=d(n)- 3( n)to be orthogonal to the data x(n)

E{e(n)x(n)}zE{(Mx(n)}=O : mj}‘/ ,
 Using the estimate c}(n) = hyx(n) glves W 3DUL have on volue The
E{(d(n)—hox(n))x(n)}=E{d } h E{x } 0 a >“F\mo:b, ® S\m?\e
* This can be re-arranged to give
E{d(n)x(n)} - hOE{x(n)x(n)} =Ry (0) —HhyRyy (O) =0
¢ Which says the optimum estimator is given when :
_ Ry (0)
R (0)

© 2002 R. C. Gonzalez & R. E. Woods

See .S\\rc}\.b #ZC] A i
= E{xjj f X P(x,%}dx&%

=>o

Th o called the correlatiov o_L X amd l?

';wncﬁoﬂ
0N \s0 col \e,d_ S Ngg - co{'fe(,(k'\“m n

and e moment Yy

NOTE |
E [A(n))((n)j - E[s(n)X (n)] = Ki‘x (o)
Thie W OJN(N&/ Yhe Q?;EEEWC;:
be fweamn. Fro hee s
woneformss.

1y second MINUS

+V&P\C¢\\Laf e —FH‘S"'

52



Digital Image Processing, 2nd ed.

www.i

Multiple Observations

e Given two observation and we want to estimate s(n)
x(n)=s(n)+w(n d(n)=s(n)
» Require the error e( ) d(n)- ( )to be orthogonal to the data x(n)

Efe(n)x(n)} = E{(d(n) - d(n))x(n)} =0

« Using the estimate d( )= hyx(n)+hx(n—1) now gives two
equations

E{(d(n)—hox() hyx(n— l } E{d n)x(n)}—h“E{x( An} hE{xn 1)x n} 0
E{(d(n)= hyx(n) = hx(n=1))x(n- 1} E{d(n)x(n=1)} - hE{x(n)x(n—1)} - hE{x(n=1)x(n-1)} =0

© 2002 R. C. Gonzalez & R. E. Woods
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Multiple Observations

« Rewriting these equations in terms of autocorrelation functions
E{d(n)x(n)} - hOE{x(n)x(n)} - hlE{x(n - l)x(n)} = Ry (0) = hyRyy (0) = hgRy (=1)=0
E{d(n)x(n—1)} = hE{x(n)x(n—1)} = hE{x(n=1)x(n—1)} = Rpy (1) = hyRyy (1)~ BiRy (0) = 0

e And putting them in matrix form gives
[Rxx(o) Ry <—1>][hn]=[km(o>} Rox (0]
Rxx(l) R)D((O) hl Rux(]) RSX (\)
«  Which can be solved for hy and h;. \ 7‘{

rememloer A(X) & SOQ

© 2002 R. C. Gonzalez & R. E. Woods
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Single Observation Example

¢ Find the optimum h, and mean-square error in estimating s(n) if the data is

x(n)=s(n)+w(n). The noise w(n) is white Gaussian noise with zero mean and unit
variance. The signal, which is also zero mean and is independent of the noise, has an
e

autocorrelation function given by Rgg(n)=0.9/!

«  The solution requires that we compute both Ryy(0) and Rgx(0).
¢ Computing Ryx(0)

R (0)= E{x(n)x(n)} = E{(s(n) + w(n))(s(n) + w(n))}

Ry (0)= E{s(n)s(n)}+ E{s(n)w(n)} + E{w(n)s(n)} + E{w(n)w(n)}

Ryx (0) = R (0) + Ry (0)+ Rys (0) + Ry (0)

«  Both cross-correlations are zero since the signal is independent of the noise and for

white noise wa(n)=8(n) giving
0)+ Ry, (0 0.9°+0+0+68(0)=

©2002R. C. Gonzalez & R. E. Woods / T l]\ \
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«  Computing Rex(0). RSX(O) = E{s(n)x(n)} = E{s(n)(s(n) + w(n))}
Ry (0) E{s(n)s(n)} + E{s(n)w(n)}
Ry (0)= Ry (0)+ Ry, (0)=0.9°+0=1

e We can evaluate the optimum estimator coefficient as

h o RSX (O) __l
) = =
R (0) 2

»  The mean squared error is given by
E(el) = E((s(n)— §(n))(s(n)— §(n))) = E((s(n)— h()x(n))(s(n)— h(,x(n)))
E(&) = E(s(n)s(n)) = hE(s(n) x(n)) = hoE (x(n)s(n)) + B E (x(n) x(n))

Al Single Observation Example Ccort|.)

E(€) = Res (0) = hyRyy (0) — hy Ry (0) + 2 Ry (0) = 0.9° - [%)1_ [%)1 4 (%) 2 %
()= E [@cn) -3 sn)-2 mﬂ
— Yy~ ) ‘g
] the ) " E om
d rienimﬁaawmw T NOSE - free valu amd mvifuz‘;

Twe V)O\f:«a_
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Two Observation Example

«  Expand the previous example to two observations, i.e., find the optimum h; and h, in
estimating s(n) if the data is x(n)=s(n)+w(n). The noise w(n) is white Gaussian noise
with zero mean and unit variance. The signal, which is also zero mean and is
independent of the noise, has an autocorrelation function given by Rgg(n)=0.9/"!

e The solution requires that we compute evaluate the matrix
|:Rxx (0) Ryx (_1)][}'0}:[1?“(0)] g(l); O
Ru) Ra(0) )7 Re() Jr
The new quantities to be evaluated are Ryy(1), Ryx(-1), and Rgx(1) .
Ry (1)= Ry (1) + Ry, (1) + Ry (1) + Ry, (1)=0.9" +0+ 0+ 5(1) =

Ry (—1)= R (=1)+ Ry, (- 1)+Rws(—1)+wa(—1)=0.9""+0+0+6\(1)=
RSX(1)= { ( ) (n+1)} E{s(n)( (n+l)+w(n+l))}

Ry (1)= {s n n+1}+E{ n+1)}

Ry (1)= Ry (1)+ Ry, (1)=0.9' +m_0.9

0

© 2002 R. C. Gonzalez & R. E. Woods

<

Not Thot i fferent qum The Previous. example
excapt we MUST var o Moy opproachy .

57



Digital Image Processing, 2nd ed.

www.i i col

Two Observation Example

¢ Evaluating the matrices gives

[0?9 Oﬂ[ﬂ - {0?9}

e Which can be solved to give h,=0.3730 and h;=0.2821. The mean-

square error is calculated as
E(ez) = E((s(n) - §(n))(s(n) - §(n))) = E((s(n)— hox(rz)— hlx(n - 1))(s(n) - hox(n)— hlx(n - 1)))
E(el) = E(s(n)s(n)) = hnE(s(n)x(n)) = h,E(s(n)x(n = 1)) —hoE(x(n)s(n))+mE(x(n)x(n))
+hnh1E(x(n)x(n . 1)) = hlE(x(n = ])s(n)) + h()hlE(x(n = l)x(n)) + h,zE(x(n —1)x(n- 1))
E(€*)= Rys (0) = hyRay (0) = Ry (1) = hyRys (0)+ i Ry (0) + byl Ry (1)
— Ry (=1)+ hoh Ry (<1) + B} Ry (0)
E(¢*)=0.9"-(0.373)(1)- (0.2821)(0.9) - (0.373)(1) + (0.373)" (2) +(0.373)(0.2821)(0.9)
~(0.2821)(0.9)+(0.373)(0.2821)(0.9) + (0.2821)* (2) = 0.373

Ry (=1) = Ry (=1)+ Ry, (-1) = 0.9+ 8(1) = 0.9

©2002 R. C. Gonzalez & R. E. Woods
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; " Estimator Filter Architecture

meons Mxe\ﬁ

") T: ‘r—l )((Yl‘|)
oars " 7o2s2y -
+ e yin) = AN} " !
B
+ Al wimy, x(n -

1

s Optmum
A or xim

The two observation B
estimator example drawn T e
as a filter. And T T _]

‘ c 1 l 2
expanded to more l———‘— DU oy Sorm n-21

observations.

T

[— )

© 2002 R. C. Gonzalez & R. E. Woods

P . ~ : Oh< r\jahbﬂg,
\We com %encrﬂj\% this process T L b s

59



Digital Image Processing, 2nd ed.

wWWwW.i

Kalman Filter

« What is the optimum estimator filter for n
samples of a signal which is evolving over
time?

« Kalman (1960) proposed a signal model
which can be used to recursively estimate a
signal evolving over time.

© 2002 R. C. Gonzalez & R. E. Woods
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Optimum Filtering

« Kalman filters are often used to provide accurate
estimates of position and velocity

« A Kalman filter is an efficient recursive filter
which estimates the state of a dynamical system
from a series of incomplete and noisy
measurements

 Estimates can be

— past time (interpolation or smoothing)
— present time (filtering)
— future time (prediction)

© 2002 R. C. Gonzalez & R. E. Woods
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.‘= 7 Design a Kalman Filter for a simple system

Simple system can be defined in multiple ways:

« Impulse function — &(n)=a"u(n)
: |
o Transfer function — H(z)=———
-0z
PRNLYS
« Difference equation — s(n)=as(n—1)+n(n) —1— Thic 10
horm ol
approaciy

© 2002 R. C. Gonzalez & R. E. Woods
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Kalman signal model

The Kalman signal model for this system is

wi

T pa—— _._Ll. — x{n)
-
..—_J

s(n) is the output signal

w(n) is white noise in the observations

x(n) is the actual observed output (s + n)

N(n) is the white noise which drives the system

© 2002 R. C. Gonzalez & R. E. Woods
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Optimum

|

for x (n)
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4> ’n!
) l 1
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Recursive Estimation?

In our previous architecture we
need to compute a new
coefficient and add a delay
(processing block)

Instead, can we recursively do a
mean square estimate of the
signal using the previous
estimate and the new signal
observation? If so, it would have
to behave like
d(n)=Ad(n—1)+K,x(n)
//\ SRS (R (N
new reviovus neu)swgm
eshmate leshmate

.\

bhserv M" on

Com we Wnse o fired \QY\%W\ (3\%6) onchitectuee
1o veeursx\fc\g Lpdate the \(\:

64



Digital Image Processing, 2nd ed.

The Kalman Filter
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*his |15 mslvéh‘\'
béﬁ K&\mw

* Assume that we can write A =(1-K,)a
Then the optimum estimator can be written

c?(n) = A”c;’(n - 1) R K"x(n) = (1 - Kn)(xc;f(n - l) - K”x(n)
The normal form for this is
c;'(n)zac?(n—l)%—K"[x(n)—adA(n—1)} } The
Where the first term is called the forward ?Fit‘rgl"

prqdiction term anq the second is called the |\ tectire
residual or correction term ol wmple men Yohon

L pure 0seé ii

© 2002 R. C. Gonzalez & R. E. Woods
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The Kalman Filter

* For the specified system, the Kalman filter
uses a time varying gain K as shown below

to set the error orthogonal tg the 51gnal
Kn¥nt 4 (n-1) (n)
e _..__r*l o thwe 1S C

© 2002 R. C. Gonzalez & R. E. Woods
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Basic Kalman theory

¢ The mean square error is

- E[&(n)]= E{l[d(n) . a(n)ﬂ = E{[d(n) ~Ad{n-1)+ K,,x(n,)]z}

e Since we are using a linear estimator the error is also given by

=E[e(n)d(n)]
» Solving these (without proof) requires
_ g(n) =6(:3 . o o The formila_ for K
E[(W(n)—mw)“} Oy -h‘
+  Where { o’ +a’e(n-1) } X ggfﬁ m erroC over Time
e(n)=| =—""5— o Uhom%ea)
; o, + o, +ae(n—1) G— 0 - S o 61 i Y\o\so,
¢ an 2.2
£(0)= —2%w_ Comd. dagsm't chamg)
o; + 0oy

© 2002 R. C. Gonzalez & R. E. Woods
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Kalman Filter (ov\%orijf\vm)

The signal has an exponential autocorrelation function. The parameters o and 6,2
must be known. The additive noise w(n) is white with known variance c,%. Then

Step 1. Set n=0 and calculate the initial mean square error (0)= dff;z
Step 2. Calculate the Kalman gain &, =" . o
Step 3. Input the data x(n) and calculate the eksirgate.
§(n)=as(n=1)+K,[x(n)-as(n-1)] nLw
For n=0 assume §(0)=0 so that §(0)=K,x(0)
Step 4. Let n=n+1
Step 5. Update the error e(n)=[

o) +a’e(n-1) 5
ol +op+ate(n-1) | "

where o =(1-a*)o?

Step 6. Go to Step 2.

© 2002 R. C. Gonzalez & R. E. Woods
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Example of Kalman Filtering

Consider a particle moving in the plane at constant velocity subject to
random perturbations in its trajectory. The new position (x;, x,) is the
old position plus the velocity (Ax,, Ax,) plus noise w

x,(1) 1 0 1 0 x(1)
w0 [ o 10 1| 50)
Aq()| |0 0 1 0lfAx(r) *
Ax,(1)] [0 0 0 1][Ax(r)
« We assume we only observe the position of the particle
[ ()
+["\1]

[T ii]{;;fzf)
ne w’Pos‘\ﬁ oYV vel oc,‘Hj (\/x) \/g )

Ax, (1)
© 2002 R. C. Gonzalez & R. E. Woods (X \ %’)
U

w,
Wy

“’A\ 1

M’Ar 2
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A Example of Kalman Filtering

= Filtered
(es"nmcde neerva\Vi) smoothed e (“Q

14 ( afterall data — o
E 1
10 ) 10 :
8 ! 8
Y]
> B S > 6
; g
2 2
—£- true =8= fue
0 observed @ 0 observed @
filtered ¢ smoothed ¥
-2 2

0 10 20 a9 10 20 0

X X

Suppose we start out at position (10,10) moving to the right with velocity (1,0). We sampled
a random trajectory of length 15. The figures show the filtered and smoothed trajectories.
The mean squared error of the filtered estimate is 4.9; for the smoothed estimate it is 3.2. Not
only is the smoothed estimate better, but we know that it is better, as illustrated by the
smaller uncertainty ellipses

© 2002 R. C. Gonzalez & R. E. Woods
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