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Review: Probability and Random Variables

Random Variables

Random variables often are a source of confusion when first
encountered. This need not be so, as the concept of a random
variable is in principle quite simple. A random variable, x, is a
real-valued function defined on the events of the sample space,
S. In words, for each event in S, there is a real number that is
the corresponding value of the random variable. Viewed yet
another way, a random variable maps each event in S onto the
real line. That is it. A simple, straightforward definition.

© 2002 R. C. Gonzalez & R. E. Woods
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Review: Probability and Random Variables

Random Variables (Con't)

Part of the confusion often found in connection with random
variables is the fact that they are functions. The notation also is
partly responsible for the problem. In other words, although
typically the notation used to denote a random variable is as we
have shown it here, x, or some other appropriate variable, to be
strictly formal, a random variable should be written as a
function x(-) where the argument is a specific event being
‘considered. However, this is seldom done, and, in our
experience, trying to be formal by using function notation
complicates the issue more than the clarity it introduces. Thus,
we will opt for the less formal notation, with the warning that it
must be keep clearly in mind that random variables are
functions.

© 2002 R. C. Gonzalez & R. E. Woods
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Random Variables (Con't)

Example: Consider again the experiment of drawing a single
card from a standard deck of 52 cards. Suppose that we define
the following events. A: a heart; B: a spade; C: a club; and D: a
diamond, so that S = {4, B, C, D}. A random variable is easily
defined by letting x = 1 represent event 4, x = 2 represent event
B, and so on.

As a second illustration, consider the experiment of throwing a
single die and observing the value of the up-face. We can
define a random variable as the numerical outcome of the
experiment (i.e., 1 through 6), but there are many other
possibilities. For example, a binary random variable could be
defined simply by letting x = 0 represent the event that the
outcome of throw is an even number and x = 1 otherwise.

© 2002 R. C. Gonzalez & R. E. Woods
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Random Variables (Con't)

Note the important fact in the examples just given that the
probability of the events have not changed; all a random
variable does is map events onto the real line.

© 2002 R. C. Gonzalez & R. E. Woods
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Random Variables (Con't)

Thus far we have been concerned with random variables whose
values are discrete. To handle continuous random variables
we need some additional tools. In the discrete case, the
probabilities of events are numbers between 0 and 1. When
dealing with continuous quantities (which are not denumerable)
we can no longer talk about the "probability of an event"
because that probability is zero. This is not as unfamiliar as it
may seem. For example, given a continuous function we know
that the area of the function between two limits @ and b is the
integral from a to b of the function. However, the area ar «
point is zero because the integral from,say, a to a is zero. We
are dealing with the same concept in the case of continuous
random variables.

© 2002 R. C. Gonzalez & R. E. Woods
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Random Variables (Con't)

Thus, instead of talking about the probability of a specific value,
we talk about the probability that the value of the random
variable lies in a specified range. In particular, we are
interested in the probability that the random variable is less than
or equal to (or, similarly, greater than or equal to) a specified
constant a. We write this as

Fla) = P(x u)“

If this function is given for all values of a (i.e., — oo < g < ), then
the values of random variable x have been defined. Function F'is
called the cumulative probability distribution function or simply
the cumulative distribution function (cdf). The shortened term
distribution function also is used.

© 2002 R. C. Gonzalez & R. E. Woods




Digital Image Processing, 2nd ed.

ol

Review: Probability and Random Variables

Random Variables (Con't)

Observe that the notation we have used makes no distinction
between a random variable and the values it assumes. If
confusion is likely to arise, we can use more formal notation in
which we let capital letters denote the random variable and
lowercase letters denote its values. For example, the cdf using
this notation is written as

| Fx(x) = PLY < \ﬂ

When confusion is not likely, the cdf often is written simply as
F(x). This notation will be used in the following discussion
when speaking generally about the cdf of a random variable.

© 2002 R. C. Gonzalez & R. E. Woods
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Random Variables (Con't)

Due to the fact that it is a probability, the cdf has the following

properties:

1. F(~0) = 0

2. Fleo) = 1

3.0< Flx) <1

4. F(x1) < Flxy) if x; <x
5.P(x1 < x < x3) = Flxy) — Flx))
6. F(x™) = F(x),

where x* = x + €, with € being a positive, infinitesimally small
number.

© 2002 R. C. Gonzalez & R. E. Woods
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Random Variables (Con't)

The probability density function (pdf) of random variable x is

defined as the derivative of the cdf:

c/}"(‘k‘)
([\' ]

The term density function is commonly used also. The pdf
satisfies the following properties:

plx) =

1. p(x) > 0O for all x

05 I, | plx)dx =1

%z = j - pla)da, where @ is a dummy variable

4. Plx) <x<x3) = j: plx)dx.

© 2002 R. C. Gonzalez & R. E. Woods
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Random Variables (Con't)

The preceding concepts are applicable to discrete random
variables. In this case, there is a finite no. of events and we
talk about probabilities, rather than probability density
functions. Integrals are replaced by summations and,
sometimes, the random variables are subscripted. For example,
in the case of a discrete variable with N possible values we
would denote the probabilities by P(x,), i=1, 2,..., N.

© 2002 R. C. Gonzalez & R. E. Woods
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Random Variables (Con't)

In Sec. 3.3 of the book we used the notation p(r,), k=0.1,..., L - 1,
to denote the /1istogram of an image with L possible gray levels, r,,
k=0,1,..., L - 1, where p(r,) is the probability of the kth gray level
(random event) occurring. The discrete random variables in this
case are gray levels. It generally is clear from the context whether
one is working with continuous or discrete random variables, and
whether the use of subscripting is necessary for clarity. Also,
uppercase letters (e.g., P) are frequently used to distinguish
between probabilities and probability density functions (e.g., p)
when they are used together in the same discussion.

© 2002 R. C. Gonzalez & R. E. Woods
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Random Variables (Con't)

If a random variable x is 7ransformed by a monotonic
transformation function 7(x) to produce a new random variable y,
the probability density function of y can be obtained from
knowledge of 7(x) and the probability density function of x, as
follows:

dx

Ps() = palx)| &€

where the subscripts on the p's are used to denote the fact that
they are different functions, and the vertical bars signify the
absolute value. A function 7(x) is monotonically increasing if
T(x,) < T(x,) for x, < x,, and monotonically decreasing if T(x,)
> T(x,) for x, <x,. The preceding equation is valid if 7(x) is an
increasing or decreasing monotonic function.

© 2002 R. C. Gonzalez & R. E. Woods
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Expected Value and Moments

The expected value of a function g(x) of a continuous random
variable is defined as

E[g(x)] = J”» g(x)p(x)dx.

£

If the random variable is #iscrefe the definition becomes

N
E[g(x)] = D gx)P(xs).
|

© 2002 R. C. Gonzalez & R. E. Woods
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Review: Probability and Random Variables

Expected Value & Moments (Con't)

The expected value is one of the operations used most frequently
when working with random variables. For example, the expected
value of random variable x is obtained by letting g(x) = x:

Elx]=X=m= JH xp(x)dx

. . (¥
when x is cont1nu95/ and

N

Ex]=%=m= Z.\',l’(.\',)

i=]

when x is discrete. The expected value of x is equal to its
average (or mean) value, hence the use of the equivalent notation ¥
and m.

© 2002 R. C. Gonzalez & R. E. Woods
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Expected Value & Moments (Con't)

The variance of a random variable, denoted by 62, is obtained by
letting g(x) = x*> which gives

7]

gt =B = I x2p(x)dx

for continuous random variables and
N

o? = F[x?] = in:P(xi)

=1

for discrete variables.

©2002 R. C. Gonzalez & R. E. Woods
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Expected Value & Moments (Con't)

Of particular importance is the variance of random variables that
have been normalized by subtracting their mean. In this case,
the variance is

62 = E[(x~m)?] = J” (x — m)*p(x)dx

and

o> = E[(x—m) Z(\ —m)2P(x;)

for continuous and discrete random variables, respectively. The
square root of the variance is called the standard deviation, and
is denoted by o.

©2002 R. C. Gonzalez & R. E. Woods

16



Digital Image Processing, 2nd ed.

WWW.i il k.col

Review: Probability and Random Variables

Expected Value & Moments (Con't)

We can continue along this line of thought and define the nth
central moment of a continuous random variable by letting

glx) = (x—m)"
Un = E[(x—m)"] = j./ (x — m)"p(x)dx

and

N
Up = E[(x—m)"] = Z(x, —m)"P(x;)
=]

for discrete variables, where we assume that n =2 0. Clearly, p,=1,
u,=0, and p,=c> The term central when referring to moments
indicates that the mean of the random variables has been subtracted
out. The moments defined above in which the mean is not
subtracted out sometimes are called moments about the origin.

© 2002 R. C. Gonzalez & R. E. Woods
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Expected Value & Moments (Con't)

In image processing, moments are used for a variety of purposes,
including histogram processing, segmentation, and description. In
general, moments are used to characterize the probability density
function of a random variable. For example, the second, third, and
fourth central moments are intimately related to the s/iape of the
probability density function of a random variable. The second
central moment (the centralized variance) is a measure of spread
of values of a random variable about its mean value, the third
central moment is a measure of skewness (bias to the left or right)
of the values of x about the mean value, and the fourth moment is
a relative measure of flatness. In general, knowing all the
moments of a density specifies that density.

© 2002 R. C. Gonzalez & R. E. Woods
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Expected Value & Moments (Con't)

Example: Consider an experiment consisting of repeatedly firing
arifle at a target, and suppose that we wish to characterize the
behavior of bullet impacts on the target in terms of whether we
are shooting high or low.. We divide the target into an upper and
lower region by passing a horizontal line through the bull's-eye.
The events of interest are the vertical distances from the center of
an impact hole to the horizontal line just described. Distances
above the line are considered positive and distances below the
line are considered negative. The distance is zero when a bullet
hits the line.

© 2002 R. C. Gonzalez & R. E. Woods
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Expected Value & Moments (Con't)

In this case, we define a random variable directly as the value of
the distances in our sample set. Computing the mean of the
random variable indicates whether, o average, we are shooting
high or low. If the mean is zero, we know that the average of our
shots are on the line. However, the mean does not tell us how far
our shots deviated from the horizontal. The variance (or standard
deviation) will give us an idea of the spread of the shots. A small
variance indicates a tight grouping (with respect to the mean, and
in the vertical position); a large variance indicates the opposite.
Finally, a third moment of zero would tell us that the spread of the
shots is symmetric about the mean value, a positive third moment
would indicate a high bias, and a negative third moment would
tell us that we are shooting low more than we are shooting high
with respect to the mean location.

© 2002 R. C. Gonzalez & R. E. Woods
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The Gaussian Probability Density Function

Because of its importance, we will focus in this tutorial on the
Gaussian probability density function to illustrate many of the
preceding concepts, and also as the basis for generalization to
more than one random variable. The reader is referred to Section
5.2.2 of the book for examples of other density functions.

A random variable is called Gaussian if it has a probability
density of the form

[7(.’() - | e (x-m)¥o?
2o

where m and ¢ are as defined in the previous section. The term

normal also is used to refer to the Gaussian density. A plot and

properties of this density function are given in Section 5.2.2 of

the book.

© 2002 R. C. Gonzalez & R. E. Woods
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R y and Random Variables

The Gaussian PDF (Con't)

The cumulative distribution function corresponding to the
Gaussian density is

F(x) J.\ p(x)dx

] X ) 9viceis
J. e (x-m)“/o dx.
¢ §

2r o

which, as before, we interpret as the probability that the random
variable lies between minus infinite and an arbitrary value x.
This integral has no known closed-form solution, and it must be
solved by numerical or other approximation methods. Extensive
tables exist for the Gaussian cdf.

© 2002 R. C. Gonzalez & R. E. Woods
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Several Random Variables

In the previous example, we used a single random variable to
describe the behavior of rifle shots with respect to a horizontal
line passing through the bull's-eye in the target. Although this is
useful information, it certainly leaves a lot to be desired in terms
of telling us how well we are shooting with respect to the center
of the target. In order to do this we need two random variables
that will map our events onto the xy-plane. It is not difficult to
see how if we wanted to describe events in 3-D space we would
need three random variables. In general, we consider in this
section the case of n random variables, which we denote by x,,
X,...., X, (the use of n here is not related to our use of the same
symbol to denote the nth moment of a random variable).

©2002 R. C. Gonzalez & R. E. Woods
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Several Random Variables (Con't)

It is convenient to use vector notation when dealing with several
random variables. Thus, we represent a vector random variable x
as

X1

Xn

Then, for example, the cumulative distribution function
introduced earlier becomes

F(a)

/’V(ay s, i ?(1,,)

]){.\‘I S ai., X2 = (4 Jp QU o < (1;;}

© 2002 R. C. Gonzalez & R. E. Woods
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Several Random Variables (Con't)

when using vectors. As before, when confusion is not likely, the
cdf of a random variable vector often is written simply as F(x).
This notation will be used in the following discussion when
speaking generally about the cdf of a random variable vector.

As in the single variable case, the probability density function of
a random variable vector is defined in terms of derivatives of the
cdf; that is,

L T, 5y
O"F(x1,x2,....,%Xn)
().\‘1 (7.\‘3 e ,(1_\.}7 '

p(x)

© 2002 R. C. Gonzalez & R. E. Woods
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Several Random Variables (Con't)

The expected value of a function of x is defined basically as
before:

E[g(x)]

Elg(x1.x2, ... .Xn)]

L 0 y 6}
I J. j‘g(.\w..\'g,... Xn)p(X1,X2, ..., Xn)dc1dx < dxp.
y 0§ ~CL

© 2002 R. C. Gonzalez & R. E. Woods

26



Digital Image Processing, 2nd ed. _ sy

ybability a andom Variables

Several Random Variables (Con't)

Cases dealing with expectation operations involving pairs of
elements of x are particularly important. For example, the
joint moment (about the origin) of order kg between variables

x; and x;
.0 8]

Nig(i,j) = ]1'[xf’.\‘_;’ ] = J. J .\‘f".xjj’ pli,x; )dx dx;.

0 8

© 2002 R. C. Gonzalez & R. E. Woods
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Several Random Variables (Con't)

When working with any two random variables (any two
elements of x) it is common practice to simplify the notation by
using x and y to denote the random variables. In this case the
joint moment just defined becomes

Nkg = K[ [xy4 _‘. J. Vip(x,y)dxdy.

It is easy to see that m,, is the k&th moment of x and 1, is the
gth moment of y, as defined earlier.

© 2002 R. C. Gonzalez & R. E. Woods
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Several Random Variables (Con‘t)

The moment 1, = E[xy] is called the correlation of x and y. As
discussed in Chapters 4 and 12 of the book, correlation is an
important concept in image processing. In fact, it is important in
most areas of signal processing, where typically it is given a
special symbol, such as R, ;:

=y

Ry = nn = Elxy] = J- J. xyp(x,y)dxdy.

© 2002 R. C. Gonzalez & R. E. Woods
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Several Random Variables (Con't)

If the condition

Ry = E[XJE[Y]

holds, then the two random variables are said to be uncorrelated.
From our earlier discussion, we know that if x and y are
statistically independent, then p(x, y) = p(x)p(y), in which case we

write
Ry = J' xp(x)dx J' yp(»)dy = E[x]E[y]

Thus, we see that if two random variables are statistically
independent then they are also uncorrelated. The converse of
this statement is 707 true in general.

© 2002 R. C. Gonzalez & R. E. Woods

30



Digital Image Processing, 2nd ed.

col

Review: Probability and Random Variables

Several Random Variables (Con't)

The joint central moment of order kg involving random
variables x and y is defined as

Hig = El(x - my)*(y — my)4]

Il

j j. (x — my)*(y — my)9p(x, y)dxdy

where m, = E[x] and m, = E[y] are the means of x and y, as
defined earlier. We note that

pro = E[(x—my)?]| and |pox = E[(y —my)?]

are the variances of x and y, respectively.

© 2002 R. C. Gonzalez & R. E. Woods
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Several Random Variables (Con't)

The moment p,

pun = Ef(x—=my)(y —my)]

N«

C’ij + j .‘. (x —my)(y — my)p(x,y)dxdy

£ 3

is called the covariance of x and y. As in the case of
correlation, the covariance is an important concept, usually
given a special symbol such as C, .

© 2002 R. C. Gonzalez & R. E. Woods
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Several Random Variables (Con't)

By direct expansion of the terms inside the expected value

brackets, and recalling the m, = E[x] and m, = E[y], it is
straightforward to show that

Cyxy = E[xy] — myE[x] — myE[y] + memy
= Elxy] — E[x]E[y]

= Ry — E[x]E[y].

From our discussion on correlation, we see that the covariance is

zero if the random variables are either uncorrelated or statistically
independent. This is an important result worth remembering.

Q.yé— t [(x~ mx‘)(uym%)} - E [Xé“ Mxy = My% + Ny My |
18 K, = ELX \E (:“\] Tha Vomable s ara wneorrel ted
A T LA A
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Several Random Variables (Con't)

If we divide the covariance by the square root of the product of
the variances we obtain

_ H1l
|/,U:(1,Uu3

Y
Cyy

0'.\'(;'_\'

= /5[ (x —my) (v —my) :|

Oy Oy

The quantity 7 is called the correlation coefficient of random
variables x and y. It can be shown that y is in the range -1 <y <1
(see Problem 12.5). As discussed in Section 12.2.1, the
correlation coefficient is used in image processing for matching.

© 2002 R. C. Gonzalez & R. E. Woods
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The Multivariate Gaussian Density

As an illustration of a probability density function of more than
one random variable, we consider the multivariate Gaussian
probability density function, defined as

i 1 %[(,\; m)’C '(&m)]
)(\) = e 2
/ (271’)”“|C|] 2

where 7 is the dimensionality (number of components) of the
random vector x, C is the covariance matrix (to be defined
below), |C| is the determinant of matrix C, m is the mean
vector (also to be defined below) and 7 indicates transposition
(see the review of matrices and vectors).

© 2002 R. C. Gonzalez & R. E. Woods
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The Multivariate Gaussian Density (Con't)

The miean vector is defined as

/f[.\‘ 1 ]
/iv[.\‘ 2 ]

Elxs |

and the covariance matrix is defined as

C=Ex-m)(x-m)T]

© 2002 R. C. Gonzalez & R. E. Woods
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The Multivariate Gaussian Density (Con't)

The element of C are the covariances of the elements of x, such
that

Cyj = Cyx, = /(“[('\‘l = ”11)('\7/ B ”lf)]

where, for example, x; is the ith component of x and m; is the
ith component of m.

© 2002 R. C. Gonzalez & R. E. Woods
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The Multivariate Gaussian Density (Con't)

Covariance matrices are real and symmetric (see the review of
matrices and vectors). The elements along the main diagonal of C
are the variances of the elements x, such that ¢,= ¢, >. When all
the elements of x are uncorrelated or statistically independent, ¢, =
0, and the covariance matrix becomes a dizgonal matrix. If all the
variances are equal, then the covariance matrix becomes
proportional to the identity matrix, with the constant of
proportionality being the variance of the elements of x.

©2002 R. C. Gonzalez & R. E. Woods

t‘?“’» et “'ZW e\emem- are remQ
=g g - iém matAa s 6)oou Tha QL\‘\%UY\ &Q .
\ Tl O | (d )
o Fha c:\i.la_ac.‘-wmg-z &\e,vMMAU arg The
Uaud euncas OJDTW:. vamalbles .
e i i ‘\n "‘W\/J Cana Thae V&Mo\\)\ej
o S 0 o.Ye C\'\,’cl,*\“ag'H’c a_\\ “ \nMyewAJ€‘ﬂ+
5 )
-
| OV 09 ,L
=

38





