
EECS 490 DIGITAL IMAGE PROCESSING
December 2004

SESSION 1 Document Deskewing

Mike Adams Algorithm for Text Document De-Skewing

Nattapon Chaimanonart Document Skew Detection Using the Hough

Transformation

Wen-Teng Chang Skew Correction for Text Document Using Fourier Domain

Analysis

Dmitriy Goldman Image De-Skewing Using Fourier Transform

Issac Hirt Image Skew Detection and Correction using Morphology

Ruchi Kothari Detection and Correction of Skew in Document Images

Michael K. Lee Optical Character Recognition Preparation Using

MATLAB

Deng-Hung Liu Skew Correction for Document Images Using Gradient and

Fourier Analysis

Daniel Pendergast Multi-technique Algorithm for De-skewing and Text

Bounding for OCR Applications

Iouri Petriaev OCR Preparation: Design of an Algorithm for Document

Analysis Using the Global Processing via Hough

Transform

Algorithm for Text Document De-Skewing
Mike Adams

Department of Electrical Engineering and Computer Science,

Case Western Reserve University, Cleveland, OH, Email: mda10@case.edu

ABSTRACT
This paper presents a method for the skew correction of

text documents in digital image format, using primarily the

Hough Transform. The Hough Transform provides a good

estimate of line angles in an image and this can be extended

to lines of text. Positive angles between 0 and 90 degrees

are estimated correctly in both test images while negative

angles are estimated correctly only after implementing a

solution found empirically. This routine also fits the result-

ing corrected image to a given bounding box.

KEYWORDS

Text de-skewing, Hough Transform, Morphology

INTRODUCTION

The skew correction of text documents is the starting point

for digital document analysis, because such analysis cannot

proceed when a document is skewed even at a small angle.

This algorithm therefore seeks to detect a document’s skew

angle based on the angle at which the text lies. Assuming

that a text’s angle is the same as that of the entire docu-

ment, the Hough transform is used to detect the skew angle.

HOUGH TRANSFORM

The Hough Transform is a mapping of lines in Cartesian x-

y space to radii and angles in - space. Lines in x-y space

are of the form,

y = ax + b

while each point in Hough line space (,) describes a line

through (x,y) with slope and distance from the origin

[1]. Lines in Hough space are sinusoids of the form,

x cos + y sin = .

Hough space is separated into angle bins on one axis and

radius bins on the other. Each point , then is an accumu-

lator counting the number of Hough space sinusoids that

pass through it as the above equation is evaluated at each

x,y and . Ultimately, the largest accumulators correspond

to a line that exists in x,y space with slope and a distance

 from the origin. It is easy to see that when applied to

lines of text, the angle of skew may be found by looking at

the - location of the highest accumulator(s) [1][2].

ALGORITHM [2]

1) Find gradients in image by using a Sobel mask.

2) Threshold the Sobel result to create a binary im-

age.

3) Perform morphological ‘closing’ and ‘thickening’

so text is thinned out and resembles many points

on a line. The Hough Transform is more accurate,

if it operates on clear lines in the document im-

age[1]. A pre processed image is shown below.

4) Split image in half width-wise, in order to get bet-

ter resolution in angle estimation for each half of

the image.

5) Perform Hough Transform on each part of the im-

age. Return accumulator results.

6) Perform some simple statistical analysis on the re-

sults of the Hough operation, throwing out any re-

turned angles equal to zero or greater in magnitude

than 90
o
.

7) The number of times a given angle is returned by

the Hough routine is tabulated, and the angle re-

turned the most is the skew estimate.

RESULTS

Experimentation was done using skew angles between but

not equal to -90 and 90 degrees. For positive angles the

algorithm returns perfect results, giving an exact estimate

of the skew angle and the skew is corrected by rotation. An

example of the algorithm’s implementation is shown here

for a skew of +33 degrees.

When running the algorithm with a negative skew angle,

the returned estimation was consistently off by 90 degrees.

For example, starting with a skewed image at -70 degrees

returns an estimate of the skew angle at +20 degrees. The

workaround for this is to simply correct the image using the

incorrect estimate such that the image now lies with a skew

of -90 and run the algorithm again. The new estimate is

exactly -90 degrees and the image can be now be corrected

accordingly. Running the algorithm twice with a positive

angle also results in an estimate of -90 degrees so in the

interest of keeping it as automatic as possible, the user

should enter a guess of -1 if the skew angle is thought to be

negative and a guess of +1 if thought to be positive.

Using another image, this one with a lot of text and grid

lines, the results are the same. The example below is for a

skew angle of 75 degrees.

The negative angle approach is shown implemented here

for an angle of -75 degrees and with the help of a user

guess of -1.

DISCUSSION

For both sparse text images and dense text image this algo-

rithm works great for positive skew angles. The Hough

routine is presented with preprocessed images whose line

detail has been enhanced, so the routine returns some very

good skew angle estimates and some that aren’t so good. It

is easy then to automatically throw out those that aren’t

within the known skew angle range between -90 and 90

degrees. Of those that remain, it is then a simple matter to

count up the number of occurrences of each. The angle that

occurs the most in that tabulation is the good skew angle

estimate.

For negative skew angles, the story is different. It is obvi-

ous that the Hough routine is 90 degrees off on its estimates

of these, because negative angles have complementary

positive angles. A clear example is the dense text image

above skewed at -75 degrees. Even though the whole page

is skewed at that angle, look at the individual lines and no-

tice that by following them from lower right to upper left,

they make +15 degree angles with the vertical axis (posi-

tive to the left of the axis). It is these angles that the Hough

routine returns as skew estimates. Knowing this allows an

automated response to follow, thus ultimately correcting

the skewed document.

SUMMARY

As shown before, this algorithm works very well for posi-

tive skew angles and can be made to work for negative

skew angles with a little help from the user indicating the

sign of the skew. With this “guess” from the user being the

only interaction, this algorithm lends itself to an almost

completely automated implementation for use in document

analysis devices.

ACKNOWLEDGMENTS

The free version of Gonzalez’s, Eddins’ and Woods’ DIPUM

toolbox obtained from the “Digital Image Processing Using

Matlab” website was used for the Hough transform routine

and test images were obtained from Prof. Merat’s course

website.

REFERENCES

[1] Chengming Sun, Deyi Si, "Skew and Slant Cor-

rection for Document Images Using Gradient Di-

rection". Pgs 1-2.

[2] R. C. Gonzalez, Richard E. Woods, "Digital Image

Processing, "2
nd

 Edition, Prentice Hall, Upper

Saddle River, NJ, 2002.

Appendix

MDA_final.m

clc;clear;close all;

guess = 1; %-1 if guess of a negative skew, +1 if guess if positive

skew

f_original = imread('Mesh_Text.jpg');

% f_original = imread('IMAGE5.jpg');

figure,imshow(f_original),title('Original Image');

image = imrotate(f_original,45,'bilinear'); %bilinear interpolation

gives best looking rotated results

figure,imshow(image),title('Skewed Image');

[theta,table,angle(1)] = rot_correct(image);

final = imrotate(image,-theta,'bilinear'); %if skew angle is nega-

tive this will produce a result of -90

if guess == -1

[theta,table,angle(2)] = rot_correct(final); %returns an angle that

is always off by 90 degrees

 if angle(2) == -90

 final = imrotate(final,90,'bilinear');

 figure, imshow(final),title('Corrected Result')

 end

end

if guess ==1

 figure, imshow(final),title('Corrected Result')

end

%Bounding Box%

%give bounding box in [rows,columns]

final = im2double(final);

box = [700 700];

startbox = zeros(size(final,1),size(final,2));

rows = (size(startbox,1) - box(1))/2 - mod((size(startbox,1) -

box(1))/2,1);

columns = (size(startbox,2) - box(2))/2 - mod((size(startbox,2) -

box(2))/2,1);

startbox(rows:rows + box(1)-1,columns:columns + box(2)-1) =

ones(box(1),box(2));

figure,imshow(startbox);

bounded = startbox .* final;

figure,imshow(bounded),title('Bounded Image')

function [theta,table,angle] = rot_correct(image)

[Fx_y,Im_mag] = skew_sobel(image);

level1 = graythresh(Fx_y);

bw1 = im2bw(Fx_y,level1);

bw2 = morpho(bw1);

rowsplit = size(bw2,1)/2 - mod(size(bw2,1)/2,1);

a = 1;

b=1;

% k = zeros(1:10,1:size(bw1,2));

for z = 1:2

 bw(1:rowsplit,1:size(bw2,2)) = bw2(a:a + rowsplit -

1,1:size(bw2,2));

 %figure,imshow(bw)

 if isempty(find(bw)) == 0

 phi(b) = hought(bw);

 b = b +1;

 end

 a = a + rowsplit;

end

[theta,table,angle] = stats(phi);

function phi = hought(bw)

[H,theta,rho] = hough(bw);

peaks = houghpeaks(H,500);

for i = 1:size(peaks,2)

 max_h(i) = max(H(peaks(i),1:180)); %peaks returns rows indices of H where p

occur

end %so look in those rows and pull out max value in each r

[y,max_row] = max(max_h); %find the biggest value in H, where y is biggest val

 %max_row is the row in H containing H's highest

 %we just need the column indice (theta)

for j = 1:180

 if H(peaks(max_row),j) == y %find column indice corresponding to theta

 phi = theta(j);

 end

end

function bwhite = morpho(blackw)

for i = 1:size(blackw,1)

 for j = 1:size(blackw,2)

 if blackw(i,j) == 1

 blackw(i,j) = 0;

 else

 blackw(i,j) = 1;

 end

 end

end

blackw = bwmorph(blackw,'close');

blackw = bwmorph(blackw,'thicken');

%figure,imshow(bw1)

for i = 1:size(blackw,1)

 for j = 1:size(blackw,2)

 if blackw(i,j) == 0

 blackw(i,j) = 1;

 else

 blackw(i,j) = 0;

 end

 end

end

figure,imshow(blackw)

bwhite = blackw;

function [fangle,table,angle] = stats(hangle)

b = 1;

for i = 1:size(hangle,2)

 if abs(hangle(i)) <= 90 & hangle(i) ~=0

 alpha(b) = hangle(i);

 b=b+1;

 end

end

table = tabulate(alpha);

max_angles = max(table(1:size(table,1),2));

for i = 1:size(table,1)

 if table(i,2) == max_angles;

 angle = table(i,1);

 end

end

fangle = angle;

Document Skew Detection Using the Hough Transformation
Nattapon Chaimanonart

Department of Electrical Engineering and Computer Science,

Case Western Reserve University, Cleveland, Ohio, USA

nxc35@case.edu

Abstract
In this paper, a detection of document skew by using the

Hough Transformation is presented. The fundamental

Hough Transform calculation and document correction

procedure are described and discussed. The algorithm is

implemented via MATLAB. The accurate results of trans-

forming several images with different skew angles and dif-

ferent levels of complexity are shown.

Keywords
Document Skew, Hough Transformation, MATLAB

1. INTRODUCTION
Once the documents have been digitized through the scan-

ning system, document skew correction is required before

further image analysis. Failure of this compensation can

cause serious performance degradation. Several methods of

document skew detection have been developed, for exam-

ple, Projection-based methods, Nearest-Neighbor-based

methods, Cross-Correlation-based methods, and Hough-

Transform-based methods [1-3].

In this paper, Hough Transformation method is focused.

This transformation technique is utilized to detect an un-

known skew angle of documents. After the angle is known,

the image will be rotated and aligned in the horizontal

manner. The primary principal of the Hough Transforma-

tion is described in Section 2. The procedures of the docu-

ment skew correction are proposed in Section 3, which are

implemented by using MATLAB. Furthermore, the ex-

perimental results from various documents are presented

and performance of this algorithm is discussed.

2. HOUGH TRANSFORMATION
In this section, the basic idea of the Hough Transformation

is fully explained. This technique transforms the pixel from

the x-y coordinate systems into - coordinate systems.

For example, a point (x i , y i) in xy-plane can be trans-

ferred to the -plan by using equation,

x cos + y sin = (1)

From this equation, x and y are substituted by x i and y i.

The angle, , is varied from -90º to 90º to determine the

corresponding, distance, . These sets of data are plotted in

- plan, which are shown in Figure 1. The same method is

applied in the case of (x j , y j). With these two points, a

straight line can be constructed by connecting point (x i , y i

) to point (x j , y j) in xy-plane. The distance from the ori-

gin to the line and in xy-plane will correspond to the in-

terception of (x i , y i) and (x j , y j) plots in the -plan. By

using this technique, the skew angle of the document can

be determined.

TEXT & HEADINGS
For body text, please use a 10-point Times Roman font, or

other Roman font with serifs, as close as possible in ap

For the Hough Transformation, the function written in

MATLAB is used to calculate and plot the -plan. For the

actual documents, they might not contain only text. Some

documents might have a picture, some of dots, or grids.

They are considered as noise in the image that might affect

the result. However, it has been noted that an important

property of the Hough transform is its insensitivity to the

missing part of lines, and to image noise. This can be veri-

fied by using the triangle image with some broken lines and

a lot of noise as illustrated in Figure 2.

Figure 1. (a) (,) parameterization of line in the
xy-plane, (b) Sinusoidal curves in the -plane; the
point of intersection, (’ , ’), corresponds to the

parameters of the line joining (x i, y i) and (x j, y j) [4]

 (a) (b)

Figure 2. The broken triangle line with noise

The result by using Hough function is demonstrated in Fig-

ure 3. From the plot, the white spots in the image 1, 2, and

3 correspond to the three sides of the triangle in Figure 2.

With these properties, the Hough Transform is very suit-

able for detecting the skew angle.

3. PROPOSED PROCEDURE
The correction procedure of document skew is described as

follows;

1. Prepare the documents for the transformation. Some of

the documents need to be performed color correction. For a

grey scale image, thresholding might be needed to trans-

form the document into a binary document. In the case of

color documents, they are required to use the intensity in-

formation as an input of the Hough Transformation.

2. Perform the Hough Transformation by using ‘hough’

function to the document [5].

3. Determine the peak pixels from the Hough Transform

image. By using the ‘houghpeaks’ function, the high con-

centration pixels will be detected. The position of the high

pixel concentrations will determine the skew angle. How-

ever, finding a meaningful set of distinct peaks in the

Hough Transformation is very challenging because lines in

the xy-plane usually are not perfectly straight lines. These

create multiple peaks in - plan. One strategy to overcome

this problem is the following [5]:

• Find the Hough Transform cell containing the

highest value and record its location.

• Suppress (set to zero) Hough Transform cells in

the immediate neighborhood of the maximum

found in previous step.

• Repeat until the desired number of peaks has been

found, or until a specified threshold has been

reached.

4. Rotate the image according to the angle determined in

step 3 by using ‘imrotate’ function

5. Crop the correction image by using ‘imcrop’ function

4. EXPERIMENTAL RESULTS
In this section, various types of documents are tested by

using the proposed procedure. First, the plain text docu-

ment in Figure 4.b is skewed by an unknown angle. By

using the MATLAB function, the Hough Transformation of

this document is presented as shown in Figure 4.a. From

the plot, the array of the noticeable peaks are aligned in the

position that = 22°. With this skew angle, the horizontal

alignment document can be obtained as illustrated in Figure

4.c.

Considering a few text document in Figure 5.b, again, the

result peaks in the Hough Transformation can be obviously

seen at =-30º. Moreover, for a document with an image as

shown in Figure 6.b, the peaks are presented at =-32º and

the corrected document is shown in Figure 6.c. From these

examples, the peaks in the Hough Transform can be explic-

itly seen. However, there are some cases that the peaks are

hardly determined by observing the Hough Transformation

with human eyes, for instance, the document with a grid in

Figure 7.b. The solution is to use function ‘houghpeaks’ to

calculate the maximum pixels. As a result from this calcu-

lation, the skew angle at 10.5º can be obtained.

Figure 3. Hough Transform image of Figure 2 by
using ‘hough’ function

1

2

3

(c)

(b)

(a)

Skew angle = 22°

Figure 4. (a) Hough Transform Image of Figure 4.b

(b) The original document (c) The corrected document

5. PERFORMANCE DISCUSSIONS
Although, the Hough Transformation is very suitable for

this application, it has some limitations. One of the limita-

tions, which can be found from the experimental results, is

that if the documents have a grid, it may be difficult to

choose a peak for skew correction. In addition, the Hough

Algorithm used in this work is required a lot of computa-

tion time. The more delicate skew angle is detected, the

more processing time is needed. Therefore, this might not

be a proper choice for an application that computation time

is restricted.

6. CONCLUSION
In this paper, the Hough Transformation technique is pre-

sented to detect the document skew. The fundamental

Hough Transformation is briefly explained. The procedure

of the skew correction is proposed and implemented with

MATLAB. The different types of document, for example,

the plain text, the document with some pictures, and the

document with a grid, are used to test the program. The

results are shown that the Hough Transformation method is

very suitable for this application. It is easy to implement.

(b)

(a)

Skew angle = 10.5°

Figure 7. (a) Hough Transform Image of Figure 7.b

(b) The original document (c) The corrected document

(c)

(b)

(c)

(a)

Skew angle = -32°

Figure 6. (a) Hough Transform Image of Figure 6.b

(b) The original document (c) The corrected document

(a)

Skew angle = -30°

(b)

(c)

Figure 5. (a) Hough Transform Image of Figure 5.b

(b) The original document (c) The corrected document

However, the drawback of this method is that computation

time is rather slow.

ACKNOWLEDGMENTS
The Author would like to thank Professor Frank Merat for

his support as an instructor, who encourages the students to

work on this interesting topic.

REFERENCES
[1] R. Safabakhsh, and S. Khadivi, “Document Skew De-

tection Using Minimum-Area Bounding Rectangle,”

IEEE International Conference Information Technol-

ogy: Coding and Computing, pp. 253–258, March

2000.

[2] C. Sun, and D. Si, “Skew and Slant Correction for

Document Images Using Gradient Direction,” IEEE

International Conference Document Analysis and Rec-

ognition, Vol. 1, pp. 142-146, August 1997.

[3] S. Chen, R. M. Haralick, and I. T. Phillips, “Automatic

Text skew Estimation in Document Images,” IEEE In-

ternational Conference Document Analysis and Rec-

ognition, Vol. 2, pp. 1153-1156, August 1997.

[4] R. C. Gonzalez, and R. E. Woods, Digital Image Proc-

essing, 2
nd

 Edition, New Jersey, Prentice Hall, 2002.

[5] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital

Image Processing using MATLAB, 1
st
 Edition, New

Jersey, Prentice Hall, 2004.

Skew Correction for Text document Using Fourier Domain Analysis
Chang, Wen-Teng

Department of Electrical Engineering and Computer Science,

Case Western Reserve University, Cleveland, OH, Email: wxc31@cwru.edu

Abstract
Skew estimation and correction is an important step in any

document analysis and recognition system. This project

presents an algorithm for skew recognition and implements

it by Fourier domain analysis. The error estimation and

process time are also presented in this project. We suppose

the skew angles are within ± 45
o
 and then analyze the de-

viation between the corrected one by rotating a known an-

gle.

KEYWORDS

Skew correction, Fourier transform, Frequency domain

INTRODUCTION

Skew estimation and correction is an important step in any

document analysis and recognition system. It is quite com-

mon when we are digitizing a copy of an original document

of text which is skewed by unknown angle. The skewed

angle sometimes will severely degrade the performance of

the systems.

A wide variety of methods of skew detection algorithms

have been proposed in the literature. Basically they can be

summarized in five categories [1] (1) project profile, (2)

Hough transform technique [2] (3) Fourier method (4)

nearest-neighbor clustering and by (5) correction.

Humans can determinate the document orientation without

recognizing the text or contents of the document. This idea,

however, suggests orientation can be implemented from the

global description of the document without looking into the

local details of the documents. An algorithm by Fourier

transform can exactly extract the predominant direction

which is derived from the edge of photo, text or diagram in

the document. This project proposes a method based on

Fourier domain analysis

OVERVIEW

This project uses 2 images downloaded from EECS490

website, one is simply text and the other is hand written

script with vertical and horizontal mesh that are shown as

figure 1 and figure 2, individually.

Figure 1 Simple characters

Figure 2 Mesh Text

By rotating an image by a known angle (‘imrotate’), we use

Fourier transform to analyze its rotation angle. Here have

several methods to find out the angle. One is to find its

maximum histogram among the slopes; the other is to find

its mean or median value. The rotation angle is converted

from slope rate and then got the upright image. Finally, the

un-skewed document will need padding its board because

the board is surrounded with all black. Figure 3 is the block

diagram of this correction process.

Figure 3 Block diagram of a skewed document correction

ALGORITHM

This section will discuss the process flow of orientating a

skew document. All the algorithms used for skew correc-

tion are based on estimating the predominant orientation of

the text in the spatial domain. When we read an image or a

document, the digitized readings combine an M by N ma-

trix with unsigned 1 to 256 gray level values.

1 Fourier Transform

When we transform the images shown upright and skewed

one from spatial domain image of figure 2 to frequency

domain, the images show upright and skew Fourier spec-

trum as figure 4 (a)~ 4 (d).

Figure 4 (a) Figure 4(b)

spectrum of the document

Figure 4(c) Figure 4(d)

Figure 4 (a) is an upright document whose frequency do-

main is upright as figure 4(b); figure 4(c) rotates 10 degree

and its frequency domain rotates also.

The discrete Fourier transform of 2D image f(x,y) of size

MxN is given by[2]

= =

+

=

1

0

1

0

2

),(),(
M

x

N

y

N

vy

M

ux
j

eyxfvuF (1)

2 Set threshold

In order to utilize the frequency domain to obtain skew

angle, we convert it to binary image and set a threshold that

is optimized to eliminate bright point that will help shorten

calculation time in finding slopes. Median and maximum

value are used in this algorithm that can assure the thresh-

old a reasonable value which simplifies to find real rotation

angle.

spectrum of document with threshold

Figure 5 Binary image of the skew document in frequency

domain

3 Slope analysis

There are several ways to find out optimal slope of figure 5.

One is get a histogram of the slopes that are distributed on

figure 6, the slope with the most distributed bright point is

desired slope rate.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

2

4

6

8

10

12

14

16

18

20

Figure 6 Histogram of slope distribution

Alternatively, mathematic methods can be used to get de-

sired value. Function such as “mean” and “median” can get

similar answers. The advantage of using histogram is more

accuracy can be acquired by dividing more bins on hori-

zontal axis.

Fourier transform

Slope analysis

Unskew -correction

Board padding

Set threshold

4 Un-skew correction

We can easily convert desired slope rate to angle and rotate

this angle in opposite direction. There might be some de-

viation after correction. The latter part will discuss this

question. However, this algorithm will limit skew angle

within ± 45
o
 because we regard document should orientate

toward the other direction if angle is over 45
 o

.

unskewed image

Figure 7 Unskew picture by correcting angle on frequency

domain

5 Board padding

To fix the picture on a given box, we need to pad the black

board of figure 7. The padding result is shown on figure 8.

Note the padding is not completed because the corrected

image is not exactly upright.

Figure 8 padding result of figure 7

RESULT DISCUSSION

In this section, we will evaluate the gap between corrected

angle and true angle from this algorithm. We also calculate

the required process time. The process time includes the

time of Fourier transform, image presentation of skew and

un-skew, histogram and board padding [see appendix]. This

analysis uses figure 1, 512x512 pixels gray level image.

Table 1 is the summary of the result.

From the result, we can find that the gap between corrected

angle and true rotation angle roughly increases along with

rotation angle, so the corrected angle may be not satisfying

if the skew angle is too large. One way to resolve this prob-

lem is to do another Fourier transform. However, it will

take approximate double process time according to the re-

sult of table 1. Meanwhile, the process time is highly cor-

related with rotation angle: the higher skew degree requires

more time to process the correction and the required time is

roughly symmetric to central zero degree.

Table 1 Test result of (1) corrected angle and (2) process

time at different rotation angle

Figure 9 Rotation angle versus detected angle ranged from

-30
 o

 to 30
o
. The square points denote the corrected angle;

the line indicates true angle.

SUMMARY

The required time by using frequency domain to detect

skew angle is highly correlated to skew angle. Besides, the

higher skew degree yields roughly larger degree deviation,

however, even it cannot obtain a satisfying corrected angle

at first correction, the second correction process can reach

as good accuracy at least less one degree. For example, if

the rotation angle is 30
o
 in this case, we only have to repeat

the same procedure so that the accuracy can be further im-

proved to 0.3
o
 deviation at the second time. Nevertheless,

comparing to other literature, it may take relatively long

time [4], which may be a disadvantage on the application

such as on OCR, which requires fast recognition.

In the result, we find the corrected angle increases roughly

along with rotation angle, so there still is limitation for high

angle rotation angle. However, Fourier transform can rec-

ognize the skew angle without knowing the detailed con-

text; the predominant direction will be extracted form the

edge of the text. This is a major feature and advantage of

using this algorithm

REFERENCES

[1] “Skew and Slant Correction for Document Images

Using Gradient Direction” Changming Sun and

Deyi Si, in Document Analysis and Recognition,

1997., Proceedings of the Fourth International

Conference on , Volume: 1 , 18-20 Aug. 1997.

[2] ”Analysis of textual images using the Hough

transform”, Machine and Application,pp 141-153,

1989, S,Srihari, and V. Govindaraju

[3] “Digital Image Processing, 2nd Edition”. Pren-

tice-Hall, 2001,Rafael C. Gonzalez and Richard E.

Woods electromechanical Systems, vol. 11, pp.

592-597, 2002.

[4] “Document Skew Detection Using Minimum-Area

Bounding Rectange” Reza Safabakhsh and Shah-

ram Khadivi, in Information Technology: Coding

and Computing, 2000. Proceedings. International

Conference on , 27-29 March 2000. Pages:253 -

258

Image De-skewing Using Fourier Transform
 Dmitriy Goldman

Department of Electrical Engineering and Computer Science,

Case Western Reserve University, Cleveland, OH, Email: dxg68@cwru.edu

ABSTRACT
When the document is scanned it can be placed on the

scanner at arbitrary angle so that it would appear on com-

puter monitor at the same angle. The goal of this project is

to detect the angle and correct for it so that the document

would appear on computer monitor straight regardless of

scanned angle.

KEYWORDS

Fourier, skew, image.

INTRODUCTION

There are number of different methods for image de-

skewing available in literature. This method I developed

myself and it is based on Fourier transform. The approach

is to transform input image from spatial domain to fre-

quency domain and look at direction of frequency distribu-

tion. Usually text represents letters arranged in horizontal

rows and those rows are stacked one under another. Be-

cause of that most of the energy in frequency domain

should be along the rows of letters and perpendicular to

them. The following experiment confirms this assumption.

IMPLIMENTATION

Fig. 1 shows the input text scanned at some arbitrary angle.

In this case the angle is known for test purposes and is

equal to 30 degrees. I used the geometric transformation to

rotate an input image by 30 degrees. So that if my de-

skewing algorithm works correctly I know that the resulting

de-skewing angle has to be very close to 30 degrees. Be-

cause of rounding errors the resulting angle can’t be exactly

30 degrees but if it is close, for example the error is less

than 0.1 degrees, then from human point of view it will be

completely de-skewed.

Fig.1: Input Image Scanned at arbitrary angle

Fig. 2 shows the spectrum of the input image and as it was

expected most of the energy is distributed along the axis

parallel and perpendicular to text lines and greed.

Fig.2: Spectrum of the Input Image

Next as shown on Fig. 3 the spectrum of the input image

was segmented in four quadrants corresponding to quad-

rants of Cartesian coordinate system.

Fig.3: Spectrum of the Input Image Segmented in four

Quadrants.

Clearly the brightest points of the spectrum make up the

lines that make the same angles with x and y axis as the

original document placed on the scanner. The spectrum

image was segmented this way because each quadrant

processed by itself should result in right de-skewing angle.

And to increase accuracy and minimize possibility for error

an average of for resulting errors can be found. Also as it

shown in Fig. 3 there is little black square in the corner of

each quadrant. It was done to mask the pixel in the middle

of the spectrum image and some pixels around it because

the following algorithm is based on finding the brightest

points in each quadrant and the middle point is the brightest

since it is an average value but this point doesn’t help in

finding the angle so it needs to be ignored.

The de-skewing algorithm works as follows. Inde-

pendently for each quadrant I find 20 brightest points and

their coordinates. Next I fit a straight line through those

points and determine the angle between the line and x axis.

When all four quadrants are evaluated in the same way and

four angles (one for each quadrant) are found the de-

skewing angle is determined as an average of four angles

found above.

RESULTS AND DISCUSSION

Fig. 4 shows the de-skewed text after applying the rota-

tional transformation to the input image at determined

above angle.

Fig. 4: De-skewed Input Image

The MATLAB code shown in Appendix 1 after being run

resulted in de-skewing angle of 30.0182 degrees. This is a

very good result since error is so small that it is absolutely

invisible. The image in Fig. 4 was processed using rota-

tional transformation by the found above angle. And it ap-

pears perfectly straight.

 Fig. 5 shows the de-skewed image after fitting it

into some text boundaries 1000 x 1000 pixels in this exam-

ple but they can be user selected.

Fig. 5: De-skewed Input Image inside the Text Box

SUMMARY

The described above algorithm definitely does its job. It

works with great precision and is easy to implement. The

only computationally intensive part is a Fourier transform

of the input image. The inverse Fourier transform is not

required. Rest of the algorithm is significantly less compu-

tationally intensive. Overall this algorithm can successfully

be used for text de-skewing.

REFERENCES

[1] Rafael C. Gonzalez, Richard E. Woods, "Digital

Image Processing," Second Edition. 2002.

[2] Rafael C. Gonzalez, Richard E. Woods, Steven L.

Eddins, "Digital Image Processing Using

MATLAB". 2004.

 APPENDIX 1
clc

clear

f = imread('angle.jpg');

f = im2double(f);

figure(1), imshow(f, [])

title('Fig.1: Input Image')

F = fft2(f);

Fc = fftshift(F);

S = log(1 + abs(Fc));

figure(2), imshow(S, [])

title('Fig.2: Spectrum of the Input Image')

[m, n] = size(Fc);

M = floor(m/2)+1; N = floor(n/2)+1;

S1 = S(M-150:M, N:N+150);

[M, N] = size(S1);

S1(M-5:M, 1:5) = 0; S5 = S1;

%figure(3), imshow(S1, [])

%title('Fig.3: First Quadrant of the Spectrum of the Input Image')

for k = 1:20

 maximum = max(max(S1));

 [I1(k), J1(k)] = find(S1 == maximum);

 S1(I1(k),J1(k)) = 0;

 I1(k) = M - I1(k);

end

J1 = J1'; I1 = I1';

[row, col] = size(J1);

one = ones(row);

H1 = [J1, one(1:row, 1)];

p1 = H1 \ I1;

angle(1) = atan(p1(1));

angle_degree(1) = angle(1)*180/pi;

[m, n] = size(Fc);

M = floor(m/2)+1; N = floor(n/2)+1;

S2 = S(M-150:M, N-150:N);

[M, N] = size(S2);

S2(M-5:M, N-5:N) = 0; S6 = S2;

%figure(4), imshow(S2, [])

%title('Fig.4: Second Quadrant of the Spectrum of the Input Im-
age')

for k = 1:20

 maximum = max(max(S2));

 [I2(k), J2(k)] = find(S2 == maximum);

 S2(I2(k),J2(k)) = 0;

 I2(k) = M - I2(k);

 J2(k) = N - J2(k);

end

J2 = J2'; I2 = I2';

[row, col] = size(J2);

one = ones(row);

H2 = [J2, one(1:row, 1)];

p2 = H2 \ I2;

angle(2) = atan(p2(1));

angle_degree(2) = 90 - angle(2)*180/pi;

[m, n] = size(Fc);

M = floor(m/2)+1; N = floor(n/2)+1;

S3 = S(M:M+150, N-150:N);

[M, N] = size(S3);

S3(1:5, N-5:N) = 0; S7 = S3;

%figure(5), imshow(S3, [])

%title('Fig.5: Third Quadrant of the Spectrum of the Input Im-
age')

for k = 1:20

 maximum = max(max(S3));

 [I3(k), J3(k)] = find(S3 == maximum);

 S3(I3(k),J3(k)) = 0;

 I3(k) = M - I3(k);

 J3(k) = N - J3(k);

end

J3 = J3'; I3 = I3';

[row, col] = size(J3);

one = ones(row);

H3 = [J3, one(1:row, 1)];

p3 = H3 \ I3;

angle(3) = atan(p3(1));

angle_degree(3) = -angle(3)*180/pi;

[m, n] = size(Fc);

M = floor(m/2)+1; N = floor(n/2)+1;

S4 = S(M:M+150, N:N+150);

[M, N] = size(S4);

S4(1:5, 1:5) = 0; S8 = S4;

%figure(6), imshow(S4, [])

%title('Fig.6: Fourth Quadrant of the Spectrum of the Input Im-
age')

for k = 1:20

 maximum = max(max(S4));

 [I4(k), J4(k)] = find(S4 == maximum);

 S4(I4(k),J4(k)) = 0;

 I4(k) = M - I4(k);

 J4(k) = N - J4(k);

end

J4 = J4'; I4 = I4';

[row, col] = size(J4);

one = ones(row);

H4 = [J4, one(1:row, 1)];

p4 = H4 \ I4;

angle(4) = atan(p4(1));

angle_degree(4) = 90 - angle(4)*180/pi;

angle_degree = sum(angle_degree)/4

angle = angle_degree * pi / 180;

figure(3),

subplot(2,2,1), imshow(S5, [])

%title('Fig.3: First Quadrant')

subplot(2,2,2), imshow(S6, [])

%title('Fig.4: Second Quadrant')

subplot(2,2,3), imshow(S7, [])

%title('Fig.5: Third Quadrant')

subplot(2,2,4), imshow(S8, [])

%title('Fig.6: Fourth Quadrant')

if angle_degree >= 45

 th = -pi/2 + angle;

else

 th = angle;

end

T = [cos(th) sin(th) 0;...

 -sin(th) cos(th) 0;...

 0 0 1];

 tform = maketform('affine', T);

 g = imtransform(f, tform, 'FillValue', 1.0);

 figure(4), imshow(g, [])

 title('Fig.7: De-skewed Image')

 [M,N] = size(g);

 out = g(floor((M-1000)/2):M-floor((M-1000)/2),...

 floor((N-1000)/2):N-floor((N-1000)/2));

 figure(5), imshow(out, [])

 title('Fig.8: De-skewed Image Fitted into Bounding Box')

Image Skew Detection and Correction using Morphology
 Isaac Hirt, Frank Merat

Department of Electrical Engineering and Computer Science,

Case Western Reserve University, Cleveland, OH, Email: ijh1@cwru.edu

Abstract

This paper presents an algorithm, which is used to detect

the skew in scanned documents. This algorithm uses mor-

phology to morph the text into rectangles, then find a line

through the base of the rectangles which closely resemble a

line of text. The line detection process is run for the entire

image, next the average slope is used to detect the esti-

mated skew of original text document. The original image

is then skewed by the detected skew in the opposite direc-

tion to attempt to remove the skew from the image. The

skew detection portion of the algorithm takes approxi-

mately 1.8 seconds on a 2.4 Gigahertz Intel Celeron laptop

with 256 Megabytes of RAM.

KEYWORDS

Morph, skew, connect, bounding box, traverse

INTRODUCTION

As computing power increases, it is desired to have more

data stored electronically. Many data processing algo-

rithms require the data to have a minimal skew for process-

ing [1]. To convert documents stored on paper to an elec-

tronic format they are scanned, when modern scanners

equipped with automatic feeders are utilized, the skew is

limited to a range of +/- 3 degrees [2].

There are five main methods for detecting the skew of a

document:

1: Projection – Creating a projection profile for the docu-

ment which will show more variation when the profile is in

the direction of the skew, and thus the skew angle is found.

2: Hough-Transform – The Hough Transform is used on

the document image, the transform is then analyzed to find

the skew of the document.

3: Nearest-Neighbor Method – The nearest neighbor to

each connected segment in the document is found for all

segments, the angle between these neighbors is calculated

and a histogram of these angles is analyzed to determine

the skew of the document.

4: Cross-Correlation Methods – Calculates the documents

skew by finding the vertical shift required to maximize the

cross-correlation between horizontal elements.

5: Various other Methods – Such as the Fourier Transform,

Morphological operators and local region complexity. [3]

This paper examines an algorithm based on method number

five, using morphological operators to determine the skew.

There are six steps to this algorithm along with one pre-

processing. The preprocessing step for testing the algo-

rithm is to induce skew into a test image. The first step of

the algorithm is to perform the morphological opening on

the document; the second step follows then performs a

closing operation on the document. The third step attempts

to find the base lines of the rectangular results from the

morphological operations. The fourth step is to use these

lines to determine the skew of the image. The fifth step is

to create a bounding box for the valid regions of text. The

final step is performing the skew to align the document for

processing.

ALGORITHM - PREPROSSING

The preprocessing portion of the algorithm involves either

randomly determining an angle to skew which to skew the

document image or using a skew angle provided by the

user. To perform the skew calculations a function provided

by MathWorks, the creator of Matlab was used, which is

called rotate_image [4]. This function performs rotates a

given image through a specified number of degrees, and is

also able to specify where specific points are located after

the rotation. This function will rotate the text document

shown in Figure 1 by 5 degrees; the rotation is shown in

Figure 2. The primary thing to notice is that this algorithm

needs to add padding around the image to perform the rota-

tion due to the width and heights being enlarged in rotation.

Figure 1: Original image to be used as a processing ex-

ample

Figure 2: Original image skewed by 5 degrees.

ALGORITHM – STEP ONE

The first step of the algorithm is to perform the morpho-

logical opening operation upon the skewed image. This

closes attempts to close the gaps internal to characters, be-

tween characters and between different words. This proc-

ess is only applied once to the image due to a large structur-

ing element being used, a 6 by 8 array of ones, for process-

ing the image. The results of performing the opening op-

eration on Figure 2 are shown in Figure 3.

Figure 3: Performing the opening operation upon Fig-

ure 2.

ALGORITHM – STEP TWO

Next the morphological closing operation is performed

upon the image; this is shown in figure 4. The goal of the

closing the image is to remove the ascenders and descanters

of the characters for easier base line detection in step 3.

Figure 4: Performing the closing operation upon Figure

3.

The final part to step 2 is threshold the result so that the

resultant image is a binary image.

ALGORITHM – STEP THREE

After the image has been opened, closed and thresholded, it

should look similar to Figure 5.

Figure 5: Thresholded image after morphological proc-

essing

The algorithm now attempts to detect the bottom of each

rectangular section, and connect rectangles which should

end up on the same level after de-skewing.

To accomplish this, the image is traversed by along the top

of the image, one quarter of the distance to the upper right

corner. Then the scanning down the image for the first

pixel which is white, once this white pixel is found, it

means that the start of the document has been found, so the

algorithm starts to look for a black pixel in the column.

Once a black pixel is found, the algorithm descends to the

lowest pixel on the column before finding a white pixel;

next it follows the bottom of the rectangle until it reaches a

gap between rectangles. If there is a large enough gap be-

tween the current location and the rightmost border, the

algorithm attempts to span the gap of white pixels. There

are a maximum number of white pixels which the algo-

rithm is able to process. The number of white pixels must

be low enough to insure that if another rectangle is found, it

has originated on the line which is being processed.

Once an the algorithm has reached the end of a connected

set of black rectangles, a line is fitted from the starting lo-

cation to the ending location, which ends up being the bot-

tom of both sides of the rectangle. This line than has its

slope calculated for determination of the skew further in the

algorithm.

Next the line connection portion of the algorithm continues

to descent from its starting column finding more horizontal

lines across the image. The results of this processing are

shown in Figure 6.

Figure 6: Horizontal line detection

One thing to note in Figure 6 is the saw tooth location on

most lines. These locations are where the algorithm at-

tempted to find more black pixels before crossing a gap

between rectangles. Also each line segment has a vertical

bar at the right side; this represents the line detection’s at-

tempt to continue finding more black pixels at the bottom

right corner of the line.

ALGORITHM – STEP FOUR

The skew of the image can now be approximated using the

slopes of the detected lines. First a mean and standard de-

viation of the collection of slopes is calculated. Next the

standard deviation is used to eliminate slopes which are too

far away from the standard deviation; this is an attempt to

remove bad data. Next an average of the remaining good

slopes is calculated. Slope is the result of tan(), therefore

the skew can be found by using the arctangent of the slope.

ALGORITHM – STEP FIVE

Now the bounding boxes need to be calculated. To calcu-

late the bounding boxes, the morphologically processed

image is used. Since that already has black boxes which

roughly surround each word, this will be used. However

the image needs to be eroded using a new structuring ele-

ment, which in this cast is a 6 by 6 array of ones, to enlarge

the black rectangles to include the ascenders and descanters

of the characters, the results of this are shown in Figure 7.

Figure 7: Bounding box mask

Now the logical ‘or’ operation is performed with the mask,

and the original skewed image. This will keep only the

areas where the mask is black, while attempting to keep all

the text regions their original value, the results of this are

shown in figure 8.

Figure 8: Skewed image after bounding regions are

used

 Now only the areas of the text which were large enough to

survive the opening and closing of the image will be de-

skewed.

ALGORITHM – STEP SIX

The last step of the algorithm is to de-skew the image. This

is done using the same function which skewed the image.

The angle the image is de-skewed by is the negative of the

value calculated in step 4, and the image which is de-

skewed is from step 5, the results of the de-skewing are

shown in Figure 9.

Figure 9: De-skewed Image

Now the final part of the algorithm is to remove the black

border which is added from the image rotation function,

this is shown in Figure 10.

Figure 10: Final results of the de-skewing algorithm

It should be noted that there is some warping of the image

due in part to the image being rotated two times, this ends

up blurring the image due to data getting averaged in the

rotations. This is also the cause of the upper left and lower

right corners having the extra bulge of white.

RESULTS

This algorithm was tested on a set 4 of images taken from

documents submitted for EECS 490 at Case Western Re-

serve University a variety projects. Each of these 5 images

was subjected to 10 different random skews, , and the de-

skewing algorithm processed these images. The results are

shown in Tables 1-4.

Table 1: First Sample:

 Sample 1

Trial Act Calc.

1 -3.2373 -3.1227 0.1146

2 -0.9429 -0.9516 -0.0087

3 4.3547 4.3507 -0.004

4 4.169 4.2724 0.1034

5 -0.8973 -0.8977 -0.0004

6 3.9365 3.9336 -0.0029

7 -4.4211 -4.2647 0.1564

8 -1.4713 -1.3943 0.077

9 3.1317 3.1068 -0.0249

10 -4.9014 -4.7405 0.1609

 Mean 0.06532

 Max 0.1609

Table 2: Second Sample:

 Sample 1

Trial Act Calc.

1 -3.6111 -3.3798 0.2313

2 -2.9723 -2.8094 0.1629

3 -3.0128 -2.8734 0.1394

4 1.0379 1.0246 -0.0133

5 -2.2781 -2.1744 0.1037

6 -3.0119 -2.8734 0.1385

7 -4.8473 -4.4898 0.3575

8 2.4679 2.508 0.0401

9 -0.549 -0.4791 0.0699

10 4.3181 4.341 0.0229

 Mean 0.12795

 Max 0.3575

Table 3: Third Sample

 Sample 1

Trial Act Calc.

1 3.1797 3.1201 -0.0596

2 1.6023 1.4944 -0.1079

3 -1.5803 -1.1489 0.4314

4 -2.1027 -1.9402 0.1625

5 -1.5881 -1.1496 0.4385

6 0.3408 0.2261 -0.1147

7 2.2711 2.3805 0.1094

8 -1.9071 -1.7873 0.1198

9 3.385 3.3675 -0.0175

10 0.6807 1.3182 0.6375

 Mean 0.21988

 Max 0.6375

Table 4: Fourth Sample

 Sample 1

Trial Act Calc.

1 -1.2959 -1.2932 0.0027

2 2.0274 2.1311 0.1037

3 0.4657 0.6307 0.165

4 -0.5512 -0.6408 -0.0896

5 1.9457 1.8181 -0.1276

6 1.2131 1.246 0.0329

7 2.9482 2.8955 -0.0527

8 4.5684 4.5261 -0.0423

9 0.2259 0.4549 0.229

10 3.8014 3.7725 -0.0289

 Mean 0.08744

 Max 0.229

This data yields an average error of 0.12 degrees with a

maximum error of 0.637. These results are better than the

similar algorithm by Su Chen and Robert Harakick, how-

ever their algorithm was created 9 years ago. Another

point of note, is that although the range of +/- 5 degrees

was tested, it is unlikely that any skew of more than 3 de-

grees would be encountered.

The processing time for the average set of data was 1.5

seconds on a laptop with a 2.4 Gigahertz Intel Celeron,

with an average rotation time of 1.2 seconds on the same

laptop.

SUMMARY

The algorithm developed for this paper does a good job

detected the actual skew of the image, usually within 0.2

degrees of the actual skew. However the bounding boxes

which are calculated are not as accurate as possible because

the closing operation attempts to remove the ascenders and

descanters on the letters for calculation of the base line,

where the bounding box function is attempting to add these

back to the image. Also the opening operation removes the

small detail such as most of the values of the array shown

in figure 1, so this does not receive a bounding box and is

not in the final image.

FUTURE WORK

The algorithm does an accurate job of detecting the skew of

an image. However the bounding box calculations could be

improved by using more specialized morphological opera-

tions on the image specifically to determine the valid re-

gions of text.

ACKNOWLEDGMENTS

This work was done for Dr. Frank Merat’s EECS 490

‘computer Vision’ class.

REFERENCES

[1] Su Chen and Robert Haralick. "Automatic Text

Skew Estimation in Document Images". 1995.,

Proceedings of the Third International Conference

on , Volume: 2 , 14-16 Aug. 1995. Pages:1153 -

1156 vol.2

[2] Abhishek Gattani, Maitrayee Mukerki and Hareish

Gur. "A Fast Multifunctional Approach for

Document Image Analysis". 2003. Proceedings.

Seventh International Conference on , 3-6 Aug.

2003.

[3] Reza Safabakhsh and Shahram Khadivi. "Docu-

ment Skew Detection Using Minimum-Area

Bounding Rectangle". Proceedings. International

Conference on , 27-29 March 2000.

[4] Ohad Gal. rorate_image.m.

http://www.mathworks.com/matlabcentral/fileexc

hange/loadCategory.do, 2003-10-21, written for

Rev 12.1

APPENDIX A – SPECIAL MATLABFUNCTIONS:

Deskew: implements the algorithm discussed in the paper

Threashold_image: quickly thresholds a desired image

based on an input parameter.

Rotate_image: Rotates an image through a specified num-

ber of degrees counterclockwise

Trim_image: Removes as much of the black border added

to the image from rotate_image as possible.

‘Detection and Correction of Skew in Document Images’
 Ruchi Kothari

Department of Electrical Engineering and Computer Science,

Case Western Reserve University, Cleveland, OH, Email : rxk89@cwru.edu

Abstract

This paper presents a fast and efficient algorithm for the

estimation of skew in document images and subsequent

correction to de skew the text. Skew angle detection is an

important step in Optical character recognition (OCR) [4].

The method employed is fast and simple and can detect

skew angles in the range of -80 degrees to 80 degrees for

text with text lines as dominant feature. The algorithm is

based on Fourier domain operations and is easy to imple-

ment.

KEYWORDS

OCR, Skew detection/correction, spectral texture

INTRODUCTION

 Document image processing is required to improve the

quality of document text. Document skew detection is an

important pre-processing step in document image process-

ing. Skew is inherent in scanning operations and small

skew angles are routinely encountered [5]. Skew detection

is an important part of document image processing applica-

tions as uncompensated skew can deteriorate document

features and can complicate further document image proc-

essing steps. A great deal of effort has been put in this area

and various algorithms have been developed to eliminate

document skew. These algorithms can be compared based

on performance criteria. Most important performance crite-

ria are accuracy of skew angle detection, range of skew

angle detection/correction, speed of processing the image

and computational complexity involved. Basically, the

methods developed for skew correction can be categorized

into following main types: 1). Hough transform based tech-

nique: Skew of document text lines is detected based on

Hough transform. Hough transform basically transforms

the (x, y) space to the (,) space of lines where signi-

fies distance from the origin and is the slope of the line

[3]. The peaks found correspond to the most prominent

lines and hence skew can be determined by finding the an-

gles of the most prominent lines in the document text. This

method is reliable as it always computes the angle of the

most dominant lines in the document image. These meth-

ods work well with noise, gaps and break in characters [3].

These methods are limited by inability in detection of line-

widths. Also, in presence of very few text characters, some-

times line detection may not be as accurate as desired. HT

methods are not particularly suited in dealing with large

size images. 2). Projection profile based methods: The

projection profile obtained corresponding to most varia-

tions correspond to the skew angle [5]. This process is per-

formed for different angles and the largest magnitude varia-

tions correspond to the skew angle. 3). Cross-correlation

based techniques: These determine vertical shift needed to

maximize correlation between pairs of vertical document

columns.

4). Nearest neighbor clustering: This bottom-up method is

based on calculating histogram angles of connected com-

ponents and their nearest neighbors [3].

5). Fourier techniques for skew correction: Fourier meth-

ods are very popular and more intuitive than other methods.

The Fourier based method is based on finding the largest

density in the Fourier space. Usually, it is assumed that the

most density lines in the Fourier space will be in the verti-

cal direction (corresponding to the horizontal lines) but this

might not be the case always depending on the text.

6). Character slant angle detection based methods: Most

methods are based on detection of the text-line direction.

Few methods are based on detecting the slant of characters.

These methods attempt to normalize the character slant to

the vertical. Methods based on slant of characters are less

trustworthy. Character based methods need to be more

complex to achieve functionality in a myriad of situations.

SPECTRAL TEXTURE BASED METHOD [1]:

We employ a skew correction method that is based on find-

ing spectral texture of images which in turn is based on 2-D

Fourier methods [1]. Fourier transform can detect periodic

and non-periodic patterns in an image easily by examining

their directionality. These spectral texture patterns can be

used to detect periodic and non-periodic patterns and can

also quantify the differences between the non-periodic pat-

terns. Global texture patterns which can be distinguished

from each other as high-energy bursts are difficult to detect

with spatial methods. For easier interpretation of the spec-

tral patterns, the results are displayed in the polar-

coordinate space. This is ideally suited for detecting skew

angles. The spectrum function S obtained in the polar co-

ordinate space wherein r and are the coordinate system

variables. For each direction , S� (r) is a 1-D function

that can be analyzed to yield the behavior of the spectrum

on a radial direction from the origin for a fixed value of .

Similarly, for each frequency Sr () is a 1-D.

S(r) = S � (r) on =0 to

S () = S r () on r=1 to R0

Analyzing Sr () yields the behavior on a circle centered

on the origin for a fixed value of r.

Ro is the circle-radius centered at the origin.

For each pair of coordinates (r,), a pair of values namely

[S(r), S()] is found. We can thus compute 2-D functions

S(r) and S () that contain the spectral energy information

for the whole image by calculating S(r) and S () for all

values of r and .

Here, we have exploited the following features of the Fou-

rier Spectrum [1]:

1). Dominant peaks in the spectrum correspond to the

prominent direction of texture in the spectrum

2). Peaks in the frequency plane correspond to fundamental

spatial period of patterns

As the Fourier spectrum is symmetric, only half of the fre-

quency plane needs to be considered. Thus, we can easily

associate each pattern in the spectrum with one prominent

peak in the Fourier spectrum rather than two.

The program based on the above spectral approach is easy

to implement and the results obtained are straightforward.

RESULTS AND DISCUSSION

We obtain very good results from the implementation of

our program based on the above described spectral texture

technique.

Skew angle detection and correction was reliably per-

formed for correcting skew angles in the range of -80 de-

grees to 80 degrees. This range is sufficient to be applicable

in skew correction of document texts routinely encoun-

tered.

The program was tested for different images and different

angles. Results obtained were satisfactory for text that con-

tained more than two text lines in the document. When the

text document contains sparse text or very few characters,

the dominant lines in the Fourier space do not correspond

to the angle of skew of the text lines. These can correspond

to the prominent lines in the characters (usually vertical

slant) and for such sparse text, slant detection based correc-

tion methodologies should be employed.

But in practical situations, the document text encountered

has more than two lines of text, so this is not a serious limi-

tation.

Below, we show the results of performing skew detec-

tion/correction for text-documents using our program.

Figure 1. Skewed image with few figures. Skew angle is (positive

(counter-clockwise) 50 degree)

Figure 2. Skew corrected-image corresponding to Figure 1

Figure 3. Plot of S () for skewed image of Figure 1. Highest peak

corresponds to the skew. For un skewed images, highest peak usually

occurs at 90 degrees. Here, peak occurs at 140 degrees corresponding

to a 50 degree skew

Figure 4. Plot of S () for skew corrected image of Figure 2. Highest

peak corresponds to the skew. It is now at 90 degrees which signifies

no-skew

We employ the skew correction algorithm to a variety of

test-images to test its functionality. Our algorithm has the

capability to fix skews in the range of -35 degrees to 35

degrees for text with few images (worst case performance).

For images with high content of text lines, we observe an

improved skew correction range. Skew correction capabili-

ties over the range of -80 degrees to 80 degrees (best case

performance) have been reported for simple text images

with no figures.

The skew correction capabilities are largely dependent on

the content of the document image. Images rich in hori

zontal lines of text pose no problem and are faithfully cor-

rected. Images with diagrams and figures behave differ-

ently if the image is dominated in content by the diagram

/figure. The skew correction capabilities deteriorate for

text document images with larger number of figures.

For e.g., skew in document text image of Figure 1, could be

corrected for the range -50 degrees to 50 degrees. It con-

tains 3 figures.

Our algorithm can also correct for negative angles as illus-

trated by the following figures.

Figure 5. Skewed image (negative (clockwise) -50 degrees skew)

 Figure 6. Skew corrected image corresponding to Figure 5

Figure 7. Plot of S () for skewed image of Figure 5. Highest peak

corresponds to the skew. For un skewed images, highest peak usually

occurs at 90 degrees

As expected, we see that the peaks for the positive-angle

skewed image and negative-angle skewed image are 90

degrees apart.

Following figures illustrates the capability of our algorithm

to detect skew angles as large as 80 degrees (both positive

and negative).

Figure 8. Skewed image (positive (counter-clockwise) 80 degrees

skew) with no figures

Figure 9. Plot of S () for skewed image of Figure 8. Highest peak

corresponds to the skew. For un skewed images, highest peak usually

occurs at 90 degrees

Figure 10. Skew corrected-image corresponding to Figure 8

Our observations are illustrated by Figures [7-9]. As Fig-

ure 7 has an image that is rich in text-lines and has no other

prominent peaks corresponding to diagrams/figures etc.

embedded in the text, skew angles detected were in the

range of -80 degrees to 80 degrees.

Figure 11. Skewed Image with tables (35 degree skew)

Figure 12. Skew corrected image corresponding to Figure 11

Our program can fit a given bounding-box (polygon) of

certain dimensions to the text thereby removing text outside

the text box. The dimensions of the bounding box need to

be provided in the program depending on the requirement.

The bounding-box fitting is performed using matlab func-

tion ‘roipoly’.

Figure 13. A polygon of arbitrary size fitted to the document text in

Figure 2 to illustrate bounding-box fitting capability.

SUMMARY

An algorithm for skew detection/correction of document

images has been implemented to correct for skew angles in

a wide range of -80 degrees to 80 degrees for simple text.

Program developed is based on spectral texture technique.

The program works reliably for images with text lines as

the dominant content.

REFERENCES

 [1]. DIGITAL IMAGE PROCESSING USING

MATLAB® ,RAFAEL C. GONZALEZ, RICHARD E.

WOODS AND STEVEN L. ED DINS, PRENTICE-

HALL, 2004.

[2]. Su Chen, Robert M. Haralick, and Ihshin Phillips;

‘Automatic Text Skew Estimation in Documents’, 1995.,

Proceedings of the Third International Conference on

, Volume: 2 , 14-16 Aug. 1995. Pages: 1153 - 1156 vol.2

(pdf, 376 kB)

[3]. Changming Sun and Deyi Si; ‘Skew and Slant Correc-

tion for Document Images Using Gradient Direction’,

1997. Proceedings of the Fourth International Conference

on , Volume: 1 , 18-20 Aug. 1997. Pages: 142 - 146 vol.1

(pdf, 668 kB)

[4].Huiye Ma and Zhenwei Yu; ‘An Enhanced Skew Angle

Estimation Technique for Binary Document Images’, 1999.

ICDAR '99. Proceedings of the Fifth International Con-

ference, 20-22 Sept. 1999. Pages: 165 - 168. (pdf, 40 kB)

 [5].Reza Safabakhsh and Shahram Khadivi, ‘Document

Skew Detection Using Minimum Area Bounding Rectan-

gle’, 2000. Proceedings. International Conference, 27-29

March 2000. Pages: 253 - 258. (pdf, 288 kB)

[6]. Abhishek Gattani, Maitrayee Mukerji and Hareish Gur;

‘A Fast Multifunctional Approach for Document Image

Analysis’, 2003. Proceedings. Seventh International Con-

ference, 3-6 Aug. 2003. Pages: 1178 - 1182. (pdf, 260 kB)

Optical Character Recognition Preparation
Using Matlab

Michael K. Lee

Department of Electrical Engineering and Computer Science,

Case Western Reserve University, Cleveland, OH, Email: mkl7@cwru.edu

ABSTRACT

This paper presents an algorithm that detects the skew an-

gle and aligns the text to be horizontal. Also, it erases the

surrounding margins so that an Optical Character Recogni-

tion software would perform better. Despite the simplicity

of the algorithm, it produced an acceptable quality results.

KEYWORDS

Skew Angles, Text Aligning

INTRODUCTION

When digitizing a hard copy of a document with a scanner,

it is likely to place the text off center and skewed by an

unknown angle. For the character recognition software to

perform better, it would be a preferable idea to align the

text to the center, rotate it back by the skewed angle, and

crop off any unnecessary margins from the image.

DETERMINING THE SKEW ANGLE

The approach I made was to apply a Fourier Transforma-

tion on the scanned image and see in which direction the

frequency components are aligned. Since the text would be

written in the horizontal direction, and a lot of English

characters consist vertical strokes, the Fourier Transformed

image would tell us how much angle the text has been ro-

tated.

I tried to find the average of gray levels along a line across

the center of the image with various angles. For an image

with width a and height b, the equation for the line would

be

(y – b/2) = tan (x – a/2)

The line with the greatest average would probably be the

skew angle of the text, but I came to minor problems.

Since I was using functions over x, I was only picking one

pixel per column. If the angle is too steep, I could only

have few pixels to sample. Therefore, this method could

have errors due to lack of sampling size at high angles. For

example, Figure 1 has 8 pixels to sample where at higher

angles (Figure 2) has only 4 pixels along the line.

Figure 1. Averaging Gray-levels at Low Angles

Figure 2. Averaging Gray-levels at High Angles

In order to overcome this problem, I used the inverse equa-

tion, saying:

(x – a/2) = (y – b/2) / tan

Now this equation is over y, I could do the same thing and

get enough pixels to get a more accurate skew angle detect-

ing algorithm.

ROTATING THE IMAGE BACK

Once I found out what the skew angle is, I could rotate it

back using simple geometric transformations. This takes

two phases – the first part was spatial transformation. Ro-

tating an image with coordinates (x, y) along the axis by the

angle will be

x’ = x cos – y sin

y’ = x sin + y cos

where (x’, y’) becomes the transformed image’s coordi-

nates. However, if I wanted to rotate the image along the

center, I had to shift the image beforehand. A Translation

transformation would simply adding/subtracting the new

offset of the coordinates as

x’ = x + x0

y’ = y + y0

Therefore, the actual spatial transformation takes three

steps – first to align the center at (0, 0), then to rotate it by

the angle , and finally shift the image back to its original

orientation. If we write down the coordinates (x,y) as a

column matrix, the translation transformation to (x0, y0)

could be expressed by multiplying a 3x3 matrix as:

=

1100

10

01

1

'

'

0

0

y

x

y

x

y

x

Also, rotating an image along the axis by the angle will

be the matrix multiplication

=

1100

0cossin

0sincos

1

'

'

y

x

y

x

Therefore, the whole spatial transformation could be done

in a series of matrix multiplications. If the center of the

image is (a/2, b/2) and the skew angle is ,

=

100

0)cos()sin(

0)sin()cos(

100

2/10

2/01

1

'

'

b

a

y

x

1100

2/10

2/01

y

x

b

a

Now we know which coordinates (x, y) correspond to the

rotated coordinates (x’, y’). However, (mostly due to the

trigonometry functions) the transformation can yield nonin-

teger coordinates (x, y) – because the original scanned im-

age is digital, the pixel values are defined only at integer

coordinates. Therefore, we need to decide the gray-level

values at those locations based on the pixel values of the

neighboring integer coordinate locations. This process is

called gray-level interpolation, which is the second phase

of the geometric transformation.

There are several gray-level interpolations to use, but I de-

cided to use bilinear interpolation approach – since I know

the gray-levels of the neighboring integer coordinates, the

gray-level value at a non-integer coordinate (x, y), which

I’ll call v(x, y), can be interpolated from the gray-level val-

ues by using the relationship

v(x, y) = a x + b y + c x y + d

where the four coefficients (a, b, c, and d) are determined

from the four equations that can be written using the four

known neighbors of (x, y).

In Matlab, I made a function named getcoor() for the spa-

tial transformation, and another function named applyt()

that does the rotation and the gray-level interpolation.

Figure 3. A Skewed Text Image

Figure 4. After Rotating Figure 3.

REMOVING THE BORDERS

The only part left is to crop out the unnecessary borders

from the image. Since the text would be aligned, I assume

the text would be in a box in the middle of the image. I

first made a duplicate of the aligned text and applied an

average filter, so I could reduce the effect of noises for the

border detection and a reasonable margin around the text.

Since the plain background would be white, or at least a

bright color, I found the rows and columns which pixels are

all above some threshold gray level. These rows will be

backgrounds without any text information, and I only

needed to remove the consecutive non-information rows

beginning from the top and bottom, and the same thing

goes to the columns. Now I know which rows and columns

are backgrounds, I could crop the border from the original

align image. The result image now only has the minimal

margins along the text.

Figure 5. Before Removing the Borders

Figure 6. After Removing the Borders from Figure 5.

RESULTS AND DISCUSSION

After implementing all functions, I made a wrapper func-

tion that calls all other functions so every step would be

done in one statement. I made a few skewed text image

using Adobe Photoshop and ran several test runs, and the

results had acceptable quality.

Figure 7. A Skewed Text Image

Figure 8. After Performing the Preparation Funcion

on Figure 7.

Figure 9. Another Skewed Text Image

Figure 10. After Performing the Preparation Funcion

on Figure 9.

SUMMARY

The Fourier Transformed image had enough information to

find the skew angle of the text. The problem I had was the

sample size issue, which resolved without any big issues.

After determining the skew angle, I performed a series of

geometric transformation to rotate it back, and cropped out

the unnecessary borders. Despite of the simplicity of the

algorithm, it was able to perform a fine job yielding an ac-

ceptable result.

REFERENCES

[1] Rafael C. Gonzalez, Richard E. Woods, "Digital

Image Processing" Second Edition, Prentice Hall,

2002.

[2] Kenneth R. Castleman, "Digital Image Process-

ing", Prentice Hall, 1995

Skew Correction for Document images Using Gradient and
Fourier analysis

 Deng-Hung Liu

Department of Electrical Engineering and Computer Science,

EECS 490 Digital Image Processing, Midterm Project

Case Western Reserve University, Cleveland, OH, Email: dxl74@cwru.edu

Abstract
Detection of document skew is an important step in any

Optical Character Recognition (OCR) and document image

analysis system. This report describes two algorithms to

estimate the text skew angle in a document image. Then the

skew image is corrected by a rotation at such an angle

which is estimated by the algorithm. The skew angle is

obtained by looking for a peak in histogram of the gradient

orientation or Fourier analysis of the input grey-level image.

The method is not limited in the range of detectable skew

angles and the achievable accuracy. Simulation results

which is demonstrated by Matlab show the high perform-

ance of the algorithms in detecting document skew for a

variety of documents with different levels of complexity.

Keywords
Skew correction, gradient, Fourier analysis

Introduction

The conversion of paper-based documents to electronic im-

age format is important in systems for automated document deliv-

ery, document preservation and other applications. Document

conversion includes scanning, displaying, quality assurance, im-

age processing, text recognition, and creating image and text da-

tabases. Document skew is a distortion that often occurs during

document scanning or copying. During the document scanning

process, the whole document or a portion of it can be fed through

the loose-leaf page scanner. Some pages may not be fed straight

into the scanner, however, causing skewing of the bitmapped-

images of these pages; these pages may eventually be identified

and rescanned by a quality control operator. In an attempt to par-

tially automate the quality assurance process as well as to improve

the text recognition process, a document skew angle detection
algorithm has been developed.

 Many methods have been developed for the correction of
skewed document images.

1. Baird’s algorithm: First, Baird applies a con-

nected component analysis to the document. The

midpoint of the bottom of each connected com-

ponent is then projected onto an imaginary accu-

mulator line perpendicular to different projection

angles. For each projection direction, the sum of

squares of the accumulated values of each bin is

calculated, although Baird notes that any positive

super-linear function provides the same result.

2. Le et al. algorithm: This algorithm applies the

connected component analysis to the original im-

age. The nearest-neighbor chain are extracted from the

adjacent nearest neighbor pairs, in which the slopes of

the nearest-neighbor chain with a largest possible

number of components are computed to give the skew
angle of document image.

Figure 1. skew correction by project profile method

Figure 2.Nearest neighbor based method

3. Hinds et al. algorithm: Hinds et al. applies the

vertical run length analysis for the image. A gray

scale is created from the black run lengths that

are perpendicular to the text lines by placing the

length of the run in the run’s bottom most pixel.

The Hough transform is then applied to each of

these burst image. A line function passes through

an edge point p is determined by an angle and

distance d: dyx =+ sincos , as shown in

Fig.3. Hough transform specifies all possible an-

gles to the points, and calculates the corre-

sponding distance d. By using a accumulator A

for all d and , the peaks in A are the most prob-

able lines in the image.

4. Fourier transform method: By using 2D Fast Fourier

transform. The image is filtered in the Fourier domain

to retain predominantly text and edge information. A

direction histogram is extracted from the Fourier spec-

trum of the image. The histogram yields the predomi-

nant direction of text in the document. We can get

estimated angle form the predominant direction

of text.

 Figure 3.Hough transform method

 Figure 4.Fourier transform method

5. O’Gorman’s algorithm: O’Gorman’s discusses

his skew detection method as part of a structural

page layout analysis system, which detects the in-

line and between-line spacing, and locates text

lines and blocks as well as calculating the skew

angle.

In this report we implement two simple and fast algorithms

for determining the skew angle of an image only using the

orientation histogram. Their development are based on the

observation that the gradient orientation should be mainly

in the direction perpendicular to the text line and predomi-

nant orientation of the text in the spatial domain. After the

skew angle has been determined, the image can then be

rotated for correction.

Overview
In this section, we outline the main points of the skew de-

tection algorithm. The documents are always scanned as

grey scale images at 300 dpi resolution. Though this resolu-

tion is required for the recognizers, skew estimation can be

done at much lower resolution. The input image is down-

sampled to 96 dpi to reduce computational complexity. The

resultant image transformed in to gradient by using Sobel

filtering operation. A directional histogram is extracted

from the orientation of this gradient vector and polar form

of Fourier tansform. The histogram yields the predominant

direction of text in the document. The estimated angle is

used to correct the skew in the original document.

Gradient analysis
In this section, the application of gradient analysis on

documents images is explained in detail. First-order deriva-

tives of a digital image are based on various approxima-

tions of the 2-D gradient. The gradient of an image

),(yxf at location),(yx is defined as the vector

 ==

y

f
x

f

G

G
f

y

x

 It is

well

Figure 5.Overview of the skew detection

known from vector analysis that the gradient vector

points in the direction of maximum rate of change of f at

coordinates),(yx .

An important quantity in edge detection is the magnitude of

this vector, denoted f , where

2/122][)(yx GGfmagf +==

This quantity gives the maximum rate of increase of

),(yxf per unit distance in the direction of f . It is

common practice to refer to f also as the gradient. The

direction of the gradient vector also is an important quan-

tity. Let),(yx represent the direction angle of the vector

f at),(yx . Then , from the vector analysis ,

=

x

y

G

G
yx

1tan),(

where the angle is measure with respect to the x-axis. The

direction of an edge at),(yx is perpendicular to the direc-

tion of the gradient vector at that point.

Computation of the gradient of an image is based on ob-

taining the partial derivatives
x

f
and

y

f
at every pixel

location. These derivatives can be implemented for an en-

tire image by using an NN (77)Sobel filtering

operation.

=

3210123

4320234

5430345

6540456

5430345

4320234

3210123

x

f

y

f
=

T

x

f

The domain of is [], . For detection the orienta-

tion of a skewed document, half of the range of will be

enough. I eliminated the negative value of . If we have

some knowledge about the range of the skew angle, we

may reduce the domain of The negative value of even

more.

This algorithm is based on an observation about the gradi-

ent orientation distribution of the image. For a skewed

document, there will be more points in the image whose

gradient orientations are perpendicular to the document text

lines. It is expected that the statistical information of the

gradient orientation of an image can be used for skew angle

detection. From the obtained histogram)(h , the angle of

the skewed document is the difference between)(h and

2/ . For a non-skewed image, will be 2/ ,hence the

skew angle is zero. The difference between 2/ and

will be the skew angle.

The predominant direction may be obtain by

Skew angle = 90))(max(= h

Figure 6. The skew angle (25) between 2/ and

Fourier Analysis
The Fourier domain description of an image yields orienta-

tion information more accurately. The discrete Fourier

transform of a 2D image),(yxf of size NM is

given by

= =

+

+

= =

=

=

1

0

1

0

)//(2

)//(2
1

0

1

0

),(),(

),(
1

),(

M

u

N

v

NvyMuxj

NvyMuxj
M

x

N

y

evuFyxf

eyxf
MN

vuF

We shall represent the Fourier coefficients in the polar

form instead as),(rF where

=

+=

u

v

vur

1

22

tan

2/

 We can get a directional histogram like the gradient

analysis. The estimation of the skew angle involves deter-

mining the predominant direction of symbols in the docu-

ment image. This direction is marked by high energy den-

sity in the Fourier spectrum. It is expected that this infor-

mation can be determined by creating a directional histo-

gram of the energy distribution in the spectrum.

Skew Estimation and correction process
After Sobel filtering or Fourier transform, we got the result

from the orientation histogram. In most of the gradient

orientation histograms, peaks often appear at 45 degree and

its multiples. These distinct peaks have been removed by

applying a median average filter over the histogram.

After we got the skew angle, we have to do the rotation

process to correct the image skew.

=

1100

0cossin

0sincos

1

skew

skew

out

out

Y

X

Y

X

Then my proposed process for achieving the skew angle

correction is :

I. Convert RGB image to grey scale (if needed).

II. Down-sampling image to 96 dpi in order to re-

duce computational complexity.

III. Perform gradient operation or Fourier transform

on the image (on both x and y directions).

IV. Obtain the orientation histogram.

V. Smoothing this histogram with a median filter

and let the peak we want become predominant.

VI. Search for maximum in this histogram to get an

skew angle.

VII. Rotate image for skew correction.

Experiment results and conclution

Both gradient and Fourier analysis are using orientation

histogram to search the maximum counts, this is why I

want to do these two analysis in this report. I also applied

some filter in the Fourier process in order to get accurate

value.

Figure 7. Plot indication the actual and detected angles

A number of documents with different levels of complexity

from papers, journals, and books were selected to carry out

experiments. These documents include diagrams, images

formulas, and single and multicolumn English. The docu-

ments were rotated at different angles between [-45 45]

degree and were digitized at 96 dpi .As the Figure 7. you

can see above. The error is less than 5%.

Figure 8.Original and skew corrected document image

containing only text information

Figure 9.Original and skew corrected document image

containing photos.

Figure 10.Original and skew corrected document image

containing diagrams.

Figure 11. The histogram of Figure 10.

Referencece
[1] C. Sun and D. Si, Skew and Slant Correction for Docu-

ment Images Using Gradient Direction, In: Proceedings

of the 4th International Conference on Document

Analysis and Recognition, Ulm, Germany, 1997, pp.

142-146.

[2] Huiye Ma, Zhenwei Yu, "An enhanced skew angle

estimation technique for binary document images".

 [3] S. Chen, R.M. Haralick, and I.T. Phillips, Auto-

matic Text Skew Estimation in Document Images,

In: Proceedings of the 3rd International Confer-

ence on Document Analysis and Recognition,

Montreal, Canada, 1995, pp. 1153-1156.

[4] Abhisek Gattani, Maitrayee Mukerji, Hareish Gur,

"A fast multifunctional approach for document

image analysis ", 2003 IEEE.

[5] Adnan Amin, Stephen Fischer, Tony Parkinson,

Ricky Shiu, "Fast algorithm for skew detection".

[6] Hua Shen, Xiaoou Tang, "Generic Sign Board

Detection in Images".

[7] A. Bagdanov and J. Kanai, Projection Profile Based

Skew Estimation Algorithm for JBIG Compressed Im-

ages, In: Proceedings of the 4th International Confer-

ence on Document Analysis and Recognition, Ulm,

Germany, 1997, pp. 401-405.

[8] L. O’Gorman, The Document Spectrum for Page Lay-

out Analysis, IEEE Trans. on Pattern Analysis and Ma-

chine Intelligence, Vol. 15, No. 11, 1993, pp. 1162-

1173.

[9] B. Yu and A. Jain, A Robust and Fast Skew Detection

Algorithm for Generic Documents, Pattern Recognition,

Vol. 29, No. 10, 1996, pp. 1599-1629.

[10] S.C. Hinds, J.L. Fisher, and D.P. D’Amato, “A

Document Skew Detection Method Using Run-

length Encoding and the Hough Transform,” Pro-

ceedings, 10th International Conference on Pat-

tern Recognition, pp. 464-468, 1990.

 [11] Rafael C. Gonzalez and Richard E. Woods, "Digi-

tal Image Processing"

Multi-technique Algorithm for De-skewing and Text Bounding for
OCR Applications

 Daniel Pendergast
Department of Electrical Engineering and Computer Science,

Case Western Reserve University, Cleveland, OH, Email: djp8@case.edu

Abstract

This paper presents an algorithm that combines vari-
ous techniques known in the art of OCR pre-
processing. Specifically, the concern is in de-skewing
of document images and text/information bounding &
cropping. The algorithm, a Fourier technique com-
bined with statistical analysis of gradient information,
performs well on a variety of test images.

KEYWORDS
OCR, de-skewing, Fourier, ‘image gradient’

INTRODUCTION

OCR applications are currently in great demand in a
variety of industries. Although focus in OCR research
has shifted somewhat as of late to applications for
handheld devices such as PDAs, demand is still high
for processing of scanned document images. One
common example today would be scanned images of
business cards - from which contact information can
be read and stored in a variety of database-type pro-
grams. OCR algorithms are typically very complex
and sensitive to a number of factors that are poten-
tially correctable in the pre-processing stage. One fac-
tor is document skew. Skew refers to the angle rela-
tive to the horizontal that the document is scanned in
at. Most OCR algorithms assume that the input text
will be aligned along a horizontal line.If it is not, the
OCR algorithm will likely perform poorly. Most pa-
pers on the subject today, such as [1] categorize at-
tempts to de-skew image documents into families of
techniques. The basic categories include nearest-
neighbor techniques, projection profiles, Fourier
methods, Hough transforms, and correlation tech-
niques. Other attempts such as [2], fitting a rectangle
of least area, or [3] fall outside the scope of the gen-
eral categories. The combination technique presented
in this paper uses a simple Fourier technique for de-
skewing, but incorporates some elements of [3].
Another area of interest in OCR pre-processing in-
volves “text selection” or cropping the image to only

include relevant information. This may be as simple
as cropping out all surrounding white space from an
image or as complex as an attempt to isolate text from
charts or pictures within the document. The technique
presented in this paper performs white space cropping
and attempts a simple bounding box that isolates text
within the image.

TECHNICAL APPROACH

The combination technique is a three-stage process.
First, a document skew angle is estimated and the im-
age is rotated to correct the skew. Next, the de-
skewed image is cropped to include only the informa-
tion within the image (the surrounding white space is
removed). Finally, a rectangular bounding box meant
to capture only the text in an image is fitted.

To estimate the skew angle, the algorithm first checks
for the trivial case of a black background on the
skewed document. It is conceivable that when scan-
ning a document in, there may be a discernable back-
ground surrounding the document. If this is the case,
skew angle detection becomes a trivial matter of
measuring the angle of the borders of the document.
However, unless this fortunate situation arises, the
technique employs the use of the Fourier method. Be-
fore moving to the frequency domain, thresholding is
carried out on the original image to produce a binary
image. Next, run-length smoothing similar to that pre-
sented in [2] is performed. Any horizontal run of four
white pixels or less that is surrounded by black pixels
is set to black. This helps to make text lines more
dominant. A transform of the image is then performed
using a two-dimensional FFT. The transform image is
shifted so that the dc component is centered. Then, a
radial sweep of the transform is performed from -44.6
degres to 44.6 degrees in .2 degree increments. Two
lines of pixel values (one at the test angle and one at
90 degrees above the test angle) are summed and
stored in a test array. As there will be some rounding
error in calculating the pixels that truly lie on the test
line, each position in the test array contains a +/- .2

degree spread. The maximum value held in this array
should correspond with the skew angle of the docu-
ment image. The image is then rotated about the nega-
tive of this angle using bilinear interpolation.

The next stage involves cropping of the image to re-
move white space and extraneous outliers. A removal
of white space only would involve a simple scan of
the image to find the most extreme border pixels and
then cropping of anything outside of these borders. To
remove “outliers” however, a more complex routine is
necessitated. The de-skewed image is filtered with a
3x3 sobel filter to find the significant horizontal
edges. Each contiguous vertical run of white pixels in
the filtered image is considered a “singular edge”. All
the singular edges found in the filtered image are
stored in an array that tracks their position as well as
their length. From this data, an average length of hori-
zontal edges in the image can be calculated. It is as-
sumed that the scanned image contains predomi-
nantly, if not exclusively, text. It follows then that the
majority of the horizontal edges in the image will
have a length close to that of the height of the text.
Edges that lie outside of one standard deviation of the
mean value of edge lengths can then be ignored. The
simple scan for border pixels described above can
now be performed ignoring these outliers.

The final stage is a simple attempt to bound the text
only in a document image. To do this, a count of the
relevant edges contained in each column and each row
is conducted for rows and columns within the white
space bounding box created in the previous stage.
From this data, the average count for each row and
column can be found. Then, similar to the previous
stage, the border rows and their 5 inner neighboring
rows are evaluated to determine if they fall within
+1.75/-.75 standard deviations from the average. If
not, the border is moved in and then next set of rows
is evaluated. An identical procedure is performed with
the columns. The concept here, again based on the
assumption that text is the principle component in the
document image, is that non-text information will lie
outside of this range and therefore be eliminated.

RESULTS

The de-skewing stage of the technique worked rea-
sonably well, with an occasional error of one or two
degrees. In the trivial case, there was no error as
shown in Figure 1 below. Figure 2. shows the result
of an implementation of the non-trivial case. Error
usually only appeared, if at all, in document images
containing pictures. The error can be attributed to fre-
quency contributions made by picture components.
Frequency range for the radial sweep was adjusted
(highpass) in an attempt to minimize such error.

The white space/outlier cropping worked quite well
with no test images failing this stage. This is show in
Figure 1, 2 and 3. The selection of +/- 1 standard de-
viation for determination of “relevant edges” was ex-
perimentally found.

An example of a result of the third stage is shown in
Figure 3. In this case, the technique was successful in
eliminating the picture from the document image. The
selection of +1.75/-.75 standard deviations was ex-
perimentally found.

The third stage has limitations known at the time of
design. The algorithm will not completely detect or
remove a picture that is surrounded by text on any
side, as the algorithm “stops looking” once it is satis-
fied the border in question contains the appropriate
statistics. In addition, the algorithm will eliminate
lines of text at the bottom of the bounding box that
run short of the average length of lines in the para-
graph above it. It is suggested that only stage 1 and 2
be trusted, and stage 3 be considered to an prototypi-
cal estimate for further development and refinement.

Fig 1

Fig 2

Fig 3

Fig 3b

CONCLUSIONS

As discussed in the results, stage 1 and 2 work within
acceptable bounds, with stage 2 performing almost
without error. Stage 3 could be developed further by
performing a similar statistical examination on set
regions throughout the document image as opposed to
simply on the borders. This would also allow for a
non-rectangular bounding box to be constructed, po-
tentially eliminating all image components that are
not text information. The original aim of this project
focused on stage 1, the de-skewing of the image.
There are a multitude of de-skewing techniques
known in the art presently though, and less work has
been done on text identification. Thus, emphasis was
shifted towards an exploration of the text isolating
algorithm.

ACKNOWLEDGMENTS

The author credits graduate education at Case West-
ern Reserve University with inspiring examination of
this subject.

REFERENCES
[1] C.Sun and D. Si, "Skew and Slant Correction for

Document Images using Gradient Direction",
Proc. of Forth International Conference on
Document Analysis and Recognition, pp. 142-
146, August 1997.

[2] R. Safabakhsh and S. Khadivi, "Document Skew
Detection Using Minimum-Area Bounding Rec-
tangle", Proc. of The International Conference on

Information Technology:Coding and Computing,
pp. 253-258, March 2000

[3] H. Ma and Z. Yu, "An enhanced Skew Angle Es-

timation Technique for Binary Document Im-
ages", Proc. of Fifth International Conference on
Document Analysis and Recognition, September
1999

OCR Preparation
Design of an Algorithm for Document Alignment

Using the Global Processing via Hough Transform
 Iouri Petriaev

Department of Electrical Engineering and Computer Science,

Case Western Reserve University, Cleveland, OH, Email: iap4@cwru.edu

Abstract
This paper presents the design details of an algorithm

which will (a) detect the skew angle and align the text to be

horizontal, and (b) will fit a given bounding box to the text,

erasing all image information outside the text box. The

solution discussed in this paper explains application of

Hough Transform and regional descriptors to given prob-

lem. Commonly used for obtaining properties of the given

regions, regional descriptors in this solution are combined

with the Hough Transform, which allows creation of auto-

matic pictorial pattern recognition and scene analysis algo-

rithm.

KEYWORDS

Hough Transform, Chain codes, Regional descriptors, Digi-

tal Image, IPT, Freeman codes

INTRODUCTION

Digital image interpretation and object recognition have

been challenging but desirable for many applications, espe-

cially robotics. One of the main elements of image interpre-

tation is segmentation. Segmentation subdivides an image

into its constituent regions or objects. Segmentation accu-

racy determines the eventual success or failure of comput-

erized analysis procedures. That is why especial care

should be taken to improve probability of rugged segmenta-

tion. In many situations, such as robotics, some degree of

control over the environment is implemented.

Most of the segmentation algorithms are based on disconti-

nuity and similarity. Those based on discontinuity partition

an image based on abrupt changes in intensity, such as

edges in a digital image. Algorithms based on similarity

partition an image into regions that are similar according to

a set of predefined criteria. Examples of this category of

algorithms include thresholding, region growing, and re-

gion splitting and merging.

In this solution, we concentrate on image discontinuities.

One of the main characteristic of an object in real life as

well as in digital image is a boundary (edges) with in which

the object is confined, and which determine its shape, area,

radius and many other properties. Numerous edge detection

algorithms such as Sobel, Prewitt, Roberts gradients sel-

dom characterize an edge completely because of noise,

breaks in the edge from non-uniform illumination and spu-

rious intensity discontinuities. One of the approaches of

solving the edge discontinuities concentrates on the analy-

sis of the characteristics of pixels in a neighborhood or pre-

defined size (3x3, 5x5 and such) around every pixel of an

image which is fit to be an edge. Global Processing via the

Hough Transform is the approach that is used in this solu-

tion.

In Hough Transform algorithm, edge points are linked

through determining if they lie on a curve of specified

shape. This approach, unlike the one mentioned before,

concentrates on global relationships between pixels. Hough

[1962] considered a fact that infinitely many lines pass

through point (xi, yi), and they all satisfy the equation yi =

axi + b for varying values of a and b. Rewriting this equa-

tion as b = - axi + yi and considering the ab-plane yields

the equation of a single line for a fixed pair (xi, yi). The next

point (xj, yj) also has a line within the same parameter space

which intersects the line associated with (xi, yi) at (a’, b’),

where a’ is the slope and b’ is the intercept of the line con-

taining both (xi, yi) and (xj, yj) in the xy-plane. All points

located on this line contain lines in ab-plane that intersect

at (a’, b’).

 b’ b

 b = -axi + yi

 a’

 a b = -axj + yj

Figure 1. Parameter space (ab-plane).

Hough transform subdivides the parameter space into accumulator

cells where (amax, amin) and (bmax, bmin) are the expected ranges of

slope and intercept vlues. For instance, the cell at (i, j) coordinates

and with accumulator value A(i, j) corresponds to the square as-

sociated with parameter space coordinates (ai, bj).

Implementation of transform starts with all accumulator

cells initialized to zero. Letting the parameter a equal each

of the allowed subdivision values on a-axis for every point

(xk, yk), we solve for the corresponding b using the equation

b = -axk + yk. Later, resulting b’s are rounded off to the

nearest allowed value in the b-axis. If chosen ap results in

solution bq, we let A(p,q) = A(p,q) + 1. The entire proce-

dure ends with a value of Q in A(i,j) corresponding to Q

points in the xy-plane located on the y = axi + bi.

The described above solution has a flaw. As a line ap-

proaches vertical direction, the slope of the line (a) ap-

proaches infinity. A suggested work around this difficulty

is a normal representation of a line: xcos + ysin =

 y

 (xj, yj)

 (xi, yi)

 x

Figure 2. (’, ’) parameterization of lines in the xy-

plane

The following properties of this solution need to be men-

tioned. With being equal to the positive x-intercept, a

horizontal line has = 0
0
. A vertical line has = 90

0
, with

 being equal to the positive y-intercept, or = -90
0
, with

being equal to the negative y-intercept. The intersection

point (’, ’) corresponds to the line that passes through

both (xi, yi) and (xj, yj). The accumulator cells are generated

from subdividing the -parameter space.

 min 0 max

 min

 0

max

max

Figure 3. Division of the -parameter space into ac-

cumulator cells

In the following Figure 4, the first image shows the digital

image with five dots. The second image demonstrates its

Hough transform obtained by hough function in MATLAB.

Figure 4. (a) Binary image with five dots (four of the

dots are in the corners and one in the middle). (b)

Hough transform.

Each of the five points on the first image is mapped onto

the - parameter space as shown in the second image.

Each line on the second image corresponds to a one point

on the first one. The horizontal line resulting from the

mapping of one of the points is a special case of a sinusoid

with zero amplitude.

Hough transform is appliable to any function of the form

g(v,c) = 0, where v is a vector of coordinates and c is a

vector of coefficients. For example, the points lying on the

circle

can be detected by using the approach just discussed.

An edge-linking approach based on the Hough transform is

as follows:

1
Compute the gradient of an image and threshold it

to obtain a binary image.

2 Specify subdivisions in the -plane.

3
Examine the counts of the accumulator cells for

high pixel concentrations.

4
Examine the relationship between pixels in a cho-

sen cell.

It is a common practice to use schemes that compact the

data onto representations after obtaining raw data in the

form of pixels along a boundary. These representations

contain data more useful in the computation of descriptors.

Chain codes represent a boundary by connecting a se-

quence of straight-line segments of specified length and

direction. Usually, Chain codes representations are based

on 4- or 8-connectivity of the segments. The direction of

each segment is coded by using a numbering scheme such

as the ones shown in Figure 5.

 1 2

 3 1

2

3

2

2

2

1)()(ccycx =+

 2 0 4 0

 5 7

3 6

Figure 5. Direction numbers for a 4 – and 8 – direc-

tional chain codes.

The codes that are based on this scheme are referred to as

Freeman chain codes.

DESIGN OF THE ALGORITHM

Besides line detection on a digital image, Hough transform

and line detection algorithm compute both end-points of

each line segment, the distance between each pair of these

points, angle of the line segment (Hough transform bin,

degrees) and position of Hough transform bin (rho-axis).

This algorithm consists of four functions: hough, hough-

peaks, houghpixels and houghlines.

First function computes Hough transform of the image f. It

takes two more input parameters which are dtheta and

drho. If the last two inputs are not provided, they are both

set to 1.

Second function, houghpeaks, is used for finding a mean-

ingful set of distinct peaks in the Hough transform matrix h

passed to the function as an input parameter. The output

parameters of this function are r and c. These parameters

are the row and column coordinates of the identified peaks.

Third function, houghpixels, obtains pixels of the image

belonging to the transform bin. Its output parameters, r and

c are row-column indices for all nonzero pixels in image F

that map to a particular transform bin.

The last function, houghlines, extracts line segments based

on the Hough transform. The only output parameter of this

function is the collection of line segments found on the

original image.

In this solution, the Hough line-detecting algorithm is used

to retrieve the properties of the lines located at the edges of

a document with text. Despite its promising solution, line-

detecting algorithm does not take for consideration the pos-

sibility of presence of lines that may present noise or

should not be taken for account. Such lines could be a grid

on a background of a page, line segment stretched across

the page separating paragraphs and such. These segments

could be interpreted as additional information that may help

to detect the direction of the text, but they could not be re-

lied upon during design of an algorithm for while detected

on some documents they may not be present on the others.

The solution to this problem was found in function bounda-

ries. This function traces the exterior boundaries of the

objects in digital image f. Just us the Chain codes described

before, this function can be based on 4– or 8- connectivity

of the segments. It traces the boundaries of the objects ei-

ther in a clockwise (cw-the default) or counterclockwise

(ccw) directions. Assuming that the boundaries of the

document with text are the longest and unique, we obtain

them from the set of boundaries returned and ordered by

their size. This allows as not only filter noise but the un-

wanted boundaries as well.

We apply function bound2im to the selected boundary to

obtain a binary image of size M N with 1s for boundary

points and a background of 0s.

Figure 6. Boundary of the skewed document

Hough line-detector is applied to the resulting image and

retrieves properties of the desired boundary. Thus, having

the of the picked by the algorithm single line, we calcu-

late the inv by: inv = 2 - . We use function imrotate of

the IPT toolbox which rotates image by applying:

The translation of a bounding box of the document is calcu-

lated by obtaining difference between the center of the en-

tire image and the centroid of the boundary. The centroid is

calculated by the function regionprops. The document is

centered in the image by applying IPT functions translate

and imdilate. The first function creates the transformation

matrix for image translation:

where x and y are the transformation coefficients of the x

and y coordinates. The imdilate function applies the trans-

formation matrix to the image. To fit a bounding box to the

text and erase all image information outside the text box we de-

termine the scale of an image by calculating ratio of the

width and height of the original image to the width and

height of the bounding box. Then, knowing the coordinates

of the bounding box we extract the image within in and

create a new image. The scaling transformation is applied

cossin

sincos

:

100

0cossin

0sincos

zy

zx

areequationscoordinatewhere

+=

=

1

010

001

yx

to the resulting image with produces the desired effect. The

transformation matrix for the image scaling has the follow-

ing form:

where sx and sy are scaling factors of x and y coordinates.

The IPT function used for generation of scaling matrix was

maketform. The IPT function used to apply scaling to an

image was imtransform.

RESULTS AND DISCUSSION

A test function skew was created to allow testers to load an

image and have that image skewed. After skewing, the re-

sulting image can be passed to the function orcprep de-

scribed above.

The set of images below shows starting from the left image

original image, bounding box with bottom line selected

(colored green). Green line indicates line selected by algo-

rithm for rotation angle calculation. In this example the

angle is approximately equals to 30
0
. The bottom two im-

ages show image after the translation was performed, and

text scaled to fit the entire image correspondingly.

Trial 1:

Figure 7. Original image: = 30
0

The table below shows rotation, translation and scaling

values obtained during program execution and applied dur-

ing image transformation.

Rotation Translation Scale

 X Y X Y

342 19 -30 1.6273 1.5102

The next sequences of five images similarly demonstrate

entire process of image segmentation and alignment of the

text box including one extra image (1
st
 in the second row)

after application of rotation to the original image.

Trial 2:

Figure 8. Original image: = -60
0

Rotation Translation Scale

 X Y X Y

420 19 -31 1.6273 1.5102

Trial 3:

Figure 9. Original image: = 120
0

Rotation Translation Scale

 X Y X Y

420 19 -30 1.6273 1.5102

100

00

00

y

x

s

s

In the following three trials, we will perform the same tests

on a different image. That image contains a grid on its

background and is filled with a handwritten text.

Trial 4:

Figure 10. Original image: = 30
0

Rotation Translation Scale

 X Y X Y

 330 -11 -12 1.1997 1.6313

Trial 5:

Figure 11. Original image: = -60
0

Rotation Translation Scale

 X Y X Y

420 12 -11 1.2821 1.5247

Trial 6:

Figure 12. Original image: = 120
0

Rotation Translation Scale

 X Y X Y

420 12 -12 1.2821 1.5247

All six trials demonstrated ability of the developed algo-

rithm to identify object through segmentation. Trials of the

second image have shown that existence of the undesirable

boundaries is ignored and correct boundaries of the docu-

ment are always obtained.

The developed algorithm successfully positioned page in

the center of the image. It scaled images to the right dimen-

sions, so the text occupied the entire image area. Moreover,

the processed image appeared to have horizontally posi-

tioned lines of text in the document. In trials 3 and 6, text

appeared to be turned upside down. In both of these trials,

the if the original image was = 120
0
. Both images were

subjected to rotation of 420 degrees. In situations like this

two, logic not allowing image to over-rotate or exceed cer-

tain degree of rotation could be introduced to the algorithm.

Such logic could be achieved by implementation of valida-

tion check-points within existing solution or implementa-

tion of neural network responsible for making decisions.

Image processing time significantly increased with increase

of image complexity. Although, the equipment used to per-

form all six trials should be considered as a partial source

of declining performance as well.

SUMMARY

The design of OCR preprocessor (Algorithm for Document

Alignment) is presented. The implementation of the algo-

rithm mainly concentrated on Global Processing via Hough

transform technique. Numerous functions provided by the

Image Processing Toolbox were used in the current solu-

tion. Their usage was demonstrated and explored. Digital

image diskewing (alignment) were achieved during all tri-

als performed. Data used for image transformation was

recorded.

A future study should concentrate on implementation of

neural network able to identify text and evaluate its posi-

tioning. Such solution will enable precise text positioning

either by algorithm itself or on demand. Further improve-

ments should be explored to decrease processing time.

REFERENCES

[1] Rafael C. Gonzalez, Rechard E. Woods, Steven L.

Eddins, "Digital Image Processing using

MATLAB", Pearson Prentice Hall, 2004.

[2] Rafael C. Gonzalez. Richard E. Woods, "Digital

Image Processing", Prentice-Hall, 2002

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

