Stationary
Magnetic
Fields

2.1 INTRODUCTION

Magnetic effects have many similarities to electric effects, but there are also important
differences. Magnetic forces were first observed through the attraction of iron to natu-
rally occurring magnetic materials such as lodestone. The compass, apparently devel-
oped in China, was introduced into Europe around A.D. 1190, and had a profound effect
upon navigation thereafter. In 1600 William Gilbert, physician to Queen Elizabeth I,
published an important book, De Magnete, presenting a rational and thorough summary
of the magnetic effects known to that date, with discussions of some of the similarities
to and differences from the electric effects then known. Had discoveries stopped at that
point, we could immediately adapt the development of the preceding chapter to mag-
netic fields, the two kinds of magnetic “charges” being called north and south poles.
The important difference is that magnetic charges have so far been found only in pairs,
not isolated, so that we would be concemned with fields from dipoles, as in Ex. 1.8d.
Discoveries did not stop, however. In 1820, Hans Christian Oersted, during a class
demonstration of an electric battery, observed that the electric current in a wire caused
a nearby compass needle to be deflected, thus establishing clearly the first of several
important relationships between electric and magnetic effects. André-Marie Ampéere
very quickly extended the experiments and developed a quantitative law for the phe-
nomenon. Others who contributed both to the understanding and to the practical use of
electromagnets within a very short period were Jean-Baptiste Biot, Felix Savart, Joseph
Henry, and Michael Faraday. The force produced by magnetic fields (either from per-
manent magnets or from electromagnets) on electric currents was also clearly estab-
lished through these many experiments. These relationships between electric currents
and magnetic fields will constitute the starting point for our development of magnetic
fields in this chapter. The relationships are somewhat more complicated than those of
the preceding chapter, primarily because both the current that acts as the source of field
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and the current element acting as a probe to measure it are vectors whose directions
must be introduced into the laws.

As with electric fields, the distributions studied in this chapter, although called
“static,” are applicable to many time-varying phenomena. These “quasistatic” prob-
lems are among the most important uses of the laws and, in some cases, are valid for
extremely rapid rates of change. Still we must remember that other phenomena enter—
and are likely to be important—when the fields change with time. These are studied in
the following chapter.

Before beginning the detailed development, let us look briefly at a few examples of
important static or quasistatic magnetic field problems. There was the prompt appli-
cation of Oersted’s observation to useful electromagnets. One of Henry’s early magnets
supported more than a ton of iron, with the current driven only by a small battery.
Electromagnets are now routinely used in loading or unloading scrap iron and many
other applications. The development of practical superconductors in the 1960s has made
possible magnets with high fields in large volumes with additional advantages of sta-
bility and light weight. Large currents can be made to flow in the magnet winding since
there is no voltage drop and no heating. The need to refrigerate is compensated suffi-
ciently for a number of special applications. Superconductors are used extensively in
high-energy physics, where the need is for large volumes of strong field. Fusion research
depends on massive superconductive magnets for containment of the ionized gases of
a plasma. Motors and generators for special applications such as ship propulsion are
being made lighter and smaller by using superconductors.!

Moving charges constitute currents and magnetic fields produce forces on them as
they travel through a vacuum or a semiconductor. Thus magnetic field coils are used
for deflection and focusing of beams of electrons in television picture tubes and electron
microscopes. The magnetic deflection of flowing charge carriers in a semiconductor is
known as the Hall effect; it is used for measurement of the semiconductor properties
or, with a known semiconductor, may be used as a probe for measurement of magnetic
field.

Coils are used to provide the inductance needed for high-frequency circuits and the
magnetic fields can be found from the currents as in static calculations when the sizes
involved are small compared with wavelength. (However, current distributions are com-
plicated at high frequencies by distributed capacitance in the windings.) Just as we
noted in Sec. 1.1 for electric fields, the distribution of magnetic field in the cross section
of a transmission line is essentially the same as calculated using static field concepts,
even though the fields can actually be varying at billions of times per second.

' More details on superconductors can be found in Sec. 13.4,
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S
Static Magnetic Field Laws and Concepts

2.2 CONCEPT OF A MAGNETIC FIELD

As with the electrostatic fields of the preceding chapter, we use the measurable quantity,
force, to define a magnetic field. We noted in Sec. 2.1 that magnetic forces may arise
either from permanent magnets or from current flow. Since the approach from currents
is more general—and on the whole more important—we start by consideration of the
force between current elements. Permanent magnets may then be included, at least
conceptually, by considering the effects of these as arising from atomic currents of the
magnetic materials.

The force arising from the interaction of two current elements depends on the mag-
nitude of the currents, the medium, and the distance between currents analogously to
the force between electric charges. However, current has direction so the force law
between the two currents will be more complicated than that for charges. Consequently,
it is convenient to proceed by first defining the quantity we will call the magnetic field
and then, in another section, give the law (Ampere’s) that describes how currents con-
tribute to that magnetic field. A vector field quantity B, usually known as the magnetic
flux density, is defined in terms of the force df produced on a small current element of
length dl carrying current /, such that

df = Idl B sin 6 ey

where 6 is the angle between dl and B. The direction relations of the vectors are so
defined that the vector force df is along a perpendicular to the plane containing dl and
B, and has the sense determined by the advance of a right-hand screw if dl is rotated
into B through the smaller angle (Fig. 2.2). It is convenient to express this information
more compactly through the use of the vector product. The vector product (also called
cross product) of two vectors (denoted by a cross) is defined as a vector having a
magnitude equal to the product of the magnitudes of the two vectors and the sine of
the angle between them, a direction perpendicular to the plane containing the two
vectors, and a sense given by the advance of a right-hand screw if the first is rotated

f
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B

Fic. 2.2 Right-hand screw rule for force on a current element in a magnetic field.
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into the second through the smaller angle. Relation (1) may then be written
df = /dl X B 2)

The quantity known as the magnetic field vector or magnetic field intensity is denoted
H and is related to the vector B defined by the force law (2) through a constant of the
medium known as the permeability,

B = uH (€)]

Many technologically important materials such as iron and ferrite are nonlinear and/or
anisotropic, in which case w is not a scalar constant, but to keep this introductory
treatment simple, the medium will first be assumed to be homogeneous, isotropic, and
linear. A somewhat more general form of (3) will be given in Sec. 2.3.

In SI units, force is in newtons (N). Current is in amperes (A), and magnetic flux
density B is in tesla (T), which is a weber per square meter or volt second per square
meter and is 10* times the common cgs unit, gauss. Magnetic field H is in amperes per
meter and w is in henrys (H) per meter. Conversion factors to other cgs units are in
Appendix L. The value of u for free space is

o = 4m X 1077 H/m

2.3  AMPERE'S LAW

Ampere’s law, deduced experimentally from a series of ingenious experiments,? de-
scribes how the magnetic field vector defined in Sec. 2.2 is calculated from a system
of direct currents. Consider an unbounded, homogeneous, isotropic medium with a
small line element of length d!’ carrying a current I’ located at a point in space defined
by a vector r’ from an arbitrary origin as in Fig. 2.3a. The magnitude of the magnetic

field at some other point P in space defined by the vector r from the origin is

I'(r") dl' sin ¢

dH(r) = —————
® 47R?

where R = |r — r'|, the distance from the current element to the point of observation.
The angle ¢ is that between the direction of the current defined by dl’ and the vector

2 For a description, see J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed.,
Part IV, Chap. 2, Oxford Univ. Press, Oxford, 1892. The law is now more frequently named
after Biot and Savart, but the assignment remains somewhat arbitrary. Following Oerst-
ed’s announcement of the effect of currents on permanent magnets in 1820, Ampére
immediately announced similar forces of currents on each other. Biot and Savart pre-
sented the first quantitative statement for the special case of a straight wire; Ampére
later followed with his formulation for more general current paths. The form given here
is a derived form borrowing from all that work. For more of the history see E. T. Whittaker,
A History of the Theories of the Aether and Electricity, Am. Inst. Physics, New York, 1987,
or P. F. Mottelay, Bibliographical History of Electricity and Magnetism, Ayer Co. Publishers,
Salem, NH, 1975.



74 Chapter 2 Stationary Magnetic Fields

dH® P

Fie. 2.3a Coordinates for calculation of magnetic field from current element.

R = r — r’ from the current element to the point of observation. The direction of
dH(r) is perpendicular to the plane containing dl and R, and the sense is determined
by the advance of a right-hand screw if dl is rotated through the smaller angle into the
vector R. Thus, with the current direction shown in Fig. 2.3a, dH at P is outward from
the page. We see then that the cross product can be used to write the vector form of
Ampere’s law:

I'eydl’ X R

4mR? )

dH(r) =
To obtain the total magnetic field of the current elements along a current path, (1) is

integrated over the path
_ [I'(a)dl' X R

It is of interest to examine further the relation between B and H. We see that the
field H is directly related to the currents, without regard for the nature of the medium
as long as it fills all space homogeneously. The force on a current element was seen in
Sec. 2.2 to depend upon magnetic flux density. The influence of the medium in relating
B and H comes about in the following way. The electronic orbital and spin motions in
the atoms can be thought of as circulating currents on which a force is exerted by B
and which produce a field M (called magnetization) that adds to H. This is analogous
to the response of a dielectric medium shown in Fig. 1.3¢. Then B is related to H as
though there were only free space but with the added field of the atomic currents

B = poH + M) 3)

Magnetization M may have a permanent contribution (to be considered in Sec. 2.15),
but here we neglect this and assume the material isotropic so that M is parallel to H.
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We can then write

B = p(1 + x)H = pH = u pH

where x,, is called the magnetic susceptibility, w is the permeability introduced in Sec.
2.2, and u, is the relative permeability. Many materials have nonlinear behavior so x,,
and w are, in general, functions of the field strength. For diamagnetic materials y,, <
0, and for paramagnetic, ferromagnetic, and ferrimagnetic materials y,, > 0. Most
materials commonly considered to be dielectrics or metals have either diamagnetic or
paramagnetic behavior and typically |x,,| < 10~ so we treat them as free space, taking
w = po Ferromagnetic and ferrimagnetic materials usually have x,, and u/u, much
greater than unity and in some cases are anisotropic, that is, dependent upon direction
of the field. All of these aspects are considered in more detail in Chapter 13.

R

S 4 e SR
Example 2.3a
FIELD ON AXIS OF CIRCULAR LOOP

As an example of the application of the law, the magnetic field is computed for a point
on the axis of a circular loop of wire carrying dc current / (Fig. 2.3b). The element dl’
has magnitude a d¢' and is always perpendicular to R. Hence the contribution dH from
an element is

la d¢’

aH = —=2
4m(a* + 22)

)

As one integrates about the loop, the direction of R changes, and so the direction of

Fic. 2.3b Magnetic field from element of a circular current loop (Ex. 2.3a).
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dH changes, generating a conical surface as ¢ goes through 27 radians (rad). The radial
components of the various contributions cancel, and the axial components add.
Using (4)

a dH

dHZ=dHSin0=m

Integrating in ¢ amounts to multiplying by 2; thus

Ia?

- 5
B = 2@+ 27 ®
Note that for a point at the center of the loop, z = 0,
1
H, = — 6)
20 2a
Example 2.3b

FIELD OF A FINITE STRAIGHT LINE OF CURRENT

Let us find the magnetic field H at a point P a perpendicular distance » from the center
of a finite length of current /, as shown in Fig. 2.3c. It is easy to see from the right-
hand rule that there is only an H , component. Its magnitude is given by the integral of
(1) over the length 2a

¢ Isin ¢ dz
Hy= | —-&=%
¢ —a ATR?
We can see from Fig. 2.3c that sin ¢ = r/R and R = (r*> + z2)V/2. Thus,
Ir (¢ dz 1 1
¢ 4 2 232 A 2 172 0
4o (r* + %) 2@r [(r/a)* + 1]

which becomes I/27r if |a| — c. This same result is found in Ex. 2.4a by a different
method.

Fic. 2.3¢c Calculation of magnetic field of straight section of current (Ex. 2.3b).
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aon)

Fic. 2.3d Tightly wound solenoid of » turns per meter and its representation by a current sheet
of nl A/m (Ex. 2.3¢).

Example 2.3¢
FIELD IN AN INFINITE SOLENOID

Let us here model the long, tightly wound solenoid shown in Fig. 2.3d by an equivalent
current sheet to facilitate calculation of the magnetic field inside. We assume that though
the wire makes a small helical angle with a cross-sectional plane, we can adequately
model it with a circumferential current. The current flowing around the solenoid per
meter is nl, where n is the number of turns per meter and / is the current in each turn.
Then, in a differential length of the sheet model, there is a current nldz. We will cal-
culate, for simplicity, the field on the axis. But one can show, by means that will come
later (see Ex. 2.4d) that the field for an infinitely long solenoid is uniform throughout
the inside of the solenoid. We can adapt (4) for the present calculation by taking /
in (4) to be nldz. Then the total field on the axis for the infinitely long solenoid is

given by
* nla® dz
.= J_w 2 + )" ®)

In evaluating the integral in (8), one first takes symmetrical finite limits as in (7) and
then lets the limits go to infinity with the result

H = nl ©)

For a solenoid of finite length, it is easy to modify (8) to obtain on-axis fields (Prob.
2.3c) but difficult to perform the integrals for fields not on the axis.

2.4 THE LINE INTEGRAL OF MAGNETIC FIELD

Although Ampere’s law describes how magnetic field may be computed from a given
system of currents, other derived forms of the law may be more easily applied to certain
types of problems. In this and the following sections, some of these forms are presented,
with examples of their application. The sketch of the derivations of these forms, because
they are more complex than for the corresponding electrostatic forms, will be left to
Appendix 3.
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One of the most useful forms of the magnetic field laws derived from Ampére’s law
is that which states that a line integral of static magnetic field taken about any given
closed path must equal the current enclosed by that path. In the vector notation,

%H-dl=j]'ds=l 1)
s

Equation (1) is often referred to as Ampére’s circuital law. The sign convention for
current on the right side of (1) is taken so that it is positive if it has the sense of advance
of a right-hand screw rotated in the direction of circulation chosen for the line integra-
tion. This is simply a statement of the well-known right-hand rule relating directions
of current and magnetic field.

Equation (1) is rather analogous to Gauss’s law in electrostatics in the sense that it
is an important general relation and is also useful for problem solving if there is suf-
ficient symmetry in the problem. If the product H - dl is constant along some path, H
can be found simply by dividing / by the path length.

Example 2.4a
MAGNETIC FIELD ABOUT A LINE CURRENT

SRR

An important example is that of a long, straight, round conductor carrying current /. If
an integration is made about a circular path of radius r centered on the axis of the wire,
the symmetry reveals that magnetic field is circumferential and does not vary with angle
as one moves about the path. Hence the line integral is just the product of circumference
and the value of H 4. This must equal the current enclosed

fH-dl=27rrH¢=I
or

I
H —_ —
¢ 2mr A/m @

as was found by a different method in Ex. 2.3b. The sense relations are given in
Fig. 2.4a.

Example 2.4
MAGNETIC FIELD BETWEEN COAXIAL CYLINDERS

A coaxial line (Fig. 2.4b) carrying current / on the inner conductor and — I on the outer
(the return current) has the same type of symmetry as the isolated wire, and a circular
path between the two conductors encloses current /, so that the result (1) applies directly
for the region between conductors:
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Fic. 2.4 (a) and (b) Magnetic field about line current and between coaxial cylinders (Exs.

2.4a and b).

I
H¢=E a<r<b

3

Outside the outer conductor, a circular path encloses both the going and return currents,

or a net current of zero. Hence the magnetic field outside is zero.

Example 2.4¢c

MAGNETIC FIELD INSIDE A UNIFORM CURRENT

Let us find the magnetic field inside the round inner conductor in Fig. 2.4b assuming
a uniform distribution of current. We will apply (2) but with / replaced by /(r), the
current enclosed by a circle at radius r. The total current in the wire is /(@) = [ and

the current density is I/ 7a®. The current I(r) is

2
It = (2) I

and using (2),

4

®)
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FiIG. 2.4c Section through axis of infinite solenoid for Ex. 2.4d showing contributions to H on
axis from two symmetrically spaced elements.

Example 2.4d
MAGNETIC FIELD OF A SOLENOID

In Ex. 2.3c we showed that the magnetic field H, on the axis of an infinitely long
solenoid of n turns per meter carrying a current / A is nl. Now let us use the integral
relation (1) to show that the field outside is zero and that inside is uniformly #/. Figure
2.4c shows the section through the solenoid in a plane containing the axis. Let us
consider the integration paths shown by broken lines to be 1 m long in the z direction
for simplicity of notation. Any radial component of H produced by a current element
is canceled by that of a symmetrically located element. This is illustrated in Fig. 2.4c
for the fields H, and H,, from elements a and b located equal distances from the point
P. Thus, H - dl is zero along the sides BD and AF.

Taking the line integral around path ABDFA and setting it equal to the enclosed
current gives

E
§H~dl=n1+jﬂ-dl=n[ 6)
D

since H on the axis is n/. From (6) the integral from D to E is zero. Since the placement
of the outside path DE is arbitrary, external H must be zero.

The line integral around path ABCFA encloses no current so the integral along the
arbitrarily positioned path CF must be equal in magnitude to, and of opposite sign from,
that along AB. Thus, the internal field is everywhere z-directed and has the value

H = nl 0

Note that these symmetry arguments cannot be made for a solenoid of finite length, but
the results given here are reasonably, accurate for a solenoid having a length much
greater than its diameter, except near the ends.
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Fi. 2.5a Loop of wire. Cross-hatching shows surface used for calculation of external
inductance.

2.5 INDUCTANCE FROM FLUX LINKAGES: EXTERNAL INDUCTANCE

The important circuit element which describes the effect of magnetic energy storage
for an electric circuit is the inductor. It is of primary concern for dynamic, that is, time-
varying, problems, but the inductance calculated from static concepts is often useful up
to very high frequencies. This is the quasistatic use discussed in the introduction to this
chapter. In a manner similar to the capacitance definition of Sec. 1.9, inductance can
be defined in terms of flux linkage by

L=lfB~dS 1)
IJs

where the surface S must be specified. Consider, for example, the loop of wire shown
in Fig. 2.5a. The current / produces magnetic flux in the cross-hatched area S bounded
by the loop. Also, some of the flux produced by the current is inside the wire itself. It
is convenient to separate the inductances related to these two components of flux and
call them, respectively, external inductance and internal inductance. Examples of cal-
culations of external inductance for simple structures are given below and an example
of an internal inductance calculation is presented in Sec. 2.17.

A T B O R D SR : B SRR
Example 2.5a
EXTERNAL INDUCTANCE OF A PARALLEL-PLANE TRANSMISSION LINE

Here we find the external inductance for a unit length of a parallel-plane structure (Fig.
2.5b) which is wide enough compared with the conductor spacing that the fields between
the conductors are, to a reasonable degree of accuracy, those of infinite parallel planes,
as suggested in Fig. 2.5¢. Note that the flux tubes (bounded by the field lines) spread
out greatly outside the edges of the conductors. Thus, there is a strong reduction of flux
density B and, therefore, also H. The line integral of H around one of the conductors
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Fie. 2.5b Surface for calculation of external inductance of a parallel-plane transmission line.

has its predominant contribution from the field H, between the conductors,

1=9€H-dl-=~H0w )

where [ is the total current in one conductor and w is the conductor width. This result
applies to any path in the cross-sectional plane (Fig. 2.5¢) between and parallel to the
conductors, so H, can be considered approximately uniform.

The external inductance for a unit length is found by applying (1) to the surface
between the conductors which is shown shaded in Fig. 2.5b. Since / is independent of
z and H, is nearly constant through the space between the conductors and is perpen-
dicular to the shaded surface, (1) becomes

1 1 d
L=~ #0(;) d = po— H/m €)

This relation is based on the neglect of fringing fields and is most accurate for small
d/w.

Fie. 2.5¢ Cross-section of parallel-plane transmission line of finite width showing general
character of magnetic field lines.
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Fic. 2.5d Surface for calculation of external inductance of a coaxial transmission line.

Example 2.5b
EXTERNAL INDUCTANCE OF A COAXIAL TRANSMISSION LINE

For a coaxial line as pictured in Fig. 2.54 with axial current / flowing in the inner
conductor and returning in the outer, the magnetic field is circumferential and, for a <
r < b, is (Ex. 2.4b)
1
H, = — 4
¢ 2mr @
For a unit length the magnetic flux between radii a and b is, by integration over the
shaded area in Fig. 2.5d,

A wl b
LB'dS—~J;,LL(E;;)dr—-2‘7—Tln; ®))

So, from (1), the inductance per unit length is

b
L=tmn2 H/m (6)
27 a
For high frequencies, there is not much penetration of fields into conductors as will
be seen in Chapter 3, so this is then the main contribution to inductance. The internal
inductance for low frequencies will be considered in Sec. 2.17.
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D O
Differential Forms for Magnetostatistics
and the Use of Potential

2.6 THE CURL OF A VECTOR FIELD

To write differential equation forms for laws having to do with line integrals, it will be
necessary to make use of the vector operation called curl. This is defined in terms of a
line integral taken around an infinitesimal path, divided by the area enclosed by that
path. It is seen to have some similarities to the operation of divergence of Sec. 1.11,
which was defined as the surface integral taken about an infinitesimal surface divided
by the volume enclosed by that surface. Unlike the divergence, however, the curl op-
eration results in a vector because the orientation of the surface element about which
the integral is taken must be defined. This additional complication seems to be enough
to make curl a more difficult concept for a beginning student. The student should attempt
to obtain as much physical significance as possible from the definitions to be given, but
at the same time should recognize that full appreciation of the operation will come only
with practice in its use.

The curl of a vector field is defined as a vector function whose component at a point
in a particular direction is found by orienting a small area normal to the desired direction
at that point, and finding the limit of the line integral divided by the area:

[curl F], é lim M

1
asi—0 AS; @)

where i denotes a particular direction, AS; is normal to that direction, and the line
integral is taken in the right-hand sense with respect to the positive i direction. In
rectangular coordinates, for example, to compute the z component of the curl, the small
area AS = Ax Ay is selected in the x~y plane to be normal to the z direction (Fig.
2.6a). The right-hand sense of integration about the path with respect to the positive z
direction is as shown by the arrows of the figure. The line integral is then

éF -dl = AYF, — AxF,

x+Ax

— AyF,

y+ay

+ AxF,

x y

We find F,at x + Axand F, at y + Ay by truncated Taylor series expansions

F

X

I

F

x

F

+ Ay —| ; )

ayy

351? dl_<y )A Ay

=F

y| + Ax —
x+Ax

. @

y+ay ¥ x

So
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z
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(x y, 2) Fy,

Ay

Fy

x

Fie. 2.6a Path for line integral in definition of curl.

Then using the definition (1), we get

oF,  oF
[cull F], = — — —=

ax  dy )

because the expansions (2) become exact in the limit. Similarly, by taking the elements
of area in the y—z plane and x—z plane, respectively, we find

oF oF

[curl F], = —% — 2 4)
ay 0z
oF, oF,

[curl F], = = = ®)

These components may be multiplied by the corresponding unit vectors and added to
form the vector representing the curl:

9F, OF oF, oF oF,  oF
curl F = %] —2 - 2| + 3| = - = +3| =2 - = 6)
ay 0z 0z ox ox ay

If this form is compared with the form of the cross product and the definition of the
vector operator V, Eq. 1.10(7), the above can logically be written as

X ¥ 1z
a a4 9
crl F=VXF=|— — — @)
ox dy oz
F, F, F,

In deriving curl for other coordinate systems, the variation of line elements with co-
ordinates must be considered, just as the variation of surface elements with coordinates
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in spherical coordinates was considered in Sec. 1.11. (See Appendix 2.) Results for
circular cylindrical and spherical coordinates are given on the inside front cover.?

The name curl (or rotation as it is sometimes called) has some physical significance
in the sense that a finite value for the line integral taken in the vicinity of a point is
obtained if the curl is finite. The name should not be associated with the curvature of
the field lines, however, for a field consisting of closed circles may have zero curl nearly
everywhere, and a straight-line field varying in certain ways may have a finite curl. The
following examples illustrate these points.

SR G B
xample 2.6a
CURL-FREE FIELD WITH CIRCULAR FIELD LINES

ot

The magnetic field in the region surrounding a current in a long straight round wire
was seen in Eq. 2.4(2) to be Hy = I/27r. If we write this in rectangular coordinates
using sin ¢ = y/r,cos ¢ = x/r,and r*> = x? + y?, we get

Iy
H, = —Hysin¢ = —— —=>—
* » Sin & 2w x? + y? ®)
I X
Hy=H¢COS¢=Zr;2—+—yZ (9)
H =0 (10)

as can be seen from Fig. 2.6b. Since there is no z component and no dependence on z,
(6) shows immediately that the x and y components of the curl are zero. Substituting
(8) and (9) into (6) with F = H we obtain

0H, aHx>

curl H = i(— - —

=0 11
ox dy (b

This result is found more naturally and directly for this problem using the expression
for the curl in cylindrical coordinates found inside the front cover:

19H, oH «| oH 1 d(rH 1 8H
VxH =f| Lo Tl g0t O 1000 LeH, (12)
r a¢ dz 9z or roor r d¢

Since there is only an H 4 and no z dependence, the first two components vanish. The
r and ¢ components are the transverse ones corresponding to x and y components. Since
there is no H, and rH , does not depend upon r, we see that V. X H = 0 as shown
above.

3 As with the divergence (footnote 4 of Chapter 1), one cannot take the cross product of
V and the vector to obtain the curl in a curvilinear coordinate system, but must use the
basic definition (1).
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\ $H¢

FiG. 2.6b Resolution of H, of a line current into rectangular components (Ex. 2.6a).

Example 2.6b
 FIELD WITH NONVANISHING CURL

The magnetic field inside a uniform current with circular symmetry was seen in Ex. 2.4c
to be Hy(r) = Ir/ 2ma*. As in the preceding example, we see that the symmetries
indicate the presence of only the z component of the curl in (12). Also, the second term
in the z component is zero. Thus

VXH=i- =i— (13)

Example 2.6¢
NONVANISHING CURL IN FIELD OF STRAIGHT PARALLEL VECTORS

A theoretically stable electron flow in a type of microwave electron tube called a planar
magnetron has an electron velocity distribution described by v = Zy and is shown in
Fig. 2.6c. We see there a vector function with all vectors straight and parallel. It is
immediately evident by substitution of v in (6) that

AJAAAAIIRINNIAN NN
Fi6. 2.6c Electron flow in planar magnetron (Ex. 2.6c).
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curl v.= Xfcurl v], = £ # 0 (14)

It is instructive to see, by using the line-integral definition of the curl (1) why this result
obtains. All vectors and their spatial variations are in the y—z plane, and (6) shows
there can be only an x component of the curl. Then we can write for a small area
AS = Ay Az

[curl v], = lim .y + Ay) — v(y)]Az

AS—0 Ay Az 1s)

We see that the curl is nonzero because the velocity is larger on one side of the loop
than on the other.

Example 2.6d
CURL OF THE GRADIENT OF A SCALAR

Here we show the useful fact that the curl of the gradient of a scalar is zero. If we write

ad a
F=V§=f(—§+$'—€-:+ia—§
ax ay dz

and substitute it in (6), we get

62 82 82 82 32 2
VXF=)2—§*——§‘ +§,__£__§ +i__§__3_§ (16)
ady oz 0z dy 0z dx  9x 9z ox dy  dy ox

Since the order of the partial derivative operations is arbitrary V X F = 0. A partic-
ularly important example is the electrostatic field. The fact that V X E = 0 follows
immediately from either E = —V® or § E - dl = 0. We shall see in Chapter 3 that
these properties of E do not apply for time-varying fields.

2.7 CURL OF MAGNETIC FIELD

Now let us use the formulations of the last two sections to derive a new relation for
magnetic field. The line integral of H around an area AS; is substituted in the definition
of the curl, Eq. 2.6(1), to get

. $H-d
[curl H]; = lim
Asi—»0  AS;

But ¢ H - dl is the current through the area AS,; by Eq. 2.4(1) so

Jas J - dS
[curl H], = lim ————— =

Ji ey
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This relation holds for all three orthogonal components. If these are multiplied by the
corresponding unit vectors and added, we get the vector relation

clHA2V xH=]J )

This can be thought of as the equivalent of Eq. 2.4(1) for a differential path taken
around a point. Note that the curl H found in Eq. 2.6(13) is the current density, as
required by (2).

Example 2.7
CURRENT DENSITY AT SUPERCONDUCTOR SURFACE

If a sheet of superconductive material* is in a magnetic field H = 2H, parallel to its
surface, there is a penetration of H only a very short distance into the superconductor
as shown in Fig. 2.7. The decay of H, with distance is given by

H, = Hype */* 3)

where H is the value at the surface and A, called the penetration depth, is a property
of the material. We can find the corresponding current density using (2) and the

Fi6. 2.7 Penetration of magnetic field into a thick sheet of superconducting material.

4 Superconductors include lead, tin, niobium, and numerous other elements, alloys, and
compounds. They have zero dc resistance and other special properties below their crit-
ical temperatures. See, for example, V. Z. Kresin and S. A. Wolf, Fundamentals of Super-
conductivity, Plenum Press, New York, 1990.
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expansion in Eq. 2.6(6):

_9H, _ Ho

—x/As
e
dax A

J, = [curl H], =

S

Thus, the current also is found only near the surface.

2.8 RELATION BETWEEN DIFFERENTIAL AND INTEGRAL FORMS
OF THE FIELD EQUATIONS

The differential form relating magnetic field to current density was derived from the
integral form through the definition of curl. One can proceed in reverse by using
Stokes’s theorem, which states that for a vector function F,

ffF-dl=L(cur1F)~dsEL(VxF)-ds 1)

This theorem is made plausible by looking at a general surface as in Fig. 2.84, breaking
it into elemental areas. For each differential area, the contribution (V X F) - dS gives
the line integral about that area by the definition of curl. If contributions from infini-
tesimal areas are summed over the surface, the line integral must disappear for all
internal areas, since a boundary is first traversed in one direction and then later in the
opposite direction in determining the contribution from an adjacent area. The only
places where these contributions do not disappear are along the outer boundary, so that

Fic. 2.8a Subdivision of arbitrary surface for proof of Stokes’s theorem.
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the result of the summation is then the line integral of the vector around the boundary
as stated in (1). It is recognized that the process is similar to the transformation from

the differential to the integral form of Gauss’s law through the divergence theorem in
Sec. 1.11. Then writing Stokes’s theorem for magnetic field, we have

éH-dl=f(VxH)-dS 2)
s
But, by Eq. 2.7(2), the curl may be replaced by the current density:
3gH-dl=J’J'dS 3)
s

The right side represents the current flow through the surface of which the path for the
line integration on the left is a boundary. Hence (3) is exactly equivalent to Eq. 2.4(1).

B
Example 2.8a
DEMONSTRATION OF STOKES’S THEOREM

Let us demonstrate Stokes’s theorem for a magnetic field that is part of an electromag-
netic wave in a certain kind of transmission structure. The field at a particular instant
of time is described by

H = §A cos ? @

We will apply (2) to the area shown in Fig. 2.8b where the field distribution (4) is
illustrated. The line integral of (4) along the broken path is

FZZRAARARRARRRRRERR R AR TR RRERRRERREARRRAERREE RN RN RRNRRRNRRNNNY

, H

oxo T R R N
1

Fic. 2.8b Area for integration of field H to demonstrate the validity of Stokes’s theorem
(Ex. 2.8a).
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jgﬂ'dl

where the facts that H, = 0 and H, # f(y) are used.
The curl of H in rectangular coordinates is

a 1 0 0
fodx+f Hydy+f dex+j H, dy
0 0 a 1

=0+ AcosmT+ 0 —-Acos0 = —24

oH ‘
VXH=2—2=—342sin 2
ax a a

The integral of (6) over the surface bounded by the broken line in Fig. 2.8b is

a

Il

a
T . X P
f—A—s1n~—dx=Acos—-
0 a a al,

= =24

L(VxH)~dS

Since (5) and (7) give the same results, Stokes’s theorem (1) is illustrated.

(&)

©)

(7

Example 2.8b
PROOFTHATV:-V X F =0

That V-V X F = 0 can be proved by using the expressions in rectangular coordinates
as was done for V X Vi in Ex. 2.6d. Here we take a different approach that uses
Stokes’s theorem. Since Stokes’s theorem applies to any surface, we may treat the
surface shown in Fig. 2.8¢ and let the bounding line shrink to zero so the surface
becomes a closed one. Then the line integral on the left side of (2) vanishes and we

have

%(VXF)'dS=O
s

Line bounding
surface S

Fic. 2.8¢ Surface used in Ex. 2.8b.

@®
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We may then apply the divergence theorem (Sec. 1.11) to the vector V X F:
é(VXF)-dS=fV'VXFdV )
s v

Since we saw in (8) that the left side is zero with an arbitrary choice of surface, the
integrand on the right side must vanish,
V-VXF=0 (10

which was to be shown. This is a useful relation in the study of electromagnetic fields.

2.9 VECTOR MAGNETIC POTENTIAL

We introduce here another potential, which is often used as a conveniently calculated
quantity from which the magnetic field can be found. An integral expression for the
flux density can be obtained from Eq. 2.3(2) by multiplying by w for homogeneous
media:

B(r) = f,u,l’(r’) d' x R o

47R3

It is shown in Appendix 3 that this can be broken into two steps by making use of
certain vector equivalences. The result gives

B(r) = V X A(r) )

where
! ’ dl/

The current may be given as a vector density J in current per unit area spread over a
volume V. Then, since I = J dS, where dS is the differential area element perpendicular
to J, and dl is in the direction of J, dS dI forms a volume element dV and the equivalent
to (3) is

[ wd@x)av’
Al = fv 47R @

In both (3) and (4), R is the distance from a current element of the integration to the
point at which A is to be computed. The function A, introduced as an intermediate step,
is computed as an integral over the given currents from (3) or (4) and then differentiated
in the manner defined by (2) to yield the magnetic field. Function A is called the
magnetic vector potential. Note that each element of A has the direction of the current
element producing it. It is analogous to the potential function of electrostatics, which
is found in terms of an integral over charges and then differentiated in a certain way to
yield the electric field. The magnetic potential A is different, however, because it is a
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vector, and does not have the simple physical significance of work done in moving
through the field that electrostatic potential has. Some physical pictures can be formed
but the student should not worry about these until more familiarity with the function
has been developed through certain examples.

S R R R D o R R R .
Example 2.9a
VECTOR POTENTIAL AND MAGNETIC FIELD OF A CURRENT ELEMENT

Here we show that the magnetic flux density of a current element found using (3) and
(2), in that order, is the same as the integrand of (1), which expresses Ampere’s law.
The magnetic vector potential A exists throughout the region surrounding the given
current element, as shown in Fig. 2.9a. From (3) we find

, Wl dz

A=12A =1
z 4aqr

®

since the origin of coordinates is positioned at the current element. As noted earlier dA
is parallel to the current element producing it. It is most convenient to use spherical

coordinates in this example. From the figure we see that A, = A, cos fand Ay, = —A,
sin 6. The curl in spherical coordinates (from inside the front cover) reduces to
bdfo 0A
B=VXA=—|=(@(A) — — 6
r {or (rAy a6 ©
since A, = 0 and /3¢ = 0, by symmetry. Substituting A, and A, using (5), we find
+fuldz\ sin 6
B=VXA= 7
(b( 41 ) r? ™
Note that dI’ X R is «j) dz r sin 6, so (7) is equivalent to the integrand in (1).
4
3 A
FA,
01 g4,

1? dz

Fi6. 2.9a Vector potential in region surrounding a current element.
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_ AP0
/// - I
- / x==-a P
dz” / \\
/ S z
_z/ yi <
dz’ x=a —

I

Fic. 2.9b Parallel-wire transmission line.

Example 2.9b
VECTOR POTENTIAL AND FIELD OF A PARALLEL-WIRE TRANSMISSION LINE

Let us consider a parallel-wire transmission line of infinite length carrying current / in
one conductor and its return in the other distance 2a away. The coordinate system is
set up as in Fig. 2.9b. Since the field quantities do not vary with z, it is convenient to
calculate them in the plane z = 0. The conductors will first be taken as extending from
z = —Ltoz = L to avoid indeterminacies in the integrals. Since current is only in the
z direction, A by (3) will be in the z direction also. The contribution to A, from both
wires is

A = fL wl dz’ B f wl dz’

: -L47V(x — a)® + y* + 72 ~L 47V (x + a)* + y? + 27
_2u [ t 14z t 1d ]
Am 0\/(x——a)2+y2+z’2_0\/(x+a)2+yz-i-z”2

The integrals may be evaluated®:

I
A, =l + V= o + 57 + 77
o

— In[Z" + V(x + ay + y* + 2?1}k

Now, as L is allowed to approach infinity, the upper limits of the two terms cancel.
Hence

e [+ a® + y?
A = 4 ln|:()c —a + y? ®

5 Most integrals of this text can be found in standard handbooks such as the CRC Hand-
book of Chemistry and Physics (any recent edition); M. R. Spiegel, Mathematical Hand-
book, Schaum’s Outline Series, McGraw-Hill, 1968; or M. Abramowitz and I. A. Stegun
(Eds.), Handbook of Mathematical Functions, National Bureau of Standards Applied
Mathematics, Dover, New York, 1964. One of the most complete listings s I. S. Gradshteyn
and I. M. Ryzhik, Table of Integrals, Series, and Products (A. Jeffrey, Trans.), Academic
Press, San Diego, CA, 1980.



96 Chapter 2 Stationary Magnetic Fields

If (2) is then applied, using the expression for curl in rectangular coordinates, we find

Hx=1%—'[ > 2 ] ©)

/.Lay—a;(x+a)2+y2‘(x__a)2+y2
1 04, i x —a x + a)
H = — = — _
Y wox 2w [(x —a? + 3y (x+a)?+ yZ:I (10)

2.10 DISTANT FIELD OF CURRENT LOOP: MAGNETIC DIPOLE

The magnetic field on the axis of a loop of current was derived in Ex. 2.3a. Here we
will find the magnetic vector potential and field at locations not restricted to the axis
but distant from the loop. The arrangement to be analyzed is shown in Fig. 2.10. For
any point (r, 6, ¢) at which A is to be found, some current elements / dl’ are oriented
such that they produce components of A in directions other than the ¢ direction. How-
ever, by the symmetry of the loop, equal and opposite amounts of such components
exist. As a result A is ¢ directed and is independent of the value of ¢ at which it is to
be found. For convenience, we choose to calculate A at the point (r, 6, 0). The ¢-directed
contribution of a differential element of current is

_ ul dl cos ¢
4mR

dA, (1)

Fic. 2.10 Coordinates for calculation of magnetic-dipole fields.
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where R is the distance from the element dl’ to (r, 6, 0). The total is found as the integral
around the loop

Ay ()]

_ul fdl'cos ¢’ pula f” cos ¢’ d¢’
4m R 4m Jo R

where a is the radius of the loop. The distance R can be expressed in terms of the radius
from the origin to (r, 6, 0) as

R> =12+ a®> — 2racos ¢ 3)

To get ra cos i we note that r cos ¢ is the projection of r onto the extension of the
radius line to dl’. Therefore

ra cos ¥ = ra sin 0 cos ¢’ 4)

Substituting (4) into (3) and assuming r >> q, we find
1/2
a .
R wr(l — 2 —sin 6 cos d)')
r
or
a .
R“%r“(l + = sin 6 cos d)’) 5)
r

Utilizing this expression in (2), we find

B [.LI(I 2
6=

a
! + = : 0 2 ’ d ’
s 8 <cos 0] - sin 6 cos <,'b> 0] o
_ wla amsin @ u(ma’) sin 6
- 2

" 4mr r 4ar

As was noted at the outset the result applies to any value of ¢. The components of B,
found by substituting (6) in Eq. 2.9(2), are

2
B, = ‘;:‘13 cos 6 @
2
ma-
B, = T sin 6 ®)
B, =0 ©)

The group of terms /7a” can be given a special significance by comparison of (7)—(9)
with the fields of an electric dipole, Eq. 1.10(10). The identity of the functional form
of the fields has led to defining the magnitude of the magnetic dipole moment as

m = Ima® (10

The dipole direction is along the 8 = 0 axis in Fig. 2.10 for the direction of / shown.
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The vector potential can be written in terms of the magnetic dipole moment m as

A=—mpx V<1> (11)
41 r

where the partial derivatives in the gradient operation are with respect to the point of
observation of A.

2.11 DIVERGENCE OF MAGNETIC FLUX DENSITY

As given by Eq. 2.9(2) (derived in Appendix 3), the magnetic flux density B can be
expressed as the curl of another vector A when the sources of B are currents. We have
shown in Ex. 2.8b that the divergence of the curl of any vector is zero. Thus,

V-B=0 1)

A major difference between electric and magnetic fields is now apparent. The mag-
netic field must have zero divergence everywhere. That is, when the magnetic field is
due to currents, there are no sources of magnetic flux which correspond to the electric
charges as sources of electric flux. Fields with zero divergence such as these are con-
sequently often called source-free fields.

Magnetic field concepts are often developed from an exact parallel with electric fields
by considering the concept of isolated magnetic poles as sources of magnetic flux,
corresponding to the charges of electrostatics. The result of zero divergence then follows
because such poles have so far been found in nature only as equal and opposite pairs.
Physicists continue to search for isolated magnetic poles; if they are found, a magnetic
charge density p,, will simply be added to the equations giving a finite V - B.

2.12 DIFFERENTIAL EQUATION FOR VECTOR MAGNETIC POTENTIAL
The differential equation for magnetic field in terms of current density was developed
in Sec. 2.7:
VXH=J
If the relation for B as the curl of vector potential A is substituted,
VXVXA=ul ey

This may be considered a differential equation relating A to current density. It is more
common to write it in a different form utilizing the Laplacian of a vector function
defined in rectangular coordinates as the vector sum of the Laplacians of the three scalar
components:

VA = &V2A, + §V2A, + 2V%4, @)

It may then be verified that, for rectangular coordinates
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VXVXA=-VA+VV-A) 3)

For other than rectangular coordinate systems, separation in the form (2) cannot be done
so simply and (3) may be taken as the definition of V? of a vector.
With V- A = 0, as shown in Appendix 3 for statics, (3) and (1) give

VA = —ul “4)

This is a vector equivalent of the Poisson equation first met in Sec. 1.12. It includes
three component scalar equations which are exactly of the Poisson form.

B N A S U R R R s
Example 2.12
VECTOR POTENTIAL AND FIELD OF UNIFORM CURRENT DENSITY FLOWING AXIALLY

Let us show that the appropriate form for the vector potential in a uniform flow of
z-directed current in a circularly cylindrical system is

_#o

A, = 1 ®* +y?) )
From (4) and (2),
1 1 (%A 9*A
= —tvea = = (2 T 6
z w z m (ax2 6y2> 0 ( )

From this we see that (5) is the appropriate form for vector potential in a cylindrical
conductor carrying a current of constant density J,. The magnetic field found from
(5) is
1 —J,
H=-(VxA)=—2® - Q)
73 2
In cylindrical coordinates, this is

H=6Y ®)

which is the value of Eq. 2.4(5).

2.13 SCALAR MAGNETIC POTENTIAL FOR CURRENT-FREE REGIONS

In many problems concerned with the finding of magnetic fields, at least a part of the
region is current-free. The curl of the magnetic field vector H is then zero for such
current-free regions [Eq. 2.7(2)]. Any vector with zero curl may be represented as the
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gradient of a scalar (see Ex. 2.6d). Thus the magnetic field can be expressed for such
points as

H= -Vo, m

where the minus sign is conventionally taken only to complete the analogy with elec-

trostatic fields. The vector potential applies to both current-carrying and current-free

regions, but it is usually more convenient for the latter to use this scalar potential.
Since the divergence of the magnetic flux density B is everywhere zero,

V-uvo,, =0 )
Thus, for a homogeneous medium, ®,, satisfies Laplace’s equation
Vi, =0 3)
It will be observed from (1) that
2
®,, ~ P, = —| H-dl C))
1

Thus, if the path of integration encircles a current, ®,, does not have a unique value.
For if 1 and 2 are the same point in space and the path of integration encloses a current
I, two values of ®,,, differing by I, will be assigned to the point. To make the scalar
magnetic potential unique, we must restrict attention to regions which do not entirely
encircle currents. Suitable regions are called ‘‘simply connected’’ because any two
paths connecting a pair of points in the region form a loop which does not enclose any
exterior points. An example of a simply connected region between coaxial conductors
is shown in Fig. 2.13. The restriction to a simply connected region is not a serious
limitation once it is understood.

Fi6.2.13 Simply connected region between coaxial cylinders.
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The importance of the scalar potential for current-free regions is that it satisfies
Laplace’s equation, for which exist numerous methods of solution. The graphical and
numerical methods given in Chapter 1 for electrostatic fields are directly applicable, as
are the more powerful numerical methods, conformal transformations, and method of
separation of variables to be studied in Chapter 7.

2.14 BOUNDARY CONDITIONS FOR STATIC MAGNETIC FIELDS

The boundary conditions at an interface between two regions with different permea-
bilities can be found in the same way as was done for static electric fields in Sec. 1.14.
Consider a volume in the shape of a pillbox enclosing the boundary between the two
media as shown in Fig. 2.14. The surfaces AS of the volume are considered to be
arbitrarily small so that the normal flux density B,, does not vary across the surface.
Also, the thickness of the pillbox is vanishingly small so that there is negligible flux
flowing through the side wall. The net outward flux from the box is

By,AS =B,AS or B, =B8, )

where the sense of B,, is as shown in the figure.
The relation between transverse magnetic fields may be found by integrating the
magnetic field H along a line enclosing the interface plane as shown in Fig. 2.14,

fH'dl=H,1Al—H,2Al=JSAl @)

where J| is a surface current in amperes per meter width flowing in the direction shown.

Bn1

FIG. 2.14 Magnetic fields at boundary between two different media.
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The lengths Al of the sides are arbitrarily small so H, may be considered uniform. The
other legs of the integration path are effectively reduced to zero length. From (2)

H, — H, = J, 3

There is a discontinuity of the tangential field at the boundary between two regions
equal to any surface current which may exist on the boundary. With direction
information included, where i is the unit vector normal to the surface,

X H -H) =] @

Although the concept of a surface current is an idealization, it is useful when the
depth of current penetration into a conductor is small, as in the skin effect to be studied
later. In problems involving the scalar magnetic potential, continuity of H, where J, =
0 is ensured by taking ®,, to be continuous across the boundary. Where surface currents
exist, (4) leads to

ix Vo, — Vo, ) = J, )
as may be seen by combining (3) with the definition of ®,,, Eq. 2.13(1).

2.15 MATERIALS WITH PERMANENT MAGNETIZATION

Permanent magnets have a remnant value of magnetization [defined in Eq. 2.3(3)] when
all applied fields are removed. Magnetic materials are discussed in more detail in Chap-
ter 13, but here we consider some examples with permanent magnetization M,, and no
true current flow. There are two ways of analyzing such problems: through the scalar
magnetic potential and through the vector potential.

Use of Scalar Magnetic Potential Since current density J is zero, we may derive
H from a scalar potential as in Sec. 2.13:

H= -V}, 1)
Now using the definition of magnetization from Eq. 2.3(3),
B
H=—-M 2)
Mo

If the divergence of (2) is taken, with V - B = 0 utilized, we can write

Vi, = -t ©)
Mo
where
Pm = — iV M “)

In this formulation we see that we have a Poisson equation for potential ®,,, with an
equivalent magnetic charge density in the region proportional to the divergence of
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magnetization. For a uniform magnetization, the divergence is zero and ®,, satisfies
Laplace’s equation. At the boundaries of the magnet, however, integration of (3) would
show that there is an equivalent magnetic surface charge density p,,, given by

Psm = Moft - M (5)

The arguments for this are similar to those for surface charge density p, when there is
a discontinuity in D, as explained in Sec. 1.14. We will illustrate this through an example
after giving a formulation using the vector potential.

Use of Vector Magnetic Potential If we write B as curl of vector potential A as
in Eq. 2.9(2) and use the definition of magnetization,

B=puMH+M=VXA 6)
we can take the curl of this equation, using V X H = 0 since J = 0, to write
VXV XA= e, M
where
Jo=V XM (8)

So by comparison with Eq. 2.12(1), the problem is equivalent to one with internal
currents in free space proportional to the curl of magnetization. Inside a region of
uniform magnetization, the curl is zero and there are no internal currents. At the bound-
ary of the magnetic material, a surface integral of (8) over the area enclosed by the path
used to get Eq. 2.14(2) and application of Stokes’s theorem give

3€M~dl=fJeq-dS
N

In the same way as for Eq. 2.14(4), this gives an equivalent surface current

(Jeq)S = M X ﬁ (9)

since M = 0 outside the magnetic material. So in this formulation the magnet is re-
placed by a system of volume and surface currents from which magnetic field may be
found through use of the vector potential, or directly by using Ampere’s law. Example
2.15b illustrates this procedure.

e i R

Example 2.15a
UNIFORMLY MAGNETIZED SPHERE

Consider first a sphere of magnetic material with uniform magnetization M,, in the z
direction as in Fig. 2.15a using the method with scalar magnetic potential. Since M is
uniform, there is no volume charge by (4), but if space surrounds the sphere, there is
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Fi6. 2.15a  Sphere of radius a with uniform magnetization Z2M,,. Field lines (H or B) outside
the sphere shown dashed.

a surface magnetic charge density at r = a given by

Pem = MM, cos 6 (10)
Solutions of (3), in spherical coordinates with a variation corresponding to (10) and
P, = 0, are

Cr
®,,, = —cos 0 r<a
a

an

22
<Dm2=—r?cosa r>a

as can be verified by substitution in the expression for V2® = 0 in spherical coordinates
on the inside front cover. The surface magnetic charge given by (10) gives a disconti-
nuity in derivative,

0, 09, _
,uo[ o o | _. = —uoM, cos 6 (12)
from which
M
c==F (13)

Thus for r < g, using (1) in spherical coordinates

M, R
H=——3—9[l"cos0—esin6]=—-z—— (14)
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which is a uniform field within the sphere. For » > a,

3

M )
H = 3‘12 [2# cos 6 + O sin 6] (15)

which are curves (shown dashed in Fig. 2.15a) similar to those outside a magnetic
dipole (Sec. 2.10).

Example 2.15b
ROUND ROD WITH UNIFORM MAGNETIZATION

A circular cylindrical bar magnet of length / having uniform magnetization in the axial
direction is shown in Fig. 2.15b. Using the second formulation given above, we see
from (8) that there are no equivalent volume currents since V. X M = 0, but there is
a surface current at the discontinuous boundary r = a:

J, = oM, (16)

We see that this problem is then identical to that of the solenoid of length / with current
per unit length given by (16) insofar as the calculation of A (and hence B) is concerned.
As noted in Ex. 2.3c, it is difficult to calculate field lines for an off-axis point, but B
lines will appear somewhat as shown dashed in Fig. 2.15b. Lines of magnetic field H
will be of the same form outside the magnet, but will be of different form inside through
the vector addition H = B/u, — M.

~. -

Fic. 2.15b Cylinder of radius a and length / with magnetization ZM,. Flux density lines B
shown dashed. (H lines are of the same form outside the magnet.)
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]
Magnetic Field Energy

2.16 ENERGY OF A STATIC MAGNETIC FIELD

In considering the energy of a magnetic field, it would appear by analogy with Sec.
1.22 that we should consider the work done in bringing a group of current elements
together from infinity. This point of view is correct in principle, but not only is it more
difficult to carry out than for charges because of the vector nature of currents, but it
also requires consideration of time-varying effects as shown in references deriving the
relation from this point of view.5 We will consequently set down the result at this point,
waiting for further discussion until we derive a most important general energy rela-
tionship in Chapter 3. The general relation for nonlinear materials, corresponding to
1.22(9) for electric fields, is

dUH=fH~dde 1)
\4

where dU,, is the energy added to the system when B is changed by a differential
amount (possibly different amounts for different positions within the volume). For linear
materials, H is proportional to B so (1) may be integrated over B to give

1
UH=5fVB-HW=fV§H2W 1)

The analogy to Eq. 1.22(6) is apparent, and here also we interpret the energy of a
system of sources as actually stored in the fields produced by those sources. The result
is consistent with the inductive circuit energy term, LI, when circuit concepts hold
and will be utilized in the following section.
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Example 2.16a
ENERGY STORAGE IN SUPERCONDUCTING SOLENOID

It has been proposed that energy stored in large superconducting coils be used to meet
peaks in electric power demand. Superconducting coils are chosen because their zero
dc resistance allows very large currents to be carried with zero power loss (though, of
course, refrigeration power must be supplied). To be useful such a storage system must
be capable of providing about 50 MW for 6 hours, that is, storing an energy of about
10° M1J. Let us assume the coil is a solenoid and that the field is uniform, and we wish
to find the required coil properties and current. The field from Eq. 2.4(7) is H, = nl so

¢ J. A. Stratton, Electromagnetic Theory, pp. 118-124, McGraw-Hill, New York, 1941.
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B, = unl. The energy from (2), for volume V, is
Uy = s>V

For a realistic current of 1000 A and flux density of 15 T, a coil of 27-m diameter and
20-m length with 1.2 X 10* turns/m would give the required energy. The most prom-
ising coil shape is actually a toroid but it would have dimensions and currents of the
same magnitude as calculated in this example.

Example 2.16b
ENERGY DISSIPATION IN HYS_TERETIC MATERIALS

We will see here how energy loss in hysteretic materials can be explained in terms of
their nonlinear B—H relations. A typical hysteretic relation is shown in Fig. 2.16. We
will assume an isotropic material so that B - H = BH. The energy required for one
traversal of the loop by varying H from a large negative value to a large positive value
and back again can be found from (1). The differential energy is shown as a shaded
bar on the hysteresis loop in Fig. 2.16. When the field is decreased, a portion of the
energy indicated by the part of the bar outside the loop is returned to the field. The
result of integrating around the loop is that total expended energy per unit volume is
equal to the area of the loop.

dB e

Fic. 2.16 Hysteretic, nonlinear B—H relation.
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2.17 INDUCTANCE FROM ENERGY STORAGE; INTERNAL INDUCTANCE

It was shown in Sec. 2.16 that the magnetic energy may be found by integrating an
energy density of 3 uH? throughout the volume of significant fields. From a circuit point
of view, this is known to be 1LI 2 where I is the instantaneous current flow through the
inductance. Equating these two forms gives

e = fv SH v (1)

The form of (1) is useful as an alternate to the flux linkage method of calculating
inductance given in Sec. 2.5. It is especially convenient for problems that would require
consideration of partial linkages if done by the method of flux linkages. Problems of
calculating internal inductance, defined in Sec. 2.5, are of this nature.

Example 2.17
INTERNAL INDUCTANCE OF CONDUCTORS WITH UNIFORM CURRENT
DISTRIBUTION IN A COAXIAL TRANSMISSION LINE

As an example of the use of the energy method of inductance calculation, we will find
the internal inductances for the two conductors of a coaxial transmission line under the
assumption that the current is distributed uniformly in the conductors. The result for
the inner conductor applies more generally to any straight, round wire with a uni-
form current distribution. The magnetic field in the inner conductor of Fig. 2.4b
(Ex. 2.4¢) is

Ir
For a unit length, utilizing (1),
2
“ Ir wl?  a*
L2 = f £ 2mr dr = -
2 o 2 \2ma? ar dr 4ma* 4 ®
or
L= g”% H/m )
The magnetic field in the outer conductor (Prob. 2.4a) is
. I 02
Hr) = ——— [ —
0= 5m@ =5 (r r) ©)

Substituting (5) in (1) we find

_ B | c*Inc/b . b* — 3c?
27 [ (c® = b?)? 4% - b?)

] H/m 6)
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For frequencies low enough to assume uniform current distribution in the conductors,
the total inductance per unit length for the coaxial line is the sum of (4), (6), and
Eq. 2.5(6).

2.2a

2.2b

2.2¢

2.2d*

PROBLEMS

Assuming that each electron constituting the current in a differential length of conduc-
tor is acted on by a force —ev X B, show that the total force is equal to that given by
Eq. 2.2(1). How is the force on the electrons transferred to the structure of the wire?

The Hall effect uses motion of charges in crossed fields within a semiconductor as
shown in Fig. P2.2b to measure important properties of a semiconductor. Consider a
p-type material so that the charge carriers are holes of charge + e. Electric field E, ap-
plied in the x direction causes a current I, = wdoE, to flow. The magnetic field causes
a buildup of positive charge on the plate at y = 0 and an equal negative charge on the
top plate because of the velocity uyE, of the holes. The field produced by these charges
on the bottom and top plates Ey is exactly of the magnitude to counteract the ev X B,
force on the holes so that, in steady state, the flow is only in the x direction. Show how
the Hall mobility uy can be determined from measurement of 7, and V.

()

Fie. P2.2b

Show the following:
AXB+C)=AXB+AXC
AXBXC=BA-C)—-CA-B)
A-BXC=B:-(CXA)=C:-(AXB)

Cycloidal motion can occur when a particle of charge g and mass m is placed in crossed
electric and magnetic fields. To demonstrate this, take a uniform electric field E, in the
y direction and uniform magnetic flux density B in the x direction. The charge starts at
the coordinate origin at time ¢ = 0 with zero velocity. Show that the trajectory can be
written in the form (z — Rwot)* + (y — R)? = R? where R = E,/w,B, and w, =
qBy/m. Explain the motion.
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2.3a A loop of wire is formed by two semicircles, the inner of radius a and the outer of

2.3b

2.3c

2.3d

2.3e

24a

2.4b

2.4c

2.4d

radius b, joined by radial line segments at ¢ = 0 and ¢ = 7 (Fig. P2.3a). Find the
magnetic field at the origin.

Fic. P2.3a

Direct current /, flows in a square loop of wire having sides of length 2a. Find the
magnetic field on the axis at a point z from the plane of the loop.

Represent a solenoid of finite length L and radius a having n turns per meter by a con-
tinuous sheet of circumferential current. Find the axial magnetic field at the center of
the solenoid and determine the length for which the field is one-half that of the infinite
solenoid.

Show that the magnetic field on axis of a long solenoid at the ends is half the value for
an infinite solenoid.

An arrangement that can provide a region of relatively uniform fields consists of a pair
of parallel, coaxial loops; the uniform-field region is on the axis midway between the
loops. Show that the axial magnetic field, expressed as a Taylor series expansion along
the axis about the point midway between the coils, will have zero first, second, and
third derivatives if the loop radii a are equal to the spacing d of the loops. This is the
so-called Helmholtz configuration.

For the coaxial line of Fig. 2.4b, find the magnetic field for b < r < ¢, assuming that
current is distributed uniformly over the conductor cross section.

A certain kind of electron beam of circular cross section contains a current density J, =
Joll — (r/a)*]. Find H 4(r) inside the beam.

Express the magnetic field about a long line current in rectangular coordinate compo-
nents, taking the wire axis as the z axis, and evaluate ¢ H - dl about a square path in the
x—y plane from (=1, —1)to (1, = 1) to (1, 1) to (— 1, 1) back to (—1, —1). Also
evaluate the integral about the path from (—1, 1) to (1, 1) to (1, 2) to (— 1, 2) back to
(—1, 1). Comment on the two results.

A long thin wire carries a current /, in the positive z direction along the axis of a cylin-
drical coordinate system as shown in Fig. P2.4d. A thin rectangular loop of wire lies in
a plane containing the axis. The loop contains the region0 <z<b,R — a/2 =r <
R + a/2 and carries a current I, which has the direction of /; on the side nearest the



2.4e*

Problems 111

Fic. P2.4d

axis. Find the vector force on each side of the loop and the resulting force on the entire
loop.

Consider a round straight wire carrying a uniform current density J throughout, except
for a round cylindrical void parallel with the wire axis so that the cross section is con-
stant. Call the radius of the wire c, the radius of the hole b, and the distance of the
center of the hole from the center of the wire a. Take b < a <cand b < ¢ — a. Use
superposition to find the field # as a function of position along a radial line through the
center of the hole for all values of radius from the center of the wire.

2.4f A demonstration can be given that a thin metal tube can be crushed by magnetic forces

2.4g

2.5

2.6a
2.6b

2.6¢
2.7

2.8

by passing current through it. Take the radius of the tube to be 2 cm and the magnetic
field at which failure of the metal occurs as 9 Wb/m?. (i) What is the maximum current
that could flow axially along the tube before it would be crushed by the magnetic forces
arising from this current? (ii) What is the force per unit area on the surface of the tub-
ing under this condition?

For an infinitely long cylindrical hollow pipe of any cross section carrying current along
the pipe, magnetic field within the hollow portion is zero. Show why.

A coaxial transmission line with inner conductor of radius a and outer conductor of

radius b has a coaxial cylindrical ferrite of permeability u, extending from r = a to
r = d (with d < b), and air from radius d to b. Find the external inductance per unit
length.

Find the curl of a vector field F = &x222 + §y%22 + 2x%2
By using the rectangular coordinate forms show that
VX @F) =¢V XF —-F X Vy
where F is any vector function and ¢ any scalar function.
Derive the expression for curl in the spherical coordinate system.

For the coaxial line of Fig. 2.4b, express the magnetic field found in Ex. 2.4b and Prob.
2.4a in rectangular coordinates and find the curl in the four regions, r < a, a < r < b,
b <r <c¢,r>c. Comment on the results.

Show that V X Vi = 0 by integrating over an arbitrary surface and applying Stokes’s
theorem.
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2.9a Check the results Egs. 2.9(9) and (10) by adding vectorially the magnetic field from the
individual wires, using the result of Ex. 2.4a.

2.9b* A square loop of thin wire lies in the x—y plane extending from (—a, —a) to (a, —a)
to (a, a) to (—a, a) back to (—a, —a) and carries current / in that sense of circulation.
Find A and H, for any point (x, y, z).

2.9c* A circular loop of thin wire carries current /. Find A for a point distance z from the
plane of the loop, and radius r from the axis, for r/z << 1. Use this to find the expres-
sion for magnetic field on the axis.

2.9d Show that the line integral of vector potential A about a closed path is equal to the

magnetic flux enclosed,
3§ A-dl = f B-dS
s

Apply this to find the form of A inside the long solenoid of Ex. 2.4d.

2.9e For an infinite single-wire line of current, show that A, as calculated in Ex. 2.9b is in-
finite. Then show that if vector potential is calculated for a finite length —~L <z <L
and B calculated from this before letting L approach infinity, the correct value of B is
obtained.

2.9f As an exercise in using the vector potential, consider a very long thin conducting sheet
having a width b carrying a uniformly distributed direct current / in the direction of its
length. Show that if the sheet is assumed to lie in the x—z plane with the z axis along its
centerline, the magnetic field about the strip will be given by

H, = L (tan"l b2 + x + tan~! b2 - x x)
27b y

1 B/2 + x)? + y?
Hy=-—In| 22—
4mb b/2 - x)* +y
2.10 Show that the torque on a small loop of current can be expressed as 7 = m X B.
2.12a Show that V2A = 0 for the vector potential around a pair of currents, Eq. 2.9(8).
2.12b Use the rectangular coordinate forms to prove Eq. 2.12(3).

2.12¢ A certain current density is said to produce within itself a vector potential having the
form A = 2Cr ~? in circular cylindrical coordinates where C is a constant. Find the
divergence of A, current density, and magnetic field, assuming the medium to be free
space.

2.12d We saw in Ex. 2.7 that magnetic field in a superconductor decays from the surface as
H, = Hye */*
where z is parallel to the plane of the surface and x is perpendicular to the surface. Find

the corresponding vector potential A, and from it the current density comparing with
the result of Ex. 2.7.

2.13a Show whether either of the following vector fields can be obtained from a scalar poten-
tial, and give the potential function if applicable:

F = %3y%z + §6xyz + 23y*
F = 13y + 92x + 24



2.13b

2.14*

215

2.16a
2.16b

2.17a

2.17b

Problems 113

Find the form of scalar magnetic potential for the region between conductors as shown
in Fig. 2.13, defined for the region 0 = ¢ < 27; similarly for the region outside the
outer conductor. Current / flows in the inner conductor and the return current in the
outer one.

Consider the boundary between free space and a plane superconductor with nearby par-
allel line current / at x = d. It is the nature of a superconductor that when placed in a
weak magnetic field, currents flow in such a way as to eliminate flux inside the super-
conductor so that B, at the surface is zero, as is the tangential H inside the supercon-
ductor. Show that fields in the free-space region x > 0 can be found by replacing the
superconductor with an image current at x = —d carrying current —/. Find the mag-
netic field at x = 0+ and from this the surface current density J,.

For the problem of Fig. 2.15b, what magnetic charge distribution would be obtained for
the formulation in terms of equivalent magnetic charges? How would this be modified
if magnetization is inhomogeneous as defined below?

M = M1 + kz)
Show that Eq. 2.16(1) leads to (2) for linear, isotropic materials.

Assume that the material having the B—H relation shown in Fig. 2.16 saturates at B =
1000 G and estimate graphically the energy per unit volume for one complete traversal
of the hysteresis loop.

Find the external inductance per unit length for the arrangement of Prob. 2.5 from en-
ergy considerations.

Find the internal inductance per unit length for the parallel-plane transmission line of
Fig. 2.5¢ if current is assumed of uniform density in each of the conductors.



