PREFACE

This book is an intermediate-level text on electromagnetic fields and waves. It represents
a revision of the first two editions of the text, which in turn built upon an earlier volume
by two of the authors.* It assumes an introductory course in field concepts, which can
be the lower-division physics course in many colleges or universities, and a background
in calculus. Material on vectors, differential equations, Fourier analysis, and complex
notation for sinusoids is included in a form suitable for review or a first introduction.
We have given such introductions wherever the material is to be used and have related
them to real problems in fields and waves. Throughout the book, the derivations and
analyses are done in the most direct way possible. Emphasis is placed on physical
understanding, enhanced by numerous examples in the early chapters.

The fundamentals of electromagnetics, based on Maxwell’s brilliant theories, have
not changed since the first version of the text, but emphases have changed and new
applications continue to appear. The field of coherent optics for communications and
information processing continues to grow. New materials of importance to electronic
devices (for example, superconductors) have been developed. Integrated circuit ap-
proaches to guides, resonators, and antennas have grown in importance. All these ev-
olutions are reflected in expanded text and problem material in this edition. Perhaps the
most important change for persons who need to solve field problems is the growing
power of computers. At the simplest level, computers greatly speed numerical evalua-
tion of analytic expressions, easily giving answers over a wide range of parameters.
But there is also a growing library of wholly numerical techniques for finding solutions
to field and wave problems in which complex boundary shapes preclude analytic so-
lutions. We can only give an introduction to this important subject but excellent texts
and reviews are available to carry the interested student farther. It still remains important
to understand the basic laws and to develop strong physical pictures and computer
simulations can substantially add insight, especially in dynamic problems.

The basic order remains that of the second edition. The purpose of beginning with
static fields is not only to develop familiarity with vector field concepts but also to
recognize the fact that a large number of practical time-varying problems (especially
with small devices) can be treated by static techniques (i.e., are quasistatic). The dy-
namic treatment of Maxwell, with wave examples, follows immediately so that even in
a first term, the student will meet a mix of static, quasistatic, and wave problems. Once
the reader has covered the material of the first three chapters, he or she will find con-

* S Ramo and J. R. Whinnery. Fields and Waves in Modern Radio, John Wiley & Sons (first
edition 1944, second edition, 1953). The first edition was prepared with the assistance of
the General Electric Company when the authors were employed in its laboratories.
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siderable flexibility in using the text. Material on the electromagnetics of circuits (Chap-
ter 4) or on special waveguides (Chapter 9) may be delayed or even omittad and the
later chapters on microwave circuits, materials, and optics can be used in various orders.
Selections from among the more advanced sections within a chapter are also possible
without disrupting the basic flow.

The authors wish to thank the following reviewers for their helpful comments: Pro-
fessor Dennis Nyquist, Michigan State University; Professor Fred Fontaine, Cooper
Union; Professor Von R. Eshlemann, Stanford University; Professor Paul Weaver, Uni-
versity of Hawaii; Professor Charles Smith, University of Mississippi; Professor Murray
Black, George Mason University; Professor Donald Dudley, University of Arizona;
Professor B. J. Rickett, University of California at San Diego; and Professor Emily Van
Deventer, University of Toronto.

The authors gratefully acknowledge the helpful suggestions of studerts and col-
leagues at Berkeley and users in other universities and in industry. We particularly
thank D. J. Angelakos, C. K. Birdsall, K. K. Mei, J. Fleischman, M. Khalaf, B. Peters,
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Doris Simpson, Ruth Dye, Lisa Lloyd-Maffei and Patricia Chen for their careful work
in the preparation of the manuscript.
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1.1 INTRODUCTION

Electric fields have their sources in electric charges—electrons and ions. Nearly all real
electric fields vary to some extent with time, but for many problems the time variation
is slow and the field may be considered stationary in time (static) over the interval of
interest. For still other important cases (called quasistatic) the spatial distribution is
nearly the same as for static fields even though the actual fields may vary rapidly with
time. Because of the number of important cases in each of these classes, and because
static field concepts are simple and thus good for reviewing the vector operations needed
to describe fields quantitatively, we start with static electric fields in this chapter and
static magnetic fields in the next. The student approaching the problem in this way
must remember that these are special cases, and that the interactions between time-
varying fields can give rise to other phenomena, most notably the wave phenomena to
be studied later in the text.

Before begmmng the quantitative development of this chapter, let us comment briefly
on a few applications to illustrate the kinds of problems that arise in electrostatics or
quasistatics. Electron and ion guns are good examples of electrostatic problems where
the distribution of fields is of great importance in the design. Electrode shapes are
designed to accelerate particles from a source and focus them into a bezam of desired
size and velocity. Electron guns are used in cathode-ray oscilloscopes, in television
tubes, in the microwave traveling wave tubes of radar and satellite communication
systems, in electron microscopes, and for electron-beam lithography used for precision
definition of integrated-circuit device features.

Many electronic circuit elements may have quite rapidly varying currents and volt-
ages and yet at any instant have fields that are well represented by those calculated
from static field equations. This is generally true when the elements are small in com-
parison with wavelength. The passive capacitive, inductive, and resistive elements are
thus commonly analyzed by such quasistatic laws, up to very high frequencies; so also
are the semiconductor diodes and transistors which constitute the active elements of
electronic circuits.
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Transmission lines, including the strip line used in microwave and millimeter-wave
integrated circuits even for frequencies well above 10 GHz, have properties that can be
calculated using the laws for static fields. This is far from being a static problem, but
we will see later in the text that for systems having no structural variations along one
axis (along the transmission line), the fields in the transverse plane satisfy, exactly or
nearly exactly, static field laws.

There are many other examples of application of knowledge of static field laws. The
electrostatic precipitators used to remove dust and other solid particles from air,
xerography, and power switches and transmission systems (which must be designed to
avoid dielectric breakdown) all use static field concepts. Electric fields generated by
the human body are especially interesting examples. Thus the fields that are detected
by electroencephalography (fields of the brain) and electrocardiography (fields of the
heart) are of sufficiently low frequency to be distributed in the body in the same way
that static fields would be.

In all the examples mentioned, the general problem is that of finding the distribution
of fields produced by given sources in a specified medium with defined boundaries on
the region of interest. Our approach will be to start with a simple experimental law
(Coulomb’s law) and then transform it into other forms which may be more general or
more useful for certain classes of problems.

Most readers will have met this material before in physics courses or introductory
electromagnetics courses, so the approach will be that of review with the purposes of
deepening physical understanding and improving familiarity with the needed vector
algebra before turning to the more difficult time-varying problems.

L "~~~ ]
Basic Laws and Concepts of Electrostatics

1.2 FORCE BETWEEN ELECTRIC CHARGES: THE CONCEPT OF ELECTRIC FIELD

It was known from ancient times that electrified bodies exert forces upon one another.
The effect was quantified by Charles A. Coulomb through brilliant experiments using
a torsion balance.! His experiments showed that like charges repel one another whereas
opposite charges attract; that force is proportional to the product of charge magnitudes;

' An excellent description of Coulomb’s experiments and the groundwork of earlier re-

searchers is given in R. S. Elliott, Electromagnetics, McGraw-Hill, New York, 1966. For a
detailed account of the history of this and other aspects of electromagnetics, see E. T.
Whittaker, A History of the Theories of Aether and Electricity, Am. Inst. Physics, New York,
1987, or P. F. Mottelay, Biographical History of Electricity and Magnetism, Ayer Co. Pub-
lishers, Salem, NH, 1975.



1.2 Force Between Electric Charges: The Concept of Electric Field 3

that force is inversely proportional to the square of the distance between charges; and
that force acts along the line joining charges. Coulomb’s experiments were done in air,
but later generalizations show that force also depends upon the medium in which
charges are placed. Thus force magnitude may be written

f=gh% ‘11‘12 1)

where g, and g, are charge strengths, r is the distance between charges, ¢ is a constant
representing the effect of the medium, and X is a constant depending upon units. Di-
rection information is included by writing force as a vector f (denoted here as boldface)
and defining a vector f of unit length pointing from one charge directly away from the
other:

f=xiL; @)

er?

Various systems of units have been used, but that to be used in this text is the
International System (SI for the equivalent in French) introduced by Giorgi in 1901.
This is a meter—kilogram—second (mks) system, but the great advantage is that electric
quantities are in the units actually measured: coulombs, volts, amperes, etc. Conversion
factors to the classical systems still used in many references are given in Appendix 1.
Thus in the SI system force in (2) is in newtons (kg-m/s?), g in coulombs, 7 in meters,
and ¢ in farads/meter. The constant K is chosen as 1/4r and the value of & for vacuum
found from experiment is

1 F
=8854 X 1072 ~— X 107°— 3
€o 8 36 m )

For other materials,
€ = g¢, 4

where ¢, is the relative permittivity or dielectric constant of the material and is the
value usually tabulated in handbooks. Here we are considering materials for which &
is a scalar independent of strength and direction of the force and of position. More
general media are discussed in Sec. 1.3 and considered in more detail in Chapter 13.
Thus in SI units Coulomb’s law is written

f=-2; )

Generalizing from the example of two charges, we deduce that a charge placed in
the vicinity of a system of charges will also experience a force. This might be found
by adding vectorially the component forces from the individual charges of the system,
but it is convenient at this time to introduce the concept of an electric field as the force
per unit charge for each point of the region influenced by charges. We may define this
by introducing a test charge Ag at the point of definition small enough not to disturb
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the charge distribution to be studied. Electric field E is then

-t
Aq
where f is the force acting on the infinitesimal test charge Ag.

The electric field arising from a point charge g in a homogeneous dielectric is then
given by the force law (5):

E O

= 9 5 '
4rer

M

Since t is the unit vector directed from the point in a direction away from the charge,
the electric field vector is seen to point away from positive charges and toward negative
charges as seen in the lower half of Fig. 1.2a. The units of electric field magnitude in
the SI system are in volts per meter, as may be found by substituting units in (7):

_ coulombs meter volts (V)

farads (meter)>  meter (m)

We can see from the form of (7) that the total electric field for a system of point
charges may be found by adding vectorially the fields from the individual charges, as
is illustrated at point P of Fig. 1.2a for the charges ¢ and — ¢. In this manner the electric
field vector could be found for any point in the vicinity of the two charges. An electric
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Fi6. 1.2a  Electric fields around two opposite charges. Lower half of figure shows the separate
fields E . and E_ of the two charges. Upper half shows the vector sum of E, and E_. Con-
struction of E is shown at one point P.



1.2 Force Between Electric Charges: The Concept of Electric Field 5

field line is defined as a line drawn tangent to the electric field vector at each point in
space. If the vector is constructed for enough points of the region, the electric field lines
can be drawn in roughly by following the direction of the vectors as illustrated in the
top half of Fig. 1.2a. Easier methods of constructing the electric field will be studied
in later sections, but the present method, although laborious, demonstrates clearly the
meaning of the electric field lines.

For fields produced by continuous distributions of charges, the superposition is by
integration of field contributions from the differential elements of charge. For volume
distributions, the elemental charge dg is p dV where p is charge per unit volume (C/m?)
and dV is the element of volume. For surface distributions, a surface density p, (C/m?)
is used with elemental surface dS. For filamentary distributions, a linear density p,
(C/m) is used with elemental length dl. An example of a continuous distribution
follows.

SRR R

S R S
Example 1.2 '
FIELD OF A RING OF CHARGE

Let us calculate the electric field at points on the z axis for a ring of positive charge of
radius a located in free space concentric with and perpendicular to the z axis, as shown
in Fig. 1.2b. The charge p, along the ring is specified in units of coulombs per meter
so the charge in a differential length is p, di. The electric field of p, dl is designated by
dE in Fig. 1.2b and is given by (7) with r> = a®> + z2. The component along the z
axis is dE cos 6 where cos 6 = z/(a® + z%)'/2. Note that, by symmetry, the component
perpendicular to the axis is canceled by that of the charge element on the opposite side
of the ring. The total field at points on the axis is thus directed along the axis and is
the integral of the differential axial components. Taking dl = a d¢ we have

21
E = f pazdd piaz
o 4me(@® + 2)¥?  2e(@® + )2

®)

pidl

Fie. 1.2b Electric field of a ring of charge.
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1.3 THE CONCEPT OF ELECTRIC FLUX AND FLUX DENSITY: GAUSS'S LAW

It is convenient in handling electric field problems to introduce another vector more
directly related to charges than is electric field E. If we define

D = ¢E o))

we notice from Eq. 1.2(7) that D about a point charge is radial and independent of the
material. Moreover, if we multiply the radial component D, by the area of a sphere of
radius r, we obtain

4nr’D, = q (@)

We thus have a quantity exactly equal to the charge (in coulombs) so that it may be
thought of as the flux arising from that charge. D may then be thought of as the electric
flux density (C/m?). For historical reasons it is also known as the displacement vector
or electric induction.

It is easy to show (Prob. 1.3b) that for an arbitrarily shaped closed surface as in Fig.
1.3a, the normal component of D integrated over the surface surrounding a point charge
also gives ¢. The analogy is that of fluid flow in which the fluid passing surface S of
Fig. 1.3b in a given time is the same as that passing plane S, perpendicular to the flow.
So fluid flow rate out of a region does not depend upon the shape of the surface used
to monitor it, so long as all surfaces enclose the same source. By superposition, the
result can be extended to a system of point charges or a continuous distribution of
charges, leading to the conclusion

electric flux flowing out of a closed surface = charge enclosed 3

This is Gauss’s law and, although argued here from Coulomb’s law for simple media,
is found to apply to more general media. It is thus a most general and important law.
Before illustrating its usefulness, let us look more carefully at the role of the medium.

A simplified picture showing why the force between charges depends upon the pres-
ence of matter is illustrated in Fig. 1.3c. The electron clouds and the nuclei of the atoms
experience oppositely directed forces as a result of the presence of the isolated charges.

Fie. 1.3a Charge g and arbitrary surrounding surface.
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2

Fi6. 1.3b Flow of a fluid through surfaces S and S, .

Thus the atoms are distorted or polarized. There is a shift of the center of symmetry of
the electron cloud with respect to the nucleus in each atom as indicated schematically
in Fig. 1.3c. Similar distortions can occur in molecules, and an equivalent situation
arises in some materials where naturally polarized molecules have a tendency to be
aligned in the presence of free charges. The directions of the polarization are such for
most materials that the equivalent charge pairs in the atoms or molecules tend to coun-
teract the forces between the two isolated charges. The magnitude and the direction of
the polarization depend upon the nature of the material.

The above qualitative picture of polarization introduced by a dielectric may be quan-
tified by giving a more fundamental definition than (1) between D and E:

D=¢cE+P @)
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Fic. 1.3¢ Polarization of the atoms of a dielectric by a pair of equal positive charges.
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The first term gives the contribution that would exist if the electric field at that point
were in free space and the second measures the effect of the polarization of the material
(as in Fig. 1.3¢) and is called the electric polarization.

The polarization produced by the electric field in a material depends upon material
properties. If the properties do not depend upon position, the material is said to be
homogeneous. Most field problems are solved assuming homogeneity; inhomogeneous
media, exemplified by the earth’s atmosphere, are more difficult to analyze. If the
response of the material is the same for all directions of the electric field vector, it is
called isotropic. Special techniques are required for handling a field problem in an
anisotropic medium such as an ionized gas with an applied steady magnetic field. A
material is called linear if the ratio of the response P to the field E is independent of
amplitude. Nonlinearities are generally not present except for high-amplitude fields. It
is also possible that the character of a material may be time variable, imposed, for
example, by passing a sound wave through it. Throughout most of this text, the media
will be considered to be homogeneous, isotropic, linear, and time invariant. Exceptions
will be studied in the final chapters.

For isotropic, linear material the polarization is proportional to the field intensity and
we can write the linear relation

P = SOXeE (5)

where the constant y, is called the electric susceptibility. Then (4) becomes the same
as (1),
D = g1 + x.)E = ¢E ’ 6)

and the relative permittivity, defined in Eq. 1.2(4)is e, = e/g; = 1 + ¥,

Although we will describe a dielectric material largely by its permittivity, the con-
cepts of polarization and susceptibility are in a sense more fundamental and are con-
sidered in more detail in Chapter 13.

1.4 EXAMPLES OF THE USE OF GAUSS'S LAW

The simple but important examples to be discussed in this section show that Gauss’s
law can be used to find field strength in a very easy way for problems with certain
kinds of symmetry and given charges. The symmetry gives the direction of the electric
field directly and ensures that the flux is uniformly distributed. Knowledge of the charge
gives the total flux. Symmetry is then used to get flux density D and hence E = D/e.

Example 1.4a
FIELD IN A PLANAR SEMICONDUCTOR DEPLETION LAYER

For the first example, we consider a one-dimensional situation where a metal is in
intimate (atomic) contact with a semiconductor. We assume that some of the typically
valence 4 (e.g., silicon) atoms have been replaced by ‘‘dopant” atoms of valence 5
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Metal ———+<—— Semiconductor
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FiG. 1.4a Model of a metal-semiconductor contact. The region to which Gauss’s law is applied
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(e.g., phosphorus). The one extra electron in each atom is not needed for atomic bonding
and becomes free to move about in the semiconductor. Upon making the metal contact,
it is found that the free electrons are forced away from the surface for a distance d. The
region 0 = x = d is called a depletion region because it is depleted of the free electrons.
Since the dopant atoms were neutral before losing their extra electrons, they are posi-
tively charged when the region is depleted. This can be modeled as in Fig. 1.4a. In the
region x > d the donors are assumed to be completely compensated by free electrons
and it is therefore charge-free. (The abrupt change from compensated to uncompensated
behavior at x = d is a commonly used idealization.) By symmetry, the flux is
— x-directed only. The surface used in application of Gauss’s law consists of two infinite
parallel planes, one at x < d and one at x = d. This approximation is made because
the transverse dimensions of the contact are assumed to be much larger than d. With
no applied fields, there is no average movement of the electrons in the compensated
region x = d so E must be zero there. Thus D is also zero in that region and all the
flux from the charged dopant atoms must terminate on negative charges at the metal
contact. Therefore, Gauss’s law gives, for a unit area,

=D, (x) = Npe(d — x) (€]

where N, and e are the volume density of donor ions and the charge per donor (mag-
nitude of electronic charge), respectively. Then the x component of the electric field is
D Npe(x — d
go=2 ot d @)
€ €
It should be clear that the simplicity of solution depended upon the symmetry of the
system; that is, that there were no variations in y and z.
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Example 1.4b
FIELD ABOUT A LINE CHARGE OR BETWEEN COAXIAL CYLINDERS

We introduced the line charge in ring form in Ex. 1.2. Let us now find the field E
produced by a straight, infinitely long line of uniformly distributed charge. The radius
of the line is negligibly small and can be thought of as the two-dimensional equivalent
of a point charge. Practically, a long thin charged wire is a good approximation. The
symmetry of this problem reveals that the force on a test charge, and hence the electric
field, can only be radial. Moreover, this electric field will not vary with angle about the
line charge, nor with distance along it. If the strength of the radial electric field is desired
at distance r from the line charge, Gauss’s law may be applied to an imaginary cylin-
drical surface of radius r and any length /. Since the electric field (and hence the electric
flux density D) is radial, there is no normal component at the ends of the cylinder and
hence no flux flow through them. However, D is exactly normal to the cylindrical part
of the surface, and does not vary with either angle or distance along the axis, so that
the flux out is the surface area 2777/ multiplied by the electric flux density D,. The
charge enclosed is the length / multiplied by the charge per unit length g,. By Gauss’s
law, flux out equals the charge enclosed:

27rlD, = lg,
If the dielectric surrounding the wire has constant &,

E = D _ _a (3)
e 2mer

Hence, the electric field about the line charge has been obtained by the use of Gauss’s

law and the special symmetry of the problem.

The same symmetry applies to the coaxial transmission line formed of two coaxial
conducting cylinders of radii a and b with dielectric € between them (Fig. 1.4b). Hence
the result (3) applies for radius r between a and b. We use this result to find the
capacitance in Sec. 1.9.

o

Fic. 1.4b Coaxial line.




1.4 Examples of the Use of Gauss’s Law 11

Fie. 1.4c Spherical electrodes separated by two layers of dielectric materials.

Example 1.4c
FIELD BETWEEN CONCENTRIC SPHERICAL ELECTRODES WITH TWO DIELECTRICS

Figure 1.4c¢ shows a structure formed of two conducting spheres of radii a and ¢, with
one dielectric &, extending from r = a to r = b, in spherical coordinates,” and a
second, &,, from r = b tor = c. This problem has spherical symmetry about the center,
which implies that the electric field will be radial, and independent of the angular
direction about the sphere. If the charge on the inner sphere is Q and that on the outer
sphere is — Q, the charge enclosed by an imaginary spherical surface of radius r selected
anywhere between the two conductors is only that charge Q on the inner sphere. The
flux passing through it is the surface 477r> multiplied by the radial component of the
flux density D,. Hence, using Gauss’s law,

p, = 2

47r?

*)

The equation for the flux density is the same for either dielectric, since the flux passes
from the positive charge on the center conductor continuously to the negative charge
on the outer conductor. The electric field has a different value in the two regions,
however, since in each dielectric, D and F are related by the corresponding permittivity:

Q
E = <r<b
" 4mer? a=r )
Q
E = b<r< 6
T dme,r? r=c ©)

2 Note that r is used both for radius from the axis in the circular cylindrical coordinate
system and for radius from the origin in the spherical coordinate system. p is frequently
used for the former but may be confused with charge density, andR is used for the Iatter,
but is here reserved for distance between source and field points.



12 Chapter 1 Stationary Electric Flelds

The radial flux density is continuous at the dielectric discontinuity at » = b, but the
radial electric field is discontinuous there.

Example 1.4d
FIELDS OF A SPHERICAL REGION OF UNIFORM CHARGE DENSITY

Consider a region of uniform charge density p extending from » = Otor = a. Asin
the preceding example, Gauss’s law can be written as (4) where, in this case, 0 = $mrip
for r < a and Q = $ma’p for r = a. Then the flux densities for the two regions are

D,=-;-p r<a @)
3
a

Dr=3—r§P rza (®)

1.5 SURFACE AND VOLUME INTEGRALS: GAUSS’S LAW IN VECTOR FORM

Gauss’s law, given in words by Eq. 1.3(3), may be written
§Dcos0d8=q 1)
s

The symbol §¢ denotes the integral over a surface and of course cannot be performed
until the actual surface is specified. It is in general a double integral. The circle on the
integral sign is used if the surface is closed.

The surface integral can also be written in a still more compact form if vector notation
is employed. Define the unit vector normal to the surface under consideration, for any
given point on the surface, as fi. Then replace D cos 6 by D - . This particular product
of the two vectors D and fi denoted by the dot between the two is known as the dot
product of two vectors, or the scalar product, since it results by definition in a scalar
quantity equal to the product of the two vector magnitudes and the cosine of the angle
betweenthem. Also, the combination i dS is frequently abbreviated further by writing
it dS. Thus the elemental vector dS, representing the element of surface in magnitude
and orientation, has a magnitude equal to the magnitude of the element dS under con-
sideration and the direction of the outward normal to the surface at that point. The
surface integral in (1) may then be written in any of the equivalent forms:

fDCOSOdS=§D'ﬁdS=§D-dS 2
s s /s

All of these say that the normal component of the vector D is to be integrated over the
general closed surface S.
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If the charge inside the region is given as a density of charge per unit volume in
coulombs per cubic meter for each point of the region, the total charge inside the region
must be obtained by integrating this density over the volume of the region. This is
analogous to the process of finding the total mass inside a region when the variable
mass density is given for each point of a region. This process may also be denoted by
a general integral. The symbol [ is used to denote this, and, as with the surface integral,
the particular volume and the variation of density over that volume must be specified
before the integration can be performed. In the general case, it is performed as a triple
integral.

Gauss’s law may then be written in this notation:

§;D-dS=fpdV 3)
S |4

Although the above may at first appear cryptic, familiarity with the notation will im-
mediately reveal that the left side is the net electric flux out of the region and the right
side is the charge within the region.

T P I S S R R B R R i
Example 1.5
ROUND BEAM OF UNIFORM CHARGE DENSITY

Consider the circular cylinder of uniform charge density p and infinite length shown in
Fig. 1.5. A region of integration is taken in the form of a prism of square cross section.
We will demonstrate the validity of (3), utilizing the fact that D has only a radial
component. The right side of (3) is

Y b/2
jpdV=jdzJ dyf pdx = Ib*p 4)
v 0

—b/2

—b/2

Fic. 1.5 Square cylindrical region of integration in a circular cylinder of free charge.
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At any radius, D, can be found as in Sec. 1.4 to be

D =
r 27r 2
To do the surface integration on the left side of (3), we note that D - dS = D, dx dz
cos 6, that cos 6 = b/2r, and that the four sides make equal contributions to the integral.
Thus

(mr)p _ rp ~ )

[ b/2
§D~dS=4fdzf D, cos 8dx = Ib°p 6)
s 0 —b/2

and from (6) and (4) we see that (3) is satisfied. Problem 1.5b contains a similar situ-
ation, but is somewhat complicated by having the charge density dependent upon radius.

1.6 TUBES OF FLUX: PLOTTING OF FIELD LINES

For isotropic media, the electric field E is in the same direction as flux density D. A
charge-free region bounded by E or D lines must then have the same flux flowing
through it for all selected cross sections, since no flux can flow through the sides parallel
with D, and Gauss’s law will show the conservation of flux for this source-free region.
Such a region, called a flux tube, is illustrated in Fig. 1.6a. Surface S; follows the
direction of D, so there is no flow through S;. That flowing in S; must then come out
S, if there are no internal charges. These tubes are analogous to the flow tubes in the
fluid analogy used in Sec. 1.3.

The concept of flux tubes is especially useful in making maps of the fields, and will
be utilized later (Sec. 1.19) in a useful graphical field-mapping technique. We show in
the following example how it may be used to obtain field lines in the vicinity of parallel
line charges.

Example 1.6
FLUX TUBES AND FIELD LINES ABOUT PARALLEL LINES OF OPPOSITE CHARGE

To show how field lines may be found by constructing flux tubes, we use, as an example,
two infinitely long, parallel lines of opposite charge. It is obvious from symmetry that
the plane in which the two charge lines lie will contain D lines and hence can be a
boundary of a flux tube. We introduce the flux function

tszD-dS )
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S3

Fie. 1.6a Tube of flux.

which measures the flux crossing some chosen surface. For example, suppose S is the
cross-hatched surface in Fig. 1.6b. First, let the angles a, and a, shrink to zero so §
also vanishes. Then the flux function will be zero along the plane of the lines of charge.
(The surface S also could be chosen in some other way, making the flux function
different from zero on that plane. The resulting additive constant is arbitrary, so we
take it to be zero.) We get other flux tube boundaries by taking nonzero values of the
angles a,; and «,. First we derive an expression for the flux passing between the i =
0 plane and line L in Fig. 1.6b. Then paths will be formed along which L may be moved
while keeping the same flux between it and the ¢ = 0 surface. Moving L along such
a path therefore generates a surface which is the boundary of a flux tube of infinite
length parallel to L. The flux may be divided into the part from the positive line charge
and the part from the negative line charge, since the effects are superposable. The flux
from the positive line goes out radially so that the amount (per unit length) crossing §
is g,(a;/2m). The flux passing radially inward toward the negative line charge through
$ adds directly to that of the positive line charge and has the magnitude g,(a,/2). The
total flux per unit length crossing S is
q

¥ = ;r(al t @) @

Fie. 1.6b  Construction of flux tubes about line charges.



16 Chapter 1 Stationary Electric Fields

Fie. 1.6¢c Tubes of flux between line charges.

The surface generated by moving L in such a way as to keep ¢ constant is a circular
cylinder that passes through the charge lines with its axis in the plane normal to the
Y = 0 line midway between the line charges. Figure 1.6¢ shows several flux tubes,
with the values of ¢ indicating the amount of flux between the ¢y = 0 surface and the
one being considered, as a, is increased from zero to 27. Note that as a path is taken
around one of the lines, the flux function goes from 0 to g,; the total flux per unit length
coming from a line charge is g,. It is clear from this example that the flux function ¢
is not single-valued since it continues to increase as a; or a, increases; more flux lines
are crossed as motion about the line charge continues. We must therefore limit a, and
a, to the range O to 27 to ensure unique values for .

Since the boundaries of the flux tubes lie along D vectors and D = ¢E, they also lie
along E vectors. Thus, by plotting flux tubes, we find the directions of the electric field
vectors surrounding the charges. There is a given amount of flux in each tube so the
flux density D, and therefore also E, become large where the cross section of the tube
becomes small.

1.7 ENERGY CONSIDERATIONS: CONSERVATIVE PROPERTY
OF ELECTROSTATIC FIELDS

Since a charge placed in the vicinity of other charges experiences a force, movement
of the charge represents energy exchange. Calculation of this requires integration of
force components over the path (line integrals). It will be found that the electrostatic
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system is conservative in that no net energy is exchanged if a test charge is moved
about a closed path, returning to its initial position.

Consider the force on a small positive charge Ag moved from infinity to a point P
in the vicinity of a system of positive charges: q, at 0,, ¢, at 0,, g5 at 05, and so on
(Fig. 1.7a). The force at any point along its path would cause the particle to accelerate
and move out of the region if unconstrained. A force equal to the negative of that from
surrounding charges must then be applied to bring Ag from infinity to its final position.
The differential work done on Ag from ¢, in the system is the negative of the force
component in the direction of the path, multiplied by differential path length:

dU, = —F, - dl

Or, using the definition of the scalar product, the angle 8 as defined in Fig. 1.7a, and
the force as stated above, we write the line integral for total work related to g, as

_JPQ‘ F - dl = - PO Agq, cos 6 dl

U, =
! o 41rer?

(D

where r is the distance from g, to the differential path element dl at each point in the
integration. Since dI cos 0 is dr, the integral is simply

U = — Per Agq, dr
YU e 4mer?

and similarly for contributions from other charges, so that the total work integral is

P
U = _f ® Agqy _fPQzéﬂz_d, _F%ﬂa_d, .
w 4der? w  daer? w  4dmer?

Note that there is no component of the work arising from the test charge acting upon
itself. Integrating,

Agq, + Aqq, + Agq;

= 2
4mePQ, 4mePQ, 4wePQ, @

E;
0 P
dl
/
/
/
/r
/ eq3
/ %
eq
{0 &
Q@

Fi6. 1.7a Integration path for force on test charge.
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Equation (2) shows that the work done is a function only of final positions and not
of the path of the charge. This conclusion leads to another: if a charge is taken around
any closed path, no net work is done. Mathematically this is written as the closed line
integral

}§E~dl=o , ©)

This general integral signifies that the component of electric field in the direction of
the path is to be multiplied by the element of distance along the path and the sum taken
by integration as one moves about the path. The circle through the integral sign signifies
that a closed path is to be considered. As with the designation for a general surface or
volume integral, the actual line integration cannot be performed until there is a speci-
fication of a particular path and the variation of E about that path.

In the study of magnetic fields and time-varying electric fields, we shall find corre-
sponding line integrals which are not zero.

O B R R R O O R P T sl s
Example 1.7
DEMONSTRATION OF CONSERVATIVE PROPERTY

To illustrate the conservative property and the use of line integrals, let us take the line
integral (3) around the somewhat arbitrary path through a uniform sphere of charge
density p shown in Fig. 1.7b. The path is chosen, for simplicity, to lie in the x = 0

Fic. 1.7b  Path of integration (broken line) through electric field of sphere of uniform charge
to show conservative property. s
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plane. The integrand E - dl involves electric field components E, and E,. The radial

electric field E, = pr/3g, is found from Eq. 1.4(7). The components are E,, = E,(y/r)
and E, = E,(z/r)so E, = py/3g, and E, = pz/3¢,. The integral (3) becomes

cy by o by

§£E-dl L E,dz + | E,dy+ f E,dz + | E,dy

1 bl 2 b2
p {zz by 2 b,}
Pz bl =90
3g5( 2 b

2
The general conservative property of electrostatic fields is thus illustrated in this
example.

(%) 2

b
2

c 2
Y

47—

2

< by

1.8 ELECTROSTATIC POTENTIAL: EQUIPOTENTIALS

The energy considerations of the preceding section lead directly to an extremely useful
concept for electrostatics—that of potential. The electrostatic potential function is de-
fined as the work done per unit charge. Here we start generally and define a potential
difference between points 1 and 2 as the work done on a unit test charge in moving

from P, to P,.
Py

Dp, — Op = —PIE-dl )
The conclusion of the preceding section that the work in moving around any closed
path is zero shows that this potential function is single-valued; that is, corresponding
to each point of the field there is only one value of potential.

Only a difference of potential has been defined. The potential of any point can be
arbitrarily fixed, and then the potentials of all other points in the field can be found by
application of the definition to give potential differences between all points and the
reference. This reference is quite arbitrary. Fdr example, in certain cases it may be
convenient to define the potential at infinity as zero and then find the corresponding
potentials of all points in the field; for determination of the field between two conduc-
tors, it is more convenient to select the potential of one of these as zero.

If the potential at infinity is taken as zero, it is evident that the potential at the point
P in the system of charges is given by U of Eq. 1.7(2) divided by Ag, so

9 9> 93
= + + + .- 2
4mwePQ, 4mePQ, 4mePQ, @

This may be written in a more versatile form as

n

o) = > L 3)

i=1 471'8Ri

where R; is the distance of the ith charge at r; from the point of observation at r, as
seen in Fig. 1.8a.
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Fi6. 1.8a Potential of ¢, g5, g3, - . ., g; is found at point P.
R=1lr=r)=[x-x)2+ O -y)P+ - )] @

Here x, y, and z are the rectangular coordinates of the point of observation and
x;, y}, and z; are the rectangular coordinates of the ith charge.? Generalizing to the case
of continuously varying charge density,
p(r'y dv’
e [ 202 5

®) v 4meR )
The p(r’) is charge density at point (x', y', z'), and the integral signifies that a summation
should be made similar to that of (2) but continuous over all space. If the reference for
potential zero is not at infinity, a constant must be added of such value that potential
is zero at the desired reference position.

_ p(r’") dv’
om = fv 4meR +C ©

It should be kept in mind that (2)-(6) were derived assuming that the charges are located
in an infinite, homogeneous, isotropic medium. If conductors or dielectric discontinu-
ities are present, differential equations for the potential (to be given shortly) are used
for each region.

We will see in Sec. 1.10 how the electric field E can be found simply from ®(r). It
is usually easier to find the potential by the scalar operations in (3) and (5) and, from
it, the field E than to do the vector summations discussed in Sec. 1.2. Such convenience
in electrostatic calculations is one reason for introducing this potential.

In any electrostatic field, there exist surfaces on which the potential is a constant, so-
called equipotential surfaces. Since the potential is single-valued, surfaces for different

3 Throughout the text we use primed coordinates to designate the location of sources and
unprimed coordinates for the point at which their fields are to be calculated.
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values of potential do not intersect. The pictorial representation of more than one such
surface in a three-dimensional field distribution is quite difficult. For fields that have
no variation in one dimension and are therefore called two-dimensional fields, the third
dimension can be used to represent the potential. Figure 1.85 shows such a representa-
tion for the potential around a pair of infinitely long, parallel wires at potentials ®, and
—&,. The height of the surface at any point is the value of the potential. Note that
lines of constant height or constant potential can be drawn. These equipotentials can
be projected onto the x—y plane as in Fig. 1.8¢. In such a representation, the equipo-

| I |
| | | |
| | 3,
A
[ [ >z
o T N\,
| | | ®
X 4
| | [ 7 T~ %5
| | —1 g
| | I
et .
L[
e  —— A
— | | l‘;’s |
— %4

(b)

(c)

Fic. 1.8 (b) Plot of a two-dimensional potential distribution using the third dimension to show
the potential. (c) Equipotentials for the same potential system as in (b) plotted onto the x—y plane.
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tentials look like the contour lines of a topographic map and, in fact, measure potential
energy of a unit charge relative to a selected zero-potential point just as contours meas-
ure potential energy relative to some reference altitude, often sea level. It should be
kept in mind that these lines are actually traces in the x—y plane of three-dimensional
cylindrical equipotential surfaces.

We will discuss the boundary conditions on conductors in some detail in Sec. 1.14.
At this point it is sufficient to say that the electric fields inside of a metallic conductor
can be considered to be zero in electrostatic systems. Therefore, (1) shows that the
conductor is an equipotential region.

Example 1.8a
POTENTIALS AROUND A LINE CHARGE AND BETWEEN COAXIAL CYLINDERS

As an example of the relations between potential and electric field, consider first the
problem of the line charge used as an example in Sec. 1.4, with electric field given by
Eq. 1.4(3). By (1) we integrate this from some radius r, chosen as the reference of zero
potential to radius r:

q>=—fE,dr=—fM=——q—’—1n<i> (7
o

ro 2TEr 2me  \ry

Or this expression for potential about a line charge may be written

®=-Tmr+c ®)

21re

Note that it is not desirable to select infinity as the reference of zero potential for the

line charge, for then by (7) the potential at any finite point would be infinite. As in (6)
the constant is added to shift the position of the zero potential.

In a similar manner, the potential difference between the coaxial cylinders of Fig. 1.4b

may be found:
¢ q, dr q, b
b - P, = —f —— = ——In{ - 9
e b b 2mer  2we m(a) ©

Example 1.8b
POTENTIAL OUTSIDE A SPHERICALLY SYMMETRIC CHARGE

We saw in Eq. 1.4(4) that the flux density outside a spherically symmetric charge Q is
D, = Q/4mr® Using E = D/g, and taking the reference potential to be zero at in-
finity, we see that the potential outside the charge Q is the negative of the integral of
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fE,- t dr from infinity to radius r:

" Q dr, 0

w dmegr;  dmeyr

Q(r) = - (10)

Example 1.8¢c
POTENTIAL OF A UNIFORM DISTRIBUTION OF CHARGE
HAVING SPHERICAL SYMMETRY

Consider a volume of charge density p that extends from r = 0 to » = a. Taking
® = 0 atr = =, the potential outside a is given by (10) with Q@ = #meap, so

3
o) = ~L  r=za an
3gor
In particular, at r = a
2
®(a) = 2P (12)
3,

Then to get the potential at a point where » = a we must add to (12) the integral of the
electric field from a to r. The electric field is given as E, = pr/3g, (Ex. 1.7) and the
integral is

d(r) — d@) = —f %drl = 8—’;— @ - r?) (13)
a 0 0

So the potential at a radius r inside the charge region is

() = -G—g— Ga? —r) r=a (14)
0

Example 1.8d
ELECTRIC DIPOLE

A vparticularly important set of charges is that of two closely spaced point charges of
opposite sign, called an electric dipole.

Assume two charges, having opposite signs to be spaced by a distance 26 as shown
in Fig. 1.8d. The potential at some point a distance » from the origin displaced by an
angle 6 from the line passing from the negative to positive charge can be written as the
sum of the potentials of the individual charges:

® = L(i _ L) 1)
4me\r . r_
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-1

(e)
Fic. 1.8 (d) Electric dipole. (¢) Equipotentials of electric dipole.
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Using the law of cosines, we have
r2 =r2+ & — 2r§cos 0
and similarly for r_ with opposite sign of cos 6. For 6 << r,
| r.=~r— &cos 0
r_=~r+ &cos 0
Substituting in (15) and again using the restriction 6 << r, one obtains

(D%Z'dqcosﬂ

16
41rer? (16)

We define an electric dipole moment p of a pair of equal charges as the product of the
charge and the separation. The direction of vector p is from the negative charge to the
positive one. Thus (16) may be written as

p-F

41rer? a7
where F is a unit vector directed outward toward the point of observation. It is seen that
the dipole potential decreases as 1/r? with increasing distance from the origin, whereas
the potential of the single charge decreases only as the first power. The increased rate
of decay of the potential is to be expected as a result of the partial cancellation of the
potentials of opposite sign. Equipotential lines are shown plotted on a plane passing
through the dipole in Fig. 1.8e. The values shown are relative. The equipotentials are
surfaces of revolution generated by rotating the lines in Fig. 1.8e about the dipole axis.

1.9 CAPACITANCE

The capacitance between two electrodes, widely used in circuit calculations, is a meas-
ure of the charge O on each electrode per volt of potential difference ®, — P, between
them:
Q
C = o, - o, (1)
For capacitance systems having two electrodes, the excess negative charge on one
equals the deficiency of negative charge on the other.

Consider first the parallel plates in Fig. 1.9a. The separation is small compared with
the width. The result is that charges accumulate mainly on the most closely separated
surfaces. We shall idealize the structure as a portion of infinitely wide plates (Fig. 1.95)
and thereby neglect the fringing fields that do not pass straight from one plate to the
other. Such idealizations of real situations are extremely useful, but their limitations
must always be remembered. The flux density D is found from Gauss’s law to equal
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Fi16. 1.9 (a) Parallel-plane capacitor with fringing fields. (b) Idealization.

the surface charge density p, on each plate. Since the field E = D/e is assumed uniform,
the potential difference ®, — &, is, by Eq. 1.8(1),

pd

d)—CDb:? )

a

The total charge on each plate of area A is p,A so (1) and (2) give the familiar expression

eA

C = p F 3)

In practice, (3) is modified by the fringing fields, which are increasingly important as
the ratio of plate spacing to area is increased.

Next consider a capacitor made of coaxial, circular cylindrical electrodes. We assume
that fields are only radial and neglect any fringing at the ends if it is of finite length.
The charge on each conductor is distributed uniformly in this idealization, as required
by symmetry, with the total charge per unit length being g,. The potential difference
found from the field produced by this charge is given by Eq. 1.8(9). The capacitance
per unit length is thus

_ 2e
" In(b/a)

where b and a are the radii of larger and smaller conductors, respectively.

Finally, consider two concentric spherical conductors of radii a and b, with b > gq,
separated by a dielectric €. Using symmetry, Gauss’s law, and E = D/eg, it is clear that
at any radius

F/m 4

Q

47rer?

E, = ®

where Q is the charge on the inner conductor (equal in magnitude and opposite in sign
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to the charge on the inside of the outer sphere). Integration of (5) between spheres gives
®, — &, and this, substituted into (1), yields

dme _ 4meab

C=Wa-Wn b-a

The flux tubes in these three highly symmetric structures are very simple, being
bounded by parallel surfaces in the first example and by cylindrically or spherically
radial surfaces in the last two. In Sec. 1.21 we will see a way of finding capacitance
graphically for two-dimensional structures of arbitrary shape in which the flux tubes
have more complex shapes.

Capacitance of an isolated electrode is sometimes calculated; in that case, the flux
from the charge on the electrode terminates at infinity and the potential on the electrode
is taken with respect to an assumed zero at infinity. More extensive considerations of
capacitance are found in Sec. 4.9.

F Q)

U R A R R
Differential Forms of Electrostatic Laws

1.10 GRADIENT

We have looked at several laws of electrostatics in macroscopic forms. It is also useful
to have their equivalents in differential forms. Let us start with the relation between
electric field and potential. If the definition of potential difference is applied to two
points a distance dl apart,

ddb = —E-dl 1
where dl may be written in terms of its components and the defined unit vectors:
dl = %dx + §dy + 2dz )

We expand the dot product:
db = —(E,dx + E,dy + E, dz)
Since @ is a function of x, y, and z, the total differential may also be written
dd = @dx + @dy + @dz
ax ay oz
From a comparison of the two expressions,

E=—?2, E=—@, Ez=—a—(pi 3)
0z
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SO
E=—(f(a—¢i+§'@+i@> @)
ax ady 0z
or
E = —grad ® ®

where grad ®, an abbreviation of the gradient of ®, is a vector showing the direction
and magnitude of the maximum spatial variation of the scalar function &, at a point in
space.

Substituting back in (1), we have

dd = (grad ®) - dl 6)

Thus the change in ® is given by the scalar product of the gradient and the vector dl,
so that, for a given element of length dl, the maximum value of d® is obtained when
that element is oriented to coincide with the direction of the gradient vector. From (6)
it is also clear that grad & is perpendicular to the equipotentials because d® = 0 for
dl along an equipotential.

The analogy between electrostatic potential and gravitational potential energy dis-
cussed in Sec. 1.8 is useful for understanding the gradient. It is easy to see in Fig. 1.8b
that the direction of maximum rate of change of potential is perpendicular to the
equipotentials (which are at constant heights on the potential hill).

If we define a vector operator V (pronounced del)

] ]
Vestty—+ia—
xax yay zaz ™

then grad ® may be written as V® if the operation is interpreted as
ob b D

Vo =% —+ §— + 2 —
xax yay Zaz ®
and
E = —grad@é —Vo )

The gradient operator in circular cylindrical and spherical coordinates is given on the
inside front cover.

R R R I S R R R R R e
Example 1.10
ELECTRIC FIELD OF A DIPOLE

As an example of the use of the gradient operator, we will find an expression for the
field around an electric dipole. The potential for a dipole is given in Sec. 1.8 in spherical
coordinates so the spherical form of the gradient operator is selected from the inside



1.11 The Divergence of an Electrostatic Field 29

front cover.

A 19 ¢

ool glie, b
or r 06  rsin 6 3¢

Substituting Eq. 1.8(16) and noting the independence of ¢, we get

d 0 . 8q si
_; g COS _eqsme

Vo =
wer’ 2mer>
Then from (9) the electric field is
N g
E=—%<fcos@+0w> (10)
mer 2

1.11  THE DIVERGENCE OF AN ELECTROSTATIC FIELD

The second differential form we shall consider is that of Gauss’s law. Equation 1.5(3)
may be divided by the volume element AV and the limit taken:

D - dS av
lim 2298 _ gy LepdV

1
AV—0 AV Aavoso AV M

The right side is, by inspection, merely p. The left side is the outward electric flux
per unit volume. This will be defined as the divergence of flux density, abbreviated div
D. Then

divD = p 2

This is a good place to comment on the size scale implicit in our treatment of fields
and their sources; the comments also apply to the central set of relations, Maxwell’s
equations, toward which we are building. In reality, charge is not infinitely divisible—
the smallest unit is the electron. Thus, the limit of AV in (1) must actually be some
small volume which is still large enough to contain many electrons to average out the
granularity. For our relations to be useful, the limit volume must also be much smaller
than important dimensions in the system. For example, to neglect charge granularity,
the thickness of the depletion layer in the semiconductor in Ex. 1.4a should be much
greater than the linear dimensions of the limit volume, which, in turn, should be much
greater than the average spacing of the dopant atoms. Similarly the permittivity & is an
average representation of atomic or molecular polarization effects such as that shown
in Fig. 1.3¢. Therefore, when we refer to the field at a point, we mean that the field is
an average over a volume small compared with the system being analyzed but large
enough to contain many atoms. Analyses can also be made of the fields on a smaller
scale, such as inside an atom, but in that case an average permittivity cannot be used.
In this book, we concentrate on situations where p, €., and other quantities are averages
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over small volumes. There are thin films of current practical interest which are only a
few atoms thick and semiconductor devices such as that of Ex. 1.4a where these con-
ditions are not well satisfied, so that results from calculations using p and ¢ as defined
must be used with caution.

Now let us return to seeking an understanding of (2). Consider the infinitesimal
volume as a rectangular parallelepiped of dimensions Ax, Ay, Az as shown in Fig.
1.11a. To compute the amount of flux leaving such a volume element as compared with
that entering it, note that the flux passing through any face of the parallelepiped can
differ from that which passes through the opposite face only if the flux density perpen-
dicular to those faces varies from one face to the other. If the distance between the two
faces is small, then to a first approximation the difference in any vector function on the
two faces will simply be the rate of change of the function with distance times the
distance between faces. According to the basis of calculus, this is exactly correct when
we pass to the limit, since the higher-order differentials are then zero.

If the vector D at the center x, y, z has a component D,(x), then

Dx<x + é{) =D, (x) + 8x 8D,x)

2 2 ox
Ax Ax dD (x) ®)
ax) o _ Axoddx)

Dx<x -5 > =D - 5

In this functional notation, the arguments in parentheses show the points for evaluating
the function D,. When not included, the point (x, y, z) will be understood. The flux
flowing out the right face is Ay Az D (x + Ax/2), and that flowing in the left face is
Ay Az D (x — Ax/2), leaving a net flow out of Ax Ay Az(dD,/dx), and similarly for
the y and z directions. Thus the net flux flow out of the parallelepiped is

aD,
0z

oD oD,
Ax Ay Az —= + Ax Ay Az — + Ax Ay Az
ox ay

Az

Dyx = 4%) Di(x + 4%)

[ ]
Ayl (x,y,2)

Ax

z

Fic. 1.11a Volume element used in div D derivation.
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By Gauss’s law, this must equal p Ax Ay Az. So, in the limit,

o, , 0, b, _ @
ox dy oz P

An expression for div D in rectangular coordinates is obtained by comparing (2) and (4):

divD = 9D, + -a& 3D, )
ox ay dz
If we make use of the vector operator V defined by Eq. 1.10(7) in (4), then (5) indicates
that div D can conveniently be written as V - D. It should be remembered that V is not
a true vector but rather a vector operator. It has meaning only when it is operating on
another quantity in a defined manner. Summarizing,

oD, oD, 4D
V-DLdvD =24 24 222 6)
ax ay dz

The divergence is made up of spatial derivatives of the field, so (6) is a partial
differential equation expressing Gauss’s law for a region of infinitesimal size. The
physical significance of the divergence must be clear. It is, as defined, a description of
the manner in which a field varies at a point. It is the amount of flux per unit volume
emerging from an infinitesimal volume at a point. With this picture in mind, (6) seems
a logical extension of Gauss’s law. In fact (6) can be converted back to the large-scale
form of Gauss’s law through the divergence theorem, which states that the volume
integral of the divergence of any vector F throughout a volume is equal to the surface
integral of that vector flowing out of the surrounding surface,

jV-FdV=‘£F~dS @)
v s

Although not a proof, this is made plausible by considering Fig. 1.11b. The divergence
multiplied by volume element for each elemental cell is the net surface integral out of

/
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Fie. 1.11b  Solid divided into subvolumes to illustrate the divergence theorem.
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that cell. When summed by integration, all internal contributions cancel since flow out
of one cell goes into another, and only the external surface contribution remains.
Applications of (7) to (6) with F = D gives

§D'dS=J‘V'DW=pr ®8)
s v v

which is the original Gauss’s law.

It will be useful to have expressions for the divergence and other operations involving
V in other coordinate systems for simpler treatment of problems having corresponding
symmetries. Let us, as an example, develop here the divergence of D in spherical
coordinates.* We use the left side of (1) as the definition of div D and apply it to the
differential volume shown in Fig. 1.11¢. We will find first the net radial outward flux
from the volume. Both the radial component D, and the element of area r2 d sin § d¢
change as we move from r to r + dr. Thus the net flux flow out the top over that in at
the bottom is

aD
dy, = (r + dr)* sin 6d0 do (D, + = dr) — r%sin 6.dO d¢D,

To first-order differentials, this leaves

oD
or

dy, = r?sin 0 d0 dp —~ dr + 2r dr sin 6 d0 do D,

)
sin 6 dr d6 d¢ — (r*D,)
or
Similarly for the 6 and ¢ directions,

d
dy, = dB%(D,,rsin 0dp dr) = rdrdo dqﬁa—e(sin 0Dy

ay, = d¢)£(D¢rd0dr) = rdrdOdd)%—

The divergence is then the total di/ divided by the element of volume
dy, + dy, + d
VD= ¢2/ . Yy + diy
r*sin 6 dr dé d¢ )
1 Dy
rsin 6 d¢

9
— (sin 8 Dy +

VD
rsin 6 06

1o
=2 ) +
r2 or "Dy

For the corresponding expression in circular cylindrical coordinates, see inside front
cover and Prob. 1.11c.

4 Note that here, as with other curvilinear coordinate systems, it is not the scalar product
of the gradient operator and the vector in spherical coordinates, but must be obtained
from the basic definition given by (1) and (2).
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Fie. 1.11¢ Element of volume in spherical coordinates.

R R T R T
Example 1.11
UNIFORM SPHERE OF CHARGE

SRR

We will show an example of the application of (6) using a sphere of charge of uniform
density p having a radius a with divergence written in spherical coordinates. Since the
spherical symmetry of the charge region leads to Dy = D, = 0, the last two terms of
(9) vanish. We use the value of D, = rp/3 from Eq. 1.4(7) for the region inside the
charge sphere and obtain

14 pr
V-D=—— HE= = 1
P2 or [(r )<3>] P (10)
For the region outside the sphere we use D,(r) = a® p/3r? from Eq. 1.4(8) to show
that
I »(@P\ | _
VD= r2 or [(r )<3r2>] =0 an

This example shows that divergence is zero outside the charge region but equal to
charge density within it. The same result is obtained if one uses divergence expressed
in rectangular coordinates or other coordinates not so natural to the symmetry (Prob.
1.11d).

1.12 LAPLACE’S AND POISSON’S EQUATIONS

The differential relations of the two preceding sections allow us to derive an important
differential equation for potential. Differential equations can be applied to problems
more general than those solved by symmetry in the first part of the chapter and it is
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often convenient to work with potential as the dependent variable. This is because
potential is a scalar and because the specified boundary conditions are often given in
terms of potentials.

If the permittivity € is constant throughout the region, the substitution of E from
Eq. 1.10(5) in Eq. 1.11(6) with D = ¢E yields

div(grad @) = V- V® = —f

But, from the equations for gradient and divergence in rectangular coordinates [Egs.
1.10(7) and 1.11(6)],

PP P PP

V-V =—S+—5+— 1
9y o @
so that
’*d  Fd PP
S S et @
ox ay 0z £

This is a differential equation relating potential variation at any point to the charge
density at that point and is known as Poisson’s equation. It is often written

v = L 3)
E

where V2® (del squared of ®) is known as the Laplacian of ®.
V2d 2 V- VO = div(grad ) @)

In the special case of a charge-free region, Poisson’s equation reduces to

e SR
x? 9y o
or
V2P = 0 5)

which is known as Laplace’ s equation. Although illustrated in its rectangular coordinate
form, V2 can be expressed in cylindrical or spherical coordinates through the relations
given on the inside front cover.

Any number of possible configurations of potential surfaces will satisfy the require-
ments of (3) and (5). All are called solutions to these equations. It is necessary to know
the conditions existing around the boundary of the region to select the particular solution
which applies to a given problem. We will see in Sec. 1.17 a proof of the uniqueness
of a function that satisfies both the differential equation and the boundary conditions.

Quantities other than potential can also be shown to satisfy Laplace’s and Poisson’s
equations, both in other branches of physics and in other parts of electromagnetic field
theory. For example, the magnitudes of the rectangular components of E and the com-
ponent E, in cylindrical coordinates also satisfy Laplace’s equation.
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A number of methods exist for solution of two- and three-dimensional problems with
Laplace’s or Poisson’s equation. The separation of variables technique is a very general
method for solving two- and three-dimensional problems for a large variety of partial
differential equations including the two of interest here. Conformal transformations of
complex variables yield many useful two-dimensional solutions of Laplace’s equation.
Increasingly important are numerical methods using digital computers. All these meth-
ods are elaborated in Chapter 7. Examples for this chapter, after discussion of boundary
conditions, will be limited to one-dimensional examples for which the differential equa-
tions may be directly integrated. These show clearly the role of boundary and continuity
conditions in the solutions.

1.13 STATIC FIELDS ARISING FROM STEADY CURRENTS

Stationary currents arising from dc potentials applied to conductors are not static be-
cause the charges producing the currents are in motion, but the resulting steady-state
fields are independent of time. Quite apart from the question of designation, there is a
close relationship to laws and techniques for the fields arising from purely static charges.

We consider ohmic conductors for which current density is proportional to electric
field E through conductivity® o siemens per meter (S/m):

J = oE ¢}

Such a relationship comes from internal “collisons” and is discussed more in Chapter
13. Since the electric field is independent of time, it is derivable from a scalar potential
as in Sec. 1.10, so

J= -0V 2)

For a stationary current, continuity requires that the net flow out of any closed region
be zero since there cannot be a buildup or decay of charge within the region in the
steady state,

§ J-dS =0 3)
s
or in differential form,'
V-J=0 C))
Substitution of (2) in (4), with ¢ taken as constant, yields
V-VO 2 V20 =0 )

Thus potential satisfies Laplace’s equation as in other static field problems (Sec. 1.12).
In addition to the boundary condition corresponding to the applied potentials, there is

5 The Sl unit for conductivity is siemens per meter (S/m), but older literature sometimes uses

mho as the conductivity unit.
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a constraint at the boundaries between conductors and insulators since there can be no
current flow across such boundaries. Referring to (2), this requires that for such
boundaries, on the conductor side,

0 _

on ©

where n denotes the normal to such boundaries. Continuity relations between different
conductors are considered in the following section.

1.14 BOUNDARY CONDITIONS IN ELECTROSTATICS

Most practical field problems involve systems containing more than one kind of ma-
terial. We have seen some examples of boundaries between various regions in the
examples of earlier sections, but now we need to develop these systematically to utilize
the differential equations of the preceding sections.

Let us consider the relations between normal flux density components across an
arbitrary boundary by using the integral form of Gauss’s law. Consider an imaginary
pillbox bisected as shown in Fig. 1.14a by the interface between regions 1 and 2. The
thickness of the pillbox is considered to be small enough that the net flux out the sides
vanishes in comparison with that out the flat faces. If we assume the existence of net
surface charge p, on the boundary, the total flux out of the box must equal p, AS. By
Gauss’s law,

D,  AS — D, AS = p, AS

Fi6. 1.14a Boundary between two different media.
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or

Dnl - Dn2 = Ps (1)

where AS is small enough to consider D,, and p, to be uniform.

A second relation may be found by taking a line integral about a closed path of length
Al on one side of the boundary and returning on the other side as indicated in Fig.
1.14a. The sides normal to the boundary are considered to be small enough that their
net contributions to the integral vanish in comparison with those of the sides parallel
to the surface. By Eq. 1.7(3) any closed line integral of electrostatic field must be zero:

fﬁE.dl = E Al —E, Al =0
or
E, =E, )

The subscript ¢ denotes components tangential to the surface. The length of the tangen-
tial sides of the loop is small enough to take E, as a constant over the length. Since the
integral of E across the boundary is negligibly small,

®, = D, 3)

across the boundary. Equations (1) and (2), or (1) and (3), form a complete set of
boundary conditions for the solution of electrostatic field problems.

Consider an interface between two dielectrics with no charge on the surface. From
(1) and Eq. 1.3(1).

& Enl =& En2 (4)

It is clear that the normal component of E changes across the boundary, whereas the
tangential component, according to (2), is unmodified. Therefore the direction of the
resultant E must change across such a boundary except where either E,, or E, are zero.
Suppose that at some point at a boundary between two dielectrics the electric field in
region 1 makes an angle 6, with the normal to the boundary. Thus, as seen in Fig.
1.14b,

€1
01 |En1

E:p

Ey
62

£
2 En2 Eq

Fie. 1.14b Vector relations among electric field components at a point on a boundary between
dielectrics (g, > g).
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L E
6, = tan lfiﬁ )
and
E
6, = tan~! =2
, = tan”! 22 ©)
Then using (2) and (4) we see that
-1 82
6, = tan o tan 6, @)
1

Let us now consider the boundary properties of conductors, as exemplified by a piece
of semiconductor with metallic contacts. The currents flowing in both the semiconductor
and the metallic contacts are related to the fields by the respective conductivities so
potential drops occur in them, as developed in Sec. 1.13.

At the interface of two contiguous conductors, the normal component of current
density is continuous across the boundary, because otherwise there would be a continual
buildup of charges there. The normal component of electric field is therefore discontin-
uous and given by

o

Enl = ;? En2 (8)
The argument used in dielectric problems for tangential components of electric field
also applies in the case of a discontinuity of conductivity so that tangential electric field
is continuous across the boundary.

In problems with metallic electrodes on a less conductive material such as a semi-
conductor, one normally assumes that the conductivity of the metallic electrode is so
high compared with that of the other material that negligible potential drops occur in
the metal. The electrodes are assumed to be perfect conductors with equipotential sur-
faces. In this text we normally assume for dc problems that the electrodes in either
electrostatic or dc conduction problems are equipotentials and therefore the tangential
electric fields at their surfaces are zero.

B T S O R R e ety
Example 1.14
BOUNDARY CONDITIONS IN A DC CONDUCTION PROBLEM

The structure in Fig. 1.14c illustrates some of the points we have made about boundary
conditions. We assume that a potential difference is provided between the two metallic
electrodes by an outside source. The electrodes are considered to be perfect conductors
and, therefore, equipotentials. The space directly between them is filled with a layer of
- conductive material having conductivity o and permittivity . The space surrounding
the conductive system is filled with a dielectric having permittivity €, and o = 0.
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Fic. 1.14c Structure involving both dc conduction and static fields in a dielectric to illustrate
boundary conditions.

The normal component of the current density at the conductor—dielectric interface
must be zero since the current in the dielectric is zero. This follows formally from (8)
using zero conductivity for the dielectric. Therefore, since the electric field is J/o the
normal component of electric field inside the conductor must be zero. Then the electric
fields inside the conductor at the boundaries with the dielectric are wholly tangential.
Since the electrodes are assumed to be equipotentials, the tangential field there is zero
and the field lines are perpendicular to the electrode surfaces.

It is clear that since there is an electric field in the conductive medium and it has a
permittivity, there is also a flux density following the same paths as the current density.
The flux must terminate on charges so there will be charges on the electrode-
to-conductor boundary.

The electric field in the dielectric region terminates on charges both on the perfectly
conducting electrodes and on the sides of the other conductive medium. On the bound-
ary of the imperfect conductor there is a tangential component and also surface charges,
so the field makes an oblique angle with the conductor surface.
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1.15 DIRECT INTEGRATION OF LAPLACE’S EQUATION:
FIELD BETWEEN COAXIAL CYLINDERS WITH TWO DIELECTRICS

The first simple example of Laplace’s equation we will take is that of finding the
potential distribution between two coaxial conducting cylinders of radii a and ¢ (Fig.
1.15), with a dielectric of constant ¢, filling the region between a and b, and a second
dielectric of constant ¢, filling the region between b and c. The inner conductor is at
potential zero, and the outer at potential V. Because of the symmetry of the problem,
the solution could be readily obtained by using Gauss’s law as in Example 1.4b, but
the primary purpose here is to demonstrate several processes in the solution by
differential equations.

The geometrical form suggests that the Laplacian V>® be expressed in cylindrical
coordinates (see inside front cover), giving for Laplace’s equation
1o [ o0\ 180 &0 0

"or) TRe T a2 T M

It will be assumed that there is no variation in the axial (z) direction, and the cylindrical
symmetry eliminates variations with angle ¢. Equation (1) then reduces to

1d [ db
:5(’5)*0 @

Note that in (2) the derivative is written as a total derivative, since there is now only
one independent variable in the problem. Equation (2) may be integrated directly:

dd
”’; = C €)]

V) =
ror

Integrating again, we have

®, =Clhnr+ G @

Fie. 1.15 Coaxial cylinders with two dielectrics.
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This has been labeled ®, because we will consider that the result of (4) is applicable
to the first dielectric region (@ < r < b). The same differential equation with the same
symmetry applies to the second dielectric region, so the same form of solution applies
there also, but the arbitrary constants may be different. So, for the potential in region
2 (b <r<c),let us write

b, =Cylnr + C, ()
The boundary conditions at the two conductors are:
(a ®, =0atr =a
(b) ®, = Vyatr = ¢

In addition, there are continuity conditions at the boundary between the two dielectric
media. The potential and the normal component of electric flux density must be
continuous across this charge-free boundary (Sec. 1.14):

(c) ®, = d,atr =»

(d D,, = D,atr = b, or g, (d®,/dr) = &, (dD,/dr) there.

The application of condition (a) to (4) yields

C,= —CiIna 6)
The application of (b) to (5) yields
C,=V,—-Cylnc @)
Condition (c) applied to (4) and (5) gives
Cilnb+C,=C3Inb + C, 8)
And condition (d) applied to (4) and (5) gives
g, € = & Gy )

Any one of the constants, as C;, may be obtained by eliminating between the four
equations, (6) to (9):
C, = %o
In(b/a) — (e,/e;) In(b/c)
The remaining constants, C,, C;, and C,, may be obtained from (6), (9), and (7),

respectively. The results are substituted in (4) and (5) to give the potential distribution
in the two dielectric regions:

(10)

— VO ln(r/a)

d, = In(b/a) + (8,/2,) In(c/b) a<r<b (1D
_ _ (&,/&,) In(c/r)

P, = Vo[l In(b/a) + (g,/e,) ln(C/b)j! b<r<c (12)
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It can be checked that these distributions do satisfy Laplace’s equation and the boundary
and continuity conditions of the problem. Only in such simple problems as this will it
be possible to obtain solutions of the differential equation by direct integration, but the
method of applying boundary and continuity conditions to the solutions, however ob-
tained, is well demonstrated by the example.

1.16 DIRECT INTEGRATION OF POISSON’S EQUATION:
THE PN SEMICONDUCTOR JUNCTION

The pn semiconductor junction is an important practical example in which properties
can be found by direct integration of Poisson’s equation. Figure 1.16a shows a simpli-
fied pn junction. The basic semiconductor is typically a valence 4 material such as
silicon (or a compound semiconductor such as gallium arsenide that behaves much the
same). The n region of the figure has been ‘‘doped’’ with valence 5 impurity atoms
such as phosphorus (donors), which although electrically neutral in themselves, have
more electrons than needed for bonding with adjacent silicon atoms and so contribute
electrons which can move relatively freely about the material. The p region of the figure
has valence 3 impurities such as boron (acceptors) which have fewer electrons than
needed for bonding with adjacent silicon atoms. These too are electrically neutral in
themselves, but leave holes that move from atom to atom with electric fields or other
forces much like small positive charges. Although the transition between p and 7 regions
must be over some finite region, we assume an idealized model in which it is abrupt—
a step discontinuity.

When the junction is formed, the excess electrons in the n-type region at first diffuse
into the p-type side. The holes diffuse to the n-type side. The electrons flowing into the
p-type side fill the vacancies in the acceptor bonds, causing them to become negatively
charged. (Remember that they were originally electrically neutral). Likewise, the holes
moving into the n-type side are filled by the excess electrons there. The result is a zone
near the junction in which there is a net negative charge density in a region on the
p-type side and a net positive charge density on the n-type side called a depletion region,
as in the metal—semiconductor junction of Sec. 1.4. The density on the n-type side is
eNp, since each of the donor atoms has been stripped of one electron. The density on
the p-type side is —eN, since each acceptor atom has one additional electron. The
widths of the zones stabilize when the potential arising in the charge regions is sufficient
to prevent further diffusion. Outside the charged regions, the semiconductors are neu-
tral. No fields exist there in the equilibrium situation that we shall examine; if a field
did exist it would cause motion of the charges and violate the assumption of equilibrium.
The regions of charge are shown (not to scale) in Fig. 1.16b.

One can deduce the form of the gradient of potential d®/dx = —E, = —D,/e
from Gauss’s law as was done in Ex. 1.4a for the metal-semiconductor contact. We
have just argued that E, is zero outside the charge regions (x < —d, and x > d,). All
the flux from the positive charges in 0 < x < d, must therefore end on the negative
charges in —d, < x < 0. This determines the relation between d, and d, in terms of
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Fic. 1.16 (a) pn diode showing regions of uncompensated charge. (b) Charge density in the
diode. (c) Potential gradient. (d) Potential.

the given values of N, and Nj. The flux density D, is negative and its magnitude
increases linearly from x = —d, to x = 0 since the charge density is taken to be
constant. It then falls linearly to zero between x = 0 and x = d,. The gradient therefore
takes the form shown in Fig. 1.16¢. The potential is the integral of the linearly varying
gradient so it has the square-law form in Fig. 1.164.

Now let us directly integrate Poisson’s equation to get the complete analytic forms.
The boundary conditions on the integration are that the gradient is zero at x = —d,
and at d,. The potential may be taken arbitrarily to have its zero at x = —d,. Spe-
cializing Poisson’s equation 1.12(3) to one dimension and substituting for charge
density the value —eN, for the region —d, < x < 0, we have

d*® eNy

P ®
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The permittivity € is not appreciably affected by the dopant, at least for low-frequency

considerations. Integrating (1) from x = —d,, to an arbitrary x = 0 making use of the
zero boundary condition on the gradient at x = —d,, gives
dd eN,
—| =2y + 2
x|, - d, + x) )

Integrating a second time taking ®(—d,) = O gives the potential for —d, = x = 0 as

eN,
Q@) = e x + d,7 3
The gradient and potential evaluated at x = 0 are

dd eN,
—| =24 4
dx |, g P @

eN
D0) = —2 42 5
) = Z2d} )

These constitute the boundary conditions for the integration in the region 0 < x < d,,.
Poisson’s equation for this region differs from (1) in the choice of charge density:

a’® eNp
—= =" ©)
dx? &
Integrating (6) with the boundary condition (4) gives
do N,
Z20 = _¢p x + % d %)
dx |, € e P

Then using the condition that the total positive charge must equal the total negative
charge and therefore that Ny = NA(dp/ d,), (7) can be put in the form

dd) eNAdp X
x|, € (1—d> ®)

n

X

which is seen to be zero at x = d,,, as expected from Gauss’s law as discussed above.
Integrating (8) with the boundary condition (5), we find

eN, Adz X _xz
b)) = —L2(1+2= -
= < 4, dgd, ®
The maximum value of the potential is reached at x = d,:
eN,d? N
AD = dd,) = —2(1 + =2 (10)
2e Np

Note that distance d, in (10) is not immediately known. Since the potential barrier arises
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to stop the diffusion of the charge carriers, it is expected that diffusion must also be
considered. Diffusion theory reveals that the height of the potential barrier (10) is

AD = "—121 m[%] (11)

where kg is Boltzmann’s constant, N, and N, are acceptor and donor doping densities,
respectively, and #; is the electron density of intrinsic (undoped) silicon, which is about
1.5 X 10'° electrons/cm? at T = 300 K. Once A® is calculated, d,, can be found from
(10) and all quantities in the field and potential expressions are then known.

1.17 UNIQUENESS OF SOLUTIONS

It can be shown that the potentials governed either by the Laplace or Poisson equation
in regions with given potentials on the boundaries are unique. With normal derivatives
of potential (or, equivalently, charges) specified on the boundaries, the potential is
unique to within an additive constant. Here we will prove the theorem for a charge-
free region with potential specified on the boundary. The proofs of the other parts of
the theorem are left as problems.

The usual way to demonstrate uniqueness of a quantity is first to assume the contrary
and then show this assumption to be false. Imagine two possible solutions, ®, and ®,.
Since they must both reduce to the given potential along the boundary,

®, - @, =0 (1
along the boundary surface. Since they are both solutions to Laplace’s equation,
V2@, = 0 and V?®, = 0
or
Vi(d, — ®,) =0 )

throughout the entire region.
In the divergence theorem, Eq. 1.11(7), F may be any continuous vector quantity. In
particular, let it be the quantity

(@1 - ch)V(q)l - (1)2)
Then

J;/V : [(Cpl - (DZ)V((I)I - (Dz)] dv = i[(qﬁ - ¢2)V((D1 - q)z)] - dS

From the vector identity

div(yA) = Y div A + A - grad ¢
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the equation may be expanded to
J;/ (®, — ©HVH(D, — ®,) dV + fv V(®, — ®,)1*dV

The first integral must be zero by (2); the last integral must be zero, since (1) holds
over the boundary surface. There remains

fv V@, — ®,) dV = 0 ©

The gradient of a real scalar is real. Thus its square can only be positive or zero. If its
integral is to be zero, the gradient itself must be zero:

V@, - ®,) =0 C))
or
(®, — ®,) = constant 5)

This constant must apply even to the boundary, where we know that (1) is true. The
constant is then zero, and ®, — &, is everywhere zero, which means that @, and ®,
are identical potential distributions. Hence the proof of uniqueness: Laplace’s equation
can have only one solution which satisfies the boundary conditions of the given region.
If by any method we find a solution to a field problem that fits all boundary conditions
and satisfies Laplace’s equation, we may be sure it is the only one.

L]
Special Techniques for Electrostatic Problems

1.18 THE USE OF IMAGES

The so-called method of images is a way of finding the fields produced by charges in
the presence of dielectric® or conducting boundaries with certain symmetries. Here we
concentrate on the more common situations, those with conducting boundaries. (But
see Prob. 1.18d.)

¢ W. R. Smythe, Static and Dynamic Electricity, Hemisphere Publishing Co., Washington,
DC, 1989.
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Fic. 1.18a Image of a point charge in a conducting plane. The field lines shown are for the
charge ¢ with the conductor.

foes ng s L s n B e e e i e
Example 1.18a
POINT IMAGE IN A PLANE

The simplest case is that of a point charge near a grounded’ conducting plane (Fig.
1.18a). Boundary conditions require that the potential along the plane be zero. The
requirement is met if in place of the conducting plane an equal and opposite image

charge is placed at x = —d. Potential at any point P is then given by
L (2_4
4me \r 1 (1)
q

= m {[(x — d)2 + y2 + 22]—1/2 - [x + d)2 + y2 + 22]-—1/2}

7 Use of the term grounded implies a source for the charge that builds up on the plane.
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This reduces to the required zero potential along the plane x = 0, so that (1) gives the
potential for any point to the right of the plane. The expression of course does not apply
for x < 0, for inside the conductor the potential must be everywhere zero.

If the plane is at a potential other than zero, the value of this constant potential is
simply added to (1) to give the expression for potential at any point for x > 0.

The charge density on the surface of the conducting plane must equal the normal
flux density at that point. This is easily found by using

0P

=D =gE = —g — )
pS P 8)C eaxx=0 ()

Substituting (1) in (2) and performing the indicated differentiation gives
d
p, = L2 (@* + y2 + )73 3)
27

Analysis of (3) shows that the surface charge density has its peak valueaty = z = 0,
with circular contours of equal charge density centered about that point. The density
decreases monotonically to zero as y and/or z go to infinity. One application of the
image method is in studying the extraction of electrons from a metallic surface as in
the metal—semiconductor surface shown in Fig. 1.4a.

Example 1.18b
IMAGE OF A LINE CHARGE IN A PLANE

If there is a line charge of strength ¢, C/m parallel to a conducting plane and distance
d from it, we proceed as above, placing an image line charge of strength —g, at x =
—d. The potential at any point x > 0 is then

o () -4 |ty
¢ = 1n<r’> " 4me ln[(x - dy + yz] @

Example 1.18¢
IMAGE OF A LINE CHARGE IN A CYLINDER

For a line charge of strength g, parallel to the axis of a conducting circular cylinder,
and at radius r, from the axis, the image line charge of strength — g, is placed at radius
r' = a*/r,, where a is the radius of the cylinder (Fig. 1.18b). The combination of the
two line charges can be shown to produce a constant potential along the given cylinder
of radius a. Potential outside the cylinder may be computed from the original line charge
and its image. (Add g, on axis if cylinder is uncharged.) If the original line charge is
within a hollow cylinder a, the rule for finding the image is the same, and potential

inside may be computed from the line charges.
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Fic. 1.18b Image of line charge g, in a parallel conducting cylinder.

Example 1.18d
IMAGE OF A POINT CHARGE IN A SPHERE

For a point charge g placed distance r from the center of a conducting sphere of radius
a, the image is a point charge of value (—ga/r,) placed at a distance (4*/r,) from the
center (Fig. 1.18¢). This combination is found to give zero potential along the spherical
surface of radius a, and may be used to compute potential at any point P outside of
radius a. (Or, if the original charge is inside, the image is outside, and the pair may be
used to compute potential inside.)

Example 1.18e
MULTIPLE IMAGINGS

For a charge in the vicinity of the intersection of two conducting planes, such as g in
the region of AOB of Fig. 1.184, there might be a temptation to use only one image in
each plane, as 1 and 2 of Fig. 1.184. Although +qg at Q and —gq at 1 alone would give
constant potential as required along OA, and +q at Q and —gq at 2 alone would give
constant potential along OB, the three charges together would give constant potential

0

\

R Y

v

Fic. 1.18¢c Image of a point charge in a sphere.
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F16. 1.18d Multiple images of a point or line charge between intersecting planes.

along neither OA nor OB. It is necessary to image these images in turn, repeating until
further images coincide or until all further images are too far distant from the region to
influence the potential. It is possible to satisfy exactly the required conditions with a
finite number of images only if the angle AOB is an exact submultiple of 180 degrees,
as in the 45-degree case illustrated by Fig. 1.184.

1.19  PROPERTIES OF TWO-DIMENSIONAL FIELDS: GRAPHICAL FIELD MAPPING

Many important electrostatic problems may be considered as two-dimensional, as in
the pair of parallel wires of Fig. 1.8b or the coaxial system of Fig. 1.15. In these the
field distribution is the same in all cross-sectional planes, and although real systems are
never infinitely long, the idealization is often a useful one. In the examples cited above,
the field distributions could be found analytically, but for cylindrical systems with more
complicated boundaries, numerical techniques may be called for and will be introduced
in the next section. We wish to give first some properties of two-dimensional fields that
can be used to judge the correctness of field maps and can even be used to make useful
pictures of the fields and to obtain approximate values of such things as capacitance,
conductance, and breakdown voltage. Perhaps the greatest value in making a few such
maps is the feel they give for field behavior.

It has already been established that equipotentials and electric field lines intersect at
right angles, as in the coaxial system of Fig. 1.19a, where field lines are radial and
equipotentials are circles in any given cross-sectional plane. It has also been shown that
the region between two field lines may be considered a flux tube, and if the amount of |
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An

Ay

(a) (b)

Fie. 1.19 (a) Map of field between coaxial conducting cylinders. (b) Curvilinear rectangle for
graphical field mapping.

flux is properly chosen, the map is made up of small curvilinear figures with equal side
ratios, that is, “‘curvilinear squares.”” This also is illustrated in Fig. 1.19a. To show this
more generally, consider one of the curvilinear rectangles from a general plot, as in
Fig. 1.19b. If An is the distance between two adjacent equipotentials, and As the distance
between two adjacent field lines, the magnitude of electric field, assuming a small
square, is approximately A®/An. The electric flux flowing along a flux tube bounded
by the two adjacent field lines for a unit length perpendicular to the page is then

At//=DAs=aEAs=fM
An
or
As Ay
An & AD M

So, if the flux per tube Ay, the potential difference per division A®, and the permittivity
€ are constant throughout the plot, the side ratio As/An must also be constant, as stated
above.

We saw in Sec. 1.14 that conducting surfaces are equipotentials in an electrostatic
field. Thus, the electric field lines meet the electrodes at right angles.

In applying the principles to the sketching of fields, some schedule such as the
following will be helpful.

1. Plan on making a number of rough sketches, taking only a minute or so apiece,
before starting any plot to be made with care. The use of transparent paper over
the basic boundary will speed up this preliminary sketching.

2. Divide the known potential difference between electrodes into an equal number
of divisions, say four or eight to begin with.

3. Begin the sketch of equipotentials in the region where the field is known best, as
for example in some region where it approaches a uniform field. Extend the equi-
potentials according to your best guess throughout the plot. Note that they should
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Fie. 1.19¢ Map of fields between a plane and stepped conductor.

tend to hug acute angles of the conducting boundary, and be spread out in the
vicinity of obtuse angles of the boundary.

4. Draw in the orthogonal set of field lines. As these are started, they should form
curvilinear squares, but as they are extended, the condition of orthogonality should
be kept paramount, even though this will result in some rectangles with ratios
other than unity.

5. Look at the regions with poor side ratios and try to see what was wrong with the
first guess of equipotentials. Correct them and repeat the procedure until reason-
able curvilinear squares exist throughout the plot.

6. In regions of low field intensity, there will be large figures, often of five or six
sides. To judge the correctness of the plot in this region, these large units should
be subdivided. The subdivisions should be started back away from the region
needing subdivision, and each time a flux tube is divided in half, the potential
divisions in this region must be divided by the same factor. As an example, Fig.
1.19¢ shows a map made to describe the field between a plane conductor at
potential zero and a stepped plane at potential V,, with a step ratio of 3.

1.20 NUMERICAL SOLUTION OF THE LAPLACE AND POISSON EQUATIONS

Numerical methods are becoming increasingly attractive as digital computer speed and
memory capacity continue to increase. Among the powerful methods are those using
finite differences,? finite elements,® Fourier transformations,” or method of moments
(Sec. 7.3). Still others will undoubtedly be developed as computing capabilities continue
to increase. Here we illustrate the idea through the elemental difference equation ap-
proach and some of its extensions.

8 L Collatz, The Numerical Treatment of Differential Equations, Springer-Verlag, New York,
1966. D. Potter, Computational Physics, Wiley, New York, 1973. L. J. Segerlind, Applied
Finite Element Analysis, 2nd ed., Wiley, New York, 1984. R. Sorrentino (Ed.), Numerical
Methods for Passive Microwave and Milimeter Wave Structures, IEEE Press, New York,
1989.

? R.W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, Am. Inst. Physics,
New York, 1988.
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We consider first the Poisson equation with potential specified on the boundary. For
simplicity we take a two-dimensional problem (no variations in z). The internal region
is divided by a grid of mutually orthogonal lines with potential eventually to be deter-
mined at each of the grid points. Rectangular coordinates are used and potential at a
point (x, y) is expanded in a Taylor series:

Pk, y) K PP, y)

Ox + h,y) =~ P, y) + h———— +
(x y) (x, y) x 7 o (1
ad(x, h? Pd(x,
q)(x - h, J’) =~ (I)(x, }’) —h ( y) + = (2 y) (2)
ox 2 ox
By adding (1) and (2) and rearranging, we have the approximation
P, y) Pl + hy) = 20, y) + Px — h,Y) 3

ox? h?

The second partial derivative with respect to y can be obtained in the same way. Then
Poisson’s equation in two dimensions
P PP p

ox? * 52_ €
can be expressed in the approximate form
d(x + b y) + Plx — h,y) + P,y + h)
+ O,y — h) — 4D, y) = —2:—2 “4)

where the distance increment 4 is taken, for simplicity, to be equal in the two directions.
It is of interest to note that, if space charge is zero, the potential at a given point is the
average of the potentials at the surrounding points.

Note that potential is known on boundary points so that a straightforward approach
is to solve a set of equations such as (4) for the unknown potentials at the grid points
in terms of the known values on boundary points. This is sometimes done by a matrix
inversion technique, but if memory capacity is a problem, it may be better to use a
method for direct iterative adjustment of grid potentials. This starts from an initial guess
and corrects by bringing in the given values on the boundary through successive passes
through the grid. We illustrate this first by a simple averaging technique.

T S e Y R R T R D s
Example 1.20
NUMERICAL SOLUTION OF LAPLACE EQUATION BY SIMPLE AVERAGING

As an illustration of iteration with simple averaging, let us find the potentials for the
grid of points in the structure in Fig. 1.20a. This is an infinite cylinder of square cross
section with the potentials specified on the entire boundary. The space charge will be
assumed to be zero so we will be solving Laplace’s equation. The broken lines represent
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F16. 1.20a Cylinder of square cross section and grid for difference equation solution.

the grid to be used to approximate the region for the finite-difference solution. The
coarse grid was chosen to simplify the example; a finer grid would be used in most
practical problems. The four unknown potentials designated @, to ®, are assumed
initially to be the average of the boundary potentials, 65 V. The first calculation is to
find @, as the average of the four surrounding potentials (80, 100, ®, = 65, &; =
65). Therefore, in the column labeled Step 1 in Table 1.20, ®, is given the value 77.50.
Then @, is found as the average of 100, 20, 77.50, and 65, and this value is put in the
table in Step 1. The procedure is repeated for ®; and ®,. The Step 2 proceeds in the
same way. It is seen that after several steps the potentials converge to definite values.
Since (4) is approximate, the potentials have converged to approximate answers. They
would differ less from the correct solution if the grid were made finer. The correct
potentials for the four points are also listed in the table.

Mesh Relaxation The above method, in which successive averaging of the poten-
tials leads to a final result not far from the correct potentials, is convenient for small
problems and, in many cases, has a satisfactory rate of convergence. A more generally
useful method of calculation is based on a defined residual for each grid point that
measures the amount by which the potential there differs from the value dictated by

Table 1.20
Iterative Calculation for Example 1.20
Step Correct
1 2 3 4 5 Potentials
D, 77.50 79.07 77.89 77.60 77.51 75.2
D, 65.63 63.28 62.70 62.55 62.51 60.5
P, 70.63 68.28 67.70 67.52 67.52 65.4

P, 54.06 52.89 52.60 52.51 52.51 50.7
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the potentials on the neighboring grid points. The residual for the kth pass through the
grid is defined by

R® = @D(x, y + h) + ®Ox, y — h) + ®O(x + &, y)

th o)

+ OO — h,y) — 4D* V(x, y) + —
€

where i = kor k — 1 since, at any grid point, the potentials at some of the neighboring

points will generally have already been adjusted on that pass through the grid, as was

seen in the above illustration. On each pass (corresponding to Steps 1-5 in Table 1.20)

and at each grid intersection, one calculates the residual R® and then the new potential

according to
oM = %=V 4+ O — (6)
4

where () is called the relaxation factor because it determines the rate at which the
potentials relax toward the correct solution. It is taken in the range 1 = () =< 2. Selection
of ) = 1, called simple relaxation, corresponds to the method of averaging illustrated
above. When () > 1, the procedure is called the method of successive overrelaxation
(SOR). If () is fixed, it is usually taken near 2 for problems with many mesh points,
but this can cause an initial increase in error, so it is often better to start with ) = 1
and increase it gradually with each iteration step. One procedure that is found useful
for large grids is the cyclic Chebyshev method in which the following program of
varying () is used:

Qb =1 @
0O® = ____!____ 8)
1 - %’ﬂn
where
1 T m 2
Ny = —(cos— + cos—) ®
4 n m

for a grid with n mesh points in one direction and m points in the other.

1
(k v - -
S Y ©

2
= (11)
1+ VI -

When this method is used, the mesh is swept like a checkerboard, with all the red
squares being treated on the first pass with Q) all the black squares being treated on
the second pass using @, the reds on the third with Q®, and so on. This method
requires an additional memory cell in the computer for each mesh point but the speeded
convergence usually makes it worthwhile. The convergence can be improved appreci-

Q= = Q
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ably by having a good initial guess for the potentials, say by using results from a similar
problem.

Boundary Conditions In setting up the boundary conditions on a grid, the easiest
situation occurs when potentials are specified on grid points. A more difficult problem
is where the normal derivatives are specified. The derivatives are usually zero, as would
be the case at an insulating surface in a conduction problem (Ex. 1.14) or along a line
of symmetry used as an artificial boundary to reduce the required grid size. Examples
of such boundaries are shown in Figs. 1.20b and 1.20c. In one case the structure has
obvious symmetry in the x—y plane so that a solution need be found for only one-fourth
of the structure. In the other example, the boundary may be taken along the axis of a
cylindrically symmetric system. In the latter case, the difference equations can include
the symmetry (Prob. 1.20¢). In the former case, to make the normal derivative of po-
tential zero at a boundary, an imaginary grid point is set up outside the boundary and
its potential is kept the same as at the point symmetrically located just inside the bound-
ary. Sometimes the boundary points do not lie on mesh points; in such cases, linear
interpolation is used to set the potentials at mesh points nearest to the boundary.
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Fi6. 1.20b,c Examples in rectangular and cylindrical coordinates where symmetry reduces the
required size of the grid for finite-difference solutions.



1.21 Examples of Information Obtained from Field Maps 57
1.21 EXAMPLES OF INFORMATION OBTAINED FROM FIELD MAPS

Field maps of the two-dimensional regions, made by either numerical or graphical
techniques, may be used to find field strength within the dielectric region or integral
properties of the systems, such as capacitance per unit length and conductance per unit
length. Field strengths are simply A®/An in the notation of Sec. 1.19, provided the
divisions are fine enough. Danger of breakdown is obviously greatest near acute angles
where spacing of equipotentials is smallest, as in the right-angle corner of Fig. 1.19c.

For capacitance, we need to know electric flux density at the conductors, which
corresponds to surface charge density. Values of potential, and not field, are typically
obtained from numerical solutions, but the approximation to a normal derivative at the
boundary is readily calculated. Equipotentials and field lines may be drawn in and then
calculation of capacitance becomes particularly simple. By Gauss’s law, the charge
induced on a conductor is equal to the flux ending there. This is the number of flux
tubes N; multiplied by the flux per tube. The potential difference between conductors
is the number of potential divisions N, multiplied by the potential difference per
division. So, for a two-conductor system, the capacitance per unit length is

0 _ NAY
®, - ®, NAD

The ratio Ay/A® can be obtained from Eq. 1.19(1):
N\ An

And, for a small-square plot with As/An equal to unity,

C:

_ .M
C = sz F/m 2)

For example, in the coaxial line plot of Fig. 1.19a, there are 4 potential divisions and
16 flux tubes, so the capacitance, assuming air dielectric, is

107° 16 _ 12
26m X 1 353 X 107" F/m 3)
Calculation from Eq. 1.9(4), with b/a = 5.2, gives 33.6 X 10~ 2 F/m, indicating that
the map is not perfect.

This same technique can be used to find the conductance between two electrodes
placed in a homogeneous, isotropic, conductive material. The conductivity of the elec-
trode materials must be much greater than that of the surrounding region to ensure that,
when current flows, there is negligible voltage drop in the electrodes and they can be
considered to be equipotential regions. The potential and electric field are related in the
same way as for the case in which there is no conductivity (Sec. 1.13). There is a current
density J = o E, where ¢ is conductivity, and current tubes replace the flux tubes of
the dielectric problem. The current in a tube is

C =~
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AI=JAs=UEAs=g£—£ 4)
An
The conductance per unit length between two electrodes is defined as
1 Ng Al
G = = S/m o)

®, - @, N,Ad
Using (4) and taking As/An = 1,

_ oM
G—UNP S/m (6)

From (2) and (6) we see the useful conclusion that the conductance per unit length of
electrodes is related to the capacitance per unit length between the same electrodes by
the ratio o /e. This can be of use, for example, in transmission-line problems in giving
the conductance per unit length between conductors when the capacitance is known.

Before digital computer methods for solving field problems became so readily avail-
able, the analogy seen above between the field distributions in conducting and dielectric
media formed the basis for an important means of determining fields in dielectric sys-
tems. Electrodes corresponding to those of the dielectric problem are set up in an
electrolytic tank or on conduction paper and equipotentials measured in the conducting
system (see Prob. 1.21c).
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Fic. 1.21 Field map for a conductive medium partially filling the space between two highly
conductive electrodes.
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If a part of the boundary of the conducting region is a nonconducting dielectric, as
in Fig. 1.21, current does not flow in the nonconductive region. As pointed out in
Sec. 1.14, the normal component of E inside the conductive region must then vanish
at the boundary with the dielectric region. By use of this condition and the fact that E
is perpendicular to the equipotential electrode surfaces, the field in the conductor can
be mapped. Suppose, for example, the conductive material between the electrodes in
Fig. 1.21 is silicon with the common value of conductivity ¢ = 100 S/m. Then
G = 100 X (8/23) = 35S/m.

L _______________________________________________________ ]
Energy in Fields

1.22 ENERGY OF AN ELECTROSTATIC SYSTEM

The aim of this section is to derive an expression for electrostatic energy in terms of
field quantities. The result we will obtain can be shown to be true in general; for
simplicity, however, it is shown here for charges in an unbounded region.

The work required to move a charge in the vicinity of a system of charges was
discussed in Sec. 1.7. The work done must appear as energy stored in the system, and
consequently the potential energy of a system of charges may be computed from the
magnitudes and positions of the charges. To do this, let us consider bringing the charges
from infinity to their positions in space. No force is required to bring the first charge
in since no electric field acts on the charge. When the second charge ¢, is brought to
a position separated from the location of g, by a distance R,,, an energy

919>

U, =
12 4meR,

(1)
is expended, as was shown in Sec. 1.7. When the third charge is brought from infinity,
it experiences the fields of ¢, and ¢, and an energy of

9193 + 9293

Uz + Uy =
B 2 4meR;  4meR,,

2

is expended. The total energy expended to assemble these three charges is the sum of
(1) and (2).
In summing over the three chargcs, we may write

N4

1
2 =1 , 147'reR

i #j
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With the factor $, this yields the sum of (1) and (2), since by convention i and j are
summed over all the particles, and each contribution to energy enters twice. In physical
terms, the factor of 2 would result from assuming all other charges in position when
finding the energy of the ith charge. The term i = j has been excluded since the self-
energy of the point charge (i.e., the electron, ion, etc.) does not affect the energy of the
field. Its contribution to the total system energy does not depend upon the relative
positions of the charges. For n charges, the direct extension gives

ln n q
Up =352 a4 27— i#j 3)

where the subscript £ indicates energy stored in electric charges and fields. By use of
Eq. 1.8(3) for potential, this becomes

Us = 5 2 a2, @

Extending (4) to a system with continuously varying charge density p per unit volume,
we have

1
Ug = —J‘ p®dv (5)
2 Jy
The charge density p may be replaced by the divergence of D by Eq. 1.11(2):
1
Ug = —f (V- D)®dV
2 Jy
Using the vector equivalence of Prob. 1.11a,
1 1
UE=—J V~(<DD)dV——f D - (V®) dV
2 Jy 2 Jy

The first volume integral may be replaced by the surface integral of ®D over the closed
surface surrounding the region, by the divergence theorem [Eq. 1.11(7)]. But, if the
region is to contain all fields, the surface should be taken at infinity. Since ® dies off
at least as fast as 1/r at infinity, D dies off at least as fast as 1/r2, and area only
increases as r2, this surface integral approaches zero as the surface approaches infinity.

JV-(CI)D)dV= ®D-dS =0
v Seo

Then there remains
1 1
UE=——fD-(V¢)W=—fD-EdV (6)
2 Jy 2 Jy

This result seems to say that the energy is actually in the electric field, each element of
volume dV appearing to contain the amount of energy
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dUg = 3D - E dV 0)

The right answer is obtained if this energy density picture is used. Actually, we know
only that the total energy stored in the system will be correctly computed by the total
integral in (6).

The derivation of (6) was based on a system of charges in an unbounded, linear,
homogeneous region. The same result can be shown if there are surface charges on
conductors in the region. With both volume and surface charges present, (5) becomes

UE=lfp(DdV+ljpﬂ>dS €))]
2Jy 2 Js
The proof that this leads to (6) is left to Prob. 1.22e. Note that in this equation, and the
special case of (5), ® is defined with its reference at infinity, since the last term of
(3) is identified as ®. The advantage of (6) is that it is independent of the reference for
potential.

For a nonlinear medium, the incremental energy when fields are changed (Prob.
1.22f) is

dUE=fE-dDdV ©)

A O D R e R R R e
Example 1.22
ENERGY STORED IN A CAPACITOR

It is interesting to check these results against a familiar case. Consider a parallel-plate
capacitor of capacitance C and a voltage V between the plates. The energy is known
from circuit theory to be 3CV?, which is commonly obtained by integrating the product
of instantaneous current and instantaneous voltage over the time of charging. The result
may also be obtained by integrating the energy distribution in the field throughout the
volume between plates according to (6). For plates of area A closely spaced so that the
end effects may be neglected, the magnitude of field at every point in the dielectric is
E = V/d (d = distance between plates) and D = £V/d. Stored energy U given by

(6) becomes simply
1 eV\(V
(volume)(DE) = > (Ad)<—‘7> <—>

Ug = p

01—

This can be put in terms of capacitance using Eq. 1.9(3):

Uy = = <54)v2 = Lo (10)
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PROBLEMS

(i) Compute the force between two charges of 1 C each, placed 1 m apart in- vacuum.
(ii) The esu unit of charge (statcoulomb) is defined as one that gives a force of 1 dyne
when placed 1 cm from a like charge in vacuum. Use this fact to check the conversion
between statcoulombs and coulombs given in Appendix 1.

Calculate the ratio of the electrostatic force of repulsion between two electrons to the
gravitational force of attraction, assuming that Newton’s law of gravitation holds. The
electron’s charge is 1.602 X 107! C, its mass is 9.11 X 1073! kg, and the
gravitational constant K is 6.67 X 107!! N-m?/kg?.

In his experiment performed in 1785, Coulomb suspended a horizontal rod from its
center by a filament with which he could apply a torque to the rod. On one end of the
rod was a charged pith ball. In the plane in which the rod could rotate was placed
another, similarly charged, pith ball at the same radius. By tumning the top of the fila-
ment he applied successively larger torques to the rod with the amount of torque pro-
portional to the angle turned at the top. With the angle at the top set to 36 degrees, the
angle between the two pith balls was also 36 degrees. Raising the angle at the top to
144 degrees decreased the angular separation of the pith balls to 18 degrees. A further
increase of the angle at the top to 575.5 degrees decreased the angular separation of
the balls to 8.5 degrees. Determine the maximum difference between his measure-
ments and the inverse-square law. (For more details, see R. S. Elliott.!)

Construct the electric field vector for several points in the x—y plane for like charges ¢
at (d/2, 0, 0) and (—d/2, 0, 0), and draw in roughly a few electric field lines.

Repeat Prob. 1.2d for charges of 2¢g and —q at (d/2, 0, 0) and (~d/2, 0, 0), respec-
tively. Find a point where the field is zero.

Calculate the electric field at points along the axis perpendicular to the center of a disk
of charge of radius a located in free space. The charge on the disk is a surface charge
p, C/m? uniform over the disk.

Show by symmetry arguments and the results of Sec. 1.3 that there is no electric field
at any point inside a spherical shell of uniform surface charge.

Show that the integral of normal flux density over a general closed surface as in
Fig. 1.3a with charge g inside gives g. Hint: Relate surface element to element of
solid angle.

Calculate that electric flux emanating from a point charge g and passing through a
mathematical plane disk of radius a located a distance d from the charge. The charge
lies on the axis of the disk. Show that in the limit where a/d — o, the flux through
the disk becomes q/2.

A coaxial transmission line has an inner conducting cylinder of radius a and an outer
conducting cylinder of radius c¢. Charge g, per unit length is uniformly distributed over
the inner conductor and — g, over the outer. If dielectric &, extends fromr = ator =
b and dielectric &, from r = b tor = c, find the electric field for r < q, fora <r <
b, for b < r <, and for r > c. Take the conducting cylinders as infinitesimally thin.
Sketch the variation of D and E with radius.

A long cylindrical beam of electrons of radius @ moving with velocity v, =

Uoll + 8;(r/a)*] has a charge-density radial variation p = py[1 — 8,(r/a)?]. Find the
radial electric field in terms of the axial velocity v, and the total beam current /, and
sketch its variation with radius.
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Derive the expression for the field about a line charge, Eq. 1.4(3), from the field of a
point charge.

A sphere of charge of radius a has uniform density p, except for a spherical cavity
of zero charge with radius b, centered at x = d,y = 0,z = 0, where d < a and

b < a — d. Find electric field along the x axis from — o < x < . Hint: Use super-
position.

As in Prob. 1.4d, but now find an expression for electric field for a general point
inside the cavity, showing that the field in the cavity is constant.

A point,charge q is located at the origin of coordinates. Express the electric field vec-
tor in its rectangular coordinate components, and evaluate the surface integral for S
chosen as the face perpendicular to the x axis of a cube of side lengths 2a centered on
the charge. Use symmetry to show that Gauss’s law is satisfied.

Perform the integrations in Eq. 1.5(3) for an infinitely long circular cylindrical ion
beam with p = py[l + (r/a)?] using the square prism shown in Fig. 1.5 and plane
ends at z = 0 and / orthogonal to the axis.

If A, B, and C are vectors, show that
B-A=A"-B
A+B)+C=A+@B+ 0

A-B+C)=A-B+A-C

Vector A makes angles a;, B;, y; with the x, y, and z axes respectively, and B makes
angles a,, B,, v, with the axes. If 6 is the angle between the vectors, make use of the
scalar product A - B to show that

cos @ = cos a; cos a, + cos B; cos 3, + cos y; cos v,

Show how the flux function may be used to plot the field from point charges ¢ and
—q distance d apart. Hint: Make use of solid angles and relate these to angle 6 from
the axis joining charges.

Plot the field from like charges ¢ distance d apart (Prob. 1.2d) by making use of the
flux function.

Plot the field of charges 2q and — ¢ distance d apart (Prob. 1.2¢) by use of flux. Note
that not all flux lines terminate at both ends on charges.

Evaluate § F - dl for vectors F = % zxy + §x>and F = & y — § x about a rectangu-
lar path from (0, 1) to (1, 1) to (1, 2) to (0, 2) and back to (0, 1). Repeat for a triangu-
lar path from (0, 0) to (O, 1) to (1, 1) back to (0, 0). Are either or both nonconser-
vative?

A point charge g is located at the origin of a system of rectangular coordinates. Evalu-
ate [ E - dl in the x—y plane first along the x axis from x = 1to x = 2, and next
along a rectangular path as follows: along a straight line from the point (1, 0) on the x
axis to the point (1, 3); along a straight line from (1, 3) to (2, 3); along a straight line
from (2, ) to (2, 0).

A circular insulating disk of radius a is charged with a uniform surface density of
charge p, C/m?2. Find an expression for electrostatic potential & at a point on the axis
distance z from the disk.

A charge of surface density p; is spread uniformly over a spherical surface of radius a.
Find the potential for » < a and for r > a by integrating contributions from the differ-
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ential elements of charge. Check the results by making use of Gauss’s law and the
symmetry of the problem.

Check the result Eq. 1.8(8) for the potential about a line charge by integrating contri-
butions from the differential elements of charge. Note that the problem is one of
handling properly the infinite limits.

A flat layer of charge of density p,, lies perpendicular to the z axis and is infinitely
broad in the x and y directions. Using Gauss’s law and Eq. 1.8(1), find the dependence
of the potential difference across the layer on its thickness d.

Consider two parallel sheets of charge having equal surface charge densities but with
opposite sign. The sheets are both of infinite transverse dimension and are spaced by a
distance d. Using Gauss’s law and Eq. 1.8(1), find the electric fields between and out-
side the sheets and find the dependence of potential difference between the pair of
sheets on the spacing. (This is called a dipole layer.)

1.8f In a system of infinite transverse dimension, a sheet of charge of p, C/m? lies be-
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tween, and parallel to, two conducting electrodes at zero potential spaced by distance
d. Find the distribution of electric field and potential between the electrodes for arbi-
trary location of the charge sheet. Sketch the results for the cases where the sheet is
(i) in the center and (ii) at position d/4.

Show that all the equipotential surfaces for two parallel line charges of opposite sign
are cylinders whose traces in the perpendicular plane are circles as shown in Fig. 1.8c.

A linear quadrupole is formed by two pairs of equal and opposite charges located

along a line such that +gq lies at +8, —2q at the origin, and +q at — . Find an

approximate expression for the potential at large distances from the origin. Plot an
equipotential line.

Show that the magnitude of the torque on a dipole in an electric field is the product of
the magnitude of the dipole moment and the magnitude of the field component
perpendicular to the dipole.

Find the capacitance of the system of two concentric spherical electrodes containing
two different dielectrics used as Ex. 1.4c.

Find the gradient of the scalar function M = e®* cos By cosh az.

For two point charges ¢ and —gq at (d/2, 0, 0) and (—d/2, 0, 0), respectively, find the
potential for any point (x, y, z) and from this derive the electric field. Check the result
by adding vectorially the electric field from the individual charges.

Three positive charges of equal magnitude g are located at the corners of an equilateral
triangle. Find the potential at the center of the triangle and the force on one of the
charges.

For two line charges g, and — g, at (d/2, 0) and (—d/2, 0), respectively, find the po-
tential for any point (x, y) and from this derive the electric field.

Find the expression for potential outside the large sphere of Prob. 1.4d. Also find the
electric field for that region as well as for the region outside the small sphere but
inside the large sphere.

1.10f Find E, and E,, in the void in the sphere of charge in Prob. 1.4d by first finding the

potential. The zeros for the potentials of both large and small spheres should be at
infinity.
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Utilize the rectangular coordinate form to prove the vector equivalences
V(yd) = ¢yVO + dVy
V-WA) = yV-A+A-Vy
where ¢ and ® are any scalar functions and A is any vector function of space.

Show that the vector identity V - yA = A - Vif + 4V - A (inside back cover) is
satisfied for y = xyzand F = &> + jxyz + 2yz2

Derive the expression for divergence in the circular cylindrical coordinate system.

Evaluate the divergence of D in Exs. 1.4a, 1.4b, and 1.4c and compare with the known
charge densities. Evaluate V - D for Ex.1.11 using rectangular coordinates.

Given a vector F = %x?, evaluate §, F - dS for S taken as the surface of a cube of
sides 2a centered about the origin. Then evaluate the volume integral of V - F for this
cube and show that the two results are equivalent, as they should be by the divergence
theorem.

1.11f The width of the depletion region at a metal-semiconductor contact (Ex. 1.4a) can be

1.12a

1.12b

1.12¢

1.12d

1.12¢

1.13a

1.13b

calculated using the relation d> = (2e®y/eN), where @y is the barrier potential, e is
electron charge, and N is the density of dopant ions. Calculate d for ion densities of
10'6, 10'8, and 10%° cm ™3 assuming a barrier potential of 0.6 V. Comment on the ap-
plicability in this calculation of the concept of smoothed-out charge as assumed in
using Poisson’s equation.Take ¢, = 11.7.

Find the gradient and Laplacian of a scalar field varying as 1/r in two dimensions and
in three dimensions. Use the operators in rectangular form and also in a more
appropriate coordinate system in each case.

Find the electric field and charge density as functions of x, y, and z if potential is
expressed as

® = Csin ax sin By e where y = Va? + B2

Find the electric field and charge density as functions of x for a space-charge-limited,
parallel-plane diode with potential variation given by ® = V,(x/d)*>. Find the
convection current density J = pv and note that it is independent of x.

Argue from Laplace’s equation that relative extrema of the electrostatic potential can-
not exist and hence that a charge placed in an electrostatic field cannot be in stable
equilibrium (Earnshaw’s theorem).

The potential around a perpendicular intersection of the straight edges of two large
perfectly conducting planes, where the line of intersection is taken to be the axis of a
cylindrical coordinate system, can be shown to be expressible as

® =Ar?3sin 3¢
Show that this function satisfies Laplace’s equation in cylindrical coordinates and sat-

isfies a zero-potential boundary condition on the planes. Find a generalization to an
arbitrary angle o between planes and verify that it satisfies Laplace’s equation.

Which of the following may represent steady currents: J = Xx + §yorJ =
(&x + §y)(x® + y*)~1? Sketch the form of the two vector fields.

Conducting coaxial cylinders of radii @ and b have a conducting dielectric with permi-
tivity &, and conductivity o for the sector 0 < ¢ < «, and loss-free dielectric &, for
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the remainder of the dielectric regions (Fig. P1.13b). Find capacitance and conduct-
ance per unit length.

Sketch the field and current lines for a structure of the form in Fig. 1.14c¢ but with the
dielectric and perfect conductor regions exchanged and a potential difference applied
between the two perfect conductors. Check all continuity conditions at boundaries.

A solution to the problem of Fig. 1.14c can be shown to be

D, y) = % + %{(1 + %)tmﬂ(x +ya/2>

Jx\ L (x=a/2) oy |yt &= a2
(- (5) 2 ]

where a is the length of the conductive region. Show that this satisfies the boundary
conditions on the surface y = 0 and find induced surface charge density along this
boundary.

Obtain by means of Laplace’s equation the potential distribution between two concen-
tric spherical conductors separated by a single dielectric. The inner conductor of radius
a is at potential V;, and the outer conductor of radius b is at potential zero.

Obtain by means of Laplace’s equation the potential distribution between two concen-
tric spherical conductors with two dielectrics as in Ex. 1.4c.

Two coaxial cylindrical conductors of radii @ and b are at potentials zero and V, re-
spectively. There are two dielectrics between the conductors, with the plane through
the axis being the dividing surface. That is, dielectric €, extends from ¢ = O to ¢ =
r, and ¢, extends from ¢ = to ¢ = 2. Obtain the potential distribution from
Laplace’s equation.

Obtain the electrostatic capacitances for the two conductor systems described in Sec.
1.15 and in Probs. 1.15a, b, and c.

Assume the charge-density profile shown in Fig. 1.16b with N, = 10'® cm ™ and
Np = 10 cm™3, T = 300 K, and ¢, = 12. Find the height of the potential barrier
and the width of the space-charge region d, + d,. Determine maximum value

of electric field.

Calculate ®(x) for the metal-semiconductor junction in Ex. 1.4a by integrating Pois-
son’s equation. Call total barrier height &, in this case. Find the width of the space-
charge region d, assuming N, constant.

To illustrate the effect of a continuous charge profile in the pn junction example of
Sec. 1.16, consider a charge density in the depletion region of the form p =
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(eN.x/a)expl —|x/al]. Find the electric field and potential as a function of x, and
sketch p, E, and ® versus x. Find the potential difference between x = —o0 and
x = o and compare with Eq. 1.16(10), taking N, = Np,.

1.17a Prove that, if charge density p is given throughout a volume, any solution of Poisson’s
equation 1.12(3) must be the only possible solution provided potential is specified on a
surface surrounding the region.

1.17b Show that the potential in a charge-free region is uniquely determined, except for an
arbitrary additive constant, by specification of the normal derivatives of potential on
the bounding surfaces.

1.18a Prove that the line charge and its image as described for a conducting cylinder in Ex.
1.18c will give constant potential along a cylindrical surface at radius a in the absence
of the conducting cylinder.

1.18b Prove that the point charge and its image as described for the spherical conductor in
Ex. 1.18d gives zero potential along a spherical surface at radius a in the absence of
the conducting sphere.

1.18¢ A circularly cylindrical electron beam of radius a and uniform charge density p passes
near a conducting plane that is parallel to the axis of the beam and distance s from the
axis. Find the electric field acting to disperse the beam for the edge near the plane and
for the edge farthest from the plane.

1.18d* For a point charge g lying in a dielectric ¢, distance x = 4 from the plane boundary
between €, and a second dielectric &,, the given charge plus an image charge
q(e, — &,)/(e; + &,) placed at x = —d with all space filled by a dielectric &, may
be used to compute the potential for any point x > 0. To find the potential for a point
x < 0, a single charge of value 2ge,/(g; + €,) is placed at the position of g with all
space filled by dielectric €,. Show that these images satisfy the required continuity re-
lations at a dielectric boundary.

1.18e Find and plot the surface charge density induced on the conducting plane as a function
of y, when a line charge g, lying parallel to the z axis is at x = d above the plane.

1.18f Discuss the applicability of the image concept for the case of a line charge parallel to
and in the vicinity of the intersection of two conducting planes with an angle
AOB = 270 degrees. (See Fig. 1.184.)

1.18g Find the potential at all points outside a conducting sphere of radius a held at potential
&, when a point charge ¢ is located a distance d from the center of the sphere
(a <d).

1.19a Map fields between an infinite plane conductor at potential zero and a second conduc-
tor at potential Vj, as in Fig. 1.19c¢, but for step ratios a/b of § and .

1.19b Map fields between an infinite flat plane and a cylindrical conductor parallel to the
plane. The conductor has diameter d, and its axis is at height 4 above the plane. Take
d/h=1,1

1.19¢ The outer conductor of a two-conductor transmission line is a rectangular tube of sides
3a and 5a. The inner conductor is a circular cylinder of radius a, with axis coincident
with the central axis of the rectangular cylinder. Sketch equipotentials and field lines
for the region between conductors, assuming a potential difference V,, between
conductors.

1.19d Two infinite parallel conducting planes defined by y = g and y = —aq are at potential
zero. A semi-infinite conducting plane of negligible thickness at y = 0 and extending
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fromx = 0tox =  is at potential V. (See Fig. P1.19d.) Sketch a graphical field
map for the region between conductors.

In Prob.1.12e take A to be 35 and r to be measured in centimeters and make a plot of
the 100-V equipotential. Construct a graphical field map between the zero and 100-V
equipotentials showing the 25-, 50-, and 75-V equipotentials. Then sketch in the same
equipotentials found from the formula given in Prob. 1.12e to evaluate your field map.
Find the radial distance from the corner where the gradient exceeds the breakdown
field in air, 30 kV/cm. What does this suggest about the shape the corner should have
to avoid breakdown?

Subdivide the region in Fig. 1.19¢ into a mesh of squares of sides a/2. Terminate the
region on the right a distance a from the corner and on the left a distance 3a/2 from
the comer. Take b = 2a and V,, = 100 V. Consider the potentials at the left and right
edges of the above-defined grid to be fixed at the values found in linear variation from
top to bottom. Start with all interior grid points at 50 V. Find the potentials at the
mesh points assuming zero space charge and applying the simple averaging method.

Repeat Prob. 1.20a using the cyclic Chebyshev method.

Solve for the potentials at the grid points in the problem in Fig. 1.20a by direct inver-
sion of the set of difference equations expressing Laplace’s equation for all grid
points. Compare the results with those in Table 1.20 and discuss differences. Does di-
rect inversion give the exact values of potentials at the grid points? Explain your
answer.

Set up the difference equation for a three-dimensional potential distribution in rectan-
gular coordinates. Consider a cubical box with the following potentials on the various
sides: top, 80 V; right side, 60 V; bottom, 0 V; left side, 100 V; front, 40 V; back, 100
V. Define a grid of the same coarseness as in Fig. 1.20a and assume initial potentials
for all interior grid points to be the average of the boundary potentials. Calculate the
first set of corrected potentials by the three-dimensional equivalent of the simple
scheme used for Table 1.20.

Derive the difference equation for potential in cylindrical coordinates with axial
symmetry assumed (3®/d¢p = 0).

An electron beam accelerated from zero potential passes normally through a pair of
parallel-wire grids. Model the beam as infinitely broad and without transverse varia-
tion. Set up a one-dimensional difference equation for the potential between the grids.
Divide the 5-mm space between grids into five segments. Take both grid potentials to
be 1000 V and the beam current to be 10* A/m2. Assume 1000 V as a first guess for
all difference-equation grid points. Take three steps of potential adjustment with space
charge based on the first guess. Recalculate space charge based on the new potentials
and again iterate the potential three times. Repeat recalculations of space charge and



1.21a

1.21b
1.21c

1.22a

1.22b

1.22¢

1.22d

1.22¢

1.22f

Problems 69

potentials until the latter differ by no more than 3% between recalculations of space
charge. Use the simple iterative form with {} = 1.

Assume that Fig. 1.19¢ is full scale, and that V}, is 1000 V. Find the approximate di-
rection of the minimum and maximum electric fields in the figure. Plot a curve of
electric field magnitude along the bottom plane as a function of distance along this
plane, and a curve showing surface charge density induced on this plane as a function
of distance.

Calculate the capacitance per unit length from your plots for Probs. 1.19b and c.

Describe the simplest way to use resistance paper to determine the capacitance per
wire between a grid of parallel round wires and an electrode lying parallel to the grid.
(See Fig. P1.21c.) Assume the grid to be infinitely long and wide. Defend all decisions
made in the design of the analog.
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For a given potential difference V, between conductors of a coaxial capacitor, evaluate
the stored energy in the electrostatic field per unit length. By equating this to 3CV?,
evaluate the capacitance per unit length.

The energy required to increase the separation of a parallel-plate capacitor by a dis-
tance dx is equal to the increase of energy stored. Find the force acting between the
plates per unit cross-sectional area assuming constant charge on the plates.

Discuss in more detail the exclusion of the self-energy term in Eq. 1.22(3), and
explain why the problem disappeared in going to continuous distributions, as in

Eq. 1.22(5).

Show the equality of the energies found using Egs. 1.22(5) and (6) for a spherical
volume of charge of radius a and charge density p C/m>.

Consider an arbitrarily shaped, charged finite conductor embedded in a homogeneous-
dielectric region of infinite extent that also contains a volume-charge density distribu-
tion. Starting from Eq. 1.22(8) show that (6) results. Make use of the identity in Prob.
1.11a and consider the dielectric to be bounded by the surface of the conductor and
that at infinity. -

If an incremental charge distribution is brought into a field, the incremental energy
may be written

8Ug = f DSpdV
\4

Use this to develop Eq. 1.22(9) for an unbounded region with a medium which may be
nonlinear.



