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7.1 INTRODUCTION

In the preceding chapters, numerous special techniques have been presented for solving
static and dynamic field problems. Before continuing with the important problems of
wave guiding, resonance, and interaction.of fields with materials and radiation, it is
necessary to develop some more general and somewhat more powerful techniques of
problem solution. The methods developed in this chapter will usually be illustrated first
through static examples before extending to dynamic problems, and in some cases are
most useful for static or quasistatic problems. Even then such solutions are of use in
certain time-varying problems, as we have seen in the case of circuits and transmission
lines in the preceding chapter.

The approach in this chapter is mostly through the solution of differential equations
subject to boundary conditions. In certain cases the field distributions themselves are
desired, but in other cases (as we saw in the calculation of circuit elements) these
distributions are only steps along the way to other useful parameters.

The most general analytical method to be considered in this chapter is that of sepa-
ration of variables, leading to orthogonal functions which may be superposed to rep-
resent very general field distributions. In developing this method we will spend some
time on the special functions needed for circular cylindrical coordinates (Bessel func-
tions) and for spherical coordinates (Legendre functions). A second powerful analytical
method is that of conformal transformation. Although restricted to two-dimensional
problems and useful primarily (but not exclusively) for solutions of Laplace’s equation,
it is the most convenient way of solving many problems of importance in circuits and
transmission lines.
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Numerical solution of field problems becomes increasingly important with the con-
tinuing advances in computing power. This is a special field in itself and a rapidly
changing one, but we will give some idea of its basis and some elementary approaches
to its use.

T O
The Basic Differential Equations and Numerical Methods

7.2 ROLES OF HELMHOLTZ, LAPLACE, AND POISSON EQUATIONS

We have seen how specific differential equations—the wave equation, the Helmholtz
equation, and the diffusion equation—result from Maxwell’s equations with certain
specializations. We shall generally be concerned with such special cases, but let us look
first at somewhat more general forms. We use the phasor forms, and limit ourselves to
homogeneous, isotropic, and linear media. Starting with the Maxwell equation for curl
E [Eq. 3.8(3)],

VXE= —jouH 1)
The curl of this is taken and expanded (inside front cover)
VXVXE=-VE + V(V-E) = —jouV X H )

The divergence of E and curl of H are substituted from the Maxwell equations
Eqgs. 3.8(1) and 3.8(4):

-V2E + v(f) = —joulJ + jwsE)
or

V’E + k’E

Il

1
JjouJ + ;Vp 3)

where k? = w?ue. By similar operations on the curl H equation, we obtain
VH + KH = -V x J @

Equations (3) and (4) may be considered inhomogeneous Helmholtz equations. Gen-
eral solutions of these are difficult, but usually start from solutions of the corresponding
homogeneous equations’

VZE + kE = 0 ©)
V2H + k*H = 0 (6)

' J. D. Jackson, Classical Electrodynamics, 2nd ed.. Wiley, New York, 1975.
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Many of the problems we are concerned with have no sources except on the boundaries,
so the Helmholtz equations considered in this chapter are the homogeneous ones, (5)
and (6).

Note that the vector equations separate simply in rectangular coordinates,

V2E, + KE, = 0 @)

and similarly for E,, E,, H,, H,, and H,. They do not separate so simply for curvilinear
coordinates, as one can see by examining the expansion for V2 of a vector in cylindrical
and spherical coordinates (inside front cover). But for any cylindrical coordinate system,
the axial component of (5) or (6) satisfies a simple Helmholtz equation,

VE, + K’E, = 0 )

and similarly for H,.
For quasistatic problems, the term in k? is negligible so that (5) and (6) reduce to
Laplace equations:

VE = 0 ©)
VH = 0 (10)

These separate into coordinate components as discussed above. However, for quasistatic
or purely static problems it is often more convenient to use the scalar potential functions
defined by

E=-Vd, H= -V, (11)
with @ and ®,, satisfying Laplace equations,
V2P =0, VX, =0 (12)

In certain cases we are concerned with static or quasistatic solutions for regions con-
taining charges, in which case the Poisson equation applies to ® (Sec. 1.12):

e = L (13)

€
Thus the Laplace, Helmholtz, and Poisson equations govern a large number of important
problems and will be the ones used for illustration of solution methods in this chapter.

Boundary Conditions As noted in Sec. 1.17, unique solutions of the Laplace or
Poisson equation resulted if the function is specified on a boundary surrounding the
region of interest. Specification of the normal derivative on such a boundary determines
the solution within a constant. Section 3.14 pointed out that unique solutions of the
Helmholtz equation (5) or (6) are obtained by specifying the tangential component of
E or H on the closed boundary, or tangential E on a part of the boundary and tangential
H on the remainder.

Superposition Since V7 is a linear operator (as are the other operators in Maxwell’s
equations), any two solutions are superposable and the sum is a solution provided that
the medium itself is linear. We have made use of this fact previously, as in the super-
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Fic. 7.2 Series of circular cylinders with sectors of angle « at the potential V, oriented at
multiples of a with respect to each other.

position of linearly polarized waves to form a circularly polarized one. We will use the
principle in many future examples. Here we give an example of its use in reasoning to
a simple result.

Example 7.2
SOLUTION BY INVERSE APPLICATION OF SUPERPOSITION

An interesting example of the use of superposition is the solution for the potential at
the center of a symmetrical structure. For example, consider a homogeneous dielectric
surrounded by the circular cylinder shown in Fig. 7.2, with a potential V,, applied over
a portion of the boundary subtending the angle « and zero potential on the remainder.
Suppose that @ = 27/n. If the potential at the center were found for n different sets
of boundary conditions as shown in Fig. 7.2, where the only difference between these
is that the section of the boundary to be at potential V;, is rotated by the angle ka, with
k an integer, the sum of the n solutions would be the potential at the center of a cylinder
with V, over the entire boundary; this is just V;. Since every problem is identical except
for a rotation by «, which would not affect the potential at the center, the potential at
the center for the original problem must be V,/n. This same technique could be applied
to find the potential at the center point of a square, cube, equilateral polygon, sphere,
and so on, with one portion at a given potential.

7.3  NUMERICAL METHODS: METHOD OF MOMENTS

Easy accessibility to powerful computers has greatly expanded our ability to obtain
accurate solutions for electromagnetic field problems. The range of use extends from
convenient evaluation of analytic expressions, including ones for which no closed-form
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solutions exist, to wholly numerical solutions. Whenever it is possible to find even an
approximate analytic solution, it is useful for seeing parametric dependences to gain
physical insight, but more precise solutions can be obtained numerically.

We consider here only some basic methods. There are other, more specialized tech-
niques, several of which find use in analyzing transmission structures of the kind to be
studied in the following chapters.>* The choice of method should be based on a trade-
off among accuracy, speed, versatility, and computer memory requirements.

The finite-difference method was introduced in Sec. 1.20; though simple, it has con-
siderable range of application. A method with similar use, called the finite-element
method, is somewhat more difficult to understand and the programming is more com-
plex, but it has the advantage of adapting well to complex boundary shapes and also
to spatially varying properties of the medium (i.e., permittivity or permeability). In both
of these methods the typical calculation involves a large banded matrix (nonzero ele-
ments only along and near the diagonal). There are well-developed methods for in-
verting such a sparse matrix, and we saw in Sec. 1.20 an iterative method.

One may use a more computationally efficient approach, called the method of mo-
ments, for some problems, especially when integral quantities such as capacitance are
required.* It is based on an integral equation rather than the differential equation on
which the finite-difference and finite-element methods are based.

If charge is transferred between two conducting bodies in otherwise free space, a
potential difference will exist between them and the charges will become distributed
over the surfaces in such a way that the tangential electric field at the conductor surfaces
is zero. This is analogous to the situation seen in the study of images in Sec. 1.18,
where a point or line charge placed near a conducting surface induces surface charge
on the conducting body and this cancels the tangential electric field of the source charge.
Likewise, if charge is placed on an isolated conducting body, the charges will distribute
themselves on the surface to eliminate the tangential electric field. The method of
moments results in knowledge of the charge distribution on the surfaces and the total
charge for a given potential, and hence the capacitance.

We introduce here a simple way of applying the method of moments to find static
charge distributions and capacitances for two- and three-dimensional electrode systems.
Some structural forms that can be treated are shown in Figs. 7.3a—c. They are shown
with their surfaces subdivided into small elements to prepare for discrete numerical
calculations. The surface charge density p; is assumed to be uniform over each element.
The total charge ascribed to the ith element on a 3D structure is p;AS;, where AS; is
the area. We will treat it as a point charge at the center of the element in making the
potential calculations. The 2D structures have no variations in the axial direction and
the surfaces are divided into strips of width Al,. The charge density p,; in this case is

2 R. C. Boonton, Jr., Computational Methods for Electromagnetics and Microwaves, Wiley,
New York, 1992,

3 R Sorrentino (Ed.), Numerical Methods for Passive Microwave and Millimeter Wave Struc-
tures, IEEE Press, New York, 1989.

4 R. F. Harrington, Field Computation by Moment Methods, R. E. Krieger, Malabar, FL, 1987;
orig. ed., 1968.
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Fie. 7.3 Examples of structures suited for evaluation by methods of moments. (a) Three-
dimensional parallel-plate capacitor. (b) Round two-dimensional cylinder over a ground plane.
(c) Isolated rod of finite length.

multiplied by A/, to give the charge per unit length along the axial direction, which is
represented by a line charge g, in the center of the element for the purposes of calculating
potential. These point and line charges are used to calculate the potentials also at the
centers of the elements.

Three-Dimensional Structures Potentials are calculated using the formulas for
charges in free space since the conductors are accounted for by including all charges
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on their surfaces. The potential at the center of the ith element in the 3D case is written
using Eq. 1.8(3) as

N

PsAS;

A e @
The term @, is the potential at the center of the ith element resulting from the charge
on the ith element itself; it must be handled separately since the terms in the remainder
of (1) are clearly singular when i = j. We find ®;; by integrating over the element. For
convenience, we neglect the exact shape of the element, often a square, and replace it
with a disk having the area of the element. Thus, with r, = (AS,/m!/?

2 o )
®, = f d¢ f Bardr _ g 22 P v/, @
0 o 4mer £

One equation of the form (1) is written for each element, thus giving a set of N equations
in the N unknown charges in terms of the given potentials on the electrodes.

BRI e SR AR

Example 7.3a
THREE-DIMENSIONAL CAPACITOR

Let us calculate the charge distribution and capacitance of the structure in Fig. 7.3d.
To achieve high accuracy, it is necessary to have many subdivisions of the surfaces,
but here we take a very coarse grid to illustrate the procedures. It is assumed that there
is negligible charge on the outer surfaces of the conductors. The potentials on the top
and bottom electrodes are taken as +V and —V, respectively. Multiplying (1), with
(2) substituted, by 47re/a, the equation for element 1 can be written as

a 4me

a
X + — + e + —— = ____V 3
477(0 282)psl |l'1 _ r2| Ps2 |l‘1 _ l‘3| Ps8 a ( )

DAVAVAVirg
(D:V/.S/.G/Jlé_/a:,j

(d)

FIG. 7.3d Coarse subdivisions of parallel-plate capacitor for Ex. 7.3a.
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Writing similar equations for the other seven subdivisions and casting in matrix form,
we have

[ 354 a 4 2 e v
Ir) — 1y Ir, — Ir, — rgl]| P 4
\%

% 35 4 2
Iry — 1 Iry — 1y ey = g 47re Vv

= — 4
a -V
-V
-V
- 2 T . 35

_[l's =1 g =1 |rg — 1y JL Pss L —V .

The coefficients include |r; — r;| and must be evaluated geometrically from Fig. 7.3d.
The matrix could be entered into an inversion program in a computer and the charge
densities found directly in terms of the potentials on the electrodes. The total charge Q
on one electrode is found and the capacitance is just C = Q/2V.

For the purpose of illustration, we will solve the problem by hand, making use of its
symmetry to reduce the computational work. Symmetry dictates that the assumed uni-
form charge densities satisfy: p; = py = —ps = —pgand py = p3 = —pPyg =
~ pg7- Since there are just two unknown variables, it is necessary to use only the first
two rows of (4). Substituting values of |r, — r;| and |r, — r;| and using dimensions in
Fig. 7.3d, we obtain

1 1
3.87 — -
[ (d/a) Vo9 + (d/a)z]

1 1
1.50 — -
[ V1 + d/a? V4 + (d/a)z]

1 _ 1
[1'50 V1t @a? Va+ (d/a)z] [psx] _ 4me [V] )

Ps2

[454_ L1 ]
' (d/a) V1 + d/ay?

or taking d/a = 0.5, for example,
1.54 0121 || Pa|  4mevV [1] p
0.121 1.65 ||pP2| a |1 ©)

4aeV

Inverting (6), we find

py = 1.07p, = 0.605 0)



7.3 Numerical Methods: Methods of Moments 329

The total charge on the top electrode is Q = 2a*(p,; + py) = 29.3eaV and the
capacitance is therefore C = Q/2V = 14.7ea. Application of the method of moments
with a fine grid would lead to a more accurate value for capacitance, which would be
larger than the fringing-free idealization C = eA/d = 4ea*/(a/2) = 8ea.

Two-Dimensional Structures For the 2D case, we write, using Eq. 1.8(8),

N
pg Al In|r; — r|
@. = N, — —————————————————————————— + 8
0= P ,;, 27 Cr ®

The distribution of charge is unaffected by the constant C; and it can be neglected (see
Prob. 7.3¢).

‘As in the 3D case, it is necessary to handle ®,; separately. The approach is to integrate
the effect of the surface charge density over an assumed flat strip of width A/, Thus,

2p. Al/2 N
i = __S'f Inxde = == [xInx — x]p" ©
27me 0 me
so that
ps; Al Al
P = m [‘“ 2 1] (10)

A B S S T D S R SR B S R S R
Example 7.3b
STRIPLINE CAPACITANCE

Let us calculate the charge distribution and capacitance per unit length of a two-
dimensional system of conductors, the so-called stripline configuration, which will be
discussed in Sec. 8.6 and is shown in Fig. 7.3e. Here there are three conductors, with
the outer ones extending to y = . The two outer ones are at the same (zero) potential
and the center conductor carries a voltage V. Although the outer conductors extend to
infinity, the surface charge decreases rapidly with y beyond the edge of the center
conductor. Therefore, we will cut off the outer conductor at some appropriate point

Fi6.7.3e Stripline structure with discretization for method of moments calculation in Ex. 7.3b.
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Yenax» the suitability of which could be tested by doing the problem twice with different
values of y,,,. We will simplify the notation by taking the widths Al of all segments
to be the same.

The chosen segmenting is shown in Fig. 7.3¢, where it is seen that there are 36 equal
subdivisions. This is sufficiently fine for illustration, but in practice more divisions
might be chosen. For this example we have 36 equations of the form (8); 8 have P =
V and 28 have ® = 0. The equation for element 1 (on center conductor) is obtained
by multiplying (8), with (10) substituted for ®,,, by —27e/Al

2
_£me 172N ¢0))

Al
(111—2‘ - 1>Ps1 + Injr; — rlpg + --- + Injr; — ryglpgg = Al

Or, subtracting p; In A/ from each term and summing the subtracted terms separately,

Ir, — 1) Ir, — Il
—n2 + Dp, + n=2—2p, + -+ + In+—"*
( )Ps1 A P2 A; P
(12)
2me
+ 1nAl[psl + po + o+ Ps36] = —XI-V

But the total charge on the plates is zero so the term in brackets vanishes. We can write
the set of equations in the form of (12) for the N elements as a matrix:

Iry

-1y

Ir, — l'36|

-1 In - v
1.693 Al In Al Ps1 W .
Ir, — 1 Ir, — I3l
In —1.693 In ———=
Al Al P2 2ms |V
Al 1y
In Iry, — 1 | Iryy — 1y :
i A o THS L el 0]
(13)

To obtain a numerical result, we take w = 4d and €, = 4. Inversion of this matrix
equation gives the charge on each element. The capacitance for the complete structure
in Fig. 7.3e is the sum of the charges on the center conductor, found from (13), divided
by V. Its value is 344u F/m. The value calculated analytically for an infinitely thin
center conductor is found (Sec. 8.6) to be 346 F/m.

In the method of moments, the order of the matrix to be inverted is much smaller
than in the finite-difference or finite-element method, but the matrix is full so that sparse
matrix techniques cannot be used. An application to a time-varying radiation problem
will be shown in Chapter 12.
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L. "]
Method of Conformal Transformation

7.4 METHOD OF CONFORMAL TRANSFORMATION AND INTRODUCTION
TO COMPLEX-FUNCTION THEORY

A very general mathematical attack for the two-dimensional field distribution problem
utilizes the theory of functions of a complex variable. The method is in principle the
most general for two-dimensional problems, and the work can be carried out to yield
actual solutions for a wide variety of practical problems. For these reasons, the general
method with some examples will be presented in this and the following sections.

In the theory of complex variables, we use the complex variable Z = x + jy, where
both x and y are real variables. It is convenient to associate any given value of Z with
a point in the x—y plane (Fig. 7.4a), and to call this plane the complex Z plane. Of
course the coordinates may also be expressed in polar form in terms of r and 6:

Vx? + y?, 0= tan“‘<z>
x

\:
Il

Then
Z

X + jy = r(cos § + jsin 6) = re/® 1)
Suppose that there is now a different complex variable W, where
W=u+jv=pe?

such that W is some function of Z. This means that, for each assigned value of Z, there
is a rule specifying a corresponding value of W. The functional relationship is written

W = f(Z) @)
w
/A—V;\'
C
(a) (b)

FiI6. 7.4 (a) Z plane. (b) W plane.
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If Z is made to vary continuously, the corresponding point in the complex Z plane
moves about, tracing out some curve C. The values of W vary correspondingly, tracing
out a curve C’. To avoid confusion, the values of W are usually shown on a separate
graph, called the complex W plane (Fig. 7.4b).

Next consider a small change AZ in Z and the corresponding change AW in W. The
derivative of the function will be defined as the usual limit of the ratio AW/AZ as the
element AZ becomes infinitesimal:

W im W g L&+ 82) — JE)

&)

A complex function is said to be analytic or regular whenever the derivative defined
above exists and is unique. The derivative may fail to exist at certain isolated (singular)
points where it may be infinite or undetermined, somewhat as in real function theory.
But it would appear that there is another ambiguity with respect to complex variables,
since AZ may be taken in any arbitrary direction in the Z plane from the original point.
For the derivative to be unique, the ratio AW/AZ should turn out to be independent of
this direction.

If this independence of direction is to result, a necessary condition is that we obtain
the same result if Z is changed in the x direction alone or in the y direction alone. For
AZ = Ax,

aw oW ad ou v
2=l ur ==+ 4
Z - m  metM gty @
For a change in the y direction, AZ = j Ay,
aw aw 19 ) v ou
==t o) = - 3)
az. o(jy) joy dy 9y

Two complex quantities are equal if and only if their real and imaginary parts are
separately equal. Hence, (4) and (5) yield the same result if

ou v

Pyl (©)
X ay

v ou

ax —iay ™

These conditions, known as the Cauchy—Riemann equations, are then necessary con-
ditions for dW/dZ to be unique at a point and the function f(Z) analytic there. It can
be shown that, if they are satisfied, the same result for dW/dZ is obtained for any
arbitrary direction of the change AZ, so they are also sufficient conditions.
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Example 7.4
ANALYTICITY OF POWER FUNCTIONS

W = Zz?
utju=@+p =0 -y + 2y
— ®)
u =x° -y
v = 2xy
A check of the Cauchy—Riemann equations yields

w_w

ox ay *

a a

u_

ay ox

So they are satisfied everywhere in the finite Z plane, and the function is analytic
everywhere there.

Actually, it is not necessary to apply the check when the functional relation is ex-
pressed explicitly between Z and W in terms of functions which possess a power-series
expansion about the origin, as €, sin Z, and so on. The reason is that each term in the
series C,Z" can be shown to satisfy the Cauchy—Riemann conditions, and consequently
a series of such terms also satisfies them.

7.5 PROPERTIES OF ANALYTIC FUNCTIONS OF COMPLEX VARIABLES

If Eq. 7.4(6) is differentiated with respect to x, Eq. 7.4(7) differentiated with respect to
¥, and the resulting equations added, there results

*u  Fu
—S+t5=0 (1)
0x ay

Similarly, if the order of differentiation is reversed, there results
v v
—S+ =0 )
ox ay

These are recognized as Laplace equations in two dimensions. Thus, both the real and
the imaginary parts of an analytic function of a complex variable satisfy Laplace’s
equation, and would be suitable for use as the potential functions for two-dimensional
electrostatic problems. The manner in which these are used in specific problems and
the limitations on this usefulness are demonstrated by examples in this and the next
section.
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For a problem in which one of the two parts, u or v, is chosen as the potential function,
the other becomes proportional to the flux function (Sec. 1.6). To show this, let us
suppose that u is the potential function in volts for a particular problem. The electric
field, obtained as the negative gradient of u, yields

o

E = ——, =
* ox Y dy

&)

By the equation for the total differential, the change in v corresponding to changes in
the x and y coordinates of dx and dy is

dv = o dx + %dy
But, from Cauchy—Riemann conditions, Egs. 7.4(6) and 7.4(7),
—dv = %—:dx - %gdy = —E,dx + E, dy
or
—edv = -D,dx + D, dy @)

By inspection of Fig. 7.5a, this is recognized to be just the electric flux di between the
curves v and v + dv, with the positive direction as shown by the arrow. Then

—dy = eadv (5)

And, except for a constant that can be set equal to zero by choosing the reference for
flux atv = 0,

-y =ev C/m (6)

v+ dv

x

Fie. 7.5a Coordinates for the flux function.
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Similarly, if v is chosen as the potential function in volts for some problem, eu is the
flux function in coulombs per meter, with proper choice of the direction for positive
flux.

We have seen that either u or v may be used as a potential function, and then the
other may be used as the flux function, since both satisfy Laplace’s equation. The utility
of the concept, however, hinges on being able to find the analytic function W = f(Z)
such that u and v also satisfy the boundary conditions for the problem being considered.

R R R e R S B T R T R R e
Example 7.5
ELECTRODES IN PARALLEL-PLANE DIODE

As an example, suppose we desire the distribution of potentials in the Z plane where
the given boundary condition is

V=x*3 y=0 @)
If we let
W=z ®)

it is clear that for y = 0, the real part of W is u = x*. Furthermore, we see that
dW/dZ exists and is unique except at Z = 0 (Prob. 7.4e). Thus u is a suitable potential
function for this problem; the real part of (8) gives the potential distribution. It is most
convenient for this particular function to express Z in polar coordinates

W = u + jv = r4/3ej40/3 (9)
Thus

u = r*3cos 40
(10)
v = r*3sin %6
Equipotentials, found by setting u equal to a constant, are shown in Fig. 7.5b for u =
0 and 1. It is of interest that the boundary function (7) has the same form as the potential
in a plane diode with the cathode at x = 0 and the anode potential unity at x = 1.0:

® = x¥/3

Using these ideas, a plane diode can be truncated and the correct potentials produced
on the free edge by placing electrodes along the equipotential lines as shown in Fig.
7.5b. This procedure is most important in designing electron guns with regular flow
and the result is known as the Pierce gun.’

5 U R Pierce. J. Appl. Phys. T1, 548 (1940).
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0 volts 1.0 volts

Cathode
0 volts

Fie. 7.5b Focusing for electron flow in a plane diode. The upper portion of the figure shows
the electrodes outside the electron flow region.

7.6 CONFORMAL MAPPING FOR LAPLACE’S EQUATION

A somewhat different point of view toward the method in Sec. 7.5 follows if we refer
to the Z and W planes introduced in Sec. 7.4. Since the functional relationship fixes a
value of W corresponding to a given value of Z for a given function

W = f@

any point (x, y) in the Z plane yields some point (u, v) in the W plane. As this point
moves along some curve x = F(y) in the Z plane, the corresponding point in the W
plane traces out a curve u = F(v). If it should move throughout a region in the Z
plane, the corresponding point would move throughout some region in the W plane.
Thus, in general, a point in the Z plane transforms to a point in the W plane, a curve
transforms to a curve, and a region to a region, and the function that accomplishes this
is frequently spoken of as a particular transformation between the Z and W planes.

When the function f(Z) is analytic, as we have seen, the derivative dW/dZ at a point
is independent of the direction of the change dZ from the point. The derivative may be
written in terms of magnitude and phase:

aw .

= - Jje

iz Me (1)
or

dW = Me/® dZ 2)

By the rule for the product of complex quantities, the magnitude of dW is M times the
magnitude of dZ, and the angle of dW is « plus the angle of dZ. So the entire infini-
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tesimal region in the vicinity of the point W is similar to the infinitesimal region in the
vicinity of the point Z. It is magnified by a scale factor M and rotated by an angle a.
It is then evident that, if two curves intersect at a given angle in the Z plane, their
transformed curves in the W plane intersect at the same angle, since both are rotated
through the angle «. A transformation with these properties is called a conformal trans-
formation.

In particular, the lines ¥ = constant and the lines v = constant in the W plane
intersect at right angles, so their transformed curves in the Z plane must also be or-
thogonal (Fig. 7.6a). We already know that this should be so, since the constant v lines
have been shown to represent flux lines when the constant u lines are equipotentials,
and vice versa. From this point of view, the conformal transformation may be thought
of as one that takes a uniform field in the W plane (represented by the equispaced
constant u and constant v lines) and transforms it so that it fits the given boundary
conditions in the Z plane, always keeping the required properties of an electrostatic
field.

Frequently the transformation is done in steps. That is, the uniform field is trans-
formed first into some intermediate complex plane by Z;, = f(W), then perhaps into
a second intermediate complex plane Z, = g(Z;), and then finally into a plane
Zy = h(Z,) in which the boundary conditions are satisfied. In general, there can be any
number of steps. Of course, these functions can be combined into a single transfor-
mation, the inverse of which can then be understood on the basis of finding a function
with real or imaginary part satisfying the given boundary conditions as discussed in
Sec. 7.5.

There are few circumstances in which knowledge of the required boundary conditions
will lead directly to the transformation that gives the solution. For help in finding the
required form there are tables of conformal transformations® which show how one field
maps into another. The mapping functions given in the tables may be used individually

v3 ug

v2
uy

v3
v2

vy
vt

W plane Z plane

Fic. 7.6a A mapping of coordinate lines of the W plane in the Z plane.

¢ For example, see H. Kober, Dictionary of Conformal Representations, Dover, New York,
1952, Also see R. Shinzinger and P. A. A. Laura, Conformal Mapping: Methods and
Applications, Elsevier, Amsterdam, 1991.



338 Chapter 7 Two- and Three-Dimensional Boundary Value Problems

or combined in a series of steps to transform the uniform field into a field that fits the
given problem. Some examples of the simpler transformations will be given to illustrate
the method.

W@ﬁr&a;»%sswmz%wwm&a«wmﬁmwmxe.»zmefa%wmgmm&%wmmwWW&M%@W@M%
Example 7.6a
THE POWER FUNCTION: FIELD NEAR A CONDUCTING CORNER

As a basic example, consider W expressed as Z raised to some power:

W =2z 3)
It is convenient to use the polar form for Z [Eq. 7.4(1)]:

W = (re/®)? = rpeip?

or
r? cos p6 ()]
r? sin p6 s)

Il

u

v

From the conformal-mapping point of view, the field in the W plane is uniform. The
parallel lines of equal potential (say, v equals constant) in the W plane can be mapped
into the Z plane by setting v equal to constant in (5). From the viewpoint of Sec. 7.5
one does not take explicit consideration of the existence of the W plane but simply
recognizes that v is a solution of Laplace’s equation and tries to adjust constants such
that constant v lines fit the equipotentials of the given problem. When only one step of
transformation is required, the viewpoints are wholly equivalent.

If v is chosen as the potential function, the form of one curve of constant v (equi-
potential) is evident by inspection, for v is zero at = 0 and also at 6 = 7/p. Thus,
if two semi-infinite conducting planes at zero potential intersect at angle a, where

p == (6)
o

they coincide with this equipotential, and boundary conditions are satisfied. The form
of the curves of constant u and of constant v within the angle then give the field
configuration near a conducting corner. The field is assumed to result from the presence
of an electrode with nonzero potential that either fits one of the constant v lines or is
far enough away that its shape causes no significant deviation of the » and v lines in
the region of interest.

The equipotentials in the vicinity of the corner can be plotted by choosing given
values of v, and plotting the polar equation of r versus 6 from (5) with p given by (6).
Similarly, the flux or field lines can be plotted by selecting several values of u and
plotting the curves from (4). The forms of the field, plotted in this manner, for corners
with @ = m/4, m/2, and 37/2 are shown in Figs. 7.6b, 7.6¢, and 7.6d, respectively.
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(c) (d)

Fie. 7.6b-d Field near conducting corners of 45, 90, and 270 degrees.

These plots are of considerable help in judging the correct form of the field in a graphical
field map having one or more conducting boundaries.

Example 7.6b
THE LOGARITHMIC TRANSFORMATION: CIRCULAR CONDUCTING BOUNDARIES
Consider next the logarithmic function
W=CIhZ+ C, @)
The logarithm of a complex number is readily found if the number is in the polar form:

InZ = In(re’®) = Inr + j6 (8

S0
W=C(nr + jo) +C,
Take the constants C,; and C, as real. Then
u=C/lnr + C, C)
v=2C_C0 (10)

If u is to be chosen as the potential function, we recognize the logarithmic potential
forms found previously for potential about a line charge or a charged cylinder or be-



340 Chapter 7 Two- and Three-Dimensional Boundary Value Problems

tween coaxial cylinders. The flux function, ¢y = — ev, is then proportional to angle 6,
as it should be for a problem with radial electric field lines.

To evaluate the constants for a particular problem, take a coaxial line with an inner
conductor of radius a at potential zero and an outer conductor of radius b at potential
Vo- Substituting in (9), we have

0=C/lna + C,
Vo=CiInb +C,
Solving, we have
Vo _ Vylna

€ In(b/a) €2 = In(b/a)

so (7) can be written

_ In(Z/a)
W= Vo[ln(b/a)] b
or
o= y=v|DC/D] 12)
T /e (
— _ _GVOO
Y= —¢gv = nb/a) C/m (13)

In the foregoing, the reference for the flux function came out automatically at
6 = 0. If it is desired to use some other reference, the constant C, is taken as complex,
and its imaginary part serves to fix the reference ¢ = 0.

Example 7.6c
THE INVERSE-COSINE TRANSFORMATION:
HYPERBOLIC AND ELLIPTIC CONDUCTING BOUNDARIES

Consider the function

‘ W = cos~! Z (14)
.
31 x + jy = cos(u + ju) = cos u coshv — jsin u sinh v

Xx = cos u cosh v

y = —sinusinhv
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It then follows that

2 52

+ =1 15

cosh> v sinh? v (15
2 2

SN (16)

cos?u  sin®u

Equation (15) for constant v represents a set of confocal ellipses with foci at + 1, and
(16) for constant u represents a set of confocal hyperbolas orthogonal to the ellipses.
These are plotted in Fig. 7.6e. With a proper choice of the region and the function
(either u or v) to serve as the potential function, the foregoing transformation could be
made to give the solution to the following problems:

1. Field around a charged elliptic cylinder, including the limiting case of a flat strip

2. Field between two confocal elliptic cylinders or between an elliptic cylinder and
a flat strip conductor extending between the foci

3. Field between two confocal hyperbolic cylinders or between a hyperbolic cylinder
and a plane conductor extending from the focus to infinity

-3
(e)
Fic. 7.6e Plot of the transformation u + ju = cos™!(x + jy).
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4. Field between two semi-infinite conducting plates, coplanar and with a gap sepa-
rating them (This is a limiting case of 3.)

5. Field between an infinite conducting plane and a perpendicular semi-infinite plane
separated from it by a gap

To demonstrate how the result is obtained for a particular problem, consider problem
5, illustrated by Fig. 7.6f. The infinite plane is taken at potential zero, and the perpen-
dicular semi-infinite plane is taken at potential V},. In using the results of the foregoing
general transformation, we must now put in scale factors. To avoid confusion with the
preceding, let us denote the variables for this specific problem by primes:

W = Cycos” ' kZ + C, 17)

The constant C, is inserted to fix the proper scale of potential, the constant & to fix the
scale of size, and the additive constant C, to fix the reference for the potential. By
comparing with (14),

Z
WI

kZl
CW + C,

The constants C; and C, may be taken as real for this problem. Then

u = Cu + C, (18)
u=0
/
/TN

n
Fic. 7.6f Field between perpendicular planes with a finite gap.
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By comparing Figs. 7.6e and 7.6f, we want Z' to be a when Z is unity, so k = 1/a.
Also, when u = 0, we want 4’ = V,; and when u = /2, u’ = 0. Substitution of
these values in (18) yields

So the transformation with proper scale factors for this problem is

2 z'
W =u +jp = Vo[l - —cos“<—)] 19)
™

a

where u’ is the proportional function in volts, and ev’ is the flux function in coulombs
per meter. A few of the equipotential and flux lines with these scale factors applied are
shown on Fig. 7.6f.

Example 7.6d
PARALLEL CONDUCTING CYLINDERS

Consider next the function

Z —a
W =K1
ln(Z+a> (20)

This may be written in the form
W = K|[In(Z — a) —In(Z + a)]

By comparing with the logarithmic transformation of Ex. 7.6b which, among other
things, could represent the field about a single line charge, it follows that this expression
can represent the field about two line charges, one at Z = a and the other of equal
strength but opposite sign at Z = —a. However, it is more interesting to show that this
form can also yield the field about parallel cylinders of any radius.

Taking K, as real,

_ K, x - ay + y2

T2 ln[oc + a? + y2:| @b
= Y -1

v = Kl[tan P tan o+ a)] 22)

Thus, lines of constant u can be obtained from (21) by setting the argument of the
logarithm equal to a constant:

x-a’+y

x + a)? +y? 2
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y

Ve
N

Q.
N

(g)

FiIG. 7.6g Two parallel conducting cylinders.

As this may be put in the form

2
a(l + K,) ) 42°K,
[x l—Kz] YT UKy @
the curves of constant u are circles with centers at
_al + K;)
1 - K2

and radii (2a\/1?2)/ (1 = K,). If u is taken as the potential function, any one of the
circles of constant u may be replaced by an equipotential conducting cylinder. Thus, if
R is the radius of such a conductor with center at x = d (Fig. 7.6g), the values of a
and the particular value of K, (denoted K)) may be obtained by setting

= d, R
1 - K, 1 - K,
Solving,
a= +tVd? —-R? (24)
d d?
Kh==-+ [ -1
VK =2+ [ (25)

The constant K in the transformation depends on the potential of the conducting cyl-
inder. Let this be V{,/2. Then, by the definition of K, (= K, on conducting cylinder)
and (295),

v, — d [

or

= (4] —
2 In[d/R) + V@JR) = 1] _ 2 cosh-'d/R) (26)
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Substituting in (21), the potential at any point (x, y) is

o V, x—a’ +y°
C=u=7 cosh™ Y(d/R) ln[oc + ay + y? @7

For @ > 0 with x > 0, a < 0 if K| is positive so the negative sign must be chosen in
(24). The flux function ¢ = —ev is

SN\ / S IO S R
v =3 cosh™'(d/R) I:tan x + a an (x - d)] @5)

Although we have not put in the left-hand conducting cylinder explicitly, the odd sym-
metry of the potential from (27) will cause this boundary condition to be satisfied also
if the left-hand cylinder of radius R with center at x = —d is at potential —V;/2.

If we wish to use the result to obtain the capacitance per unit length of a parallel-
wire line, we obtain the charge on the right-hand conductor from Gauss’s law by finding
the total flux ending on it. In passing once around the conductor, the first term of (28)
changes by 27, and the second by zero. So

eV,

T eosh ‘@R /™

q=2

or

q e

C=—= ———m—
V, cosh™(d/R)

F/m 29)

A similar procedure can be used to find the external inductance of the parallel-wire
line. In that case the roles of u and v are opposite from the above electric field problem,
with v being proportional to the magnetic scalar potential. The result given in Eq. 4.609)
for inductance is

L =Y cosh“‘(g> H/m (30)
T R

From (29) and (30) we see that LC = ue as was shown to be the case for other two-
conductor lines in Chapter 5. That this is a general result is shown in Sec. 8.12.

7.7 THE SCHWARZ TRANSFORMATION FOR GENERAL POLYGONS-

In the examples in Sec. 7.6 specific functions have been set down, and the electrostatic
problems solvable by these deduced from a study of their properties. In a practical
problem, the reverse procedure is usually required, for the specific equipotential con-
ducting boundaries will be given and it will be desired to find the complex function
useful in solving the problem. The greatest limitation on the method of conformal
transformations is that, for general shaped boundaries, there is no straightforward
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Z plane Z’ plane

Py

ay

Ps as

a3 x'y x'y x'y x4
P,
o

Py

fa) (b)

Fi16. 7.7 (a) General polygon in Z plane. (b) Polygon of figure transformed into straight line in
Z' plane. Vertex x; is at infinity.

procedure by which one can always arrive at the desired transformation if the two-
dimensional physical problem is given. There is such a procedure, however, when the
boundaries consist of straight-line sides with angle intersections.

The Schwarz transformation takes an arbitrary polygon in the Z plane into a series
of segments along the real axis in a Z’ plane as shown in Figs. 7.7a and 7.7b. The
segments correspond to the sides of the polygon.” The transformation may be found by
integrating the derivative:

daz ’ \(ay/m) =171 \(ap/m)—1 ’ r\(a,/m)—1

7 = K@ = )TN — e/l (2 e Q)
Each factor in (1) may be thought of as straightening out the boundary at one of the
vertices as the transform of Ex. 7.6a did for the single corner. The setting down of (1)
for a specific problem is usually easy, but the difficulties come in its integration.

Although we have spoken of the figure to be transformed as a polygon, in the practical
application of the method, one or more of the vertices may be at infinity, and part of
the boundary may be at a different potential from the remaining part. Then the real axis
in the Z' plane consists of two parts at different potentials. This latter electrostatic
problem may be solved by a transformation from the Z’ to the W plane, and thus the
transformation from the Z to the W plane is given with the Z’ plane only as an inter-
mediate step. Another sort of problem in which the method is useful is that in which a
thin charged wire lies on the interior of a conducting polygon, parallel to the elements
of the polygon. By the Schwarz transformation, the polygon boundary is transformed
to the real axis and the wire corresponds to some point in the upper half of the Z’ plane.
This electrostatic problem can be solved by the method of images, and so the original
problem can be solved in this case also.

7 For more details see R. V. Churchill and J. W. Brown, Compilex Variables and Applications,
4th ed., McGraw-Hill, New York, 1984,
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Table 7.7
Z=x+ jy. W= u+ ju,where u = Flux Function, v = Potential

Vo _b _if 2 + 1 — 2a2%% 3 f2e7 - (@@ + 1)
z/:%m;m“mmz‘r" VA - [cosh (———-—-1 e a cosh = 2
b
P i R

SN
A

.+.

b s (s
b eV 4+
=g = [y

Results for some important problems that have been solved by the Schwarz technique
are given in Table 7.7.

1Q
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Example 7.7
FRINGING FIELD IN PARALLEL-PLATE CAPACITOR

To illustrate how the concept of a polygon can be applied, consider the parallel-plate
capacitor structure in Fig. 7.7¢ with @ = V|, on the infinite bottom plane and ® = 0
on the plane D—C. For the purposes of the Schwarz transformation, the structure may
be considered a polygon with interior angles ;, a,, and @, and sides of infinite length.
Application of the transformation puts all the boundaries along the real axis as in Fig.
7.7d where ® = V, for x; < 0 and & = 0 for x; > 0. As was shown in Ex. 7.6b, a
subsequent logarithmic transformation converts such a set of boundary potentials into
a parallel-plane uniform field in the W plane. Combining the two transformations, one

-~ ~
- N
Sfay=m N
/ $=0 \E
/ ay =21 {o5— AN T A BC D E
= h =0 " PR
Ai/4> Ny T 0 xp=1
X N\EN Z’ plane

(c) (d)

Fi6.7.7 (c) Edge of parallel-plate capacitor with one plane of infinite extent (equivalent to one-
half of a symmetric parallel-plate capacitor). (d) Transformation of the capacitor of (c) into a
single plane.
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finds that the flux lines and potential lines, u and v, respectively, are implicitly defined
in terms of position x, y in the Z plane by the relation

h 4
z=- (e"W/Vo -1- ’—TV— + jﬂ') )
0

One can select values of u and v and calculate the corresponding points x and y, thus
plotting out the field sketched in Fig. 1.9a.

7.8 CONFORMAL MAPPING FOR WAVE PROBLEMS

We have seen that in conformal transformations for statics complicated boundaries are
transformed to simple ones. Conformal transformations of wave problems can similarly
simplify complicated boundaries.® The transformations can be made only in two di-
mensions so the fields must be independent of the third dimension. The simplification
of the boundaries is also normally accompanied by increased complexity of the dielec-
tric so this trade-off only occasionally helps.

Let us assume that there exists an analytic function W = u + jv = f(Z) =
fGe+ jy) which transforms the given boundary shapes in the Z plane to lines of constant
u and v in the W plane. We will first determine the relation between Vﬁyz// and V2, in
order to transform the scalar Helmholtz equation, Eq. 7.2(8),

2 2
t—f+a—‘—p+k2«/;=0 )

from the Z plane to the W plane. To transform the derivatives, we apply the chain rule.
First,

W _ W

= 2
ox ou dx v 0x @
Applying the chain rule a second time leads to
2 2
P _ Py () Py (w) | v ww &
ax? o \ax av? \ax du dv ax dx
and similarly for 8%y/dy%:
N AN T 2 ou v
===\ t S| t2——— C))
ay ou” \dy du° \dy ou dv dy dy

8 F. E Borgnis and C. H. Papas, in Handbuch der Physik (S. Fitigge, Ed.), Vol. 16, p. 358,
Springer Verlag, Berlin, 1958.
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Making use of the Cauchy—Riemann conditions in Egs. 7.4(6) and 7.4(7) in the second
terms of the right sides of (3) and (4) and in the last term of (4), and adding (3) and (4),

2 2w (o P\ [\ [ou)
—+==(=+=]l|—] + =
ax?r o ay? <6u2 av2> [(6x> <6y> ] ©)
Note from Eq. 7.4(4) and 7.4(7) that
2 2 2 2 2
az ox ox ox ay
.

Vi (7

Thus

aw
vy = |22
o daz

The quantity |[dZ/dW]| is a scale factor which relates a differential length |dW| in the W
plane to the corresponding length |dZ| in the Z plane, as we discussed in Sec. 7.6. The
Helmbholtz equation (1) is thus transformed to the W plane giving

2
az

| Ry=0 8)

Vi + |~

Note that, in general, |dZ/dW| is a function of the coordinates so that (8) is equivalent
to the Helmholtz equation in an inhomogeneous medium.

Boundary conditions in the Z plane consisting of zero values of ¢ or its normal
derivatives carry over unchanged to the corresponding boundaries in the W plane since
the orthogonality of coordinates is conserved. If a nonzero normal derivative is specified
on a boundary, the scale factor |dW/dZ| enters the conversion of the boundary condition
through the relation between gradients in the two planes:

V¥l ©)

dz
Vudl = |

ORI R e s

R B S R R R
Example 7.8
CURVED DIELECTRIC WAVEGUIDE

A layer of a dielectric material embedded in materials of lower permittivity can serve
to guide electromagnetic waves, as will be studied in more detail in Chapter 14. The
phenomenon of total internal reflection analyzed in Sec. 6.12 supplies a qualitative
understanding of dielectric waveguides. Here we see how wave propagation in a curved
layer, as in Fig. 7.8a, can be treated using conformal mapping.

The wave is assumed to be polarized with its electric field in the z direction and E,
is independent of z. Then identifying E, with ¢, we can write from Eq. 7.2(8), with
8/3z= 0,

VZEx, y) + RE(x y) = 0 (10)
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R, —a
Ro

u -'-'R()lﬂ

(b)

Fie. 7.8 (a) Curved dielectric waveguide in Z plane. (b) Curved dielectric guide transformed
into W plane.

Using the transformation of Ex. 7.6b in slightly different form,

Z
W = RyIn— 1
oln (11)
for which
dzZ |
2] - e a2
(8) becomes
V2, E,(u, v) + k2e*/RoE (u, v) = 0 (13)
From (11) it is easily seen that
r
= RyIn — 14
u o ln Ry (14)
and
v = R,0 (15)

Therefore, the edge of the guiding layer at r = R, is the u = 0 line in the W plane and
the other edge of the guide at r = R, — ais at u = R In(R, — a)/R,. The result is
that the curved layer in the Z plane becomes the planar region shown in Fig. 7.8b. Note
that this layer in the W plane is inhomogeneous. Equation (13) has the usual form of
the Helmholtz equation only if we identify a new wave number k' by

2
K= o ue expE”f (16)
0
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Since &' is a function of u, one cannot substitute it directly for £ in the usual wave
solution. However, the problem is solvable and has been used to study the leakage of
energy from bends in dielectric waveguides.’

S S T D
Separation of Variables Method

7.9 LAPLACE’S EQUATION IN RECTANGULAR COORDINATES

One of the most powerful techniques for solution of linear partial differential equations
is that of separation of variables. This leads to solutions which are products of three
functions (for three-dimensional problems), each function depending upon one coor-
dinate variable only. Such solutions might not seem very general, but they may be
added to form a series which can represent very general functions. Moreover, single-
product solutions of the wave equation represent modes which can propagate individ-
ually. These are of great practical importance in waveguides and resonant systems and
are studied extensively in following chapters.

As the simplest example of the method of separation of variables, let us first consider
two-dimensional problems in the rectangular coordinates x and y, as we have in the
transformation method of the past section. Laplace’s equation in these coordinates is

2 2
g + a—(g =0 1
ox ay

We wish to study product solutions of the form
O(x, y) = X()Y(y) 2

where we see that we have a function of x alone times a function of y alone. From this
point on X(x) will be replaced by X and Y(y) by Y. Substituting in (1), we have

XY+ XY"=0 3)

The double prime denotes the second derivative with respect to the independent variable
in the function. Now to separate into the sum of functions of one variable only, divide
(3) by (2):

X’I Y!I

—+==0 4

x 7 “)

9 M. Heiblum and J. H. Harris, IEEE J. Quanfum Electronics QE-11, 75 (1975).
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Next follows the key argument for this method. Equation (4) is to hold for all values
of the variables x and y. Since the second term does not contain x, and so cannot vary
with x, the first term cannot vary with x either. A function of x alone which does not
vary with x is a constant. Similarly, the second term must be a constant. Let us denote
the first as K2 and the second as K. Then

K:+K:=0 ©)
and
X'~ KX =0
5 (©)
Y — KX =0

We recognize that these are in the standard form having real exponentials or hyperbolic
functions as solutions. Let us write them in hyperbolic form and substitute in (2):

®(x, y) = (A cosh K x + B sinh K, x)(C cosh K,y + D sinh K,y) @)

It is clear from (5) that either K2 or K 3 must be negative and therefore either K, or
K, must be imaginary while the other is real. Furthermore, their magnitudes must be
the same. Thus (7) can have either of two forms,

®(x, y) = (A cosh Kx + B sinh Kx)(C cos Ky + D’ sin Ky) ®)
or
®(x, y) = (A cos Kx + B’ sin Kx)(C cosh Ky + D sinh Ky) )

where, since [K,| = K|, we have used the single symbol K. The primes are used to
indicate that the constants have changed. The choice between (8) and (9) is dictated by
the nature of the boundary conditions. If the potential is required to have repeated zeros
as a function of y, then (8) is used; if repeated zeros are specified for the x variation,
(9) is chosen. If the boundaries extend to infinity in one direction, real exponentials are
used in place of hyperbolic functions. It may be noted from (6) that for K, = jK, = 0,
the general solution has the form

D(x, y) = (Ajx + B)(Cyy + Dy) (10)

It is typical for product solutions that when the separation constants go to zero the
functional forms of the solutions change. We will see in subsequent sections how the
constants are evaluated using the boundary conditions.
For the three-dimensional case in rectangular coordinates, the procedure is simply
extended. Laplace’s equation is
A A A

Py + a2 + '('92—2- =0 (11)

Consider solutions of the form

D(x, y, 2) = XWY()Z(2) 12)
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where each term on the right side is a function of just one of the independent space
variables. Substituting (12) in (11), we have

X"YZ + XY'Z + XYZ" = 0
and dividing by ®, we see that

X” Y/I ZII

=+ -+ == 13

X Y Z 0 13)
We use the same argument as was used in the two-dimensional case. If the second two
terms do not vary with x, neither can the first. Since it is a function of x alone and does
not vary with x, it must be a constant. Similar arguments apply for the second and third
terms. If we let the first term be K, the second K2, and the third K2, (13) becomes

K2+ K2+ K2=0 (14)

and differential equations of the form (6) apply for X, ¥, and Z. So the general solution,
written as the product of X, Y, and Z, and sometimes called a rectangular harmonic, is

®(x, y, z) = [A cosh Kx + B sinh K x][C cosh K,y + D sinh K,y]

. 15)
X [E cosh K,z + F sinh K, 7]

It is clear that at least one of K2, K3, and K? must be negative for (14) to hold, so at
least one of K, K, and K, must be imaginary. If repeated potential zeros are required
in the x and y directions, the functions of x and y must be trigonometric functions so
K, and K, are imaginary. There are various other combinations which may be useful.
In some cases it is advantageous to replace the hyperbolic functions by real exponentials
as mentioned earlier for the two-dimensional solutions.

In (15) there appear to be nine constants, to be evaluated using the six possible
boundary conditions, two for each of the three coordinate directions. If, however, one
divides the first bracket by B, the second by D, and the third by F" and multiplies the
entire by BDF, it becomes clear that there are just four independent multiplicative
constants. From (14) we see that there are only two independent separation constants
so the total number of unknowns equals the number of boundary conditions.

7.10 STATIC FIELD DESCRIBED BY A SINGLE RECTANGULAR HARMONIC

Let us see what boundaries would be required to have one of the forms of Sec. 7.9 as
a solution. Take the special case of Eq. 7.9(9) with A = 0, C = 0. The product of
remaining constants, B'D, may be denoted as a single constant Cy:

® = C,; sin Kx sinh Ky 1)
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It is evident from (1) that potential is zero at y = O for all x. Hence one boundary can
be a zero-potential conducting plane at y= 0. Similarly, potential is zero along the
plane x = 0 and also at other parallel planes defined by Kx = n. Let us confine
attention to the region 0 < Kx < 7 and 0 < y < . The intersecting zero-potential
planes of interest then form a rectangular conducting trough. Let its depth in the x
direction be a. Then Ka = 7 or

T

K= 2)

a

If there is to be a finite field in the region, there must be some electrode at a potential
other than zero. Without knowing its shape for the moment, let us take the value of y
at which it crosses the midplane x = a/2 as y = b, and the potential of the electrode
as V;. Then, from (1),

w7 ., b
Vo = C, smEsmh—a— = C, smh—a—

or, substituting in (1), we have

V, sinh(wy/a) . mx
= ————<—5in —

sinh(wb/a) a )

The potential at any point x, y may be computed from (3). In particular, the form
that the electrode at potential V,; must take can be found from (3) by setting ® = V,,
yielding

sinh my m@(wb/a) @
a sin(mx/a)
Equation (4) can be plotted to show the form of the electrode. This is done for a value
b/a = %in Fig. 7.10a. Actually, the electrodes should extend to infinity, but if they
are extended a large but finite distance, the solution studied here will represent the
potential very well everywhere except near edges.
Alternatively, a straight boundary at y = b could be supplied with a sinusoidal

R y

Fie. 7.10a Electrodes and potentials for which a single harmonic is the complete solution.
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y b

Fie. 7.10b Potential in a two-dimensional box with a sinusoidal distribution of potential on
one side.

distribution of potential and a single harmonic would describe the potential at all points
in the box. Thus, for example, if Ka = 37 and the boundary potential were

d(x, b) = V, sin 3777 x )]

then the harmonic

_ Vo sinh@3m/a)y . 37

6
sinhGmb/a) " a (6)

shown in Fig. 7.10b satisfies the boundary conditions and describes the potential at all
points.

7.11 FOURIER SERIES AND INTEGRAL

In the preceding section, we saw that a single-product solution could satisfy only very
special forms of boundary conditions. For more general boundaries a sum of such
solutions must be used. This is one example of situations where Fourier series or in-
tegrals are useful in forming solutions for field problems. We provide here a review of
the Fourier tools with the assumption that the reader has already a measure of familiarity
with them.

Fourier Series Fourier series are used to represent periodic functions. For the in-
dependent variable x, the required periodicity is expressed by

f&) = fx + L) 1
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where L is the period of the function. We assume that the function can be represented
by a constant plus the sum of infinite series of sine and cosine functions of harmonics
of a fundamental spatial frequency k:

fx) = ag + a, cos kx + a, cos 2kx + a; cos 3kx + ---

2
+ b, sin kx + b, sin 2kx + by sin 3kx + - -- @

where the phase factor £ is related to the period L in the usual way:
kL = 2w 3)

To evaluate the unknown constants in (2) for a given function f(x), we make use of
so-called orthogonality properties of sinusoids. These are

L/2
f cos nkx cos mkx dx = 0 m#n (@)
—L/2
L/2
f sin nkx sin mkx dx = 0 m#n 5)
—L/2
and
L2 m# n
J’ sin mkx cos nkx dx = 0 { 6)
—L/2 m =n
However,
L/2 L/2 L
f cos? mkx dx= sin® mkx dx = = 7
—L/2 -L/2 2

To make use of these properties, we multiply each term in (2) by cos nkx and integrate
over one period. Every term on the right vanishes because of the properties in (4)—(6)
except the one containing cos nkx; that term gives a,L/2 according to (7). Thus,

L/2
a, = = f f(x) cos nkx dx 8)
LJ_rp
Similarly, multiplication of (2) by sin nkx with integration from —L/2 to L/2 leaves
only the term involving sin nkx on the right-hand side, and its coefficient, by (7), is

L/2
b, == f f(x) sin nkx dx ()
LJ_rp
Finally, to obtain the constant term a,, every term is integrated directly over a period
and all the terms on the right side disappear except that containing a, so that
1 L2
ay = — f(x) dx (10)
LJ_pp

This merely states that a; is the average of the function f(x).
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For a general function, an infinite number of terms is required in the Fourier series
representation. But often a sufficient degree of approximation to the desired wave shape
is obtained when only a finite number of terms is used. For functions with sharp dis-
continuities, however, many terms may be required near the sharp corners, and the
theory of Fourier series shows that the series does not converge to the function in the
neighborhood of the discontinuity (Gibbs phenomenon). The derivative of the series
also does not converge to the derivative of the function, but the integral of the series
always converges to that of the function.

R S D S R
Example 7.11a
FOURIER SERIES REPRESENTATION OF A FUNCTION OVER A FINITE INTERVAL

In static field problems, one commonly has the boundary potential specified over a finite
interval, such as along a straight boundary at a constant value of one coordinate. For
the purposes of matching the given boundary potential, it is desirable to express it in a
Fourier series. This can be done even though the function is not periodic, having been
specified only over a finite interval. The point of view is that the interval of length a
may be considered a period or an integral fraction of a period, and a periodic function
defined to agree with the given function over the given interval, repeating itself outside
that interval. A Fourier series may then be written for this periodic function which will
give desired values in the interval, and although it also gives values outside the interval,
that is of no consequence since the original function is not defined there.

The interval is commonly selected as a half-period since the function extended out-
side the interval may then be made either even or odd, and the corresponding Fourier
series will then have respectively either cosine terms alone or sine terms alone. Figure
7.11a shows by solid lines some possible examples of functions specified over the
interval 0 < x < a. Their extensions outside that interval as either odd or even functions
are shown by the broken lines. Note that in one case the interval is L/4. The choice of
whether to consider the function continued as an odd or an even function depends upon
the form used to represent the potential in the problem. Thus, for example, in Eq. 7.10(3)
the potential is expressed in terms of sin 7x/a and the appropriate series for the rep-
resentation of the boundary potential will be in sines,

fo) = S b, sin = (11)

n=1 a

where we have made use of the fact that a = L/2, one half-period. The coefficients
are found from (9) noting that the contributions to the integral from the negative and
positive intervals are equal. Thus, witha = L/2,

b =2 f F00 sin 22 gx (12)
aJo a
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Fic. 7.11a Examples of functions specified over a finite interval (solid line) and odd and even
continuations (broken lines).

Suppose, for example, that the specified function is f(x) =C over the interval 0 < x
< a and it is desired to expand it in a sine series. Then, (12) yields

2 'a 2C a
b, =-j CSin%dX:_[—cosn—m] 13)
av’o a nw a i,
and the series is
2C 2 3 2 5
f) =— 2 sin = + Zsin = + Zsin 2 4 - (14)
T a 3 a 5 a

The series (14) has the required value f(x) = C over the interval 0 < x < g but also
represents the dashed portion of waveform (i) in Fig. 7.11a outside that interval.

Fourier Integral In some problems the function of interest is defined over the entire
range and is aperiodic. An example is a square function that is constant in some range
—a = x = a and zero elsewhere, as shown in Fig. 7.11b. This could be considered the
limiting case of a periodic series of square pulses where the period L goes to infinity.
The spacing of the components (n + 1)k — nk = 27/L from (3) becomes vanishingly
small as the period L approaches infinity, and in the limit the spectrum of component
sinusoidal waves becomes a continuum.!®

10 R. Bracewell, The Fourier Transform and its Applications, 2nd rev. ed., McGraw-Hill, New
York, 1986.
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FiG. 7.11  (b) Inverse Fourier transform of function in (c). (¢) Fourier transform of rectangular
function in (b). Value of g(0)/2Ca is unity.

In the limiting, aperiodic case the series (2) is replaced by an integral
I 4
f = 5= j g(kye™ dk (15)
27 J
and the function g(k) which takes the place of a, and b, of (8)—(10) is given by
gtk = f fle ™ dx (16)
The theory of Fourier integrals shows that for (15) to give the same f(x) that appears

in (16) the function must be continuous or have only a finite number of finite discon-
tinuities in any finite interval and must be absolutely integrable, that is,

| ipewlax < a7

1 The placement of 27 in the pair (15) and (16) is arbitrary and is done in various ways in
the literature.
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These conditions do not place strong limitations on the utility of the transform pair (15)
and (16).

SRR R IR

Example 7.11b
FOURIER TRANSFORM OF A RECTANGULAR PULSE

Using (16) we find the spectrum of spatial frequency components for the rectangular
function in Fig. 7.11b:

a — jkox a .
ek) = f_ Ce % gy = c[e_jk] = 2Ca<812aka> (18)

This very important function occurs frequently in practice and is shown in Fig. 7.11c.
The function f(x) in Fig. 7.11b is called the inverse Fourier transform of that in Fig.
7.11c. The two are called a transform pair.

7.12 SERIES OF RECTANGULAR HARMONICS FOR TWO-
AND THREE-DIMENSIONAL STATIC FIELDS

We saw in Sec. 7.10 that product solutions (harmonics) satisfying zero boundary con-
ditions on three of the four boundaries in a two-dimensional rectangular structure can
be found. However, the use of a single harmonic as the expression for the potential
requires either a fourth boundary of complicated shape or a simple flat one with a
sinusoidal variation of potential along it. To solve problems with an arbitrary variation
of potential along a flat boundary on a coordinate line, one may use a sum of harmonics,
each of which satisfies the zero conditions on three boundaries and has a weighting in
the sum such that it equals the given potential at the fourth boundary. Then the given
potential is expanded in a Fourier series of either sines or cosines, chosen to match the
functions in the sum of harmonics. The harmonic series is evaluated at the fourth
boundary and compared, term by term, with the Fourier series to evaluate the weighting
coefficients in the former. These procedures are sometimes slightly modified by use of
symmetries and superposition, as seen in the following examples and problems.

B B B B O s S S s O R e i
Example 7.12a
TWO-DIMENSIONAL PROBLEM WITH SPECIFIED BOUNDARY POTENTIALS

As an example of a problem which cannot be solved by using a single one of the
solutions of Sec. 7.9, but can be by means of a series of these solutions, consider the
two-dimensional region of Fig. 7.12a bounded by a zero-potential plane aty = 0, a
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Fic. 7.12a Two-dimensional box for Ex. 7.12a.

zero-potential plane at x = 0, a parallel zero-potential plane at x = a, and a plane
conducting lid of potential V; at y = b. In the ideal problem, the lid is separated from
the remainder of the rectangular box by infinitesimal gaps. In a practical problem, it
would only be expected that these gaps should be small compared with the rest of the
box.

In selecting the proper forms from Sec. 7.9, we will choose the form having sinusoidal
solutions in x since potential is zero at x = 0 and also at x = g, and sinusoids have
repeated zeros. So the form of Eq. 7.9(9) is suitable. Moreover, ® = Q0 aty = 0 for
all x of interest, so the function of y must go to zero at y = 0, showing that C = 0.
Similarly, since @ = 0 at x = O for all y of interest, A = 0. Then @ is again zero at
x = a,s0 Ka = mm, or

Denoting the product of the remaining constants B'D as C,,, we have

b =C, s1nlf31nhm
a a

This forms satisfies the Laplace equation and the boundary conditions at y = 0, at
x = 0,and atx = q, but a single term of this form cannot satisfy the boundary condition
along the plane lid at y = b, as the study in Sec. 7.10 has shown. A series of such
solutions also satisfies Laplace’s equation and the boundary conditions at y = 0, at
x =0,and at x = a:

2 C, sm —_— smh (1)
a

m=1

For the sum (1) to give the required constant potential V,, along the plane y = b over
the interval 0 < x < a, we require

b
EC s1n——smh%, 0<x<a )
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But this is recognized as a Fourier expansion in sines of the constant function V, over
the interval 0 < x < a. This expansion was carried out in Ex. 7.11a to yield

fo) =V, = Zlamsinﬁgf, 0<x<a 3)
with
4V,
—0 modd
a, = ymmw )
0, m even

Comparison of (3) with (2) shows that

C,, sinh—— = g, )
a

Substitution of the results of (5) and (4) in (1) gives

_ 4V, sinh(mmy/a) . mmx
® = ,,,%d mar sinh(mmb/a) s a ©)

This series is rapidly convergent except at corners of x — 0, a, and y — b, so it can
be used for reasonably convenient calculation of potential elsewhere.

We note that the evaluation of the constants in the general solution depended upon
the fact that the boundary potentials were specified on surfaces in the coordinate system.
Furthermore, nonzero conditions, potential or normal derivative of potential, must exist
on some part of the boundary to yield a nonzero solution. As will be clarified in the
next example, superposition may be used to solve problems where the boundary con-
ditions involve several sides.

Example 7.12b
TWO-DIMENSIONAL PROBLEM REQUIRING SUPERPOSITION

In this example, we see a boundary potential having a Fourier series expansion which
includes both trigonometric functions and a constant. Matching such a boundary con-
dition requires the superposition of two solutions, one to match the constant and one
for the trigonometric functions. Consider the problem of finding the potentials in the
conducting rectangular solid of infinite extent in the z direction shown in Fig. 7.12.
The surrounding region contains free space, the potential at y = 0 is zero, and that
along the edge y = b is given by ® = Vyx/a.

This problem requires a solution with repetition in the x direction since the boundary
conditions at the sides x = 0, a are the same; the appropriate general form is that in
Eq.7.909). Atx = 0, a the x component of current density must be zero since no current
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0

s=0

Fic. 7.12b Two-dimensional conductive solid embedded in a nonconductive medium.

can flow in the free space outside the conductor. Since J = ¢E, then E, must also be
zero at x = 0, a. Therefore, & /ax, given by

oP
E = K(—A sin Kx + B’ cos Kx)(C cosh Ky + D sinh Ky) @
must be zero at x = 0, a for all y. Since cos Kx = 1 at x = 0, B’ = 0. Also,

sin Ka = 0 if Ka = m so K = mm/a. To match the boundary condition & = 0 at
y = 0 requires C = 0. Thus the potential in the mth harmonic is

®, = C,, cos 7 x sinh 2% y 8)
a a

The potential on the boundary at y = b should be expanded in a series of cosines
so that term-by-term matching with a series of terms like (8) can be done. The appro-
priate periodic continuation of the given boundary potential is shown in Fig. 7.11a(iv).
It is seen to have an average value of V,,/2 which will be present in the series expansion.
Applying Egs. 7.11(8)—(10),

Ox, b) = 2 — >

2 modd (M )2

Vo cos ﬂaz X 9)

Matching the boundary potential (9) requires both a series of harmonics of the form
in (8) and a separate solution having a constant value at y = b. A solution of the latter
form is found from Eq. 7.9(10). The function

= Ay (10)
satisfies the boundary conditions at x = 0, a and at y = 0. Evaluation of the constant

as V,/2b gives

Voy
=2 11
@, b (11

The solution involving harmonic terms is found by equating a series of terms like that
in (8), evaluated at the boundary y = b, with the series in (9):

mh 4V, mmx

m a a m odd (m,n.)Z

(12)
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The result for the second potential is

= _ 4V, sinh(mwy/a)  mmx
2= = 2 oy simh(mmbia) © a (13)

The complete solution is the superposition of (11) and (13), ® = @, + ®,.

Example 7.12¢c
THREE-DIMENSIONAL RECTANGULAR BOX WITH POTENTIAL SPECIFIED ON ONE FACE

The method discussed above can be extended to three dimensions. As an example, we
consider a box with zero potential on all faces except on the side z = ¢, where itis Vj,.
The box extends from the origin of coordinates to x = a,y = b, and z = c. The
appropriate general form of the space harmonic is Eq. 7.9(15) with K, and K, imaginary
and K, real. To meet the zero-potential boundary conditions at x = 0, y = 0, and

= 0, the constants A, C, and E must be zero. Also, to satisfy the zero-potential
condition at x = a and y = b, the corresponding separation constants must be m/a
and n/b, respectively. Then from Eq. 7.9(14) we get K, = [(mw/a)* + (nm/b)*]"/2.
The general form of the potential must be a doubly infinite sum of the resuliing
functions:

2 2
m ni mir nw
o = C, sin— xsin—ysinh [|— | + {— 14
Enmi ,,,,,smaxsmbysm\/(a) <b>z (14)
If (14) is evaluated at the boundary z = c, the series becomes

Vix, y) = 22 D,, sin —= x sin %:—r y (15)

2 2
D,, = C,, sinh \/ <2’£> + (E) c (16)
a b

The coefficients D,,, can be evaluated by multiplying (15) by sin(pmx/a) sin(gmy/b)
and integrating over x from 0 to a and over y from O to b. Application of the orthog-
onality conditions Eqs. 7.11(5) and 7.11(7) yields

where

4 J'J' mir nw
D - — Vix, P in — v dx
=5 )0 ) (x, y) sin 2 X sin b y dx dy an

For the special case of V(x, y) = V,, (14), (16), and (17) give
=SS 16V0 sin(mar/a)x sin(na/b)y sinhV (mm/a)® + (nw/b)* z
o nm? sinhV (mm/a)* + (nm/b)? ¢

(18)

where m and »n are odd in the summation.
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7.13 CYUNDRICAL HARMONICS FOR STATIC FIELDS

In a large class of problems of major interest, the field distribution is desired for regions
with boundaries lying along the surfaces of a cylindrical coordinate system. Examples
are the familiar electrostatic electron lenses found in many cathode-ray tubes or certain
coaxial transmission line problems for which static solutions are useful. As has been
pointed out in Sec. 7.12, the ability to evaluate the constants in product solutions de-
pends upon having boundaries on coordinate surfaces. Therefore, the fields for this type
of problem are found by separating variables in cylindrical coordinates.

A variety of types of solution are found, depending upon symmetries assumed. In
general, Laplace’s equation in cylindrical coordinates has the form

13(@) 180 9D

+5os A = 0 1
"or) T e T o7 M

r or

Axial Symmetry with Longitudinal Invariance In Ex. 1.8a we saw that for
zero variations with ¢ and z,

) =C,Inr + G, 2)

Longitudinal Invariance It was shown in Prob. 7.9a that the solutions for zero z
variation, called circular harmonics, are given by

®(r, ¢) = (C;r" + Cor~™)(C5 cos np + C, sin nep) 3)

Note that, for n = 0, axial symmetry exists but (3) breaks down and the solution is

given by (2).

Axial Symmetry Since it is assumed that there are no variations with ¢, Laplace’s
equation (1) becomes

PP 190 9D
—S +t-—+——==0 4
or:  r or 972 @)

To solve this equation, let us try to find solutions of the product form
O(r, z) = R(NZ() &)

Substituting in the differential equation (4), we have
R'Z + lR’Z + RZ" =0
r

where R" denotes d?R/dr?, Z" denotes d?Z/dz?, and so on. The variables are separated
by dividing by RZ:

Z/I RII 1 RI

== | = 4+ ==

Z R r R

By the standard argument for the method of separation of variables, the left side, which
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is a function of z alone, and the right side, which is a function of r alone, must be equal
to each other for all values of the variables r and z. Both sides must then be equal to a
constant. Let this constant be T2 Two ordinary differential equations then result as
follows:

1 d*R 1 dR
—_—— = __TZ 6
R ar? rR dr ©
1d*z
zaz =" <7>
Equation (6) can be written as
d’R 1 dR
— +=-—+TR = 8
dr?  rdr 0 ®)

Equation (8) is the simplest form of the so-called Bessel equation. A sketch of the

solution will be given. One method of finding a solution is to substitute a series and

find the conditions on the terms of the series for it to be a valid solution of the differential

equation. Thus to solve (8), the function R must be assumed to be a power series in r:
R=ay+ ar + ay? + ay> + -

or
R= > ar? )]
p=0

Substitution of this function in (8) shows that it is a solution if the constants are as
follows:
(T/2)*"
(m!)?

a, = ay, = C,(~ 1)y

(C, is any arbitrary constant). That is,

= (= 1y™(Tr J2)%m \"  (Tr/2) \
ReG e O \3) e ] W

is a solution to the differential equation (8). It is easy to show that (10) is convergent
so that values may be calculated for any value of the argument (7r). Such calculations
have been made over a wide range of the values of the argument and the results are
tabulated.

If T2 is positive, the function defined by the series is denoted by Jo(Tr) and called a
Bessel function of the first kind and of zero order. This function is defined by

2
Jo) 8- <2> + /2t > (Z D"/

2 @y 7 mzo (m)? (1

The particular solution (10) may then be written simply as
R = CJy(Tr)
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The differential equation (8) is of second order and so must have a second solution
with a second arbitrary constant. (The sine and cosine constitute the two solutions for
the simple harmonic motion equation.) This solution cannot be obtained by the power-
series method outlined above, since a general study of differential equations would
show that at least one of the two independent solutions of (8) must have a singularity
at r = 0. Once one solution is found there is a technique for obtaining a linearly
independent solution for this class of equations'? and several different forms are pos-
sible. One form for the second solution (any of which may be called Bessel functions
of second kind, order zero) easily found in tables is

2
Nyw) = = m(”?v>10(u)

® (12)
2% v L L,
T m=1 (m!)z 2 3 m
The constant In vy = 0.5772 ... is Euler’s constant. In general, then,
R = CJy(Tr) + C,Ny(Tr) 13)
is the solution to (8), and the corresponding solution to (7) is
Z(z) = C5sinh Tz + C, cosh Tz (14)

It should be noted from (12) that N(Tr), the second solution to R, becomes infinite at
r = 0, so it cannot be present in any problem for which r = 0 is included in the region
over which the solution applies.

If T? is negative, we let T?> = — 7% or T = jr, where 7 is real. The series (10) is still
a solution and T in (10) may be replaced by j. Since all powers of the series are even,
imaginaries disappear, and a new series is obtained which is also real and convergent.
That is,

2
D ©/2)°
Jo(jv)=1+<§) +(%2/!T§+%/!—)2,—+--- (15)

Values of J,(jv) may be calculated for various values of v from such a series; these are
also tabulated in the references and are usually denoted /y(v). Thus, one solution to (8)
with T = jris

R = Cilo(jm) & Cily(m) (16)
There must also be a second solution which is commonly denoted K(7r), so that the
general solution to (8) with T? = — 72 may be written

R = Ciy(mr) + C3Ky(m) an

The second solution K, becomes infinite at » = 0 just as does N, and so is not required

12 See, for example, E. T. Whittaker and G. N. Watson, A Course in Modern Analysis, p. 369.
4th ed., University Press, Cambridge, 1927.
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in problems which include the axis » = O in the range over which the solution is to
apply. The solution to the z equation (7) when T? = — 12 is

Z = Cysin 7z + Cj cos 1z (18)

Summarizing, either of the following forms satisfies Laplace’s equation in the two
cylindrical coordinates r and z:

D(r, 2) = [CJy(Tr) + C,Ny(Tn)][C5 sinh Tz + C, cosh T7] (19)
O, z) = [Ci(mr) + CK(™n][C; sin 7z + Cj cos 7z] 0)

As was the case with the rectangular harmonics, the two forms are not really different
since (19) includes (20) if T is allowed to become imaginary, but the two separate ways
of writing the solution are useful, as will be demonstrated in later examples. The case
with no assumed symmetries is discussed in the following section.

7.14 BESSEL FUNCTIONS

In Sec. 7.13 an example of a Bessel function was shown as a solution of the differential
equation 7.13(8) which describes the radial variations in Laplace’s equation for axially
symmetric fields where a product solution is assumed. This is just one of a whole family
of functions which are solutions of the general Bessel differential equation.

Bessel Functions with Real Arguments For certain problems, as, for example,
the solution for field between the two halves of a longitudinally split cylinder, it may
be necessary to retain the ¢ variations in the equation. The solution may be assumed
in product form again, RF,Z, where R is a function of r alone, F4 of ¢ alone, and Z of
z alone, Z has solutions in hyperbolic functions as before, and Fy may also be satisfied
by sinusoids:

Z = Ccosh Tz + D sinh Tz 1
Fy, = Ecos v¢ + F sin v )

The differential equation for R is then slightly different from the zero-order Bessel
equation obtained previously:

d’R 1 dR v?
— +-—+ |T?-=5JR=0 3
dr? r dr ( r2> )
It is apparent at once that Eq. 7.13(8) is a special case of this more general equation,
that is, v = 0. A series solution to the general equation carried through as in Sec. 7.13
shows that the function defined by the series
o (= D™Tr/2)v 2"

1. = moom!T'(v + m + 1) @

Il

is a solution to the equation.
T'(v + m + 1) is the gamma function of (v + m + 1) and, for v integral, is equivalent
to the factorial of (v + m). Also for v nonintegral, values of this gamma function are
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FIG. 7.14 (a) Bessel functions of the first kind. () Bessel functions of the second kind.

tabulated. If v is an integer n,

el _1\ym n+2m
@ = 3 U@

meo mli(n + m)!

&)

It can be shown that J_, = (—1)"J,. A few of these functions are plotted in Fig. 7.14a.
Similarly, a second independent solution!? to the equation is

cos v, (Try — J_,(Tr)
sin v

N,(Tr) = 6)

13 Ifv is nonintegral, J_, is not linearly related to J,, and it is then proper to use either J_,
or N, as the second solution; forv integral, N, must be used. Equation (6) is indeterminate
for v integral but is subject fo evaluation by usual methods.
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and N_, = (—1)"N,. As may be noted in Fig. 7.14b these are infinite at the origin. A
complete solution to (3) may be written

R = AJ,(Tr) + BN, (Tr) @)

The constant v is known as the order of the equation. J,, is then called a Bessel function
of first kind, order v; N,, is a Bessel function of second kind, order v. Of most interest
for this chapter are cases in which v = n, an integer.

It is useful to keep in mind that, in the physical problem considered here, v is the
number of radians of the sinusoidal variation of the potential per radian of angle about
the axis.

The functions J,(v) and N,,(v) are tabulated in the references.!*!'> Some care should
be observed in using these references, for there is a wide variation in notation for the
second solution, and not all the functions used are equivalent, since they differ in the
values of arbitrary constants selected for the series. The N,(v) is chosen here because
it is the form most common in current mathematical physics and also the form most
commonly tabulated. Of course, it is quite proper to use any one of the second solutions
throughout a given problem, since all the differences will be absorbed in the arbitrary
constants of the problem, and the same final numerical result will be obtained; but it is
necessary to be consistent in the use of only one of these throughout any given analysis.

It is of interest to observe the similarity between (3) and the simple harmonic equa-
tion, the solutions of which are sinusoids. The difference between these two differential
equations lies in the term (1/r)(dR/dr) which produces its major effect as r — 0. Note
that for regions far removed from the axis as, for example, near the outer edge of Fig.
1.19a, the region bounded by surfaces of a cylindrical coordinate system approximates
a cube. For these reasons, it may be expected that, away from the origin, the Bessel
functions are similar to sinusoids. That this is true may be seen in Figs. 7.14a and b.
For large values of the arguments, the Bessel functions approach sinusoids with mag-
nitude decreasing as the square root of radius, as will be seen in the asymptotic forms,
Eqgs. 7.15(1) and 7.15(2).

Hankel Functions It is sometimes convenient to take solutions to the simple har-
monic equation in the form of complex exponentials rather than sinusoids. That is, the
solution of

d*z
— +K*Z=0
dz? ®)
can be written as
Z = Ae*/X? 4 Be iKz )

Y4 E Jahnke, F. Emde, and F. L&sch, Tables of Higher Functions, 6th ed. revised by F. Lésch,
McGraw-Hill, New York, 1960.

15 M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions, Dover,
New York, 1964.
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where

e*/? = cos Kz + jsin Kz ‘ (10)

Since the complex exponentials are linear combinations of cosine and sine functions,
we may also write the general solution of (8) as

Z = A'e’® + B' sin Kz
or other combinations.
Similarly, it is convenient to define new Bessel functions which are linear combi-

nations of the J (Tr) and N, (Tr) functions. By direct analogy with the definition (10)
of the complex exponential, we write

Hf,“(Tr) = J,(Tr) + jN,(Tr) (11
HP(Tr) = J(Tr) — jN(Tr) 12)

These are called Hankel functions of the first and second kinds, respectively. Since they
both contain the function N, (Tr), they are both singular at r = 0. Negative and positive
orders are related by

HO(Tr) = e/™H(Tr)
H®(Tr) = e /™HP(Tr)

For large values of the argument, these can be approximated by complex exponentials,
with magnitude decreasing as square root of radius. For example,

HA )(Tr) — _g_ e/ Tr—7/4—vm/2)
;‘Ir—wo wTr

This asymptotic form suggests that Hankel functions may be useful in wave propagation
problems as the complex exponential is in plane-wave propagation. It is also sometimes
convenient to use Hankel functions as alternate independent solutions in static problems.
Complete solutions of (3) may be written in a variety of ways using combinations of
Bessel and Hankel functions.

Bessel and Hankel Functions of Imaginary Arguments If T is imaginary,

T = jr, and (3) becomes
d’R 1 dR v?
— +-— - | +5|R=0 13

dr? r dr <T r2>R (13)

The solution to (3) is valid here if T is replaced by jr in the definitions of J,(Tr) and
N,(Tr). In this case N,(jr) is complex and so requires two numbers for each value of
the argument, whereas j~*J,(jr) is always a purely real number. It is convenient to
replace N, (jr) by a Hankel function. The quantity j* ~ !H{(j7r) is also purely real and
so requires tabulation of only one value for each value of the argument. If v is not an
integer, j*J _(j7r) is independent of j~*J,(j7r) and may be used as a second solution.
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Thus, for nonintegral v two possible complete solutions are

R = Ay (jm) + ByJ_(jm) (14

and
R

AsJ (jm) + BsHP(jm) (15)

where powers of j are included in the constants. For v = n, an integer, the two solutions
in (14) are not independent but (15) is still a valid solution.
It is common practice to denote these solutions as

1.,0) = 7. (jv) (16)
K@) = ’5’ FHHOjv) a”n

where v = .

As is noted in Sec. 7.15 some of the formulas relating Bessel functions and Hankel
functions must be changed for these modified Bessel functions. Special cases of these
functions were seen as Iy(77) and Ky(7) in Sec. 7.13 for the axially symmetric field.
The forms of /,(7) and K, (7r) for v = 0, 1 are shown in Fig. 7.14c. As is suggested
by these curves, the asymptotic forms of the modified Bessel functions are related to
growing and decaying real exponentials, as will be seen in Egs. 7.15(5) and 7.15(6). It
is also clear from the figure that K (77) is singular at the origin.

5 —
4 Io(v)
Ii(v)
3 |
Ky(v)
2
1
Ko(v)
0 ’ v
0 1 2 3 4

FiI6. 7.14c Modified Bessel functions.
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7.15 BESSEL FUNCTION ZEROS AND FORMULAS'®
The first several zeros of the low-order Bessel functions and of the derivatives of Bessel

functions are given in Tables 7.15a and 7.15b, respectively.

Table 7.15a
Zeros of Bessel Functions

]0 ]1 ]9 NO Nl N2
2.405 3.832 5.136 0.894 2.197 3.384
5.520 7.016 8.417 3.958 5.430 6.794
8.654 10.173 11.620 7.086 8.596 10.023

Table 7.15b
Zeros of Derivatives of Bessel Functions
I A I Ng N; Ny

0.000 1.841 3.054 2.197 3.683 5.003

3.832 5.331 6.706 5.430 6.942 8.351
10.173 8.536 9.969 8.596 10.123 11.574

Asymptotic Forms

2
30 [ eos(v - 7 - 27) o
2 T VT
N — si - - - — 2
Y e S‘"(” 4 2) @
(1) 2 Jjlv = (7/4)— (v7/2)]
H W) > [—e ©)
v—>®o
H® 2 —jlv—(7/4)— (v@r/2)]
v )= e “@
v—>
I (juv) = I[,v) = ! ev )
S L Py
2 2
e N =T ©

6 More extensive tabulations are found in the sources given in footnotes 14 and 15,
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Derivatives The following formulas which may be found by differentiating the
appropriate series, term by term, are valid for any of the functions J,(v), N,(v),
H (), and HP(v). Let R, (v) denote any one of these, and R, denote (d/dv)[R,(v)].

Ry = —R,() @)
1
Ri(v) = Ry(v) — ;Rl(v) ®)
UR;(U) = vRv(U) - URV+1(U) (9)
UR,(U) = —WR, () + VR,_,(v) (10)
d
- ™ R,)] = —v 'R, ) (11)
U
i[”R()]- R, _ () 12)
dv UK, (U = UK, 41U (
Note that
, d 1d
R(Tr) = ) [R(Tr)] = T [R,(Tr)] (13)

For the I and K functions, different forms for the foregoing derivatives must be used.
They may be obtained from these formulas by substituting Eqs. 7.14(16) and 7.14(17)
in the preceding expressions. Some of these are

ol (v) = vI,) + vi,, (V)
, (14)
vl ,(v) = —vl(v) + vi,_,v)

vK (v) = vK,(v) — vK,, ()

) (15)
UKV(U) = '-VKv(v) - UKv—l(v)

Recurrence Formulas By recurrence formulas, it is possible to obtain the values
for Bessel functions of any order, when the values of functions for any two other orders,
differing from the first by integers, are known. For example, subtract (10) from (9).
The result may be written
2v
_U— Rv(v) = Rv+ l(v) + Rv— l(v) (16)

As before, R, may denote J,, N,, H, or H?, but not I, or K. For these, the recurrence
formulas are

2
=40 = L@ = [ @) an

2
K0 = K@) - K@) (18)
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Integrals Integrals that will be useful in solving later problems are given below.
R, denotes J,, N,, HV, or H?:

fv'”RvH(v) dv = —v7'R,(v) (19)
f V'R,_,(v) dv = V"R, (V) (20)
v
UR (aV)R (Bv) dv = ———;
f o? — B 21
X [BR(av)R, _(Bv) — aR,_ (a)R,(BV)], a # B
2
f UR}(av) dv = % [Riav) — R,_ (av)R, , (av)]
(22)

| <

2 . vZ 5
= 5 IZR,, (av) + (1 - W)Rv(av)]

7.16 EXPANSION OF A FUNCTION AS A SERIES OF BESSEL FUNCTIONS

In Sec. 7.11 a study was made of the method of Fourier series by which a function may
be expressed over a given region as a series of sines or cosines. It is possible to evaluate
the coefficients in such a case because of the orthogonality property of sinusoids. A
study of the integrals, Eqs. 7.15(21) and 7.15(22), shows that there are similar orthog-
onality expressions for Bessel functions. For example, these integrals may be written
for zero-order Bessel functions, and if « and B are taken as p,,/a and pq/ a, where p,,
and p, are the mth and gth roots of Jo(v) = 0, that is, Jo(p,,) = 0 and Jo(p,) = O,
Pm 7 Py then Eq. 7.15(21) gives

C (Pl (P
LrJo<a>Jo<a>dr—0 1)

So, a function f(r) may be expressed as an infinite sum of zero-order Bessel functions

r r r
fn = bIJO(pl ;) + bz-]o(Pz ;) + b3]o<P3 ;) o

or

=73 bmJo<p—;"—’> @)

The coefficients b,, may be evaluated in a manner similar to that used for Fourier
coefficients by multiplying each term of (2) by rJy(p,,r/a) and integrating from 0 to
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a. Then by (1) all terms on the right disappear except the mth term:

a a 2
Pl - Pm”
J;) rf(r}lo<—;-> ar = fo bmr[f()( 4 ):l ar

From Eq. 7.15(22),

f b,,,rjg<’—’"'—r> dr
0 a

-2 2%
bm - aZJ%(pm)J:) rf(r)‘]0< a )dr (4)

In the above, as in the Fourier series, the orthogonality relations enabled us to obtain
coefficients of the series under the assumption that the series is a proper representation
of the function to be expanded, but two additional points are required to show that the
representation is valid. The series must of course converge, and the set of orthogonal
functions must be complete, that is, sufficient to represent an arbitrary function over
the interval of concern. These points have been shown for the Bessel series of (2) and
for other orthogonal sets of functions to be used in this text.!”

Expansions similar to (2) can be made with Bessel functions of other orders and
types (Prob. 7.16a).

2
= bl ip) 3)

or

Example 7.16
BESSEL FUNCTION EXPANSION FOR CONSTANT IN RANGEO <r < A

If the function f(r) in (4) is a constant V; in the range 0 < r < a, we have
2V0 fa p r
b, = 55— Jo\ == | di 5
= ey () @ ®

Using Eq. 7.1520) with R = J, v = 1, and v = p,,r/a, the integral in (5) becomes

(2) [ (=) - [(2) (o) |

2
a

= —Ji(pw)
p

m

©

V7 See, for example, E. T. Whittaker and G. N. Watson, A Course in Modern Analysis, 4th
ed., pp. 374-378, University Press, Cambridge, 1927.
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and the series expansion (2) for the constant V,, is

< 2V, P’
o = m; P 1 (D) J°< a ) @

or, using the values of the zeros of J, in Table 7.15a,

0832V, | (2.405r) 0.362V, (5.520r>
0

fr)y =

J,(2.405) a J,5.520)°°\ 4 @
)
0231V, , (8.654r)
J,(8.654) "°

Further evaluation of (8) requires reference to tables in the sources given in footnotes
14 and 15 or numerical evaluation of Eq. 7.13(11).

7.17 FIELDS DESCRIBED BY CYLINDRICAL HARMONICS

We will consider here the two basic types of boundary value problems which exist in
axially symmetric cylindrical systems. These can be understood by reference to Fig.
7.17a. In one type both @, and ®,, the potentials on the ends, are zero and a nonzero
potential @, is applied to the cylindrical surface. In the second type ®; = 0 and either
(or both) ®, or P, are nonzero. The gaps between ends and side are considered neg-
ligibly small. For simplicity, the nonzero potentials will be taken to be independent of
the coordinate along the surface. In the first type, a Fourier series of sinusoids is used
to expand the boundary potentials as was done in the rectangular problems. In the
second situation, a series of Bessel functions is used to expand the boundary potential
along the radial coordinate.

Nonzero Potential on Cylindrical Surface Since the boundary potentials are
axially symmetric, zero-order Bessel functions should be used. The repeated zeros along
the z coordinate dictate the use of sinusoidal functions of z. The potential in Eq. 7.13(20)
is the appropriate form. Certain of the constants can be evaluated immediately. Since
K,(7r) is singular on the axis, C; must be identically zero to give a finite potential there.
The cos 7z equals unity at z = O but the potential must be zero there so C, = 0. As
in the problem discussed in Sec. 7.10 the repeated zeros at z = [ require that 7 = mar/l.
Therefore the general harmonic which fits all boundary conditions except & = Vj at

r=ais
%, = a0 Jon( %) W

Figure 7.17b shows a sketch of this harmonic for m = 1 and with the nonzero boundary
potential on the cylinder. It is clear that we have here the problem of expanding the
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(c)

FiIG. 7.17 (a) Cylinder with conducting boundaries. (b) One harmonic component for matching
boundary conditions when nonzero potential is applied to cylindrical surface in (a). (c) One
harmonic component for matching boundary conditions when nonzero potential is applied to end
surface in (a).

boundary potential in sinusoids just as in the rectangular problem of Sec. 7.12. Follow-
ing the procedure used there we obtain

il_l_/glo(mwr/l) . mmz

O, z) = Z

modd mm ly(mma/l) l @
Nonzero Potential on End In this situation if we refer to Fig. 7.17a, we see that
®, = &; = 0 and P, = V. In selecting the proper form for the solution from Sec.
7.13, the boundary condition that ® = 0 at r = a for all values of z indicates that the
R function must become zero at r = a. Thus, we select the J,, functions since the /;,’s
do not ever become zero. (The corresponding second solution, N,,, does not appear since
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potential must remain finite on the axis.) The value of T in Eq. 7.13(19) is determined
from the condition that @ = 0 at r = q for all values of z. Thus, if p,, is the mth root
of Jo(w) = 0, T must be p,,/a. The corresponding solution for Z is in hyperbolic
functions. The coefficient of the hyperbolic cosine term must be zero since ® is zero
at z = O for all values of r. Thus, a sum of all cylindrical harmonics with arbitrary
amplitudes which satisfy the symmetry of the problem and the boundary conditions so
far imposed may be written

(r, 7) = Z, Bmfo(’%’) sinh (’%) 3)

One of the harmonics and the required boundary potentials are shown in Fig. 7.17c.

The remaining condition is that, at z = [, ® = Qatr = aand ® = Vyatr < a.
Here we can use the general technique of expanding the boundary potential in a series
of the same form as that used for the potentials inside the region, as regards the de-
pendence on the coordinate along the boundary. In Ex. 7.16 we expanded a constant
over the range 0 < r < a in J, functions so that result can be used here to evaluate the
constants in (3). Evaluating (3) at the boundary z = /, we have

o, 1) = 21 B, sinh(p '"I)JO(M) @)

a a

Equations (4) and 7.16(7) must be equivalent for all values of r. Consequently, coef-
ficients of corresponding terms of Jy(p,,r/a) must be equal. The constant B,, is now
completely determined, and the potential at any point inside the region is

O z) = 2Vo inh <M)JO<"L’> )

N N
m=1 pm‘]l(pm) Slnh(pml/a) a a

7.18 SPHERICAL HARMONICS

Consider next Laplace’s equation in spherical coordinates for regions with symmetry
about the axis so that variations with azimuthal angle ¢ may be neglected. Laplace’s
equation in the two remaining spherical coordinates r and 6 then becomes (obtainable
from form of inside front cover)

3*(r®) 1 o (. o
+ — — = 1
a2 " rsin 640 <Sm 6 ao) 0 ()
or
2 2, b

+2—+ + —
" or? or  r 96%>  rtan 6 90
Assume a product solution
® = RO
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where R is a function of r alone, and O of 6 alone:
1

rR"6+2R'9+lR9”+ ROG' =0
r rtan 0
and
PR VRO @ .
R R © ©Otnb

From the previous logic, if the two sides of the equations are to be equal to each other
for all values of r and 6, both sides can be equal only to a constant. Since the constant
may be expressed in any nonrestrictive way, let it be m(m + 1). The two resulting
ordinary differential equations are then

d’R dR

Pog T~ mm + DR = 0 @)
260 1 40
auv, = + 10 =0 5
2@ Ttmoqe T MMt D ®)

Equation (4) has a solution which is easily verified to be
R = Cyr™ + Cyr=m*h 6)

A solution to (5) in terms of simple functions is not obvious, so, as with the Bessel
equation, a series solution may be assumed. The coefficients of this series must be
determined so that the differential equation (5) is satisfied and the resulting series made
to define a new function. There is one departure here from an exact analog with the
Bessel functions, for it turns out that a proper selection of the arbitrary constants will
make the series for the new function terminate in a finite number of terms if m is an
integer. Thus, for any integer m, the polynomial defined by

P, (cos 6) = 1 [ ] (cos? § — 1™ (7

d
2™m! | d(cos 6)

is a solution to the differential equation (5). The equation is known as Legendre’s
equation; the solutions are called Legendre polynomials of order m. Their forms for the
first few values of m are tabulated below and are shown in Fig. 7.18a. Since they are
polynomials and not infinite series, their values can be calculated easily if desired, but
values of the polynomials are also tabulated in many references.

Py(cos ) = 1

P(cos 6) = cos 6

P,(cos 6) = 3(3 cos®> 6 — 1)

P;(cos 6) = %(5 cos® 6 — 3 cos 6)

P,(cos 6) = (35 cos* § — 30 cos® 6 + 3)
Ps(cos 6) = $(63 cos® § — 70 cos® § + 15 cos 6)

®
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1.0

-10—

FiG. 7.18a Legendre polynomials.

It is recognized that © = C,P,(cos 6) is only one solution to the second-order
differential equation (5). There must be a second independent solution, which may be
obtained from the first in the same manner as for Bessel functions, but it turns out that
this solution becomes infinite for § = 0. Consequently it is not needed when the axis
of spherical coordinates is included in the region over which the solution applies. When
the axis is excluded, the second solution must be included. It is typically denoted
Q,(cos 6) and tabulated in the references.'®

An orthogonality relation for Legendre polynomials is quite similar to those for
sinusoids and Bessel functions which led to the Fourier series and expansion in Bessel
_ functions, respectively.

f P, (cos B)P,(cos ) sin 8d6 = 0, m#n )
0

f [P,(cos 6)]* sin 6 d6 (10)
0

2m + 1
It follows that, if a function f(6) defined between the limits of O to = is written as a
series of Legendre polynomials,

o

f6) = 2 a,Pcosb), 0<O<a 680

m=0

'8 W. R. Smythe, Static and Dynamic Electricity, 3rd ed., Hemisphere Publishing Co., Wash-
ington, DC, 1989.



382 Chapter 7 Two- and Three-Dimensional Boundary Value Problems

the coefficients must be given by the formula

2

a, = —ﬂ;——l f F(O)P,(cos 6) sin 6 d6 (12)
0

m

Example 7.18a
HIGH-PERMEABILITY SPHERE IN UNIFORM FIELD

We will examine the field distribution in and around a sphere of permeability u # u,
when it is placed in an otherwise uniform magnetic field in free space. The uniform
field is disturbed by the sphere as indicated in Fig. 7.18b. The reason for choosing this
example is threefold. It shows, first, an application of spherical harmonics. Second, it
is an example of a situation in which the constants in series solutions for two regions
are evaluated by matching across a boundary. Finally, it is an example of a magnetic
boundary-value problem.

Since there are no currents in the region to be studied, we may use the scalar magnetic
potential introduced in Sec. 2.13. The magnetic intensity is given by

H= -Vo

As the problem is axially symmetric and the axis is included in the region of interest,
the solutions P,,(cos 6) are applicable. The series solutions with these restrictions are

D, (r, 6 = z P, (cos O)[C,,,r™ + C,,,r =™+ D] (14)

13)

m

The procedure is to write general forms for the potential inside and outside the sphere
and match these across the boundary. Since the potential must remain finite at r = 0,

Hy

-_—
i S—
P e

Fic. 7.18b Sphere of magnetic material in an otherwise uniform magnetic field.
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the coefficients of the negative powers of r must vanish for the interior. The series
becomes, for the inside region,

®, = > A, r"P,(cos 6) (15)

Outside, the potential must be such that it gives a uniform magnetic field H, at infinity.
The potential form which satisfies this condition is

®, = —Hyrcos 6 (16)

m

That this gives a uniform field may be seen by noting that dz = dr cos 6 so

o, _ 1 00, _

H=————=_

z 9z cos @ or

H, a7

Terms of the series (14) having negative powers of r may be added to (16), since they
all vanish at infinity. Then the form of the solution outside the sphere is

®, = —Hy cos 6 + D, B,P,(cos )r~+D (18)

It was pointed out in Sec. 2.14 that ®,, is continuous across boundaries without
surface currents. Therefore, the terms in (15) and (18) having the same form of 6
dependence are equated, giving

Ao = B()a_l m = O
Aja=Ba?-Ha m=1
14 = 5 0 (19)
Ana™ = B,a"m*D m>1
Furthermore, the normal flux density is continuous at the boundary so
ad P
MO ar r=a+ ar r=a-— ( )

Substituting (15) and (18) in (20) and equating terms with the same 6 dependence, we
find

Bo = O m = 0
= —2ugBa™3 — m =
HA, . HoDy HoH @1
umA,a" ! = —pm + DBa" ™  m>1

From (19) and (21) we see that A, = B, = 0, and that for m > 1, all coefficients must
be zero to satisfy the two sets of conditions. The only remaining terms are those with
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m = 1. These two equations may be solved to give A, and B, in terms of H,,. Substi-
tuting the results in (18) gives, for r > a,

- 83
@, = [(;:LO—+—“;) 5 - I]Hor cos 6 22)

from which H can be found by using (13) for » > a. Substitution of A, into (15) gives,
forr < a,

3u0
b, = — (—-—)H r cos 0 (23)
2u0 + ) °
Applying (13), we find the field inside to be
3o )
H=12l—|H (24)
<2P«0 + 0

It is of interest to observe that the field inside the homogeneous sphere is uniform.
Finally, multiplication of (24) by u gives the flux density

3ug )
B =2l ——H (25)
(20:.0/;») +1)7°
From (25) we see that for u >> u, the maximum possible value of the flux density is
B = 3uH, (26)

Example 7.18b
EXPANSION IN SPHERICAL HARMONICS WHEN FIELD 1S GIVEN ALONG AN AXIS

It is often relatively simple to obtain the field or potential along an axis of symmetry
by direct application of fundamental laws, yet difficult to obtain it at any point off this
axis by the same technique. Once the field is found along an axis of symmetry, expan-
sions in spherical harmonics give its value at any other point. Suppose potential, or any
component of field which satisfies Laplace’s equation, is given for every point along
an axis in such a form that it may be expanded in a power series in z, the distance along
this axis:

& =D bz", 0<z<a (27
axis m=0

If this axis is taken as the axis of spherical coordinates, # = 0, the potential off the

axis may be written for r < a

o, 6) = ZO b,,r™P,(cos 6) (28)
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This is true since it is a solution of Laplace’s equation and does reduce to the given
potential (27) for & = O where all P, (cos 6) are unity.

If potential is desired outside of this region, the potential along the axis must be
expanded in a power series good for a < z < oo;

P = > ¢z ™D z1>g (29)
=0  m=1
Then & at any point outside is given by comparison with the second series of (14):

oo

® = > ¢, P,cos Or~ ™D >4 (30)
For example, the magnetic field H, was found along the axis of a circular loop of
wire carrying current / in Sec. 2.3 as
a?l I

H, = 2P + 297 " 241 + @/ 31

The binomial expansion
3 15 , 105

—3/2=1__ + — _—_3+...
(1 +w PR T

is good for 0 < |u| < 1. Applied to (31), this gives for z < a

_L[y (A s (2Y s (2Y
axis " 2a 2\ a? 8 \a? 48 \a?

Since H,, axial component of magnetic field, satisfies Laplace’s equation (Sec. 7.2),
H, at any point r, 8 with r < a is given by

1 3 (r? 15 [(r*
H(r, 6) = Z [1 - 5 (%)PZ(COS 6 + E <§Z>P4(cos 0 + -- ] (32)

H,

z

7.19 PRODUCT SOLUTIONS FOR THE HELMHOLTZ EQUATION
IN RECTANGULAR COORDINATES

The technique used in the preceding sections for finding product solutions to Laplace’s
equation will be applied here to the scalar Helmholtz equation. Whereas the single-
product solution for static problems was seen in Sec. 7.10 to be of little value, such
solutions will be seen in the next chapter to be of great importance as waveguide
propagation modes and will be analyzed extensively there.

Let us consider the scalar Helmholtz equation. Here we make the assumption that
the dependent variable depends on z in the manner of a wave, as e~ ¥. The variable
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remaining in the equation is, therefore, the coefficient of eY“'~ ", Written with the
Laplacian explicitly in rectangular coordinates, we have

2L
o Ty - TRY )

where k2 = y*> + w*ue. Let us assume that the solution can be written as the product
solution ¢ = X(x)Y(y). Substituting this form in (1),

XY + XY" = —k3XY
or
X/l Y’I
—+ — = -k 2
X Y ¢ @

The primes indicate derivatives. If this equation is to hold for all values of x and y,
since x and y may be changed independently of each other, each of the ratios X"/X and
Y”/Y can be only a constant. There are then several forms for the solutions, depending
upon whether these ratios are taken as negative constants, positive constants, or one
negative constant and one positive constant. If both are taken as negative,

X/I
- R
X pd
YII
Y-8

The solutions to these ordinary differential equations are sinusoids, and by (2) the sum
of k% and Z is k2. Thus

¢ = XY 3)
where
X = Aéoskxx + B sin kx
Y = Ccos ky + D sin kjy )
B+ R =R

Either or both of k, and k, may be imaginary in which case the corresponding sinusoid
becomes a hyperbolic function. Values of the constants k, and k, are determined by
conditions on ¢ at the boundaries in the x—y plane. Examples of the application of these
general forms will be seen extensively in the following chapter where the dependent
variable ¢ is identified as E, or H,.

7.20 PRODUCT SOLUTIONS FOR THE HELMHOLTZ EQUATION
IN CYLINDRICAL COORDINATES

In cylindrical structures, such as coaxial lines or waveguides of circular cross section,
the wave components are most conveniently expressed in terms of cylindrical coordi-
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nates. Assuming that the z dependence is in the waveform e~ 7%, the scalar Helmholtz
equation becomes

Y 19y 1%

S+t -—+ 5= -k 1

ot ror  r?oag? a4 M
where k2 = y?> + «’pe. For this partial differential equation, we shall again substitute
an assumed product solution and separate variables to obtain two ordinary differential

equations.
Assume
Y = RF,
where R is a function of r alone and F, is a function of ¢ alone:
R'Fy F,R
" ¢ —_
RF¢ +—r'— + r— = —kchF¢
Separating variables, we have
er Rr — F';‘)
— 4+ —+ krr=—
R R F,

The left side of the equation is a function of r alone; the right of ¢ alone. If both sides
are to be equal for all values of r and ¢, both sides must equal a constant. Let this
constant be v2. There are then the two ordinary differential equations:

_F" 2
—_— = 2
7 v 2
and
R” R'
E + r? + Kr? =12
or

0 3)

1 2
R'"+ -R + <k§ - YE)R
r r

The solution to (2) is in sinusoids. By comparing with Eq. 7.14(3) we see that solutions
to (3) may be written in terms of Bessel functions of order v:

¥ = RF, “
where

R = AJ (k) + BN, (k1) 5)

Fy = Ccos v¢ + D sin v

Either or both of the Bessel functions may be replaced by Hankel functions [Egs.
7.14(11) and (12)] when one desires to look at waves as though propagation were in
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the radial direction. Thus, for example,
R = AHV(ks) + BHP(kr)
Fy = Ccos v + D sin v

©®

If k. is imaginary, the ordinary Bessel functions can be replaced by the modified Bessel
functions, Eqs. 7.14(16) and (17). In the examples in the following chapter, the variable
 will be identified with E, or H,.

PROBLEMS

7.2a Find the form of differential equation satisfied by E, in cylindrical coordinates for a
charge-free, homogeneous dielectric region. Repeat for E 4. Note that these are not
Laplace equations.

7.2b Show that none of the spherical components of electric field satisfy Laplace’s equation
for quasistatic problems in which V?E = 0.

7.2c* Show that the rectangular component E, of electrostatic field satisfies Laplace’s equa-
tion expressed in spherical coordinates.

7.2d Derive Laplace’s equation for H, A, and ®,, in a current-free region with static fields
and for J and E in a homogeneous conductor with dc currents.

7.2e Use superposition to find the potential on the axis of an infinite cylinder with a poten-
tial specified as ®(¢) = V, sin ¢/2, for 0 = ¢ = 27 on the boundary.

7.2f A spherical surface is at zero potential except for a sector in the region 0 < ¢ < /3,
0 < 6 < 7/2. Find the potential at the center of the sphere.

7.3a Calculate the capacitance of a parallel-plate capacitor with square plates having edge
length a and spacing d = a/2 situated in free space using the method of moments. If
you do the calculations by hand, divide each plate into four equal squares. If a com-
puter program is written, run it for several subdivisions of the plates and plot the effect
on capacitance.

7.3b Find a better approximation to the capacitance of the structure in Ex. 7.3a by subdivid-
ing each of the squares shown in Fig. 7.3d into four equal parts and repeating the
method of moments calculation.

7.3c¢ In applying the method of moments calculation to two-dimensional problems, the In r,
term in Eq. 1.8(7) is neglected. As an illustration of the validity of this procedure, find
the potential of two parallel line charges located as follows: +¢, at ¢ = 0, r = & and
—q, at ¢ = 0, r = 26, take the zero potential point to be » = R on the ¢ = 0 axis.
Apply Eq. 1.8(7) and show that the In r,, terms cancel to arbitrary accuracy as R — .
How does this explain that the In r, terms can be neglected in the two-electrode two-
dimensional method of moment problems in which the line charges have a variety of
values?

7.3d* Write a computer program to find the stripline capacitance as in Ex. 7.3b. Extend the
range included on the larger electrodes by one unit of the division in Fig. 7.3e and
evaluate the effect on capacitance. Then use a subdivision of the electrodes one-half as
fine as in the example. Compare the results to evaluate the importance of the grid size.
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Check by the Cauchy—Riemann equations the analyticity of the general power term
W = C,Z" and a series of such terms,

W= 21 cz
Check the following functions by the Cauchy—Riemann equations to determine if they
are analytic:
W = sinZ
W = ¢
W=2¢=x—jy
W = ZZ*

I

Check the analyticity of the following, noting isolated points where the derivatives
may not remain finite:

W=InZ

W =tan Z

Take the change AZ in any general direction Ax + j Ay. Show that, if the Cauchy—
Riemann conditions are satisfied, Eq. 7.4(3) yields the same result for the derivative as
when the change is in the x direction or the y direction alone.

If by following a path around some point in the Z plane, the variable W takes on dif-
ferent values when the same Z is reached, the point around which the path is taken is
called a branch point. Evaluate W = Z'/2 and W = Z*/3 along a path of constant
radius around the origin to show that Z = 0 is a branch point for these functions.
Discuss the analyticity of these functions at the branch point.

Plot the shape of the u = +0.5 equipotentials for the V = x*3,y = 0 boundary
condition used in Ex. 7.5.

A thin cylindrical shell of radius a has a potential described by ®(a, 6) = V; cos 26.
Use a method similar to that in Ex. 7.5 to find ®(r,6).

Show that if u is the potential function, the field intensity E, is equal to the imaginary
part of dW/dZ and E, equals the negative of the real part.

Use the results of Prob. 7.5c¢ to find an expression for the slope of equipotential lines
in terms of dW/dZ. Show that all equipotential lines except u = 0 are normal to the
beam edge in the electron flow in Fig. 7.5b. (W = Z** is not analytic at Z = 0, as
was shown in Prob. 7.4e, and the W = O line at y = 0 is a special case.) Hint: Write
an expression for du in terms of partial derivatives and set du = 0 to get relations
existing along an equipotential.

Plot a few equipotentials and flux lines in the vicinity of conducting corners of angles
a = 7/3 and 37/4.

Evaluate the constant C; and C, in the logarithmic transformation so that u represents
the potential function in volts about a line charge of strength g, C/m. Let potential be
zeroatr = a.

Show that if v is taken as the potential function in the logarithmic transformation, it is
applicable to the region between two semi-infinite conducting planes intersecting at an
angle o, but separated by an infinitesimal gap at the origin so that the plane at § = 0
may be placed at potential zero and the plane at 8 = « at potential V;,. Evaluate the
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constants C; and C,, taking the reference for zero flux at r = a. Write the flux func-
tion in coulombs per meter.

Find the form of the curves of constant « and constant v for the functions sin~! Z,
cosh™! Z, and sinh ! Z. Do these permit one to solve problems in addition to those
from the function cos ™! Z?

Apply the results of the cos ™! transformation to item 4 in Ex. 7.6c. Take the right-
hand semi-infinite plane extending from x = a to x = « at potential V,,. Take the left-
hand semi-infinite plane extending from x = —atox = —o at potential zero. Evalu-
ate the scale factors and additive constant.

Apply the results of the transformation to item 2 of Ex. 7.6c. Take the elliptic cylindri-
cal conductor of semimajor axis a and semiminor axis b at potential V;,. The inner
conductor is a strip conductor extending between the foci, x = =*c, where

c=Va - p

Evaluate all required scale factors and constants. Find the total charge per unit length
induced upon the outer cylinder and the electrostatic capacitance of this two-conductor
system.

Modify the derivation in Ex. 7.6d to apply to the problem of parallel cylinders of un-
equal radius. Take the left-hand cylinder of radius R, with center at x = —d,, the
right-hand cylinder of radius R, with center at x = d,, and a total difference of poten-
tial V,, between cylinders. Find the electrostatic capacitance per unit length in terms of
R\, R,, and (d, + d,).

The important bilinear transformation is of the form
. tb
cZ' +d
Take a, b, c, and d as real constants, and show that any circle in the Z' plane is trans-

formed to a circle in the Z plane by this transformation. (Straight lines are considered
circles of infinite radius.)

Consider the special case of Prob. 7.6h witha = R,b = —R,c = l,andd = 1.
Show that the imaginary axis of the Z' plane transforms to a circle of radius R, center
at the origin, in the Z plane. Show that a line charge at x’ = d and its image at x' =
—d in the Z' plane transform to points in the Z plane at radii r, and r, with r;r, = R2.
Compare with the result for imaging line charges in a cylinder (Sec. 1.18).

Explain why a factor in the Schwarz transformation may be left out when it corre-
sponds to a point transformed to infinity in the Z’ plane.

In Eq. 7.7(2), separate Z into real and imaginary parts. Show that the boundary condi-
tion for potential is satisfied along the two conductors. Obtain the asymptotic equa-
tions for large positive 4 and for large negative u, and interpret the results in terms of
the type of field approached in these limits.

Work the example of Prob. 7.6e by the Schwarz technique and show that the same
result is obtained. This is the problem of two coplanar semi-infinite plane conductors
separated by a gap 2a, with the left-hand conductor at potential zero and the right-
hand conductor at potential V.

For the first example of Table 7.7, find the electrostatic capacitance in excess of what
would be obtained if a uniform field existed in both of the parallel-plane regions.

Plot the V,,/2 equipotential for Ex. 7.7.
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Suppose that the wave-guiding structure in Fig. 7.8a is bounded on the outside by a
dielectric &4(r) which has the value €, at R, and then decreases to an appreciably
lower value as r is increased. As was seen in Sec. 6.12, waves incident on a plane
boundary between two dielectrics from the higher & side can be totally reflected. Find
the limiting rate of decrease of &5 at R, which can permit total reflection of rays ap-
proaching the boundary, by studying the variation of the equivalent dielectric constant
in the W plane.

The so-called circular harmonics are the product solutions to Laplace’s equation in the
two circular cylindrical coordinates r and ¢. Apply the basic separation of variables
technique to Laplace’s equation in these coordinates to yield two ordinary differential
equations. Show that the r and ¢ equations are satisfied respectively by the functions
R and F , where

R=Cyr"+ Cyr™"
Fy4 = C;cos ng + C,4 sin nd

An infinite rod of a magnetic material of relative permeability u, lies with its axis per-
pendicular to the direction of a uniform magnetic field in which it is immersed. Take
the rod to be of circular cross section with radius a and use the expressions in Prob.
7.9a to find the fields inside and outside the rod. Note the uniformity of the field in-
side.

Plot the form of equipotentials for ® = V,/4,V,/2, and 3V,/4 for Fig. 7.10a.
Describe the electrode structure for which the single rectangular harmonic C,; cosh kx
sin ky is a solution for potential. Take electrodes at potential V, passing through |x| =
awheny = a/2.

Describe the electrode structure and exciting potentials for which the single circular
harmonic (Prob. 7.9a) Cr2 cos 2¢ is a solution.

Obtain Fourier series in sines and cosines for the following periodic functions:

(i) A triangular wave defined by f(x) = V(1 — 2x/L) from 0 to L/2 and f(x) =
Vol(2x/L) — 1] from L/2 to L
(ii) A sawtooth wave defined by f(x) = Vyx/Lfor0 <x <L
(iii) A sinusoidal pulse given by f(x) =(V,, cos kx — V) for —a < kx < a, f(x) =
0, for — 7 < kx < —a and also for a < kx < 7.

Suppose that a function is given over the interval O to a as f(x) = sin mx/a. What do
the cosine and sine representations yield? Explain how this single sine term can be
represented in terms of cosines.

Find sine and cosine representations for the function e** defined over the interval
0<x<a.

Plot f(x) given by Eq. 7.11(14) in the neighborhood of the discontinuities using
(i) five sine terms and (ii) ten sine terms and discuss differences from the rectangular
function being represented.

A complex form of the Fourier series for a function f(x) defined over the interval
0<x<ais

—_ j2
f(x) = 2 c,,e’ wnx/a

n=—oo
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Show that if this is valid, ¢, must be given by

1 [ 4
€y == f FOe™72m/a dx
avo

7.11f Find representations for the constant C over the interval 0 < x < q in the complex

7.11g

7.12a

7.12b

7.12¢

7.12d

7.12¢

form of Prob. 7.11e, and compare the result with Eq. 7.11(14).

Find the Fourier integral representation for a decaying exponential, f(x) = 0, for
x < O0and f(x) = ce”** forx > 0.

Obtain a series solution for the two-dimensional box problem in which sides aty = 0
and y = b are at potential zero, and end planes at x = gand x = —a are at
potential V.

Find the potential distribution for the box of Prob. 7.12a with the same boundary con-
ditions except that the potential on the side at y = 0 should be V; and thataty = b
should be —V;.

In a two-dimensional problem, parallel planes at y = O and y = b extend fromx = 0
to x = o and are at zero potential. The one end plane at x = 0 is at potential V,,.
Obtain a series solution.

The fringing that occurs at the open ends of a pair of parallel plates as seen in Fig.
1.9a leads to a modification of the fields between the plates from the ideal uniform
distribution. Consider x = 0 to be the ends of the plates, which are at y = 0, b. The
analysis of Ex. 7.7 can show that the potential between the ends of the plates may be
expressed approximately as ®(0, y) = Vy[(y/b) + 0.06 sin 27ry/b]. Find the distance
x at which the potential distribution between the plates is linear to within 1%, using
the analysis of Prob. 7.12c.

A two-dimensional conducting rectangular solid is bounded on three sides by perfect
conductors: aty = 0, P = 0;atx = 0,® = 0;aty = b, & = V|, It is bounded at
x = a by a dielectric with zero conductivity. Find an expression for the potential dis-
tribution inside the conducting solid.

7.12f Two concentric cylinders are located at r = g and r = b. The inner (+ = a) cylinder

- 1.12g

7.12h*

is split along its length into two halves which are at different potentials. Potential is
—Vyfor —m < ¢ <O0andV,for 0 < ¢ < . The cylinder at r = b is at zero
potential. Find the potential between the two cylinders.

The potential along the plane boundary of a half-space is in strips of width @ and alter-
nates between —V,, and V,,. Take the boundary to be at y = 0 and the strips to be
invariant in the z direction. The origin of the x coordinate lies in the gap between
strips so that the potential is —V;, for —a < x < 0 and V,, for 0 < x < a. Find the
potential distribution for y = 0 and determine the surface charge density along the y

= 0 plane. Put the result in closed form (see Collin, footnote 3 of Chap. 8, p. 813)
and plot for —a <x < a.

Infinite parallel conducting plates are located at y = 0 and y = a. A conducting strip
atx = 0,a/2 <y =<a, —» <z < o, is connected to the plate at y = q, thus

(I>=VO

A
al/2
y X

vh ®=0  po 712n
X
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introducing additional capacitance between the plates. (See Fig. P7.12A.) Assume a
linear potential variation for 0 < y < a/2 at x = 0, and use superposition of boundary
conditions to find an expression for the capacitance per meter in the z direction added
by the strip at x = 0.

Consider a rectangular prism of width a in the x direction and b in the y direction with
all four sides at zero potential extending from z = 0 to z = ». At z = 0 the prism
has a cap with the following potential distribution:

0 for0 <x<a/2aly

Vix,y, 0) =
3. 0) {VO fora/2 <x<a,ally

Find the potentials within the prism.

For a box as in Ex. 7.12c, find the potential distribution if the box is filled with a
homogeneous, isotropic dielectric with permittivity &, in the bottom half of the box
0 = z = ¢/2 and free space in the remainder.

Demonstrate that the series Eq. 7.13(10) does satisfy the differential equation 7.13(8).

Write a function f(r) in terms of nth-order Bessel functions over the range O to a and
determine the coefficients.

Determine coefficients for a function f(r) expressed over the range O to a as a series of
zero-order Bessel functions as follows:

fry = 3 %(‘%)

m=1
where p,, denotes the mth root of Jy(v) = 0 [i.e., J,(v) = O].

A cylinder divided into a set of rings with appropriately applied voltages may be used
to set up a nearly uniform electric field along the axis with advantageous focusing
properties for electron beams. Suppose the field at the radius a of the cylinder is given
approximately by E,(a, z) = Eo(1 + cos az), where « = 27/p and p is the period of
the rings. Find the potential variation along the rings (» = a) and for r < a. Deter-
mine the field on the axis and the period required to have the periodic part of the field
1% of E,.

Show that the function
O(r, z) = Aly(7r) cos 7z

satisfies the requirement of solutions of Laplace’s equation that there should be no
relative maxima or minima.

Find the series for potential inside the cylindrical region with end plates z = 0 and
z= [ at potential zero and the cylinder of radius a in two parts. Fromz = O to z =
1/2, it is at potential Vj; from z = /2 to z = I, it is at potential — V.

The problem is as in Prob. 7.17c except that the cylinder is divided in three parts with
potential zero from z = Otoz = b and also fromz = | — btoz = [. Potential is V,
fromz = btoz =1 — b.

Write the general formula for obtaining potential inside a cylindrical region of radius
a, with zero-potential end plates at z = 0 and z = [, provided potential is given as ®
= f(z)atr = a.

Write the general formula for obtaining potential inside a cylinder of radius a which,
with its plane base at z = 0, is at potential zero, provided that the potential is given
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across the plane surface at z = [, as
O, 1) = f(r)

7.17g Find the potential distribution inside a cylinder with zero potential on the cylindrical
surface at r = a, on the end plate at z = 0 and where a/2 < r < a on the end plate at
z = L Italso has ®(r,I) = V,for 0 = r < a/2.

7.18a Apply the separation of variables technique to Laplace’s equation in the three spherical
coordinates, r, 0, and ¢, obtaining the three resulting ordinary differential equations.
Write solutions to the r equation and the ¢ equation.

7.18b Assume a spherical surface split into two thin hemispherical shells with a small gap
between them. Assume a potential V;, on one hemisphere and zero on the other and
find the potential distribution in the surrounding space.

7.18c Write the general formulas for obtaining potential for » < a and for r > a, when po-
tential is given as a general function f(6) over a thin spherical shell at » = a.

7.18d For Ex. 7.18b, write the series for H, at any point r, 6 with r > a.

7.18e A Helmbholtz coil is used to obtain very nearly uniform magnetic field over a region
through the use of coils of large radius compared with coil cross sections. Consider
two such coaxial coils, each of radius a, one lying in the plane z = d and the other in
the plane z = —d. Take the current for each coil (considered as a single turn) as /.
Obtain the series for H, applicable to a region containing the origin, writing specific
forms for the first three coefficients. Show that if @ = 2d, the first nonzero coefficient
(other than the constant term) is the coefficient of r*.

7.19 In Egs. 7.19(3) and (4), let ¢ be the axial electric field component E,, and simplify by
taking A and C zero in (4). Discuss the forms of solutions and the question of finding
physical boundary conditions for (i) both £, and , real, (ii) £, real but k, imaginary,
and (iii) both £, and &, imaginary. For (ii) and (iii) would physical applicability of
solutions be changed if either or both of A and C were nonzero?



