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The above discussion for the periodic lens system may be applied directly to the
spherical mirror resonator by the relations between mirrors and lenses discussed in Sec.
14.5. A typical optical resonator used in laser systems consists of two spherical mirrors
with radii of curvature R, and R,, aligned with a common axis (Fig. 14.6b). Rays bounce
back and forth between the two mirrors (in the geometrical optics picture), and if the
system is stable, they are confined within some maximum radius. From Sec. 14.5, this
system is equivalent to the periodic lens systems of Fig. 14.6a with /; = [, = d so that
(13) applies directly, with f; = R,/2 and f, = R,/2. The stability condition for Fig.

14.6b is thus
d d
0=l —-=—H1-— | =
( R,)( R, ) 1 (19

It will be shown later that this condition is confirmed by a wave analysis, so it is a very
important relation for such resonators. Figure 14.6¢ shows the stable (unshaded) and
unstable (shaded) regions in a plane with d/R, as ordinate and d/R, as abscissa. The
special cases shown are the parallel plane (R, = R, = ), the concentric (R, = R, =
d/2), and the confocal (R,/2 + R,/2 = d). These will be discussed more in Sec. 14.15
using the wave analysis.

L ... ]
Dielectric Optical Waveguides

14.7 DIELECTRIC GUIDES OF PLANAR FORM

The principle of guiding electromagnetic waves by dielectric guides was shown in Sec.
9.2. Such guides have become very useful for optical communication devices. We will
consider the optical fibers used for transmission of optical communication signals in
later sections. Here we want to consider the simpler planar forms, which have been
utilized in the thin-film devices of integrated optics. Figure 14.7a shows such a guide
with three dielectrics separated by parallel-plane interfaces. The central medium 2 is
often called the film, the lower region 3 the substrare, and the upper region 1 the
superstrate or cover. If the refractive index of the film is higher than that of the materials
above and below, there is the possibility of having guided waves through the phenom-
enon of total reflection as explained in Sec. 9.2. Here, however, we wish to analyze by
returning to the basic field equations.

We assume propagation as e ~/#? in the z direction of Fig. 14.7a and neglect variations
with y. In this case the wave solutions divide into TM and TE types. We first consider
the latter, with the components E,, H,, and H,. The Helmholtz equation for E, in each
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Fie. 14.7a Section of parallel-plane dielectric guide. Propagation is in the z direction.
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region is then
2

E,;
dx; =B -K)E,, =123 0))

Solutions of this are either exponentials or sinusoids. We choose exponentials in regions
1 and 3 so that fields may decay with increasing distance from the film. From continuity
conditions, it can be shown (Prob. 14.7a) that the solution in the film must then be of
sinusoidal form in x. Components H, and H, are found, respectively, from the x and z
components of the Maxwell equation

VXE= —jowuH ?2)

The field components of the TE waves in the three regions are then

E, = Ae”% = —<%>Hxl
x>0 3)

Jop 0x  jou

E, = Bcos hx + Csin hx = -(%)sz

B
5 —d=x=0 “)
H,, = — [B sin hx — C cos hx]
Jop
x WK
E; = Der* = ‘(“E‘)Hxa
x< —d (5)
Hy = ——L— pers

Jop
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where

=B -8 F=B-pF pP=p-4 (©)
Continuity of tangential field components requires that £, and H, be continuous at x =
0, and again at x = —d. The four resulting equations allow reduction from the four

arbitrary constants A, B, C, and D to a single one and development of the determinantal
equation

)

Although this can be solved graphically® for the symmetric case and for the useful case
in which ny — n;  n, — ny (Prob. 14.7e), it has been solved numerically'® and the
important results are shown in Fig. 14.7b with these definitions:

2md
v = —:\E— Vn3 — n3 (8)
O N
n; — ni
b= esz 23 )
n; — n3
n: — n?
a= n; _—ng (10)
2 3
where
B
= = 11
Negr kO ( )

It is seen that the parameter v is proportional to the ratio of thickness to wavelength,
but also depends upon the differences in refractive index between guiding region and
substrate. Parameter b determines the value of 8 in terms of an effective refractive index
neg. Note that when b = 0, the wave travels with the velocity of light in the substrate
material, and when b is unity, it travels with the velocity in the film material. The
parameter a describes the degree of asymmetry. Fora = 0, n; = n;, and fora = =,
ny — n; > n, — ny. As an example of use of the figure, take a glass film on silica
substrate with air above, n, = 1, n, = 1.55, n; = 1.50. Thickness d = 1.46 um and
Ag = 0.6 um. Then v = 6.0 from (8) and @ = 8.2 from (10). From Fig. 14.7b we find
that two modes, the m = 0 and m = 1 modes, are guided. Their b values are read as
0.82 and 0.31, respectively. Using (9), this gives n.; = 1.541 and 1.516, respectively.
Both have velocities between light velocities of film and substrate, but the higher-order
wave is nearer cutoff and so has more energy in the substrate and travels with a velocity
near c/n;. The lower-order mode is further from cutoff, has more of its energy in the
film, and so has velocity nearer ¢/n,.

? R. E. Coliin, Fleld Theory of Guided Waves, 2nd ed., IEEE Press, Piscataway, NJ, 1991.
10 H. Kogelnik and V. Ramaswamy, Appl. Opt. 13, 1857 (1974).
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Fie. 14.7b Diagram showing normalized phase constant for first few modes of planar slab
dielectric waveguides versus normalized frequency, with a range of parameters. (Taken from
Kogelnik and Ramaswamy.'?)

For TM waves the analysis is essentially the dual of the above except that we must
take into account the different &’s (u was assumed the same for all regions). The
resulting determinantal equation is
- h[Pnz/”a + ‘1”2/'1

- pgn3/nin3

Figure 14.7b may also be used for this case when n, = ny if a is taken as

tan hd

amv = M_—__Fj_) (13)
nt (n3 — n3)

Note from the figure that for all modes except the m = 0 mode for the symmetric
case (n; = ny), there is a cutoff condition. For lower frequencies or lesser thicknesses.
the modes change from guided modes to radiating modes as the condition for total
reflection from the interfaces can no longer be satisfied. The ranges are (assuming
ny > ny > ny)

Guided waves kony < B < kgn,
Substrate radiation modes kon, < B < kqny
Modes with radiation above and below 0 < B < kgn

Physically unrealizable (growing in both regions) 3 > kyn,
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Although there is only a discrete set of guided modes, there is a continuous spectrum
of radiation modes. It can be shown that the modes (including the radiation modes) are
orthogonal over the interval —o < x < o and that the totality of guided and radiation
modes form a complete set. However, the set is awkward to use for expansion of
arbitrary functions because of the infinite extent of the radiation modes, and their con-
tinuous spectrum.'!~13

Finally we note that although we have developed the determinantal equation from a
direct solution of Maxwell’s equations, it can also be developed rigorously from the
picture of wave reflections at an angle, introduced in Sec. 9.2.

14.8 DIELECTRIC GUIDES OF RECTANGULAR FORM

The study of planar guides in the preceding section established the basic principles of
dielectric guiding but for most practical purposes it is desirable to confine the wave
laterally as well as in depth. One useful configuration is that of a dielectric of rectangular
cross section embedded in a substrate of lower index, as indicated in Fig. 14.8a. Often
the higher dielectric region is formed by diffusion or ion implantation to make an
inhomogeneous guiding region, as illustrated in Fig. 14.8b. The latter case can be
analyzed only numerically once the distribution of index is known (although analytic
solutions for certain index variations have been given!?), but analysis of the rectangular
approximation to Fig. 14.8b may still be useful. Even the rectangular configuration is
hard to analyze, but approximate solutions are available which give a good idea of the
behavior.

A numerical analysis of a dielectric guide of rectangular cross section surrounded by
a dielectric of lower index was given by Goell.!* This utilized expansions of the wave
in circular harmonics. Most often, one is concerned with operation well above cutoff
so that most of the energy is concentrated in the guiding region, and Marcatili has
supplied a very useful approximate method for this range.!> Consider the rectangular
dielectric 1 of Fig. 14.8¢. In the general case, different dielectrics 2, 3, 4, and 5 surround
the guiding region. Except near cutoff, the evanescent fields in the external regions die
off rapidly so that one need not worry about the difficult problem of matching fields in
the shaded corner regions. Moreover, if index differences are not too great, the waves
are nearly transverse electromagnetic and are found to break into two classes: E;,, with

1 D. Marcuse, Light Transmission Optics, 2nd ed., Krieger, Melbourne, FL, 1982,

2. D, Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed., Academic Press, San
Diego. CA, 1991.

13 H, Kogelnik, in Guided Wave Optoelectronics (T. Tamir, Ed.), 2nd ed., Springer-Verlag,
New York, 1990.

4 J. E. Goell, Bell. Syst. Tech. J. 48, 2133 (1969).

S E, A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).
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Fic. 14.8 (a) Dielectric guide with guiding confined in the y direction. (b) Similar inhomoge-
neous guide made by diffusion or ion implantation techniques. (c¢) Model for Marcatili analysis.

negligible E,, and E7, with negligible E,. For the latter class, with propagation as
e P

E, = C,costkx + ¢;) costk,y + ) @)
E, = C,costkx + ¢)e™? )
E, = Cye” ™ cosk,y + ¢,) 3)
where
o =B + i - g2 @

a = (B + k- k3 5)
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The solution for region 4 is similar to that for 2, and the solution for region 5 is similar
to that for 3, but with exponentials of opposite sign. Remaining field components are
obtained from Maxwell’s equations. Components E, and H,, are negligible for this class;
continuity of other tangential components at the four boundaries x = *a/2,y = +5b/2
relate all constants to C; and give the determinantal equation for B. Figure 14.84 gives
results when all surrounding dielectrics are the same, ns = n, = ny = n,, with n,/1.05

1.2
H o b | P Bl
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FIc.14.8 (d) Curves giving normalized phase constant versus normalized frequency of several
modes in rectangular dielectric guide surrounded by a common dielectric. Solid curves are by
Marcatili’s approximate method,'> and dot-dash curves by Goell’s computer solutions.™
(e) Intensity picture of EY, mode for a/b = 2 from Goell.'* (f) Similar picture for £, mode.!*
Figs. d, e, and f reprinted with permission of the Bell System Technical Journal, Copyright 1969,
AT&T.
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Fic. 14.8g Two-step method for obtaining effective index for a rectangular dielectric guide.

<, <n,and b/a = 3. Also plotted for comparison are results from Goell’s computer
calculations for these parameters showing that there is good agreement except near
cutoff. Figures 14.8¢ and f show a picture of two E2,, modes in a dielectric with
b/a =% n, = 1.02,n, = 1, and 2b/A)(n? — n3)'/? = 2.

Effective Index Method Many important guiding systems used with semiconductor
lasers or integrated optics have lateral dimensions of the guiding regions appreciably
larger than the depths. That is, a > b in Fig. 14.8c. In such cases a simple method
called the effective index method has been used to give useful approximate results.!6
The basis for this approach is in the recognition that for such cases the variations in
the vertical direction are dominant, assuming comparable mode orders in x and y. Thus,
in the Helmholtz equation with the e ~/#* propagation factor,

PE OE
2 Ty = (B RE ©)

the second derivative in x can be neglected in the first approximation. The solution is
then that of the planar guide of Sec. 14.7, with y as the variable instead of x. The curves
of Fig. 14.7b may then be used to give a first approximation to effective index, (#qg);.
Confinement in the x direction is then accounted for by using this effective index
between the side dielectrics, 7, and ns, and again using the planar analysis of Fig. 14.7b
with only x variations, leading to an improved n. = B/k,. The two steps are indicated
in Fig. 14.8g.

As with the Marcatili method, the effect of the corner materials is omitted, and as
with that method, results are best when operation is well above cutoff.

16, Bous, IEEE J. Quant. Electronics QE-18, 1083 (1982).

n3
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14,9 DIELECTRIC GUIDES OF CIRCULAR CROSS SECTION

Many practical dielectric guides, including the fibers used for optical communications,
are of circular cross section. We consider in this section a dielectric with uniform
permittivity &, extending to r = g, with a second dielectric of lower permittivity e,
surrounding it, and permeability of both materials taken as u (Fig. 14.94). (This is
called a step index fiber in optical communications; the useful graded index fiber is
discussed in the next section.)
Any rectangular component of field, such as E,, satisfies the scalar Helmholtz equa-
tion, which for a wave propagating as e™/P?_in circular cylindrical coordinates, is
FE,  10E, 1 &E,

or? T o 2 a¢?
For guided modes, k&2 — B% > 0 in the core, so ordinary Bessel functions result there.
Only the first kind is used, to maintain fields finite on the axis. For the outer material
or cladding, 8> — k3 > 0 for guided modes so that modified Bessel functions are
utilized. Only the second solution is retained, so that fields die off properly at infinity.
Axial field H, satisfies a similar equation and we may write

)E, =

r<a r>a
AJ(”—’) O g = ok
a ) |sin l¢ a ) |sin lp

. —BJ(Ef sinlg_(wr\[sini¢
21 \a/|cos i 22 \ a)|cos I

u2 — (k% _ BZ)a2 W2 (BZ _ k%)aZ

Il

Ezl

6]

&

|
|
|
|
|
81———1
=
[
|
|
A

Fic. 14.9a Step index optical fiber.
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The transverse field components may be obtained from these through Egs. 8.9(1)-(4),

where k2, = u?/a” for region 1 and &2, = —w?/a? for region 2. The results for £,
and H , (needed in applying continuity) are
o[
e[ s
e[ )
o[l S

For the symmetric case with [ = 0, the solutions break into separate TM and TE
sets, the former with E,, Hy,, and E, (expression for the last component not shown) and
the TE set with H,, E,, and H,. The continuity condition of E,; = E_, and Hy, =
Hy, atr = a gives for the TM set

hW _ e Kiw)

= 6
Jou) ew Ky(w) ©

The continuity condition of H,, = H,, Eg = Egatr = g for the TE set gives the
same equation with the factor €,/e; missing. Cutoff for the dielectric guide may be
considered to be the condition for which fields in the outer guide extend to infinity,
which happens if w = 0. For w = 0, K,/K, = =, so that Jo(u) = 0. So at cutoff,

u, = a(k} — k2)/2 = 2405, 5.52, . .. )

If [ # 0, the fields do not separate into TM and TE types, but all fields become
coupled through the continuity conditions. Applying continuity of E,, H, o M, and E
at r = g, the four arbitrary constants of (1)=(5) reduce to a single constant and there
results the determinantal equation

L@ | | [ kK P L K+ B) [Lwkiw] _ g o
wl () WK (w) uw JwWKmw) |~ wtwt ®

where
v=Vidr =T ©)

A

Solutions of this transcendental equation leads to hybrid modes. Although not purely
TM or TE, H, is dominant in one set of solutions, designated HE,, modes, whereas E,
is dominant in a set designated EH,, modes. Curves of B/ky as a function of v are
shown for several of the modes in Fig. 14.95.!7 The HE,; mode is special in that it has

17D, B. Keck, in Fundamentals of Optical Fiber Communications (M, L. Barnoski, Ed.), Aca-
demic Press, San Diego, CA, 1976,
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v =2§9,/n12_n22

FiG. 14.9b Normalized propagation constant as a function of v parameter for a few of the
lowest-order modes of a step waveguide.'’

no cutoff frequency and so is often called the dominant mode. Although it has no strict
cutoff, energy is primarily in the guiding core only when the core size is appreciable
in comparison with wavelength. This mode has been used in dielectric radiators'® and
is also important in optical fibers.'® Some photographs of the light distribution in various
modes or combinations of modes are shown in Fig. 14.9c. For high-data-rate fiber
communications it is desirable to have only one propagating mode to avoid intermode
distortion, as will be further discussed in Sec. 14.11.

Fic. 14.9¢c Photographs of modes in the step-index optical fiber. (From Ref. 19.)

8 G, E. Mueller and W. A. Tyrrell, Bell Syst. Tech. J. 26, 837 (1947).
19 N. S Kapany. J. Opt. Soc. Am. 51, 1067 (1961).
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1.0 T T T T T

Fic. 14.9d Normalized propagation constant versus normalized frequency for weakly guided
modes. (From Gloge.?!)

Special Case of Weak Guiding Most fibers used in optical communications have
only a small index difference between the inner core and the outer cladding. It has been
shown?%2! that in this case the determinantal equation (8) greatly simplifies and that
modes of order / + 1 and / — 1 have nearly the same values of 8. When these nearly
degenerate modes are superposed, it is found that fields combine in such a way that
they are linearly polarized—one set with E, and H, and another with E, and H, as the
dominant fields. Thus a wave with E, constructed from the / + 1, pand / — 1, p hybrid
modes is designated LPj,. Curves of phase constant (normalized) for these “weakly
guided” modes have been calculated by Gloge?! and are shown in Fig. 14.9d. The
variable v is given by (9); b is similar to that used with planar guides and is defined as

_ [Bz/ k% - n%] _ B/ ky — myllB/ ky + n,]

[n? — n3] [n, — nolln, + ny)

b (10)
Since n,, n,, and B/k, are all near one another, the factors with positive sign essentially
cancel and

b~ [B/ky — n,l

[n, — ny]

1D

2 A. W. Snyder and J. D. Love, Optical Waveguide Theory, Chapman and Hall, London,
1983.
21 D, Gloge, Appl. Opt. 10, 2252 (1971).
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14.10 PROPAGATION OF GAUSSIAN BEAMS IN GRADED INDEX FIBERS

Dielectric rods or fibers with a quadratic variation of index with radius (or nearly so)
are found to be very useful for guiding optical waves. From a ray optics point of view
each section appears as a lens, with a consequent confining of rays by this distributed
lens as shown in Ex. 14.4b. We now wish to study the guided modes of such a rod by
a field analysis and will find that the fundamental mode has a gaussian distribution over
the cross section. Later we will see similar gaussian modes in space, but spreading in
the absence of a guiding medium. Gaussian modes and their higher-order extensions
are consequently of major importance in work with coherent optics and we will find
ways of studying their transformation by lenses, mirrors, and other optical components.

Let permeability be that of space with & a function of radius. Maxwell’s equations
are

V- [eE] = eV - E+E:-Ve=0 e
V X H = jwe(E )
VX E = —jouH 3)
As usual, we take the curl of (3):
VXVXE= —jou,V X H 4)

The left side is expanded and (2) is substituted on the right:
~VE + V(V - E) = 0*ue(nE 3)

Now V - E is substituted from (1) and the terms rearranged to give

VE + o*uge(E = —V(E '8V8> ©6)

This is the general equation for E in a region with inhomogeneous . However, if the
change of € is small in a wavelength, as is usual, it can be shown that the term on the
right is small in comparison with the second term on the left. We consequently neglect
the right side:

VE + o?uye(r)E ~ 0 ©)

We take the variation of & as quadratic in »:
r 2712
e(r) = ggn’(r) = sOnz(O)[l - A(Z) :| (8)

where n(r) is the corresponding index variation and a is some reference radius. For one
transverse rectangular component of E, Eq. (7), neglecting the term in A2, becomes

2
V2E + k2(0)[1 - 2A<£> ]E =0 )
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where

2 2
BO) = Pue(0) = % 770) = (?) #2(0) (10)
0

Let us first consider circular cylindrical coordinates with no ¢ variations. Equation (9)

then becomes
§f§+l@+32_5+k2(0)1—2A52E~0 1)
o ror 97 a

It can be shown by substitution that this is solved by

E(r,z) = Ae™/"e=ifz (12)
where
2(12 1/4 a/\o 1/2 1 1/4
Yo <Ak2<0>> - [m«»] (55> -
and
B = k() — ﬁ(o) = k(0) - %(%)m (14)

so that the variation of E with radius is of gaussian form with a radius w to the 1/e
value of field dependent upon a, Ay, n(0), and A. This radius is usually called beam
radius although fields do extend beyond. As a numerical example, if A = 0.01, a =
50 wm, Ay = 1 um, n(0) = 1.5, w is found to be 8.67 um.

When w is large compared with wavelength, transverse variation of E is small in a
wavelength, and the mode is nearly transverse electromagnetic with axial components
of E and H negligible and the transverse components normal to each other and related
by [uo/€(0)]"/2. This fundamental mode is consequently designated TEM,y,.

Higher-order modes may be found by returning to (9). First by expansion of V? in
rectangular coordinates,

PE  PE PE r\2
— +—+—=+R0)|1-2Al-) |E=0 1
a2 ay* 9z ¢ )[ (a) :| (1)

the solution may be shown to be
Vox \/Ey
E=A,H, H,

= — o~ @AW =Bz (16)
w w
where H,,({) are Hermite polynomials of order m satisfying the differential equation?

2 M. R. Spiegel, Mathematical Handbook, Schaum’s Outline Series, McGraw-Hil, New
York, 1968.
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d*H({) aH,({)
) s 2 =
and defined by
(0 = (—1yet® & oo (18)
In these higher-order modes, w is the same as in (13) but B, is given by
5 V2A
B, = K*(0) — 2 ——a——k(O)(m +p+ 1) (19)
Or with A small,
V2A
By = KO) = ——(m + p + 1) (20)

Similarly if V? is expanded in circular cylindrical coordinates, (9) is
PE 10E 1 PE  &E r\?
— +-—+S5—+— + k0|1 -2A(-) [E=0 21
T ra P ap* 9z ( )[ <a> @l
The solution may be shown to be

V2r\® (272 ) )
E = Bmp<—> Lg<%>e—r2/w2e:jm¢e—]ﬁmpz (22)
w w

where L7(§) are associated Laguerre polynomials®? of order p and degree m, satisfying
the differential equation

d?L7(é) dL7(&)

£ e +m+ 1= dE + (p — mLjé) =0 (23)
and defined by
L7(© = % [65% (§"6‘5)] (24)
Here also w is as in (13) but phase constant 3 is
B = k(0) —@(2m+p+ 1) (25)

Since the fiber is cylindrical, it might seem that we would only be interested in the
latter set, but the Hermite forms are not only simpler, but are often generated by asym-
metric excitations. Each of the sets is complete, so an arbitrary distribution can be
expanded in either of the two sets.
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14.11 INTERMODE DELAY AND GROUP VELOCITY DISPERSION

In an information transmission system, the optical wave is modulated (often digitally)
and by Fourier analysis there must be a band of frequencies transmitted to represent
the modulated wave. If group velocity varies over this frequency band, the envelope is
distorted as the signal propagates down the fiber, as shown in Sec. 8.16. Such group
dispersion limits the useful transmission distance for a given information rate. We shall
see below that group dispersion may arise either from material properties or from the
characteristics of waveguide modes themselves. In addition, signal distortion may arise
in multimode guides because of the different velocities of the various modes, even at
the same frequency; this effect will be considered first.

Intermode Delay In a fiber with many propagating modes, Figs. 14.9b and d show
. that some modes will be near cutoff with most of the energy in the cladding, some will
‘be far from cutoff with most of the energy in the core, and others will be in between.
Thus a single pulse at the input, if it excites multiple modes, may end as a multiple
pulse at the output and an estimate of intermode group delay for length L of the multi-
mode fiber is

L
ATg = ; (n, — ny) (1)

For a 1% difference in n; and n,, with n about 1.5, the initial pulse would yield multiple
pulses spread over about 50 ns for each kilometer of propagation, severely limiting for
high-data-rate, long-distance systems.

An advantage of the graded index fiber is that intermode delay is less limiting than
in the above. If we calculate group velocity from the approximate expression for 8 of
a quadratic index fiber, Eq. 14.10(20), group delay for mode (m, p) is

r % a)dn(O)]

@

Lo +
& dw_cn dw

Thus, to this degree of approximation, group delay is the same for all modes and we
do not receive multiple pulses at the output corresponding to a single pulse at the input.
The more accurate expression 14.10(19) would show some intermode delay and prac-
tical differences between the real graded fiber and the ideal model also add some delay,
but graded index fibers are capable of appreciably higher data rates for a given distance
than the step index fibers for which (1) was an estimate.

Group Velocity Dispersion For a single mode, group delay over length L is

L 4B
T == =%
£ v, dw )
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So for a band of frequencies Aw carrying the desired information, the variation of delay
over this band is approximately
d*p
AT, ~ L T2 Aw 4)

Thus a pulse will spread at a rate proportional to the second derivative of 8 with
frequency. One source of such group velocity dispersion is waveguide dispersion, aris-
ing from the frequency dependence of 8 for a given guided mode, with refractive index
considered independent of frequency. For step index fibers, values may be estimated
from the curves plotted in Fig. 14.9b or calculated numerically from the implicit forms
of Sec. 14.9. This contribution to dispersion is generally less important than the con-
tributions arising from material dispersion.

Material dispersion arises from the variation of refractive index with frequency. From
(4) with B =~ wn/c, this is
L d*(nw)

ATy ~ ¢ do?

Aw )

In fiber technology it is common to express dispersion in terms of wavelength spread
rather than frequency spread, with (4) written

AT, = LDAX ©)
where D is related to d?8/dw* by
27c d*B
p=-2%F
A do? )

This is commonly expressed in picoseconds per kilometer of fiber length and nanometer
of wavelength spread. Some representative curves of D versus wavelength®® are shown
in Fig. 14.11. Material dispersion is seen to be larger than waveguide dispersion except
near the wavelength of zero dispersion, which for silica is around 1.3 um. The zero-
dispersion wavelength can be shifted by doping the material or by using multiple di-
electrics in the cladding, or both. Operation near a zero-dispersion wavelength may be
important in minimizing envelope distortion.

Normal dispersion (d%8/dw* > 0 or D < 0) occurs for wavelengths shorter than that
for zero dispersion, and anomalous dispersion (d28/dw* < 0 or D > 0) for the longer
wavelengths.

For a highly coherent source such as a good laser, Aw of (4) or AX of (6) comes
from the frequency spectrum of the modulated signal. For example a gaussian pulse of
width 7 would spread to 7' in distance L, as in Eq. 8.16(14):

8L d2B\* |2
T = Tl:l + <?d_a§> :I ) (©))]

2 B. J. Ainslie and C. R. Day, J. Light Wave Tech. LT-4, 967 (1986).



780 Chapter 14 Optics

Material dispersion

Sio
2 //

Dispersion (ps/nm-km)

Fic.14.11 Dispersion of single-mode fibers as function of material composition and core radius
a. (After Ainslie et al.??)

For an incoherent source such as a light-emitting diode (LED) or imperfect laser, Aw
or AA may arise from the frequency variations of the source, exceeding the spectral
width of the signal. In that case, the spectral width of the source is used in (4) or (6).

14.12 NONLUNEAR EFFECTS IN FIBERS: SOLITONS

Silica and the related materials used in optical fibers have such a high degree of linearity
that nonlinear effects might not be expected. Nevertheless, the small fiber cross sections
lead to intensities high enough to produce small nonlinear interactions even with modest
powers, and the low loss allows these interactions to occur over long lengths of the
fiber. We shall concentrate here on the self-phase modulation effect in which refractive
index changes with the intensity of the wave, which in turn changes the phase of the
wave. Other important effects, some useful and some undesirable, include intermodu-
lation products among several signals propagating in the same fiber, harmonic gener-
ation, and several parametric processes.>* Stimulated Raman scattering arises from in-
teraction of the optical wave with vibrational modes of the silica molecules and
stimulated Brillouin scattering from interaction with acoustic waves in the fiber. Both
may cause undesirable frequency shifts, but have also proven useful as optlcal amplifiers
or tunable optical oscillators. All of these are well treated in several texts.?

24 G, P. Agrawal, Nonlinear Fiber Optics, Academic Press, San Diego, CA, 1989.

25 See, for example, B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Chap. 19,
Wiley, New York, 1991, or A. Yariv, Quantum Electronics, 3rd ed., Chap. 18, Wiley, New
York, 1989.
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The important nonlinear effect in fibers, in the language of Sec. 13.7, is a y® effect.
It is more common to express it in terms of a change in the refractive index:

nE) = ny + An = ny + nylE]? (1)

This An produces phase change in length L:
L
Ad = LAB ~ 7‘” An )

For silica, n, ~ 2.3 X 102> m?/V? 5o 10 W in a fiber of 10-um core diameter would
result in a field of about 8 X 10° V/m, producing an index change by (1) of only
1.5 X 10~%. From (2), however, this would produce phase change of 7 in about 43 m
for A = 1.3 um.

To illustrate the importance of dispersion and nonlinear index working together, we
will neglect transverse variations and losses, assume small nonlinear effects, neglect
dispersion terms higher than d?8/dw?, and consider only one polarization so that elec-
tric field may be treated as a scalar. Expressing the field E(z, ¢) as a Fourier integral,

E(z, t) = 2—17; f :, E(z, w)e’ dw 3)
Each Fourier component propagates with its phase constant S(w),
E(z, w) = E(0, w)e 4)
so that
LD jEC, @ ©

For the dispersive effect, we expand B in a Taylor series up to second-order terms, as
in Sec. 8.16, and add the nonlinear perturbation. Since it is not rapidly varying with
frequency, it is evaluated at w,:

B 1 9B o,
Blw) = Blwy) + P (0 — wy) + 7 307 (0 — wp)® + —C-Q An 6)
Now if we consider a pulse with envelope A(z, ) modulating the optical carrier of
angular frequency wy,

E(z, t) = A(z, t)e/«ot=Fo? @
The pulse envelope A(z, t) may be expressed in a Fourier integral in its base frequency,

W, = 0 — Wy

1 (" .
A@ 0 = 5= f_ Az, w,)e’mdw,, ®)

From (7) and (8) we may show
E(z, w) = A(z, w,,)e /P* ©
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So substitution in (5) gives

0A(z, w,, . .
(_az_) — JBoAG, w,) = —jBAG, w,) . (10
Now using Eq. (6) and using dB/dw = 1/v,, B” = d*B/dw?, and An from (1),
W o) _ _,-[& MERp g |E|2]A(z, ©,) (11)
9z Uy 2 c

We next make an inverse Fourier transform of (11), noting that the inverse Fourier
transform of (jw,,)"A(z, w,,) is 9"A(z, t)/0t". The résult is

MA@  1AGY _ ]

dz v, ot 2

, A D joy

B Py ~ m|APA(z, 1) (12)

Equation (12) is a nonlinear equation giving the effect of both dispersion and nonline-
arity on wave propagation. (It is often normalized and transformed to moving coordi-
nates, leading to a standard form known as the nonlinear Schroedinger equation, but
the present form is adequate for our purposes.) If terms on the right were zero, the pulse
amplitude A(z, r) would travel without change at group velocity v, as expected. The
first term on the right represents group velocity dispersion and leads to pulse broadening
as explained in Secs. 8.16 and 14.11. The second term on the right gives the effect of
the nonlinearity, and the self phase modulation described qualitatively above.

Solitons An important solution of (12) is the fundamental soliton, or solitary wave,
expressed by

t — z/v,\ .
Az, 1) = A, sech<——g-)e’z/4z° (13)
i TO

where z, = 73/2p" and 7, is a measure of the width of a propagating pulse. Equation
(13) is a solution for a particular amplitude satisfying the condition

_ar\1/2
Ao =+ <———C> (14)

'TO wHh,

We see first that 8” must be negative for there to be a real solution of (12). That is,
operation must be in the region of anomalous dispersion, which for silica occurs for
wavelengths longer than about 1.3 um. Then, for a particular amplitude related to pulse
width and the characteristics of the fiber, the envelope (13) propagates at group velocity
U, without change of shape. The group velocity dispersion, which tends to make the
pulse broaden, is compensated by the nonlinear effect, which tends to compress the
pulse.

Although the preceding analysis has involved several idealizations, it has proven
useful in predicting the observed solitons in actual fibers. Note that the true solitons

exist only for specific power levels. Thus when propagating with attenuation there is
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some pulse broadening as power is lost. But it is a graceful degradation, and experience
has shown that additional power to restore the balance need not be added for many
kilometers.

There are other solutions to (12), called higher-order solitons. These alternately
broaden and contract, returning to the original shape in distance z.

Pulse Compression Another important application of (12) is in the compression
of short optical pulses. In this technique, a fiber with normal dispersion (8" > 0) may
propagate a pulse, the nonlinear effect producing a frequency shift or “chirp” and the
group velocity dispersion causing the pulse to broaden. With the right parameters, the
frequency variation may be an almost linear function of time and the pulse may then
be compressed by introducing separate anomalous dispersion, for example, by a com-
bination of prisms and/or gratings. This is related to soliton propagation, except that
there the anomalous dispersion is in the fiber, continuously compensating for the dis-
persion, and in the fiber pulse compressor the two functions are separate.

Extensive study of (12) requires numerical solution. Curves for optimum design of
the pulse compressors have been so obtained.?®

T D S S S D O
Gaussian Beams In Space and In Optical Resonators

14.13 PROPAGATION OF GAUSSIAN BEAMS IN A HOMOGENEOUS MEDIUM

The modes of a graded index fiber, studied in Sec. 14.10, propagate with a constant
pattern in the fiber if the modes are properly started. Any tendency to diffract is just
countered by the distributed focusing effect of the lens-like medium. Let us imagine
that the modes come to the end of the fiber, as in Fig. 14.13, and excite similar modes
in space or other homogeneous material. It seems clear that they will spread by dif-
fraction in the external region. Gaussian modes and their higher-order extensions thus
become fundamental forms in homogeneous regions and may be excited in a variety
of ways by lasers or other coherent sources. It is thus important to understand their
properties.

The main propagation variation in the homogeneous region is still expected as
e~ /%, but there are other variations with z so that we may write

E(r, ¢, 2) = Y(r, §, )e ™ ey

26 W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984). Also see
G. P. Agrawal, Nonlinear Fiber Optics, Chap. 6. Academic Press, San Diego, CA, 1989.
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source P located at (xo, Yo, 2o). The idealized spherical wave (Prob. 14.19c) emanating
from the source may be written as

A ,
A(xa y’ Z) = _0— e_Jk"(ny,Z) (9)
r(x, y, z)
where |

After interfering with a plane reference wave of the form (6), and recording with line-
arity assumed as in the previous examples, transmissivity at z = 0 is

2
T(x, y) — K{ (A_g + R%) + ALRQ [ej(tﬁo—kr(x.y,zo) + e—j(%—kr(x,y,zo)]} (1 1)
r r

The original point source is removed and the hologram irradiated with reference wave
(6), yielding a transmitted wave

Bix,y) = B, + B, + B, ] (12)
where
A2

B(x,y) = KR0<;3° + R%)exp[—j(kzO + )] (13)
KR?A

By(x, y) = f expl —jkl(x — x0)* + (y — yo)? + 221V2) (14)
KR?

Bs(x, y) = fA" exp{ —=2jiy + JjKl(x — x0)* + (y — y)* + Y2} (15)

Following previous arguments, B, continues to the right as a diverging spherical wave
as though emanating from the original source P (now missing), and B; as a converging
spherical wave resulting in a real image of P at P'. B, is uniform in phase over the
plane but varying in amplitude through the dependence on r. This can be made small
and the continuation of B, to the right is approximately a plane wave, with B, the
desired reconstruction.

PROBLEMS

14.2a Obtain from Eq. 14.2(4) the approximate spread of focal length Af fromr = 0 to
Tmax When 1. /R < 1. For a spherical mirror of radius of curvature 1 m, used with
a laser of wavelength Ay = 1 um, give the maximum radius of rays from the axis if
spread in focal length is not to be more than a wavelength.

14.2b The f-number of a lens is defined as the ratio of focal length to diameter. (Here we
will denote by F to avoid confusion with focal length.) Give the spread of focal
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length in terms of F when r,,, < R for the spherical mirror. Explain why “stopping
down” a lens to higher values of F should increase sharpness of an image.

Carry out the derivation corresponding to that of Ex. 14.2c for a diverging thin lens
with plane surface at z = 0 and a parabolic surface z = d + r?/4g,0 <r <a, (i)
by ray analysis and (ii) by phase considerations.

For the doubly convex lens of Fig. 14.2¢, derive the equation for focal length,
Eq. 14.2 (21), by considering refraction at the surface.

Consider the imaging for a spherical mirror by ray reflection. That is, for an object
point on the axis distance d, from a mirror with radius of curvature R, find the im-
age distance d, from the mirror at which a ray reflected at radius r crosses the axis.
Under what approximations does Eq. 14.2(24) apply?

For a uniform plane wave, polarized with e, only, propagating at angle « from the x
axis with cos y = 0, give all quantities e, h, S, u,, and u, used in the general for-
mulation. Material has refractive index n.

We will find later that many useful beams have gaussian forms. Assume one with
form in the transverse plane, e = % exp[ —(x? + y?)/w3] propagating substantially
in the z direction, S =~ nz. Compare the neglected term on the right side of Eq.
14.3(5) with the term VS X e in magnitude and direction and state under what con-
dition it is negligible.

Utilizing Eq. 14.3(12) for the eikonal of a plane wave, show that E and H are re-
lated as in an arbitrarily propagating plane wave in a homogeneous medium.

Find the required form of refractive index variation to maintain a ray in a circular
path of constant radius R.

Very low absorptions can be measured by using the thermal lens effect resulting
from passing a beam through a cell containing the sample, as in Ex. 14.4a. It has
been shown [J. R. Whinnery, Acc. Chem. Res. 7, 225 (1974)] that the heating effect
results, in steady state, in a quadratic index variation near the axis as in Eq.
14.4(11), with

_ aP(dn/dT)
4kny

A =

where a is absorption coefficient, P power in the laser beam, dn/dT the variation of
refractive index with temperature, £ the thermal conductivity, and n, the refractive
index on the axis. Find the expected focal length of a cell 1 cm long filled with
carbon disulfide (n, = 1.63,dn/dT = 7.9 X 107*K™ 1, k = 6.82 X 107*J/cm-
s-K, @ = 6 X 107*cm™1) for a laser beam with 0.5 W power and a beam radius
a = 0.5 mm.

Derive Eq. 14.4(4) from Eq. 14.4(10).

A typical graded index fiber used in an optical communications system with moder-
ate data rates has n, = 1.5, A = 0.005, and a = 25 um. For a ray crossing the
axis at an angle ry find the distance at which it returns to the axis. What is the maxi-
mum angle of crossing to maintain r,, less than a?

A ray passes from a medium of index n; into a slab of thickness d and index n,,
then exits into n;. Compare radius and slope at the output from the ray matrix and
an exact Snell’s law calculation if n; = 1,1, = 2,d = 1 cm, and angle of input
ray is (i) 20 degrees and (ii) 40 degrees from the perpendicular to the slab.
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14.5b Slabs of dielectric with index n, and thickness d, alternate with slabs having index
n, and thickness d,. Using the paraxial (small-angle) approximation, find the ray
matrix for one period of this combination, then two periods, and induce the result
for N periods. Interpret the result.

14.5¢ Derive Eq. 14.5(5) with the approximations stated.

14.5d For the doubly convex lens of Fig. 14.2¢, derive the expression for focal length, Eq.
14.2(21), by considering the tandem combination of two spherical dielectric inter-
faces, with proper attention to sign.

14.6a An alternate form of the solution in Eq. 14.6(7) to the difference equation for the
periodic lens system is

r, = C, cos mf + C, sin mf

Relate C; and C, to the values of initial radius and slope of the rays. The ray matrix
for one period is assumed known.

14.6b A periodic lens system has d; = d, and f; = f, = d,/5. Check stability and
sketch the ray paths through a few lenses starting with zero slope and r = 0.1f, at
the first lens.

14.6¢c Repeat Prob. 14.6b ford, = d,, f; = f, = d,.

14.6d Repeat Prob. 14.6b for the case of alternate converging and diverging lenses,
dy=dyfi = —f, =dy.

14.7a Explain why sinusoidal rather than hyperbolic solutions are required in the film of
Fig. 14.7a for guided modes with exponential decay away from the film in cover
and substrate regions.

14.7b In the example of the glass film guide given in Sec. 14.7, thickness d is increased to
2 uwm. Use Fig. 14.7b to find n.g for all of the guided TE and TM modes.

14.7¢ In a certain semiconductor laser, the active region consists of a layer of GaAs 0.3
wum thick, with n, = 3.35. This is surrounded above and below with GaAlAs with
n; = ny = 3.23. Use Fig. 14.7b to find the modes that can be guided by this active
layer, and their values of n.. Wavelength A, is 0.85 wm.

14.7d* To illustrate the graphical method of solution for Eq. 14.7(7), consider the symme-
tric case with n, = n; so that ¢ = p. Show that (5) is then satisfied either by pd =
hd tan(hd/2) or pd = — hd cot(hd/2). Sketch some curves of pd versus hd from
these equations. Then show from (4) that the loci for constant v [defined by (6)] in
the pd versus hd plane are circles and sketch these for v = 2, 5, 8. Solutions
(modes) are given by points of intersection between the circles and the first sets of
curves plotted. (Note that p must be positive for guided modes.) Check the modes
predicted for the three values of v from Fig. 14.7b.

14.7¢* Find the approximation to Eq. 14.7(7) when n; — n; > n, — n,, as is the case for
many guides with dielectric substrates but air above. Show that a graphical solution
similar to that of Prob. 14.7d may be utilized for this case also.

14.8a A guide is fabricated as in Fig. 14.8a with the guiding material GaAs with n; =
3.59, width 1.8 um, and depth 0.3 wm. The surrounding material is AlGaAs with
ny = 3.385 except for the top surface, which is protected by silica with n, = 1.5.
Free-space wavelength is 0.85 um. Find approximate values of n. for this guide by
the effective index method, for the lowest-order mode.
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We are to design a dielectric guide by in-diffusing titanium into lithium niobate,
much as in Fig. 14.8b. Assume index change An and diffusion depth 4 as in H.
Naitoh et al., Appl. Opt. 16, 2546 (1977): An = 0.078:7%%5 and d = 0.43t, where ¢
is diffusion time in hours and d is in um.

(i) As a first approximation, use the model of a step index guide as in Fig. 14.7a
with air above and estimate the maximum diffusion time for single-mode oper-
ation. Take A = 0.633 um and the refractive index of lithium niobate as 2.05.

(ii) For operation with a v value 0.75 of that above, give diffusion time and effec-
tive index as based on this model.

(iii) Now, taking into account lateral confinement with a width 1.5 um, use effec-
tive index method to give the next correction to 7.

For a step index fiber of silica (n = 1.500) cladding on a glass (n = 1.505) core of
6.0-um diameter, find the cutoff wavelengths of the two lowest axially symmetric
TE modes.

A fiber witha = 10 wm has n; = 1.51 and n, = 1.50. Use Fig. 14.9d to estimate
the number of modes that may propagate at A, = 1.3 um. Give the values of n
for the highest and lowest order of these modes. What radius would be required for
only one propagating mode?

For a fiber with quadratic index variation having n(0) = 1.5, a = 10 um, and

Ao = 1 um, what A is required for a beam radius w = 3 um? Find the percentage
difference of phase velocity from that of a plane wave in material with index n(0)
for a fundamental mode and Hermite—gaussian modes of order m, p.

For the numerical values given in Prob. 14.10a, estimate the term on the right of
Eq. 14.10(6) in comparison with the second term on the left.

Using Eq. 14.10(17) show that (16) does satisfy (15) with the conditions on w and
By as given.

Using Eq. 14.10(23) show that (22) satisfies (21) with the conditions on w and 8,
as given.

A multimode fiber has n, = 1.51 and n, = 1.50. About what maximum data rate
could be used with this fiber over a distance of 7 km?

If one uses the expression 14.10(19) rather than the approximation (20), group ve-
locity does depend upon mode order. Find group velocity from (19) and the inter-
mode dispersion based upon this result. (In a practical case, the boundary effect at
r = a and the departure from the ideal profile may be more important, but this is at
least one component of dispersion.)

For a GaAlAs laser source at A, = 0.85 um with a single-mode fiber, material dis-
persion is likely to be dominant. If d?n/dA? ~ 3.2 X 10'° m™2 at this wavelength,
what approximate data rate is usable over a length of 20 km if the laser is (i) an
ideal coherent source? (ii) Has a spectral width AA, = 0.2 nm?

The wavelength of minimum attenuation for silica is about 1.55 wm. Use Fig. 14.11
to estimate the usable distance for a data rate of 1 Gb/s, using an unshifted fiber at
this wavelength assuming perfectly coherent sources.

Under what conditions does Eq. 14.11(8) reduce to the simpler Eq. 14.11(4)? For
7= 10psand A = 1.5 um, how small must the AA of the laser be for the signal
spectrum to be dominant over the source spectrum?
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Show that Eq. 14.12(13) is a solution of (12) for the conditions stated.

For a silica fiber of core diameter 10 wm and refractive index 1.5, estimate the
power required to maintain a fundamental soliton if wavelength is 1.4 um with dis-
persion estimated as 5 ps/nm-km.

Verify the form in Eq. 14.13(12).

A typical helium—neon laser with A, = 633 nm has a beam radius of about

0.5 mm. Taking this as w,, find beam radius at the other side of a bay 10 km away.
Similarly find beam radius on the moon of a Nd—YAG laser (A, = 1.06 um) 3.84
X 10% km from the earth where it starts with wy = 5 mm.

For the examples of Prob. 14.13b, there is an optimum w,, to produce minimum
beam radius at the receiver a given distance away. Find the optimum w,, and the
corresponding w(z) at the targets, for the two examples of that problem.

Show that Eq. 14.13(18) is a solution of (2) in rectangular coordinates.
Show that Eq. 14.13(19) is a solution of (2) in circular cylindrical coordinates.

Note that in contrast to the gaussian beam, a beam with Bessel function variation in
radius,

E = EyJy(ar)e/ @ =8

does not vary as it propagates in z and has been proposed for some applications

[J. Durnin, J. Opt. Soc. Am. A4, 651, (1987)]. Show under what conditions it is a
solution of the wave equation. Find the power propagating in an annular ring be-
tween the zeros m and m + 1 of the Bessel function and show that this is inde-
pendent of m for large m. Discuss the advantages and disadvantages of the profile as
compared with the gaussian.

A gaussian beam of beam radius w, and radius of curvature R, passes from dielec-
tric with index n, to one with index n,, the plane interface being normal to the beam
axis. Find gaussian beam properties in medium 2.

One practical problem is that of focusing the output of a laser, assumed to be of
fundamental gaussian beam form, onto a fiber distance L away. If beam radius of
the laser (assumed a waist) is w, and that at the fiber (also a waist) is w,, find posi-
tion d from the laser and focal length f of a thin lens for the desired focusing.
(Hint: Work forward from the laser and backward from the fiber until gaussian
beams intersect.)

This is a variation of Prob. 14.14b in which there is a specific lens with given focal
length £, but its placing and the laser-fiber spacing L are variable. Find d and L for
the given wy, w,, and f in this case.

In the rod with quadratic index variation described in Sec. 14.10 [n(0) = 1.5, A =
0.01, Ay = 1 um, @ = 50 um], a gaussian beam is introduced with zero slope but
w(0) = 12 um. Describe the beam propagation for z > 0.

This is similar to Prob. 14.14d except that the gaussian beam is introduced into the
graded index fiber at the equilibrium radius but with slope dw/dz = 0.2.
Derive Eq. 14.15(8) from Egs. (5), (6), and (7).

For a helium—neon laser, the discharge tube has a diameter of 5 mm and length of
40 cm. A plane mirror is placed at one end and it is desired to keep gaussian beam
diameter not more than 3 mm at the other end to minimize wall losses. Find the
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radius of curvature of a mirror to be placed close to the second end. Wavelength is
633 nm. Comment on the two solutions.

For a typical solid-state laser such as ruby, Nd-YAG, or alexandrite, a; = a, =~

5 mm, d = 10 cm, and Ay = 1 um with refractive index =~ 1.7. Check the condition
on Fresnel number N for stability of such resonators. (Note that dielectric disconti-
nuity at the crystal side boundary further confines the beam.)

The resonator for a CO, laser with A; = 10.6 wm has radii of curvature R, =

10 m, R, = 20 m (sign convention as in Fig. 14.14a) and spacingd = 1.5 m.
Show location on the stability diagram in Fig. 14.6¢ and find radius and position of
the beam waist and the beam radii at the two mirrors.

A half-confocal resonator is made by inserting a plane mirror at the midplane of a
symmetric confocal resonator. The resulting resonator has R, = 2d, R, = ®, and
by an image argument, would seem to be equivalent to the original symmetric re-
sonator. Check the ABCD matrix for a round trip of this resonator and comment on
the differences from the symmetric confocal resonator.

Show location on a stability diagram of the resonators of Probs. 14.15b and d and
of the half-confocal resonator of Prob. 14.15e.

A ruby rod 10 cm long has refractive index n = 1.77 at free-space wavelength

Ao = 0.6943 um. If the plane ends form the resonant reflectors, find the longitudi-
nal mode number / nearest to the given wavelength and the frequency separation
between longitudinal modes.

The ruby rod of Prob. 14.16b now has its ends ground to form a confocal resonator.
Give the radius of curvature needed and calculate minimum spot size and spot size
at the ends. For a given mode number /, how much is frequency shifted from the
value for the plane mirrors?

Find longitudinal mode separation and transverse mode separation for the resonators
of Probs. 14.15b and d.

Show that there are stable configurations in which the mirror curvatures are in the
same direction. That is, the mode exists between a concave and convex surface.

Supply the details of the derivation of Eq. 14.17(9) with the definitions noted in the
text.

Show specifically by use of Eq. 14.17(9) that a gaussian beam at the input focal
plane does transform to a gaussian at the output focal plane, as stated in the text.

Convert the integral of Eq. 14.17(6) to polar coordinates (7, ¢) and find the form of
i at the output focal plane if that at the input focal plane corresponds to a uniformly
illuminated circle of radius a, centered on the axis.

By using two successive Fourier transforms of form Eq. 14.17(6), show that when
Ty(x,) = 1, the yY(x3) of Fig. 14.18b is like the input function but inverted and
changed in scale.

In Ex. 14.18 suppose that the spatial filter passes only lines + n but with a m-phase
shift for —n and zero-phase shift for + n. Describe the output function y5(x,).

Extend Ex. 14.18 to a two-dimensional screen with both horizontal and vertical
gratings. Describe the pattern for the Fourier plane. Design a spatial filter so that
only a horizontal grating appears at plane 3.
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Problems 811

In holography the reference wave need not be a plane wave. Consider Ex. 14.19a
with the object wave a plane wave incident at an angle on the recording plane and
the reference a spherical wave:

R(x,y, 2) = Roexp(—jkI¥* + y* + (z — z,))]'/?}
Find T(x, y) in the plane z = 0 and the transmitted wave when the resulting holo-
gram is irradiated with this R.
As in Prob. 14.19a but with the object wave a spherical wave as in Ex. 14.19b.

It was shown in Chapter 12 that a spherically symmetric wave of the form 14.19(9)
is not a solution of Maxwell’s equations. Discuss the concept of a point source in
optics and the conditions under which (9) may be a useful approximation.

A hologram may be made of the Fourier transform of a two-dimensional function
by combining concepts of this section and the preceding two. Sketch an arrange-
ment for making such a Fourier transform hologram.



