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are small compared with wavelength. For any such region small compared with wave-
length, the wave equation will reduce to Laplace’s equation so that low-frequency
analyses neglecting any tendency toward wave propagation are applicable.

The presence of losses in the guide below cutoff causes the phase constant to change
from the zero value for an ideal guide to a small but finite value, and modifies slightly
the formula for attenuation. These modifications are most important in the immediate
vicinity of cutoff, for with losses there is no longer a sharp transition but a more gradual
change from one region to another. It should be emphasized again that the approximate
formulas developed in previous sections may become extremely inaccurate in this re-
gion. For example, the approximate formulas for attenuation caused by conductor or
dielectric losses would yield an infinite value at f = f.. The actual value is large
compared with the minimum attenuation in the pass range since it is approaching the
relatively larger magnitude of attenuation in the cutoff regime, but it is nevertheless
finite. Previous formulas have also shown an infinite value of phase velocity at cutoff,
and with losses it too will be finite.

8.16 DISPERSION OF SIGNALS ALONG TRANSMISSION LINES AND WAVEGUIDES

We have in several instances noted the dispersive properties of transmission systems
when phase velocity, group velocity, or both vary with frequency. In Chapter 5 we
considered a simple two-frequency group in a dispersive system, but we now wish to
be more general, using the Fourier integral of Sec. 7.11. There are two classes of
problems of concern. One is that of a base-band signal, in which the detailed signal is
of concern. Examples are audio or video signals, or electrical pulses from a computer,
before being placed on other carrier frequencies. The other is that of modulated signals
in which the base-band signal is placed on a high-frequency carrier. For the latter case
we shall consider amplitude modulation and examine the distortion of the envelope.

Base-Band Signals Given an audio signal, series of pulses, or similar electrical

waveform, we can express it as a Fourier integral as in Eq. 7.11(15). For a time function
f(t), the transform pair may be written

70 = 5 | stwrer do M)

glw) = f_w f(t)e 7" dt )

If each frequency component is delayed in phase by Bz in propagating distance z along
the transmission system, (1) gives the delayed function at z as

f@, z) = %r f ) g(w)e =P dgy 3)
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Fie. 8.16a Propagation of a 5-ps gaussian pulse along a microstrip line. Strip width = 0.32
mm, dielectric thickness = 0.4 mm, and &, = 6.9. Reproduced by permission from K. K. Li,
G. Arjavalingam, A. Dienes, and J. R. Whinnery, [EEE Trans. MTT-30, 1270 (1982). © 1982
IEEE.
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Thus the original function maintains its shape and propagates at the phase velocity, as
we have assumed in many wave problems. But any dispersion in v, modifies the func-
tion, at least to some degree.

Transmission lines are often used for base-band signals and have some dispersion
through loss terms and internal inductance as affected by skin effect. Some lines, as
the microstrip line of Sec. 8.6, have additional dispersion from the presence of multiple
dielectrics. Figure 8.16a shows the result of a numerical calculation from (3), using the
dispersion relation of Eq. 8.6(18), for the change in shape of a 5-ps gaussian pulse in
propagating along a typical microstrip used with short electrical pulses.!!

'K K. Li. G. Ajavalingam, A. Dienes, and J. R. Whinnery., [EEE Trans. MTT-30, 1270 (1982).
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Modulated Signals If the signal (1) is used to amplitude modulate a carrier of
amplitude V, and angular frequency w,, the resulting modulated wave may be written

v,(t) = Re{V.e’ 1 + mf(t)]} ©6)

where m is a modulation coefficient. In substituting (1) in (6), we use w,, for the
frequency of the modulating (base-band) signal, and assume that its significant fre-
quency components extend only over a band —wg = @ < wg!

. m “B .
Up(t, 0) = Re{ V.e/*'| 1 + — j g(w e’ dw, @)
27 J -0y
Or letting w = o, + @,
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Frequencies above w, in the integral in (8) correspond to upper sideband terms and
those below w, to lower sideband terms. Each frequency component propagates
according to its appropriate phase constant . Let us expand B8 as a Taylor series
about w_:

dB (w — wc)2 dzﬁ
- + - - - - 5 ..
o P @ Tl 2 d|, ©
So the modulated signal, after propagating a distance z, is
Un(t, 2) = Re{Vcef[“’ct-ﬂ(wc)zl
(10)
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Now if d?B/dw” and higher terms are negligible, (10) is interpreted as

v (1, 2) = Re{vcej[wct—ﬁ(wc)z] 1+ mf(, _ EZ.>:|} (12)
| g

so the envelope propagates without distortion at group velocity v, (though the carrier
inside moves at a generally different phase velocity). But if the higher-order terms are
not negligible, the envelope is distorted and there is said to be group dispersion. For a
gaussian envelope,

f@t) = Ce=@/” (13)
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Fic. 8.16b Illustration of the spread of the modulated envelope of a pulse as it travels down a
system with group dispersion.

It can be shown (Prob. 8.16c¢) that the term d?3/dw? causes the envelope to spread to
a width 7' after propagating distance z, with 7’ given by

2 2771/2
T = T[l + (%%) ] (14)

The spread of a gaussian envelope, illustrated in Fig. 8.16b, clearly limits data rates as
pulses begin to overlap their neighbors. Although a factor in some waveguide problems
(Prob. 8.16a) the limitation is most important for optical fibers and will be met again
in Chapter 14.

PROBLEMS

8.2a As we will see later, one mode of a rectangular waveguide is a TM wave with H, = 0
and E, = A sin(wx/a) sin(1ry/b) with z and ¢ dependence assumed to be e/« =42,
Find expressions for the transverse field components. At a given plane what are the
phase relations among the transverse components and between them and E,.

8.2b The division into TM and TE classes is not the only way of classifying guided waves,
as noted in Sec. 8.2. Another frequently useful division employs longitudinal-section
electric (LSE) with E, = 0 but all other components present and longitudinal-section
magnetic (LSM) with H, = 0 but all other components present. Find the relations be-
tween E, and H, for each of these classes.

8.3a Add induced charges and current flows, with attention to sign, to the pictures of Figs.
8.3b and c for the positively traveling TM,; and TE, waves. Repeat for negatively
traveling waves.
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Calculate cutoff frequency for TE,, TE,, TE;, TM,, TM,, TM; waves between planes
1.5 cm apart with air dielectric. Repeat for a glass dielectric with £'/e, = 4. Suppose
excitation at 8 GHz is provided at a cross section of the air-filled line and all waves
are excited. Which wave(s) will propagate without attenuation? At what distance from
the excitation plane will each of the nonpropagating waves be attenuated to 1/e of its
value at the excitation plane?

The slope of an electric field line in the x—z plane is dx/dz = E,/E,. Show that the
curve for an electric field line of a TM, wave, obtained from the expressions for E,
and E, of the wave, is defined by

cos Bz = [cos mxy/al[cos(mx/a)] !

where x, is the value of x for a given curve at z = 0. Plot one or two lines to verify
the form shown in Fig. 8.3b. [Hint: First express fields as real functions of z.)

Similarly to Prob. 8.3c, derive the expression defining magnetic field lines for a TE,
wave and plot one or two lines to verify the form shown in Fig. 8.3c.

Find the expression for electric field lines for a TM, wave, plot one or two lines, and
sketch the remainder to give a plot similar to Fig. 8.35. Similarly, plot and sketch
magnetic field lines for a TE, wave.

8.3f Show that the expression for energy velocity as derived for TM,, waves [Eq. 8.3(37)]

8.4a

8.4b

8.4c*

8.5a

8.5b

8.5¢
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also applies to TE,, waves.

Calculate the angle 6 as defined in Fig. 8.44 for ray directions of a TM; mode between
planes 1.5 cm apart with glass dielectric, ¢'/e, = 4, for frequencies of 5, 6, 10, and
30 GHz.

Obtain the expressions for wave impedance of TM and TE waves, using the picture of
uniform plane waves reflecting at an angle.

By suitably changing coordinates as in Ex. 8.4, show that the expressions
6.09(18)—(20) for a wave polarized with electric field normal to the plane of incidence
striking a conductor at an angle correspond exactly to the field expressions for a TE,,
wave.

Find average power transfer and conductor loss for a TE mode between parallel planes
to verify the expression for attenuation, Eq. 8.5(12).

Calculate attenuation in decibels per meter for a TM; wave between copper planes

1.5 cm apart with air dielectric. Frequency is 12 GHz. For the same frequency and
spacing, a glass dielectric with €' /e, = 4, &"/¢’ = 2 X 1073 is introduced. Calculate
attenuation from both dielectric and conductor losses.

Prove that the frequency of minimum attenuation for a TM,, mode, from conductor
losses, is V 3f., where f is cutoff frequency. Give the expression for the minimum
attenuation and calculate for silver conductors 2 cm apart and air dielectric for the
m = 1, 2, and 3 modes.

Show that the transmission-line formula for attenuation constant, Eq. 5.9(7), gives pre-
cisely the same result as the approximate wave analysis of Sec. 8.5 for the TEM wave.

Derive the approximate formula for attenuation constant due to dielectric losses by us-
ing a = w,/2Wy.

Since E, is equal and opposite at top and bottom conductors for TEM wave in the
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parallel-plane line, it is reasonable to assume a linear variation between the two

values:
R.FE 2
E =( +j)5—°<1 ——’f>
n a

Find the modification in the distribution for E, to satisfy the divergence equation for
E. Find the corresponding modification in H, from Maxwell’s equations. Describe
qualitatively the average Poynting vector as a function of position in the guide.

For a symmetric stripline as in Fig. 8.6a withw = 1 mm, d = 2 mm, ¢, = 2.7, and
thickness ¢ negligible (but larger than several penetration depths), calculate Z, and
phase velocity of the TEM mode and the cutoff frequency of the next higher mode.
[Note that tables of elliptic integrals are required.]

For &, = 1, the lossless microstrip of Fig. 8.6b can propagate a true TEM wave at the
velocity of light. Find inductance and capacitance per unit length for a 50-Q line with
such a dielectric and the required w/d for this from Fig. 8.6¢. Calculate the difference
due to fringing fields between the capacitance per unit length found above and that
given by the parallel-plane approximation, and express this as an equivalent extra
width, Aw/d. Now maintaining w/d constant, assuming inductance is independent of
€,, and transmission-line equations applicable, repeat for other values of €, and plot the
extra equivalent Aw/d due to fringing as a function of &,.

Calculate the characteristic impedance for a copper microstrip line with an alumina
(Al,O5 ceramic) dielectric and air above the line. The dimensions should be w/d = 8
and d = 0.2 mm. Compare the results obtained using the formulas with the graphical
data in Sec. 8.6. Find the fractional change of Z, between f = 0 and f = 3 GHz.
Calculate the maximum frequency at which the static approximation should be used.

Design a stripline with the same materials and substrate thickness d and having the
characteristic impedance found in Prob. 8.6¢ for the microstrip line. Calculate and
compare the attenuations in the microstrip and stripline at 3 GHz assuming conductor
thicknesses of 0.01 mm. Neglect dielectric losses.

It is desired to make a 15-() stripline with the maximum possible delay achievable
with no more than 3 dB attenuation at 10 GHz. Consider two possible lines. One is to
be made with copper conductors with w = 100 um and alumina (Al,05 ceramic) die-
lectric and is to be used at room temperature. The other is made with superconducting
niobjium conductors with w = 100 um and undoped silicon dielectric, having ¢, =
11.7 and loss tangent tan §, = 1077 at 4.2 K, at which temperature the line is to be
used. Take R, = 107° Q) for niobium at 4.2 K and the strip thickness to be 5 um for
copper and 1 um for niobium. Find the maximum delay achievable with each of the
lines.

Consider the coplanar waveguide strip transmission line shown in Fig. 8.6f. Assuming
the line is on an infinitely thick dielectric substrate, the electric fields are distributed
symmetrically above and below the line.

(i) Argue that this leads to an effective dielectric constant e, = (g, + 1)/2.
(ii) Find the dimensions to give a line with Z, = 50 ) using ¢, = 3.78 and the fol-
lowing design formula*

where Zy, is the characteristic impedance when the dielectric constant is &, = 1
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everywhere, and w is the width of the strip located in the center of a gap of
width a.

The various frequency components in a signal (e.g., a pulse) propagate at phase veloci-
ties determined by the effective dielectric constants at those frequencies. As will be
discussed in Sec. 8.16, this variation of velocity leads to dispersion of signals. The
fractional variation of phase velocity with frequency in a coplanar waveguide is lower
at low frequencies than it is in microstrip. Consider the following 50-() lines with cop-
per conductors and 0.635-mm-thick alumina (Al,O; ceramic) substrates. The coplanar
line has a strip width w of 0.266 mm and gaps s of 0.117 mm each. The strip width in
the microstrip line is 0.598 mm.

(i) Plot the fractional change of phase velocity of the quasi-TEM mode as a function
of frequency in the range 0 < f < 50 GHz for the coplanar guide and 0 < f < 35
GHz for the microstrip. For the microstrip, mark f,,,, the limit of applicability of
the static formulation, and also the cutoff frequency of the next higher mode,
(fduer = ¢Zo/2mod. Also mark the cutoff frequency fg = ¢/4dVe, — 1 of the
next higher mode for the coplanar waveguide.

(ii) Find the fractional change of the phase velocity at the cutoff frequency of the next
higher mode for the coplanar waveguide.

Compare the total attenuation at 3 GHz in nepers/meter for the two lines described in
Prob. 8.6g and explain the physical reason why the higher one is higher.

For a rectangular waveguide with inner dimensions 3 X 1.5 cm and air dielectric, cal-
culate the cutoff frequencies of the TE,y, TE,g, TE;;, TE,,, TE,,, TE,,, TM,;, TM,,
modes. Repeat for a glass dielectric with £'/e, = 4. Find lengths to the 1/e distances
for the nonpropagating modes excited at 10 GHz.

Derive the expression for magnetic lines in the transverse plane of a TM,, wave and
plot one or two such lines, comparing with Table 8.7. (See approach in Prob. 8.3c.)

Derive the expression for electric field lines in the transverse plane of a TE;; wave and
plot one or two such lines, comparing with Table 8.7. (See approach in Prob. 8.3c.)

Show that the expression for attenuation because of conductor loss for a TM,,,, mode
in the rectangular guide is as given by Eq. 8.7(14).

Show that the expression for attenuation because of conductor loss for a TE,,, mode
(neither m nor n zero) in the rectangular guide is as given by Eq. 8.7(26). Explain why
this does not apply tom = 0 or n = 0 case.

8.7f Recalling that surface resistivity R; is a function of frequency, find the frequency of

8.7g*

8.7h*
8.7

minimum attenuation for a TM,,,, mode. Show that the expression for attenuation of a
TE,,, mode must also have a minimum.

Of the wave types studied so far, those transverse magnetic to the axial direction were
obtained by setting H, = 0; those transverse electric to the axial direction were ob-
tained by setting £, = 0. For the rectangular waveguide, obtain the lowest-order mode
with H, = 0 but all other components present. This may be called a wave transverse
magnetic to the x direction. Show that it may-also be obtained by superposing the TM
and TE waves given previously of just sufficient amounts so that H, from the two
waves exactly cancel. This is a longitudinal-section wave as discussed in Prob. 8.2.

Repeat Prob. 8.7g for a wave transverse electric to the x direction.

From the form of Egs. 8.2(9)—(12), show that for a TM wave, imposition of the condi-
tion E, = 0 on a perfectly conducting boundary of a cylindrical guide causes the other
tangential component of E also to be zero along that boundary.
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For f = 3 GHz, design a rectangular waveguide with copper conductor and air dielec-
tric so that the TE,, wave will propagate with a 30% safety factor (f = 1.30f,) but
also so that the wave type with next higher cutoff will be 20% below its cutoff fre-
quency. Calculate the attenuation due to copper losses in decibels per meter.

For Prob. 8.8a, calculate the attenuation in decibels per meter of the three modes with
cutoff frequencies closest to that of the TE,, mode, neglecting losses.

Design a guide for use at 3 GHz with the same requirements as in Prob. 8.8a except
that the guide is to be filled with a dielectric having a permittivity four times that of
air. Calculate the increase in attenuation due to copper losses alone, assuming that
the dielectric is perfect. Calculate the additional attenuation due to the dielectric, if
e"/e’ = 0.01.

Find the maximum power that can be carried by a 6-GHz TE,, wave in an air-filled
guide 4 cm wide and 2 cm high, taking the breakdown field in air at that frequency as
2 X 10°V/m.

The transmission-line analogy can be applied to the transverse field components, the
ratios of which are constants over guide cross sections and are given by wave imped-
ances, just as in the case of plane waves in Chapter 6. A rectangular waveguide of
inside dimensions 4 X 2 cm is to propagate a TE;, mode of frequency 5 GHz. A
dielectric of constant €, = 3 fills the guide for z > 0, with an air dielectric for z < 0.
Assuming the dielectric-filled part to be matched, find the reflection coefficient at

z = 0 and the standing wave ratio in the air-filled part.

Find the length and dielectric constant of a quarter-wave matching section to be placed
between the air and given dielectric of Prob. 8.8e.

Derive the set of Eqs. 8.9(1)—(4) by utilizing Maxwell’s equations in circular cylindri-
cal coordinates and assuming propagation as e /%,

What inner radius do you need for an air-filled round pipe to propagate the TE,; wave
at 6 GHz with operating frequency 20% above the cutoff frequency? What is the guide
wavelength for this mode? Find the attenuation in decibels per meter of the TM,,
mode at this frequency, neglecting losses for that calculation.

Show that the expression for attenuation from conductor losses of a TM,,, mode is
RS
o =
anVl — (w/w)?
At what value of w/w, is this a minimum?
Show that the expression for attenuation from conductor losses of a TE,;, mode is
R, w, ) n?
A = e | | )+
anVl — (w/w)? [\ ® Pnp — 1

For a circular air-filled guide with copper conductor, select a radius so that the TE,,;
mode has attenuation of 0.3 dB/km for a frequency of 4 GHz. Estimate the number of

modes (counting only the symmetric ones with n = 0) that have cutoff frequencies
below the operating frequency.

Use the asymptotic forms of Bessel functions in Eqgs. 8.10(1) and (2) for TM and TE
waves, respectively, to show that for large k.r; and r,/r; near unity, the cutoff wave-
length of the n = 0, p = 1 modes is approximately twice the spacing between
conductors.
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Sketch examples of mode couplings by each of the six methods described in Sec. 8.11
using for each a system different from the one utilized in Fig. 8.11 to illustrate it.

Plot fraction of power coupled from a coaxial line into a waveguide (Fig. 8.11g) as a
function of frequency from 10 to 11 GHz if probe radius is 1.5 mm and other dimen-
sions are as stated in the figure caption.

Demonstrate that, although in a TEM wave E does satisfy Laplace’s equation in the
transverse plane and so may be considered a gradient of a scalar insofar as variations
in the transverse plane are concerned, E is not the gradient of a scalar when variations
in all directions (x, y, and z) are included.

Two perfectly conducting cylinders of arbitrary cross-sectional shapes are parallel and
separated by a dielectric of conductivity o and permittivity . Show that the ratio of
electrostatic capacitance per unit length to dc conductance per unit length is /0.

If the conductors are perfect but the dielectric has conductivity o as well as permittiv-
ity &, show that y must have the following value for a TEM wave to exist (E, = 0,
H, = 0):

y = £[jop(s + jwe)]'?
Explain why the distribution of fields may be a static distribution as in the loss-free
line, unlike the case for a lossy conducting boundary.

How many linearly independent TEM waves may exist on a three-conductor transmis-
sion line? Describe current relations for a basic set. Complete the proof that there

can be no static field, and hence no TEM wave, inside a single infinite cylindrical
conductor.

Show that the circuit of Fig. P8.13a may be used to represent the propagation charac-
teristics of the transverse magnetic wave, if the characteristic wave impedance and
propagation constant are written by analogy with transmission-line results in terms of
an impedance Z; and an admittance Y, per unit length, and the medium is u,, &;.

1Z ——
Zy = Y_lv v = VZ\Y,
1

Note the similarity between this and the circuits of conventional filter sections, remem-
bering of course that all constants in this circuit are in reality distributed constants.

2)ar (A2)

Jwey Jweq
Jwudz Jwpdz
T Jjwerdz
o~ ® —0
Fic. P8.13a

Show that all field components for a TM wave may be derived from the axial compo-
nent of the vector potential A. Obtain the expressions relating E,, H,, and so on to 4,,
the differential equation for A,, and the boundary conditions to be applied at a perfect
conductor. Repeat using the axial component of the Hertz potential defined in

Prob. 3.19b.
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Show for a TM wave that the magnetic field distribution in the transverse plane can be
derived from a scalar flux function, and relate this to E,. With transverse electric field
derivable from a scalar potential function and transverse magnetic field derivable from
a scalar flux function, does it follow that both are static-type distributions as in the
TEM wave? Explain.

Show that energy velocity equals group velocity for the TM modes in a lossless wave-
guide of general cross section.

Show that E,(x, y) for a general TM wave in a perfectly conducting guide satisfies the

equation
-1
K= [J (V.E)? de‘ [I E? dS]
s s

where V, represents the transverse gradient and the integral is over the cross section of
the guide. From this argue that k2 is real and positive for waves in which phase is
constant over the transverse plane. . -

Numerical methods can be used to find the propagation constants for waveguides

of arbitrary cross section. Following the procedures used in solving the Laplace

or Poisson equations in Sec. 1.21 to get a difference equation solution for the scalar
Helmholtz equation V2 + k2¢ = 0, one finds the residual at the kth step to be
RO, y) = ¢Oy + ) + ¢y — B) + $OQ + b y) + $Ox = h,y)

—(4 — K2h»/ % D(x, y). The change of variable from one iteration step to

the next in the successive overrelaxation method is governed by ¢® = y®*-D

+ QR®/(4 — k2h?). Apply the equations with Q set to 1.0 for convenience to make
anumerical evaluation of &2 for a TM;, mode in a rectangular waveguide. Assume a
rectangular guide with side ratio 1:2. The Helmholtz equation to be solved is Eq. 8.13(1).
Divide the waveguide into a grid of 18 squares and number the interior points 1-10
left to right, top to bottom. A reasonable initial guess for the product k2h?> = u?h? can
be formed assuming a one-dimensional variation in the smallest dimension; here take
kZh*= 1.1. Start with E, having the following values at the grid points as a first guess:
for points 1, 5, 6, and 10, £, = 30; for points 2, 4, 7, and 9, E, = 50; for points 3
and 8, E, = 70. Use simple relaxation twice to improve the values of E, for the given
k2h?. Then calculate an improved value of k242 using the relation

> E(x, WEn + Egp + Eg + Eyy — 4E(x, y)]
> EXx, y)

2h? =

where N, E, S, W indicate the points surrounding the grid point at (x, y) and the sum-
mations are over all grid points. Next make two more steps of relaxation to adjust the
fields to the new kZh°. Then use the above formula to get a second correction to k242,
Compare the result with the value of %4> found using differential equations in

Sec. 8.7.

Derive the equivalent circuit for a TE wave analogous to that of a TM wave given in
Prob. 8.13a.

Show that fields satisfying Maxwell’s equations in a homogeneous charge-free, cur-
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rent-free dielectric may be derived from a vector potential F:

E=—1V><F
€

H=—— V(¥ F) - joF
Jjoue

(V> + B)F =0

Obtain expressions for all field components of a TE wave from the axial component F,
of the above potential function, and give the differential equation and boundary condi-
tions for F.

Show that if one utilizes the potential function A instead of the F of Prob. 8.14b for
derivation of a TE wave, more than one component is required.

Show for a TE mode that transverse distribution of electric field can be derived from a
scalar flux function. How is this related to H,?

Show that the energy velocity equals the group velocity for the TE modes in a lossless
waveguide of general cross section.

8.14f Show for a TM wave in any shape of guide passing from one dielectric material to

8.15

8.16a

8.16b

8.16¢*

- 8.16d*

another, that at one frequency the change in cutoff factor may cancel the change in 7,
and the wave may pass between the two media without reflection. Identify this condi-
tion with the case of incidence at polarizing angle in Sec. 6.13. Determine the require-
ment for a similar situation with TE waves, and show why it is not practical to obtain
this.

A particular waveguide attenuator is circular in cross section with radius 1 cm. Plot
attenuation in decibels per meter for the TE;; mode over the frequency range 1-4
GHz. Also plot attenuation of the mode with next nearest cutoff frequency.

For a hollow-pipe waveguide, with B8 given by Eq. 8.13(9), find the group dispersion
term d?B/dw?. Find the length of waveguide for which the width of a gaussian pulse
with 7 = 1 ns is doubled if frequency is 10 GHz and w,/w = 0.85.

Find d?B/d«? for a transmission line with series resistance R and shunt conductance G
independent of frequency, where R/wL and G/wC are small compared with unity. Re-
peat for a coaxial line with G = 0 and R governed by skin effect. Is the resulting
group dispersion likely to be significant in usual applications?

Start with a gaussian function f(z) given by Eq. 8.16(13) and find its g(w). Using this
in Eq. 8.16(10), show that the envelope broadens with z as given by Eq. 8.16(14).

From the solution of Prob. 8.16¢ find phase ¢ at z for the high-frequency pulse with
gaussian envelope and find the frequency “chirp,” defined as d¢/dt.



