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in problems which include the axis » = 0 in the range over which the solution is to
apply. The solution to the z equation (7) when T? = — 72 is

Z = (Cysin 7z + Cycos 7z (18)

Summarizing, either of the following forms satisfies Laplace’s equation in the two
cylindrical coordinates r and z:

®(r, z2) = [CJo(Tr) + CoNy(Tn]IC, sinh Tz + C, cosh Tz] (19)

D(r, z) = [Cily(tr) + CKy(mn)]IC5 sin 7z + C} cos 7z] (20)

As was the case with the rectangular harmonics, the two forms are not really different
since (19) includes (20) if T is allowed to become imaginary, but the two separate ways
of writing the solution are useful, as will be demonstrated in later examples. The case
with no assumed symmetries is discussed in the following section.

7.14 BESSEL FUNCTIONS

In Sec. 7.13 an example of a Bessel function was shown as a solution of the differential
equation 7.13(8) which describes the radial variations in Laplace’s equation for axially
symmetric fields where a product solution is assumed. This is just one of a whole family
of functions which are solutions of the general Bessel differential equation.

Bessel Functions with Real Arguments For certain problems, as, for example,
the solution for field between the two halves of a longitudinally split cylinder, it may
be necessary to retain the ¢ variations in the equation. The solution may be assumed
in product form again, RFd,Z, where R is a function of r alone, F s of ¢ alone, and Z of
z alone, Z has solutions in hyperbolic functions as before, and F, » may also be satisfied
by sinusoids:
Z = Ccosh Tz + D sinh Tz €))]
Fy = Ecosve + F sin ve 2)

The differential equation for R is then slightly different from the zero-order Bessel
equation obtained previously:

d’R  1dR v2
A A G [
dar*  rar < rz)R 0 3

It is apparent at once that Eq. 7.13(8) is a special case of this more general equation,
that is, v = 0. A series solution to the general equation carried through as in Sec. 7.13
shows that the function defined by the series

S (= (T /2
meom'(v + m + 1)

J,Ir) = “)
is a solution to the equation.

I'(v + m + 1) is the gamma function of (v + m + 1) and, for v integral, is equivalent
to the factorial of (v + m). Also for v nonintegral, values of this gamma function are
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Fic. 7.14 (a) Bessel functions of the first kind. (b) Bessel functions of the second kind.

tabulated. If v is an integer 7,

®)

B e (~1)m(Tr/2)n+2m
I = ,,,20 m!(n + m)!

It can be shown that J_, = (—1)"J,. A few of these functions are plotted in Fig. 7.14a.
Similarly, a second independent solution'? to the equation is

cos vaJ ,(Tr) — J_,(Tr)
sin vr

N,(Ir) = (6)

13 Ifv is nonintegral, J_, is not linearly related to J,, and it is then proper to use either J_,
or N, as the second solution; forv integral, N, must be used. Equation (6) is indeterminate
for v infegral but is subject fo evaluation by usual methods.
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and N_, = (—1)"N,. As may be noted in Fig. 7.14b these are infinite at the origin. A
complete solution to (3) may be written

R = AJ(Tr) + BN (Tr) )

The constant v is known as the order of the equation. J,, is then called a Bessel function
of first kind, order v; N,, is a Bessel function of second kind, order v. Of most interest
for this chapter are cases in which v = n, an integer.

It is useful to keep in mind that, in the physical problem considered here, v is the
number of radians of the sinusoidal variation of the potential per radian of angle about
the axis.

The functions J,(v) and N, (v) are tabulated in the references.*!> Some care should
be observed in using these references, for there is a wide variation in notation for the
second solution, and not all the functions used are equivalent, since they differ in the
values of arbitrary constants selected for the series. The N (v) is chosen here because
it is the form most common in current mathematical physics and also the form most
commonly tabulated. Of course, it is quite proper to use any one of the second solutions
throughout a given problem, since all the differences will be absorbed in the arbitrary
constants of the problem, and the same final numerical result will be obtained; but it is
necessary to be consistent in the use of only one of these throughout any given analysis.

It is of interest to observe the similarity between (3) and the simple harmonic equa-
tion, the solutions of which are sinusoids. The difference between these two differential
equations lies in the term (1/r)(dR/dr) which produces its major effect as r — 0. Note
that for regions far removed from the axis as, for example, near the outer edge of Fig.
1.19a, the region bounded by surfaces of a cylindrical coordinate system approximates
a cube. For these reasons, it may be expected that, away from the origin, the Bessel
functions are similar to sinusoids. That this is true may be seen in Figs. 7.14a and b.
For large values of the arguments, the Bessel functions approach sinusoids with mag-
nitude decreasing as the square root of radius, as will be seen in the asymptotic forms,
Egs. 7.15(1) and 7.15(2).

Hankel Functions It is sometimes convenient to take solutions to the simple har-
monic equation in the form of complex exponentials rather than sinusoids. That is, the
solution of

d*z
—d? + K?2Z =0 ®)
can be written as
Z = Aet/Kz + Be~/Kz )

4 E Jahnke, F. Emde, and F. Lésch, Tables of Higher Functions, 6th ed. revised by F. Lésch.
McGraw-Hill, New York, 1960.

15 M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions, Dover,
New York, 1964.
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where
ek = cos Kz + jsin Kz (10)

Since the complex exponentials are linear combinations of cosine and sine functions,
we may also write the general solution of (8) as

Z = A'e’®* 4+ B’ sin Kz

or other combinations.

Similarly, it is convenient to define new Bessel functions which are linear combi-
nations of the J,(Tr) and N (Tr) functions. By direct analogy with the definition (10)
of the complex exponential, we write

HS,”(Tr) = J,(Tr) + jN(Tr) (1
H@(Tr) = J(Tr) — jN,Tr) (12)

These are called Hankel functions of the first and second kinds, respectively. Since they
both contain the function N,(Tr), they are both singular at » = 0. Negative and positive -
orders are related by

HO(Tr) = /™H(Tr)
HP(Tr) = e /™ HP(Tr)

For large values of the argument, these can be approximated by complex exponentials,
with magnitude decreasing as square root of radius. For example,

H(l)(Tr) — i. ej(Tr— /4 —vm/2)
;r—wo wlr

This asymptotic form suggests that Hankel functions may be useful in wave propagation
problems as the complex exponential is in plane-wave propagation. It is also sometimes
convenient to use Hankel functions as alternate independent solutions in static problems.
Complete solutions of (3) may be written in a variety of ways using combinations of
Bessel and Hankel functions.

Bessel and Hankel Functions of Imaginary Arguments If T is imaginary,
T = jr, and (3) becomes

d’R 1 dR v?
F+;;—(TZ+;—2>R=O (13)

The solution to (3) is valid here if T is replaced by j7 in the definitions of J,(Tr) and
N,(Tr). In this case N,(j77) is complex and so requires two numbers for each value of
the argument, whereas j "/, (j7r) is always a purely real number. It is convenient to
replace N, (j7r) by a Hankel function. The quantity j* ~'H{"(jr) is also purely real and
so requires tabulation of only one value for each value of the argument. If v is not an
integer, j*J _ (j7r) is independent of j~*J (j7) and may be used as a second solution.
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Thus, for nonintegral v two possible complete solutions are

R = AJJ(jm) + B _(jm) (14)
and L

R = AJ,(jm) + BH(jm) (15)

where powers of j are included in the constants. For v = n, an integer, the two solutions
in (14) are not independent but (15) is still a valid solution.
It is common practice to denote these solutions as

1.,0) = 7. (jv) (16)
K,(v) = 75’ FHHO o) an

where v = .

As is noted in Sec. 7.15 some of the formulas relating Bessel functions and Hankel
functions must be changed for these modified Bessel functions. Special cases of these
functions were seen as I4(7r) and Ky(r) in Sec. 7.13 for the axially symmetric field.
The forms of [,(7r) and K () for v = 0, 1 are shown in Fig. 7.14c. As is suggested
by these curves, the asymptotic forms of the modified Bessel functions are related to
growing and decaying real exponentials, as will be seen in Egs. 7.15(5) and 7.15(6). It
is also clear from the figure that K, (77) is singular at the origin.

5 S
‘i Io(v)
Ii(v)
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Ki(uv)
2
1
Ko(v)
o L v
0 1 2 3 4

Fic. 7.14¢c Modified Bessel functions.
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7.15 BESSEL FUNCTION ZEROS AND FORMULAS'®
The first several zeros of the low-order Bessel functions and of the derivatives of Bessel

functions are given in Tables 7.15a and 7.15b, respectively.

Table 7.15a
Zeros of Bessel Functions

%o I, % No N Ny
2.405 3.832 5.136 0.894 2.197 3384
5.520 7.016 8.417 3.958 5.430 6.794
8.654 10.173 11.620 7.086 8.596 10.023

Table 7.15b
Zeros of Derivatives of Bessel Functions

I J; I, N, N Ny
0.000 1.841 3.054 2.197 3.683 5.003
3.832 5331 6.706 5.430 6.942 8.351

10.173 8.536 9.969 8.596 10.123 11.574

Asymptotic Forms

2
o~ [ Z ol - T - 2] 0
2 . T VT
N@w)—> |[—sinfv — — — — 2)
v U 4 2
) 2 (/= wa/)]
H; () — p— 3)
v—>%0
) 2 (/-]
HP) — —e )
v—>
JTL(u) = L) — e” )
v—® v—>
FHHD(u) = —K ) — / (6)
v—>© v—>©

16 More extensive tabulations are found in the sources given in footnotes 14 and 1.
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Derivatives The following formulas which may be found by differentiating the
appropriate series, term by term, are valid for any of the functions J,(v), N,(v),
H{(v), and HP(v). Let R,(v) denote any one of these, and R, denote (d/dv)[R,(v)].

Ry = —R,(v) N
1
Ri©) = Ro(®) = ~R,() 8)
UR,(v) = VR,() — VR, (V) )
UR,(v) = —WR,() + VR,_,(v) (10)
d
Z WTRWO] = —vTR, @) (1
i *R = V'R 12
- RO = VR,_,©) (12)
Note that

, d 1d

R(Tr) = T [R/TN] = = = [R,(T7)] (13)

For the / and K functions, different forms for the foregoing derivatives must be used.
They may be obtained from these formulas by substituting Eqs. 7.14(16) and 7.14(17)
in the preceding expressions. Some of these are

vl (v) = vI,W) + vl,, @) 14
vl (v) = —vI,) + vl,_,v) 14

vK, () = VK, (v) — VK, (V)

, (15)
vK, (v) = —vK (v) — vK,_,(v)

Recurrence Formulas By recurrence formulas, it is possible to obtain the values
for Bessel functions of any order, when the values of functions for any two other orders,
differing from the first by integers, are known. For example, subtract (10) from (9).
The result may be written
2v
-U— Rv(v) = Rv+ l(v) + Rv— 1(0) (16)

As before, R, may denote J,, N,, H", or H®, but not I, or K. For these, the recurrence
formulas are

2
ZLO) = L@ = L) an

2v

- K = K, - K, ,(v) (18)



7.16 Expansion of a Function as a Series of Bessel Functions 375

Integrals Integrals that will be useful in solving later problems are given below.
R, denotes J,, N,, H", or H?:

fv‘”Rv+1(v) dv = —v "R,(v) 19)
j "R, _,(v) dv = v'R,(v) (20
v
R R av = ————
fU SaV)R,(Bv) dv PR on
X [BR(a)R,_(Bv) — aR,_,(av)R,(BV)], a # B
2
va%(av) dv = v? [R¥(av) — R,_ ()R, (av)]
v (22)

2| o2 v\ o
? R, (av) + |1 — ;5;5 Ri(av)

7.16 EXPANSION OF A FUNCTION AS A SERIES OF BESSEL FUNCTIONS

In Sec. 7.11 a study was made of the method of Fourier series by which a function may
be expressed over a given region as a series of sines or cosines. It is possible to evaluate
the coefficients in such a case because of the orthogonality property of sinusoids. A
study of the integrals, Eqs. 7.15(21) and 7.15(22), shows that there are similar orthog-
onality expressions for Bessel functions. For example, these integrals may be written
for zero-order Bessel functions, and if o and B are taken as p,,/a and p,/a, where p,,
and p, are the mth and gth roots of J,(v) = O, that is, Jo(p,,) = 0 and JO(pq) = 0,
Pm 7 Dy then Eq. 7.15(21) gives

C o (Par), (P
[ a2 (2) o - o

So, a function f(r) may be expressed as an infinite sum of zero-order Bessel functions

fn = b1Jo<P1 ;:) + bzfo<P2 2) + b3Jo<P3 2) + o
or
=3 b,,,fo(‘%) )

The coefficients b,, may be evaluated in a manner similar to that used for Fourier
coefficients by multiplying each term of (2) by #Jy(p,,r/a) and integrating from 0 to
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a. Then by (1) all terms on the right disappear except the mth term:

'a a 2
Pm! - Pml
fo rf(r).l()(T) dr = fo bmr[fo( e ):l dr

From Eq. 7.15(22),

a 2
| wa%(‘ﬂ) dr = = b,J3(p,) ®
0 a 2
or
b——z——faf()JMd @
m = 2R do T g )

In the above, as in the Fourier series, the orthogonality relations enabled us to obtain
coefficients of the series under the assumption that the series is a proper representation
of the function to be expanded, but two additional points are required to show that the
representation is valid. The series must of course converge, and the set of orthogonal
functions must be complete, that is, sufficient to represent an arbitrary function over
the interval of concern. These points have been shown for the Bessel series of (2) and
for other orthogonal sets of functions to be used in this text.!”

Expansions similar to (2) can be made with Bessel functions of other orders and
types (Prob. 7.16a).

b e e

O O O R s e B

Example 7.16
BESSEL FUNCTION EXPANSION FOR CONSTANT IN RANGEO <1 < A

If the function f(r) in (4) is a constant V, in the range 0 < r < g, we have

2V, f“ Pl
b o= —=0 | (2},
m = 2T o °< a ) " ©)

Using Eq. 7.15(20) with R = J,v = 1, and v = p,,r/a, the integral in (5) becomes

(2) F (i) - [ () ()= ]

2
a
= p—- Jl(pm)

m

©)

7. See, for example, E. T. Whittaker and G. N. Watson, A Course in Modern Analysis, 4th
ed., pp. 374-378, University Press, Cambridge, 1927.
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and the series expansion (2) for the constant Vj is
o 2V, Dl
f(r) = —=0 7 <_m_> 7
mzl pm‘ll(pm) 0 a ( )
or, using the values of the zeros of J, in Table 7.15a,

0832V (2.405r> 0.362V,, (5.520r>
0

fn =

J1(2.405) a J1(5.520)°°\ a4
8
0231V,  (8.654r) ®)
J,(8.654) °\ 4

Further evaluation of (8) requires reference to tables in the sources given in fobtnotes
14 and 15 or numerical evaluation of Eq. 7.13(11).

7.17 FELDS DESCRIBED BY CYLINDRICAL HARMONICS

We will consider here the two basic types of boundary value problems which exist in
axially symmetric cylindrical systems. These can be understood by reference to Fig.
7.17a. In one type both &, and P,, the potentials on the ends, are zero and a nonzero
potential ®; is applied to the cylindrical surface. In the second type ®; = 0 and either
(or both) &, or @, are nonzero. The gaps between ends and side are considered neg-
ligibly small. For simplicity, the nonzero potentials will be taken to be independent of
the coordinate along the surface. In the first type, a Fourier series of sinusoids is used
to expand the boundary -potentials as was done in the rectangular problems. In the
second situation, a series of Bessel functions is used to expand the boundary potential
along the radial coordinate.

Nonzero Potential on Cylindrical Surface Since the boundary potentials are
axially symmetric, zero-order Bessel functions should be used. The repeated zeros along
the z coordinate dictate the use of sinusoidal functions of z. The potential in Eq. 7.13(20)
is the appropriate form. Certain of the constants can be evaluated immediately. Since
K,(7r) is singular on the axis, C; must be identically zero to give a finite potential there.
The cos 7z equals unity at z = 0O but the potential must be zero there so C; = 0. As
in the problem discussed in Sec. 7.10 the repeated zeros at z = [ require that 7 = mmr/I.
Therefore the general harmonic which fits all boundary conditions except ® = Vj, at

r=alis
@, = Amlo(zl-;z>sin<m—7£> )

Figure 7.17b shows a sketch of this harmonic for m = 1 and with the nonzero boundary
potential on the cylinder. It is clear that we have here the problem of expanding the
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Fi6.7.17 (a) Cylinder with conducting boundaries. (b) One harmonic component for matching
boundary conditions when nonzero potential is applied to cylindrical surface in (a@). (¢) One
harmonic component for matching boundary conditions when nonzero potential is applied to end
surface in (a).

boundary potential in sinusoids just as in the rectangular problem of Sec. 7.12. Follow-
ing the procedure used there we obtain

4_-V_010(m7rr/l) . mmz

O(r,2) = D, )

modd m Iy(mma/l) n 1

Nonzero Potential on End In this situation if we refer to Fig. 7.17a, we see that
®, = ®; = 0 and &, = V. In selecting the proper form for the solution from Sec.
7.13, the boundary condition that ® = 0 at r = a for all values of z indicates that the
R function must become zero at r = a. Thus, we select the J;, functions since the /;,’s
do not ever become zero. (The corresponding second solution, N,,, does not appear since
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potential must remain finite on the axis.) The value of T in Eq. 7.13(19) is determined
from the condition that ® = 0 at r = q for all values of z. Thus, if p,, is the mth root
of Jy(w) = 0, T must be p,/a. The corresponding solution for Z is in hyperbolic
functions. The coefficient of the hyperbolic cosine term must be zero since ® is zero
at z = O for all values of r. Thus, a sum of all cylindrical harmonics with arbitrary
amplitudes which satisfy the symmetry of the problem and the boundary conditions so
far imposed may be written

O, 2) = O B,,,JO<M) sinh(PLz> 3)
m=1 a a

One of the harmonics and the required boundary potentials are shown in Fig. 7.17c.

The remaining condition is that, at z = [, ® = Qatr = aand ® = Vyatr < a.
Here we can use the general technique of expanding the boundary potential in a series
of the same form as that used for the potentials inside the region, as regards the de-
pendence on the coordinate along the boundary. In Ex. 7.16 we expanded a constant
over the range 0 < r < a in J,, functions so that result can be used here to evaluate the
constants in (3). Evaluating (3) at the boundary z = [, we have

ad l

&)= 3 B, sinh(”—"‘—>10<‘i"—r> )
m=1 a a

Equations (4) and 7.16(7) must be equivalent for all values of . Consequently, coef-

ficients of corresponding terms of Jy(p,,r /a) must be equal. The constant B,, is now
completely determined, and the potential at any point inside the region is

O, 2) = O 2V sinh <”‘ILZ>JO<—'"—’) ®)

m=1 pm‘]l(pm) Sinh(pml/a) a

7.18 SPHERICAL HARMONICS

Consider next Laplace’s equation in spherical coordinates for regions with symmetry
about the axis so that variations with azimuthal angle ¢ may be neglected. Laplace’s
equation in the two remaining spherical coordinates r and 6 then becomes (obtainable
from form of inside front cover)

F(rd) 1o (. P\
a2 ' 7sin 640 (sm 6 60) =0 @
or
2 2

r— + > =
or or r 00 rtan 6 06

Assume a product solution
® = RO
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where R is a function of r alone, and © of 6 alone:

1
rR"'© + 2R'O + — RO" + ! RO =0
r rtan 6
and
r2R" + 2rR’ _ _9_’_’ _ o’ 3)
R R © ©Otnd

From the previous logic, if the two sides of the equations are to be equal to each other
for all values of r and 6, both sides can be equal only to a constant. Since the constant
may be expressed in any nonrestrictive way, let it be m(m + 1). The two resulting
ordinary differential equations are then

d’R dR
rzgﬁ+2r:i;—m(m+l)R=0 @)
d*o 1 do
—_—+ — — + + 1) =0
i® Tanoae T T ©)
Equation (4) has a solution which is easily verified to be
R = Cyr™ + Cyr=*D (6)

A solution to (5) in terms of simple functions is not obvious, so, as with the Bessel
equation, a series solution may be assumed. The coefficients of this series must be
determined so that the differential equation (5) is satisfied and the resulting series made
to define a new function. There is one departure here from an exact analog with the
Bessel functions, for it turns out that a proper selection of the arbitrary constants will
make the series for the new function terminate in a finite number of terms if m is an
integer. Thus, for any integer m, the polynomial defined by

2"m!

] (cos? § — )™ )

1 d
P (cos 0) = [ d(cos 6)

is a solution to the differential equation (5). The equation is known as Legendre’s
equation; the solutions are called Legendre polynomials of order m. Their forms for the
first few values of m are tabulated below and are shown in Fig. 7.18a. Since they are
polynomials and not infinite series, their values can be calculated easily if desired, but
values of the polynomials are also tabulated in many references.

Py(cos 6) = 1

P,(cos 6) = cos 0

P,(cos 6) = $(3 cos®> 6 — 1)

P5(cos 6) = (5 cos® § — 3 cos 6)

P,(cos 6) = $(35 cos* @ — 30 cos® 6 + 3)
Py(cos 6) = (63 cos® § — 70 cos® 6§ + 15 cos 6)

®
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1.0

E N ol

-10—

Fic. 7.18a Legendre polynomials.

It is recognized that © = C,P,(cos ) is only one solution to the second-order
differential equation (5). There must be a second independent solution, which may be
obtained from the first in the same manner as for Bessel functions, but it turns out that
this solution becomes infinite for & = 0. Consequently it is not needed when the axis
of spherical coordinates is included in the region over which the solution applies. When
the axis is excluded, the second solution must be included. It is typically denoted
Q,(cos 6) and tabulated in the references.!®

An orthogonality relation for Legendre polynomials is quite similar to those for
sinusoids and Bessel functions which led to the Fourier series and expansion in Bessel
~ functions, respectively.

f P, (cos 6)P,(cos 6) sin 6§ df = O, m# n )
0

" 2
P 2sin 0df = ————
fo [P,(cos )] sin o+ 1 (10)
It follows that, if a function f(6) defined between the limits of O to 7 is written as a
series of Legendre polynomials,

©

f6) = O a,P,cosh), 0<6<m (11)

m=0

8 W, R. Smythe, Static and Dynamic Electricity, 3rd ed., Hemisphere Publishing Co., Wash-
ington, DC, 1989.
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the coefficients must be given by the formula

_2m + 1
2

A,

f f(6)P,(cos 0) sin 6 db (12)
0

T N R S e ]

S R R S S S R R R
Example 7.18a
HIGH-PERMEABILITY SPHERE IN UNIFORM FIELD

We will examine the field distribution in and around a sphere of permeability u # wu,
when it is placed in an otherwise uniform magnetic field in free space. The uniform
field is disturbed by the sphere as indicated in Fig. 7.18b. The reason for choosing this
example is threefold. It shows, first, an application of spherical harmonics. Second, it
is an example of a situation in which the constants in series solutions for two regions
are evaluated by matching across a boundary. Finally, it is an example of a magnetic
boundary-value problem.

Since there are no currents in the region to be studied, we may use the scalar magnetic
potential introduced in Sec. 2.13. The magnetic intensity is given by

H= -V, (13)

As the problem is axially symmetric and the axis is included in the region of interest,
the solutions P,,(cos 6) are applicable. The series solutions with these restrictions are

D, (r, 6) = 2 P,(cos O)[C,,,r™ + C,,,r~ "+ 1] (14)

The procedure is to write general forms for the potential inside and outside the sphere
and match these across the boundary. Since the potential must remain finite at r = 0,

H,

—————v

FiG. 7.18b Sphere of magnetic material in an otherwise uniform magnetic field.
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the coefficients of the negative powers of r must vanish for the interior. The series
becomes, for the inside region,

®, = D A, r"P,(cos 6) ' (15)
Outside, the potential must be such that it gives a uniform magnetic field H,, at infinity.
The potential form which satisfies this condition is
®, = —Hyrcos 6 (16)
That this gives a uniform field may be seen by noting that dz = dr cos 6 so

P 1 b
H=-Tm_ _ 9P _
z az cos 6 or Ho an

Terms of the series (14) having negative powers of r may be added to (16), since they
all vanish at infinity. Then the form of the solution outside the sphere is

®, = —Hy cos 6 + D, B, P,(cos f)r~ ™+ D (18)

It was pointed out in Sec. 2.14 that ®,, is continuous across boundaries without
surface currents. Therefore, the terms in (15) and (18) having the same form of
dependence are equated, giving

Ao = Boa_l m = O
Aa=Ba?*-Ha m=1
1 ] 1 [0} (19)
A,a" = B,a~ "D m>1
Furthermore, the normal flux density is continuous at the boundary so
M R 8 0
#0 ar r=a+ M ar r=a—

Substituting (15) and (18) in (20) and equating terms with the same 6 dependence, we
find

By, =0 m=20

= —2uyBa=? - m =1
MA, . oDy HoH o @)

I

umA,a™ "t = —po(m + DB,a” "™ m > 1

From (19) and (21) we see that A, = B, = 0, and that for m > 1, all coefficients must
be zero to satisfy the two sets of conditions. The only remaining terms are those with
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m = 1. These two equations may be solved to give A; and B, in terms of H,. Substi-
tuting the results in (18) gives, for r > a,

R
P, = [(2% " P«) 3 I]Hor cos 6 (22)

from which H can be found by using (13) for » > a. Substitution of A, into (15) gives,
for r < a,

3po >
&, = —| ——— |Hyr cos 6 (23)
<2M0 + u o
Applying (13), we find the field inside to be
3po
H=12—7—
z<2l~’v0 + P«)HO @Y

It is of interest to observe that the field inside the homogeneous sphere is uniform.
Finally, multiplication of (24) by u gives the flux density

3o >
B =72 —F—F"]H (25)
<2<uo/u) +1)7°
From (25) we see that for u >> u, the maximum possible value of the flux density is
B = 23uH, (26)

Example 7.18b
EXPANSION IN SPHERICAL HARMONICS WHEN FIELD IS GIVEN ALONG AN AXIS

It is often relatively simple to obtain the field or potential along an axis of symmetry
by direct application of fundamental laws, yet difficult to obtain it at any point off this
axis by the same technique. Once the field is found along an axis of symmetry, expan-
sions in spherical harmonics give its value at any other point. Suppose potential, or any
component of field which satisfies Laplace’s equation, is given for every point along
an axis in such a form that it may be expanded in a power series in z, the distance along
this axis:

O =D bz", 0<z<a (27)
axis m=0

If this axis is taken as the axis of spherical coordinates, 8 = 0, the potential off the
axis may be written for r < a

O, ) = >, b,,r"P,(cos 6) (28)

m=0
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This is true since it is a solution of Laplace’s equation and does reduce to the given
potential (27) for 6 = 0 where all P,,(cos 6) are unity.

If potential is desired outside of this region, the potential along the axis must be
expanded in a power series good for a < z < oo:

P

6=0

iz ™th z2>q (29)
1

I
?:Ms

Then ® at any point outside is given by comparison with the second series of (14):

® = > c,P,cos Or ™D r>gq (30)
m=0
For example, the magnetic field H, was found along the axis of a circular loop of
wire carrying current / in Sec. 2.3 as
a’l I

Hz = 2(a2 + 22)3/2 = 20[1 + (22/02)]3/2 (31)

The binomial expansion

3 15 105
(1 +u)—3/2= 1 —‘2-u+§u2—“§u3

is good for 0 < |u| < 1. Applied to (31), this gives for z < a

2
_Lf,3(2), 15 (2) 0s 2\
wis | 20 2\ a? 8 \d? 48 \a?

Since H,, axial component of magnetic field, satisfies Laplace’s equation (Sec. 7.2),
H, at any point r, 8 with r < a is given by

2 4
H(r, 6) = - [1 _3 <r )Pz(cos 0 + —183 (%)P‘t(cos 0) + ] (32)

H,

z

2a 2;

7.19 PRODUCT SOLUTIONS FOR THE HELMHOLTZ EQUATION
IN RECTANGULAR COORDINATES

The technique used in the preceding sections for finding product solutions to Laplace’s
equation will be applied here to the scalar Helmholtz equation. Whereas the single-
product solution for static problems was seen in Sec. 7.10 to be of little value, such
solutions will be seen in the next chapter to be of great importance as waveguide
propagation modes and will be analyzed extensively there.

Let us consider the scalar Helmholtz equation. Here we make the assumption that
the dependent variable depends on z in the manner of a wave, as e~ . The variable
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remaining in the equation is, therefore, the coefficient of eV/“*~ 7, Written with the
Laplacian explicitly in rectangular coordinates, we have

Py Py
L 1
pre e M
where k2 = y? + w*ue. Let us assume that the solution can be written as the product
solution ¢ = X(x)Y(y). Substituting this form in (1),

X"Y + XY' = —k2XY
or
X!I Y"
S S 2
x Ty c 2

The primes indicate derivatives. If this equation is to hold for all values of x and y,
since x and y may be changed independently of each other, each of the ratios X”/X and
Y”/Y can be only a constant. There are then several forms for the solutions, depending
upon whether these ratios are taken as negative constants, positive constants, or one
negative constant and one positive constant. If both are taken as negative,

X_I/

- -
X
Y!I
75

The solutions to these ordinary differential equations are sinusoids, and by (2) the sum
of k% and &2 is k2. Thus

b= XY 3
where
X = Acos kx + B sin kx
Y = Ccos ky + D sin ky 4)
B+ E=g

Either or both of k, and k, may be imaginary in which case the corresponding sinusoid
becomes a hyperbolic function. Values of the constants &, and k, are determined by
conditions on i at the boundaries in the x—y plane. Examples of the application of these
general forms will be seen extensively in the following chapter where the dependent
variable ¢ is identified as E, or H,. -~

7.20 PRODUCT SOLUTIONS FOR THE HELMHOLTZ EQUATION
IN CYLINDRICAL COORDINATES

In cylindrical structures, such as coaxial lines or waveguides of circular cross section,
the wave components are most conveniently expressed in terms of cylindrical coordi-
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nates. Assuming that the z dependence is in the waveform e~ 7*, the scalar Helmholtz

equation becomes

Py 1oy 1 Py

L2, MY 1
ot ror  r?o¢? Y M

where k2 = y* + w?pe. For this partial differential equation, we shall again substitute

an assumed product solution and separate variables to obtain two ordinary differential

equations.
Assume
¥ = RF,
where R is a function of r alone and F is a function of ¢ alone:
R'F ¥
" ¢ ¢t
RF¢ +T + "r—2— = —kchF¢
Separating variables, we have
R" R -F ¢
.
"®RTR T TF,

The left side of the equation is a function of r alone; the right of ¢ alone. If both sides
are to be equal for all values of r and ¢, toth sides must equal a constant. Let this
constant be v2. There are then the two ordinary differential equations:

_FII 2 (2)
=y
F
and
R" R’
r2E+r—R-+k§r2=v2
or
1 2
R”+;R'+(k§—%>R=O (3)

The solution to (2) is in sinusoids. By comparing with Eq. 7.14(3) we see that solutions
to (3) may be written in terms of Bessel functions of order v:

- ¥ = RF, 4
where
R = AJ (k) + BN,(k;r) ®)
Fy = Ccosve + D sinve

Either or both of the Bessel functions may be replaced by Hankel functions [Egs.
7.14(11) and (12)] when one desires to look at waves as though propagation were in
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the radial direction. Thus, for example,
R = AHP(kr) + BHP(k.r)
Fy, = Ccosvp + D sinve

If k. is imaginary, the ordinary Bessel functions can be replaced by the modified Bessel
functions, Eqs. 7.14(16) and (17). In the examples in the following chapter, the variable
¢ will be identified with E, or H,.

©

PROBLEMS

7.2a Find the form of differential equation satisfied by E, in cylindrical coordinates for a
charge-free, homogeneous dielectric region. Repeat for E 4. Note that these are not
Laplace equations.

7.2b Show that none of the spherical components of electric field satisfy Laplace’s equation
for quasistatic problems in which V2E = 0.

7.2¢* Show that the rectangular component E, of electrostatic field satisfies Laplace’s equa-
tion expressed in spherical coordinates.

7.2d Derive Laplace’s equation for H, A, and ®,, in a current-free region with static fields
and for J and E in a homogeneous conductor with dc currents.

7.2e Use superposition to find the potential on the axis of an infinite cylinder with a poten-
tial specified as ®(¢p) = V, sin ¢/2, for 0 =i ¢ =< 27 on the boundary.

7.2f A spherical surface is at zero potential except for a sector in the region 0 < ¢ < /3,
0 < 6 < 7/2. Find the potential at the center of the sphere.

7.3a Calculate the capacitance of a parallel-plate capacitor with square plates having edge
length a and spacing d = a/2 situated in free space using the method of moments. If
you do the calculations by hand, divide each plate into four equal squares. If a com-
puter program is written, run it for several subdivisions of the plates and plot the effect
on capacitance.

7.3b Find a better approximation to the capacitance of the structure in Ex. 7.3a by subdivid-
ing each of the squares shown in Fig. 7.3d into four equal parts and repeating the
method of moments calculation.

7.3¢ In applying the method of moments calculation to two-dimensional problems, the In r,
term in Eq. 1.8(7) is neglected. As an illustration of the validity of this procedure, find
the potential of two parallel line charges located as follows: +¢, at ¢ = 0,r = 5 and
—q, at ¢ = 0, r = 26; take the zero potential point to be r = R on the ¢ = 0 axis.
Apply Eq. 1.8(7) and show that the In r,, terms cancel to arbitrary accuracy as R — o,
How does this explain that the In r, terms can be neglected in the two-electrode two-
dimensional method of moment problems in which the line charges have a variety of
values?

7.3d* Write a computer program to find the stripline capacitance as in Ex. 7.3b. Extend the
range included on the larger electrodes by one unit of the division in Fig. 7.3e and
evaluate the effect on capacitance. Then use a subdivision of the electrodes one-half as
fine as in the example. Compare the results to evaluate the importance of the grid size.
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Check by the Cauchy—Riemann equations the analyticity of the general power term
W = C,Z" and a series of such terms,

co

w- 3 cx

Check the following functions by the Cauchy—Riemann equations to determine if they
are analytic:

Check the analyticity of the following, noting isolated points where the derivatives
may not remain finite:

W=InZ
W = tan Z

Take the change AZ in any general direction Ax + j Ay. Show that, if the Cauchy—
Riemann conditions are satisfied, Eq. 7.4(3) yields the same result for the derivative as
when the change is in the x direction or the y direction alone.

If by following a path around some point in the Z plane, the variable W takes on dif-
ferent values when the same Z is reached, the point around which the path is taken is
called a branch point. Evaluate W = Z'/2 and W = Z*/3 along a path of constant
radius around the origin to show that Z = 0 is a branch point for these functions.
Discuss the analyticity of these functions at the branch point.

Plot the shape of the u = *0.5 equipotentials for the V = x*3,y = 0 boundary
condition used in Ex. 7.5.

A thin cylindrical shell of radius a has a pctential described by ®(a, 6) = V, cos 26.
Use a method similar to that in Ex. 7.5 to find ®(r,6).

Show that if u is the potential function, the field intensity E, is equal to the imaginary
part of dW/dZ and E, equals the negative of the real part.

Use the results of Prob. 7.5¢ to find an expression for the slope of equipotential lines
in terms of dW/dZ. Show that all equipotential lines except u = 0 are normal to the
beam edge in the electron flow in Fig. 7.5b. (W = Z*/* is not analytic at Z = 0, as
was shown in Prob. 7.4e, and the W = O line at y = 0 is a special case.) Hint: Write
an expression for du in terms of partial derivatives and set du = 0 to get relations
existing along an equipotential.

Plot a few equipotentials and flux lines in the vicinity of conducting corners of angles
a = /3 and 37/4.

Evaluate the constant C; and C, in the logarithmic transformation so that u represents
the potential function in volts about a line charge of strength ¢, C/m. Let potential be
zeroatr = a.

Show that if v is taken as the potential function in the logarithmic transformation, it is
applicable to the region between two semi-infinite conducting planes intersecting at an
angle a, but separated by an infinitesimal gap at the origin so that the plane at § = 0
may be placed at potential zero and the plane at § = « at potential V,,. Evaluate the
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constants C, and C,, taking the reference for zero flux at r = a. Write the flux func-
tion in coulombs per meter.

7.6d Find the form of the curves of constant u and constant v for the functions sin~! Z,
cosh™! Z, and sinh ™! Z. Do these permit one to solve problems in addition to those
from the function cos ™! Z? .

7.6e Apply the results of the cos ™! transformation to item 4 in Ex. 7.6c. Take the right-
hand semi-infinite plane extending from x = a to x = o at potential V,,. Take the left-
hand semi-infinite plane extending from x = —ato x = — at potential zero. Evalu-
ate the scale factors and additive constant.

7.6f* Apply the results of the transformation to itemn 2 of Ex. 7.6¢c. Take the elliptic cylindri-
cal conductor of semimajor axis a and semimninor axis b at potential V,,. The inner
conductor is a strip conductor extending between the foci, x = *c, where

c = V& - p?

Evaluate all required scale factors and constants. Find the total charge per unit length
induced upon the outer cylinder and the electrostatic capacitance of this two-conductor
system.

7.6g* Modify the derivation in Ex. 7.6d to apply to the problem of parallel cylinders of un-
equal radius. Take the left-hand cylinder of radius R, with center at x = —d,, the
right-hand cylinder of radius R, with center at x = d,, and a total difference of poten-
tial V,, between cylinders. Find the electrostatic capacitance per unit length in terms of
R, Ry, and (d; + 4d,).

7.6h The important bilinear transformation is of the form
aZ' + b

T Z +d
Take a, b, c, and d as real constants, and show that any circle in the Z’ plane is trans-
formed to a circle in the Z plane by this transformation. (Straight lines are considered
circles of infinite radius.)

Consider the special case of Prob. 7.6h witha = R,b = —R,c = 1,andd = 1.
Show that the imaginary axis of the Z' plane transforms to a circle of radius R, center
at the origin, in the Z plane. Show that a line charge at x' = d and its image at x' =
—d in the Z' plane transform to points in the Z plane at radii r, and r, with r,r, = R%
Compare with the result for imaging line charges in a cylinder (Sec. 1.18).

7.6i

7.7a Explain why a factor in the Schwarz transformation may be left out when it corre-
sponds to a point transformed to infinity in the Z' plane.

7.7b In Eq. 7.7(2), separate Z into real and imaginary parts. Show that the boundary condi-
tion for potential is satisfied along the two conductors. Obtain the asymptotic equa-
tions for large positive u and for large negative u, and interpret the results in terms of
the type of field approached in these limits.

7.7c* Work the example of Prob. 7.6e by the Schwarz technique and show that the same
-result is obtained. This is the problem of two coplanar semi-infinite plane conductors
separated by a gap 2a, with the left-hand conductor at potential zero and the right-
hand conductor at potential V.

7.7d* For the first example of Table 7.7, find the electrostatic capacitance in excess of what
would be obtained if a uniform field existed in both of the parallel-plane regions.

7.7¢ Plot the V,,/2 equipotential for Ex. 7.7.
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Suppose that the wave-guiding structure in Fig. 7.8a is bounded on the outside by a
dielectric &5(r) which has the value &, at R, and then decreases to an appreciably
lower value as r is increased. As was seen in Sec. 6.12, waves incident on a plane
boundary between two dielectrics from the higher ¢ side can be totally reflected. Find
the limiting rate of decrease of &5 at R, which can permit total reflection of rays ap-
proaching the boundary, by studying the variation of the equivalent dielectric constant
in the W plane.

The so-called circular harmonics are the product solutions to Laplace’s equation in the
two circular cylindrical coordinates r and ¢. Apply the basic separation of variables
technique to Laplace’s equation in these coordinates to yield two ordinary differential
equations. Show that the r and ¢ equations are satisfied respectively by the functions
R and F 4 where

R=Cy"+ Cy"
Fy = C;cos ng + C,sin ng

An infinite rod of a magnetic material of relative permeability w, lies with its axis per-
pendicular to the direction of a uniform magnetic field in which it is immersed. Take
the rod to be of circular cross section with radius a and use the expressions in Prob.
7.9a to find the fields inside and outside the rod. Note the uniformity of the field in-
side.

Plot the form of equipotentials for & = V,/4,V,,/2, and 3V,/4 for Fig. 7.10a.

Describe the electrode structure for which the single rectangular harmonic C, cosh kx
sin ky is a solution for potential. Take electrodes at potential V,, passing through |x| =
awheny = a/2.

Describe the electrode structure and exciting potentials for which the single circular
harmonic (Prob. 7.9a) Cr? cos 2¢ is a solution.

Obtain Fourier series in sines and cosines for the following periodic functions:

(i) A triangular wave defined by f(x) = V(1 — 2x/L) from 0 to L/2 and f(x) =
Vol(2x/L) — 1] from L/2 to L
(ii) A sawtooth wave defined by f(x) = Vyx/Lfor0 <x <L
(iii) A sinusoidal pulse given by f(x) =(V,, cos kx — V) for —a < kx < a, f(x) =
0, for —7 < kx < —a and also for a < kx < .

Suppose that a function is given over the interval 0 to a as f(x) = sin 7x/a. What do
the cosine and sine representations yield? Explain how this single sine term can be
represented in terms of cosines.

Find sine and cosine representations for the function ¢** defined over the interval
0<x<a.

Plot f(x) given by Eq. 7.11(14) in the neighborhood of the discontinuities using
(1) five sine terms and (ii) ten sine terms and discuss differences from the rectangular
function being represented.

A complex form of the Fourier series for a function f(x) defined over the interval
0<x<ais

f(x) = Z Cnej21rnx/a

n=—o
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Show that if this is valid, ¢, must be given by
1 [ ,
c, = —f f(x)e92m™x/a gy
a’o

Find representations for the constant C over the interval 0 < x < a in the complex
form of Prob. 7.11e, and compare the result with Eq. 7.11(14).

Find the Fourier integral representation for a decaying exponential, f(x) = 0, for
x < 0and f(x) = ce”** forx > 0.

Obtain a series solution for the two-dimensional box problem in which sides aty = 0
and y = b are at potential zero, and end planes atx = g and x = —gq are at
potential V.

Find the potential distribution for the box of Prob. 7.12a with the same boundary con-
ditions except that the potential on the side at y = 0 should be V, and thataty = b
should be —V,.

In a two-dimensional problem, parallel planes at y = 0 and y = b extend from x = 0
to x = o and are at zero potential. The one end plane at x = 0 is at potential Vj,
Obtain a series solution.

The fringing that occurs at the open ends of a pair of parallel plates as seen in Fig.
1.9a leads to a modification of the fields between the plates from the ideal uniform
distribution. Consider x = 0 to be the ends of the plates, which are at y = 0, b. The
analysis of Ex. 7.7 can show that the potential between the ends of the plates may be
expressed approximately as ®(0, y) = V,[(y/b) + 0.06 sin 27ry/b]. Find the distance
x at which the potential distribution between the plates is linear to within 1%, using
the analysis of Prob. 7.12c.

A two-dimensional conducting rectangular solid is bounded on three sides by perfect
conductors: aty = 0,® = 0;atx = 0,® = 0;aty = b, & = V,. It is bounded at
x = a by a dielectric with zero conductivity. Find an expression for the potential dis-
tribution inside the conducting solid.

7.12f Two concentric cylinders are located at r = a and » = b. The inner (r = a) cylinder

712

7.12h*

is split along its length into two halves which are at different. potentials. Potential is
—Vyfor —m < ¢ <0andV,for 0 < ¢ < . The cylinder at r = b is at zero
potential. Find the potential between the two cylinders.

The potential along the plane boundary of a half-space is in strips of width a and alter-
nates between —V, and V,,. Take the boundary to be at y = 0 and the strips to be
invariant in the z direction. The origin of the x coordinate lies in the gap between
strips so that the potential is —V,, for —a <x < 0 and V,, for 0 < x < a. Find the
potential distribution for y = 0 and determine the surface charge density along the y

= 0 plane. Put the result in closed form (see Collin, footnote 3 of Chap. 8, p. 813)
and plot for —a <x < a.

Infinite parallel conducting plates are located at y = 0 and y = a. A conducting strip
atx = 0,a/2 =y =a, —o <z <, is connected to the plate at y = q, thus

@ =V,

A
al?
y R

b, ®=0 e 7a2m

X
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introducing additional capacitance between the plates. (See Fig. P7.124.) Assume a
linear potential variation for 0 < y < a/2 at x = 0, and use superposition of boundary
conditions to find an expression for the capacitance per meter in the z direction added
by the strip at x = 0.

Consider a rectangular prism of width a in the x direction and 4 in the y direction with
all four sides at zero potential extending from z = 0 toz = ®. Atz = 0 the prism
has a cap with the following potential distribution:

0 for0 < x <a/2aly

Vix,y, 0) =
(. 3. 0) {Vo fora/2 <x<a,ally

Find the potentials within the prism.

For a box as in Ex. 7.12c, find the potential distribution if the box is filled with a
homogeneous, isotropic dielectric with permittivity €, in the bottom half of the box
0 = z = ¢/2 and free space in the remainder.

Demonstrate that the series Eq. 7.13(10) does satisfy the differential equation 7.13(8).

Write a function f(r) in terms of nth-order Bessel functions over the range 0 to a and
determine the coefficients.

Determine coefficients for a function f(r) expressed over the range O to a as a series of
zero-order Bessel functions as follows:

=3 cmfo(’ﬂ)
1 a

where p,, denotes the mth root of Jy(v) = 0 [i.e., J;(v) = 0].

A cylinder divided into a set of rings with appropriately applied voltages may be used
to set up a nearly uniform electric field along the axis with advantageous focusing
properties for electron beams. Suppose the field at the radius a of the cylinder is given
approximately by E,(a, z) = Ey(1 + cos az), where @ = 27/p and p is the period of
the rings. Find the potential variation along the rings (» = a) and for r < a. Deter-
mine the field on the axis and the period required to have the periodic part of the field
1% of E,,.

Show that the function
O(r, z) = Aly(1r) cos 7z

satisfies the requirement of solutions of Laplace’s equation that there should be no
relative maxima or minima.

Find the series for potential inside the cylindrical region with end plates z = 0 and
z= [ at potential zero and the cylinder of radius a in two parts. From z = 0 toz =
1/2, it is at potential Vy; from z = /2 to z = [, it is at potential —V,,

The problem is as in Prob. 7.17c except that the cylinder is divided in three parts with
potential zero fromz = Otoz = b and also fromz = | — btoz = . Potential is V,
fromz = btoz =1 — b.

Write the general formula for obtaining potential inside a cylindrical region of radius
a, with zero-potential end plates at z = 0 and z = /, provided potential is given as ®
= f(z)atr = a.

7.17f Write the general formula for obtaining potential inside a cylinder of radius a which,

with its plane base at z = 0, is at potential zero, provided that the potential is given
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across the plane surface at z = [, as
O, ) = f(n

7.17g Find the potential distribution inside a cylinder with zero potential on the cylindrical
surface at r = a, on the end plate at z = 0 and where a/2 < r < a on the end plate at
z = I. It also has ®(r, [) = V,, for 0 =r< a/2.

7.18a Apply the separation of variables technique to Laplace’s equation in the three spherical
coordinates, r, 6, and ¢, obtaining the three resulting ordinary differential equations.
Write solutions to the r equation and the ¢ equation.

7.18b Assume a spherical surface split into two thin hemispherical shells with a small gap
between them. Assume a potential V, on one hemisphere and zero on the other and
find the potential distribution in the surrounding space.

7.18c Write the general formulas for obtaining potential for r < a and for » > a, when po-
tential is given as a general function f(6) over a thin spherical shell at r = a.

7.18d For Ex. 7.18b, write the series for H, at any point r, 6 with r > a.

7.18e A Helmholtz coil is used to obtain very nearly uniform magnetic field over a region
through the use of coils of large radius compared with coil cross sections. Consider
two such coaxial coils, each of radius a, one lying in the plane z = d and the other in
the plane z = —d. Take the current for each coil (considered as a single turn) as /.
Obtain the series for H, applicable to a region containing the origin, writing specific
forms for the first three coefficients. Show that if @ = 24, the first nonzero coefficient
(other than the constant term) is the coefficient of ré.

7.19 In Egs. 7.19(3) and (4), let ¢ be the axial electric field component E,, and simplify by
taking A and C zero in (4). Discuss the forms of solutions and the question of finding
physical boundary conditions for (i) both k, and , real, (ii) , real but &, imaginary,
and (iii) both &, and k, imaginary. For (ii) and (iii) would physical applicability of
solutions be changed if either or both of A and C were nonzero?



