TRANSMISSION LINES

measure the time AT that it takes for the reflected pulse to return. From this data, we
can compute exactly the unknown distance D from the pulse generator where the reflec-
tion took place since AT = 2D/c. Imagine that you are trying to locate a fault in an
integrated circuit or a short circuit in a cable that is buried underground. Knowing where
to probe or dig will save many hours of frustration. This practical technique is called
time domain reflectometry.

Example 6-14 Using the reflection coefficient R given in (6.57) and the transmission
coefficient T  given in (6.68), show that power is conserved at the junction between two
lossless transmission lines.

Zc1 Zcz
Pincident =)
S transmitted
—>
. —

Preflected

“Answer: Conservation of power implies that

P

inc

=P .+P,

ref trans
In terms of the voltages, this becomes

(Vinc)2 = (Vref)2 + (Vtrans)2
Z Z VA

¢ Q (%)

2 2
1=(x_) +(z@__] Zy _
Vinc Vinc Zc2

: 2 2
_(ZazZa) (22, Z )_,
Z,+Z, Z,+Z, )\ Z,

Example 6-15. A 1 volt pulse propagates from z < 0 on a transmission line. The line is
terminated in an open circuit @ z = 0. Four oscilloscopes are triggered by the same
pulse generator and are located at: z, = - 6; z, = —4; z_=-2;and z,= 0 (meters). Find
the velocity of propagation and interpret the voltage signals on the oscilloscopes. Sketch
the corresponding signals if the transmission line is terminated in a short circuit.

or
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a b c d

pulse generator

Answer: From the traces on oscilloscopes a and b, we find the velocity of propagation
to be v="Az/ At= (2 meters) / (1 second) =2 m/ s.

a |—— -
2 4 6 8
o f-— o ——
2 4 6 8
o A ——— ]
2 4 6 8
o —— .-y
2 4 6 8

t (seconds)

Oscilloscope dis at the location of the open circuit and the incidentand the reflected
pulses add together. The signals that are detected after t = 4 seconds are the reflected
pulses that propagate toward the pulse generator.

The voltage signals detected by the oscilloscopes if the transmissionline is terminated
in a short circuit are depicted below. The voltage across the short circuit must be zero,
hence the signal at oscilloscope dis zero.

This can be also shown using the Simulink application in MATLAB. This is described
in Appendix D.

a (]
2 4 6 8
b ]
2 4 6 8

2 4 6 8
d ——t——t——
2 4 6 8
t (seconds)
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Answer: From (5-79), we write

2
k= [ 2ZX1GH2 )y 405
2mx12GHz

The additional factor of ‘j’ implies that the wave will attenuate as e©59 2,

Example 5-19. Calculate the cutoff frequency for the two lowest-order modes of a parallel
plate waveguide where the plates are separated by 3 cm.

nm
Answer: The cutoff frequency is defined from ®, =—c. Hence
a

fraEea L T 3510° ™ = 5%10°Hz = 5 GHz
2% a 2n .03 m $

for n = 1. The second mode has n = 2. The cutoff frequency for this mode is

fc=—1—- 2% 310° 2 = 10%10° Hz = 10 GHz
21 .03m s

Waves with frequencies between 5 GHz and 10 GHz will propagate only in the lowest
n = 1 mode. Waves with frequencies above 10 GHz could propagate in either mode
(n=10rn=2).

Wave equation via MATLAB

The numerical solution of the wave equation is a formidable task. One quickly encoun-
ters numerical difficulties that are beyond the scope of this text. Fortunately for us, we
can be carried on the shoulders of giants in our first encounter with these potential
pitfalls. Herein, we will introduce a path through this jungle and develop a numerical
program that is written in MATLAB. The resulting figures should aid our understanding
of wave phenomena. In Appendix D, we show that waves that propagate on a transmis-
sion line can also be investigated with the Simulink feature of MATLAB.

In order to develop a numerical solution for the one dimensional wave equation (5.10),we
initially solve a first order partial differential equation. This equation is sometimes called
the advection equation
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99 9o
s TR S Y ) o '
ot ¢ oz : (5.83)
For the initial condition
0 (z,t=0) = F(2), (5.84)

the analytical solution of the advection equation is given by
0 =F(z- cp). (5.85)

We have seen this previously.

Both the wave equation and the advection equation belong to the same family that
is called a hyperbolic equation. The diffusion equation is in the parabolic equation family
and Laplace’s and Poisson’s equations are in the elliptic equation family. We will focus
our attention here on the advection equation as it is simpler and the procedure and some
of the pitfalls along with the bridges that cross these pitfalls will be described.

As shown in Figure 5-24, we consider that the space z and time ¢ can be drawn in a
three dimensional figure. The amplitude ¢ of the wave is specified by the third coordi-
nate.

‘In Figure 5-24, we set up the numerical grid. First, we have broken the region L in
which the wave propagates into N sections. In the figure, we have chosen N = 4. Hence
we write

L
h==
N (5.86)

Figure 5-24. Numerical grid that uses periodic boundary conditions.

322



ELECTROMAGNETIC WAVE PROPACATION

We assume that the velomty of propagation. 1s [ and that it takes a time 1 for the wave
to propagate a distance h. Therefore

h=ct (5.87)

With these restrictions, we will jump over numerical stability reservations that were
noted by Courant-Fredrichs-Lewy (CFL). We will leave it as excercises to examine the
cases where ¢t # h.

In addition to stability restrictions, we have also invoked periodic boundary condi-
tions. This states that once a numerically calculated wave reaches the boundary at
z =+ L/2, it reappears at the same time at z = — L/2 and continues to propagate in the
region —-L/2 < z < +L/2. As shown in Figure 5-24, we actually do not evaluate the wave
at these two edges but at one-half of a spatial increment A/2 removed from them at
z=-L/2 + h/2 and at z = +L/2 — h/2.

Let us now convert the advection equation (5.83) to the finite difference form that
can be handled by the computer. The time derivative is replaced using the forward
difference method that was introduced in Chapter 3.

_QSE_ = (p(zi’tn +T)—(p(zi’tn)

5.88
ot o1 ©-88)
In this notation with reference to Figure 5-23, we have
z;=(@{-12h-L2and t,=(n- 1)t (5.89)
The space derivative is replaced using the central difference method.
) z; %h,t,, —¢(z, —h,t,
oz 2h
Substitute (5.88) and (5.90) into the advection equation (5.83) and obtain
2t +T)— (2,2, ztht)—o(z,—ht,

T 2h

In (5.91), three of the four terms are evaluated at the same time t, and one term is
evaluated at the next increment in time ¢, + T. From (5.91), we wr1te~ this term as
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cT
(P(zi’tn + T) = (P(Z,', tn) - EZ[(p(ZJ + h’ tn) - (P(zi - h’ tn )] (592)

This is valid in the interior range 2 <n < N - 1. In (5.92), we note that all values are
known initially at the time z, = 0. Hence, we use (5.92) to evaluate the values at the next
increment in time. With the imposition of periodic boundary conditions, we must care-
fully use (5.92) in order to find the values at the boundaries. This manifests itself with
the requirement that

Ozt +7) = 0(z1,) = [0(z08) -0z )]

cT
(p(zN’tn +T) = (p(zN’tn) _E[(p(zl’tn)_(p(zN—l’tn)]

(5.93)

Example 5-20. Use (5.92) and (5.93) to find the evolution of a square pulse whose initial
shape is defined by

h
IzZ>—=,t=0|=0
(p(z 2 )

Use the grid depicted in Figure 5-24. The stability requirement h = ct is also to be invoked
in this calculation.

Answer: We tabulate the computed values to be

t

0 = 2T 3t 4t 57

3L 1
———— 0 —_— _l l +_5. +2
8 2 2 2 2 2
L 1 1 3 3 1
z —— 1. 4= —= = = 4+
8 2 2 2 2 2
L 3 3 1 3 1
+— 1 += 4= += = 4=
b, 13333
+— 0 +— += +§ += +=
8 2 2 2 2 2

Note that the signal becomes distorted and increases in value as it propagates. It is
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unstable for every value of time! Our imposition of the stability requirement that h = ct
did not insure stability in this case!

Fortuhately for us, there is a simple solution to the instability problem that is in

Example 5-23. This is the Lax method. It replaces (5.92) with a slightly different itera-
tion equation.

1
0larts +7) =50z +ht,)+ 0z = t,)] -~ ol +ht)-0l5-hat,)] (5.94)

The first term on the right side is the average of the two neighboring terms. Similarly,
the two equations that represent the periodic boundary conditions are modified to

Ozt +T)=%[(P(ZZ’tn)+(p(zN’tn)]_'§T_h[(p(22’tn)_(p(zN’tn)]

(5.95)

02wty +7) = '%[(P(Zl tn) = 0(zy-15 tn)] - ';‘::[(P(Zl 1) = P(2n-1,8y )]

-Example 5-21. Repeat Example 5-20 using the Lax method and sketch the solution.

Answer: Using (5.94) and (5.95), we compute and tabulate

t
0 1T 2t 3t 4t 57
-%li 0O 0 +1 +1 O O
L
Z ——é- +1 0 0 +1 +1 O
+£8“- +1 +1 0 0 +1 +1

+-38£0+1+100+1

Note that in this case, we have stability. In addition, the pulse is not distorted as it propagates.
We plot the solution as
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In MATLAB language, we write (5.94) and (5.95) in three steps. The first step finds
the new interior values of j in terms of the previous interior values. This iterations are
specified to have iterations in the range: 2 < i < (N-1). We write this as

phinew (2:(N-1)) = -5e((phi(3:N)+phi(1:(N-2))+(ct/2h)(phi(3:N)—phi(1:(N-2))

The remaining two steps take care of the periodic boundary conditions at i = 1 and at
i = N. This is written as

phinew(1) = .5e(phi(2)+phi(N))+(ct/2h)(phi(2)-phi(N))
phinew(N) = .5¢(phi(1)+phi(N-1))+(ct/2h)(phi(1)—phi(N-1))

Example 5-22. Develop a MATLAB program to illustrate the propagation of a pulse. In
addition, the first and the last calulations should be displayed in order to show the stability
of the calculation.

Answer. We write
%This program illustrates the propagation of a pulse.

clear; clg;
%initial numerical values
tau=.02; %size of time step
N=50; %number of grid points
L=1; %size of system
h=L/N; %spacing of grids = 1/50 =.02
c=1; %wave speed

%coefficients required for the Lax method. The time tau equals the time
%that it takes the wave to travel across the grid dimension h = cetau.
coef=-ctau/(2h); %coef=-1/2
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%initial pulse shape
sig=0.1; %width of pulse
z=((1:N)-1/2)eh-L/2; %valueofz@t=0
phi=(sech(z/(2esig*2))).*2;  %wave shape

%plot variables

ip=1; %plot counter
phipl(:,1)=phi(:); %initial state
tpl(1)=0; %initial time
%main loop
nstep=floor(L/(cetau)); %number of steps
plotstep=ceil(nstep/50); %number of steps between plots

for ist=1:nstep
%Lax scheme

phinew(2:(N-1))=phi(2:(N-1))+coef(phi(3:N)-phi(1:(N-2)))-...
coef(phi(3:N)+phi(1:(N-2))-2phi(2:(N-1)));

phinew(1)=phi(1)+coef(phi(2)-phi(N))-...
coef(phi(2)+phi(N)-2phi(1));

phinew(N)=phi(N)+coef(phi(1)-phi(N-1))-...
coef(phi(1)+phi(N-1)-2phi(N));
phi=phinew;

if(rem(ist,plotstep))<1
ip=ip+1;
phipl(:,ip)=phi(:); %record for plotting
tpl(ip)=tauist;
fprintf('%g out of %g steps completed\n',ist,nstep);
end
end
subplot
%show first and last calculated value for comparison
plot(z,phipl(:,1),-',z,phi,'--");
xlabel('z','fontsize',18);
ylabel('amplitude','fontsize',18);
text(-.4,.75,'(a)','fontsize’,18);
pause;
subplot(1,2,2)
%3-d plot of wave
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Problems
1. In terms of the fundamental units mass M, length L, time T, and change Q, show that
(p €, has the units of a velocity (L/T).

2. Let F(z —ct) =1 and G(z + ct) = =2 for Iz — ctl < 1 and Iz + ctl <1 respectively and "
F(z - ct) = G(z + cf) = 0 elsewhere. Accurately sketch the pulse if the velocity ¢ = 2 at three
times: t=0,¢=1, and ¢ = 3.

3. Define the functions F(z—c,?) and G(z+c,?) from the following sketch which was drawn at the
times ¢ = 0 and ¢ = 2.

¢
14+
N Y
-4 -2 0 +2 +4 Z
_L il ‘_4__
4 2 0 42 +4z

4. If the waves in problem 3 were electromagnetic waves, find the ratio of the dielectric con-
stants €, and ¢, for the two regions (z < 0)/(z > 0) if the relative permeabilitics were 1 in the two
regions.

5. A displacement wave on a string is described by 0.02 sin[2n(10¢ -0.5z)] m, where z is in
meters and ¢ is in seconds. Find:

(a) The propagation velocity.

(b) Wavelength A and wave number k.

(c) Frequency f and angular frequency w.

(d) The period.

(e) Direction of propagation.

(f) Amplitude of the wave.

6. Plot the wave given in Problem 5 as a function of z at ¢ = (a) 0 sec., (b) 0.125 sec., (c) 0.25
sec., and (d) 0.375 sec. Convince yourself that the wave pattern progresses in the positive z
direction as time increases.

7. Assume that a wave reflector was installed at z = 5 in Figure 5-3. This reflector causes a
positive amplitude pulse to be reflected as a positive amplitude pulse. Reflection implies that a
wave traveling to increasing values of z would start traveling to decreasing values of z after
reflection. Accurately sketch the expected oscilloscope pictures depicted in part a and trajectory
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depicted in part b to include the reflected waves. You may assume that the reflected waves are
absorbed by the wave maker.

8. Repeat problem 7 with a new wave maker. This wave maker causes an incident positive (or
negative) wave to be reflected as a negative (or positive) wave. Examine the waves during the
times 0 < ¢t < 15.

9. Show that a pulse defined by f(z, £) = 0.5 exp[-(z — 5¢)*] satisfies a wave equation. Plot this
function as a function of z for the three times: ¢ = 0, 0.5 sec., and 1.0 sec.

10. Show that (5.20) and (5.21) are related expressions.
11. Snapshots of two cycles of an electromagnetic wave propagating in a vacuum at three loca-

tions z, = 0 cm; z, = 2.25 cm; and z, = 4.5 cm are shown. Let A = 1 V/m. Find AT. Write the
equation that describes the electric field. '

Iy
//\/\

—»| > |e—

4— AT —»

12. If we know that the magnetic field intensity of an electromagnetic wave is H = H ef*'+ %) u,
find the electric field and the direction of power flow.

13. An electromagnetic wave with a frequency f = 106 Hz propagates in a dielectric material
(e, = 5, p,=1) and it has an electric field component E, = 1.3 cos (wf - kz). Find the velocity
of the wave, the wave number, H, and the characteristic impedance of the material.

14. A helium—neon laser emits light at a wavelength of 6328 A =6.328 x 107 m in air. Calculate
the frequency of oscillation of the laser, the period of the oscillation and the wave number. The
symbol A is called an Angstrom where 1 A = 107°m

15. Prove that E and H are orthogonal in a vacuum for an arbitrary function of (z — cf).

16. The electric field of a uniform plane wave propagating in air is given by E = E (u,_ + Jju)) cos
(wt — kz). Using an accurately drawn sketch, show that it is justified to call this wave circularly
polarized. -

17. The electric field of a uniform plane wave propagating in air is givenby E = E(u_+jau ¥
cos (®t — kz). (0 < a < =, a# 1) Using an accurately drawn sketch with a = 2, show that it 1s

justified to call this wave elliptically polarized.
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18. Show that an elliptically polarized wave can be decomposed into two circular polarized waves,
one rotating clockwise and the other rotating counterclockwise. This is facilitated if we can find
a relation between the complex constants in the two expressions

E=(au, +bu,)e/ ™
and

E=(du,+jdu,)e/ ™ +(5ux —jEu,)e““""“’

19. The magnetic field intensity H = — H u_e #**-%, Find the electric field. Compute the Poynt-
ing vector.

20. In free space, a signal generator launches an electromagnetic wave that has a wavelength of
10 cm. As the same wave propagates in a material, its wavelength is reduced to 8 cm. In the
material, the amplitude of the electric field E and the magnetic field intensity H are measured
to be 50 V/m. and 0.1 A/m. respectively. Find the generator frequency and p_and e,'for the
material. :

21. In free space, a signal generator launches an electromagnetic wave that has a wavelength of
3 cm. As the same wave propagates in a material, its wavelength is reduced to 2 cm. In the
material, the amplitude of the electric field E and the magnetic field intensity H are measured
to be 5 V/m. and 0.1 A/m. respectively. Find the generator frequency and p_and ¢, for the ma-
“terial.

22. Find explicit expressions for the attenuation constant o and the propagation constant § for
an electromagnetic wave propagating in a conducting material.

23. Find the attenuation constant o if the conductivity o of the material is such that o = we.

24. Show that Maxwell’s equations can be cast in the form of a diffusion equation

9E 3E
Y _y _ 0
92 Ho ot

Describe when this derivation might be valid.

25. With the substitution &= «/'Z_t- and using the chain rule, show that the partial differential

equation given in problem 24 will transform into an ordinary differential equation. In terms of
the fundamental units mass M, length L, time T and charge Q, find the units of the diffusion
coefficient D = 1/p0o.

26. An electromagnetic wave with an amplitude of 1 V/m is normally incident from a vacuum

into a dielectric having a relative dielectric constant € = 4. Find the amplitude of the reflected
and the transmitted electric fields.
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27. An electromagnetic wave with an amplitude of 1 V/m is normally incident from a vacuum
into a dielectric having a relative dielectric constant € = 4. Find the amplitude of the reflected
and the transmitted magnetic field intensities.

28. An electromagnetic wave with an amplitude of 1 V/m is normally incident from a dielectric
having a relative dielectric constant & =4 into a vacuum. Find the amplitude of the reflected and
the transmitted electric fields.

29. An electromagnetic wave with an amplitude of 1 V/m is normally incident from a dielectric
having a relative dielectric constant € = 4 into a vacuum. Find the amplitude of the reflected and
the transmitted magnetic field intensities.

30. In Example 5-12, a speeder pleads to the judge that because of inclement weather when the
radar was tested and calibrated, the calibration was incorrect. If the radar assumed a calibration
in a vacuum and said the speeder was traveling at 25% over the speed limit, what would the
dielectric constant of ambient space have to be in order that the defendant would go free?

31. A time-harmonic electromagnetic wave in a vacuum is incident upon an ideal conductor
located at z = 0 and a standing wave is created in the region z < 0. With a crystal detector
connected to a volt meter, we measure a null voltage at equal increments of 10 cm in the region
z < 0. Find the frequency of oscillation of the electromagnetic wave.

32. Compute the skin depth of copper, graphite and germanium at f = 2.45 GHz.

33. A fisherman in the sea detects a fish at a depth d with a radar operating at a frequencyf. Find
d if the detected amplitude just below the air—sea interface is 1% of the incident amplitude at the
same point. Assume that fish scales are perfect conductors and the conductivity of the water ¢
satisfies 0 << we.

.

a—P

34. Estimate the number of wavelengths of helium—neon laser light (A = 6328 A) where
(1 A = 107'° m) that can be found between the two parallel end plates which are separated by
1 m. You may assume € ~ 1 between the end plates.

35. The resonant frequency of a Fabry—Perot cavity caused by the introduction of a dielectric is
changed from its vacuum value of 10 GHz to 9.9 GHz. Calculate the relative dielectric constant
g, of the perturbing material.
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36. The relative dielectric constant of a slice of lung of thickness AL is found to be 1.5. A dis-
eased lung of thickness AL as shown in Figure 5-16 is inserted between the plates of a Fabry—
Perot cavity. The cavity has a resonant frequency of 9.9 GHz for the undiseased lung and 9.95
GHz for the diseased lung. Find the percentage of the diseased lung that has been eaten away by
emphysema..

37. A plane wave

E(z,1) = u,E, cos (ot - kz)

is incident upon a dielectric—metal surface. Determine the thickness d of the dielectric slab (g
that would make the field in the region z < O the same as the slab were not there.

E
g metal
H

0 d

r4

38 A dielectric slab (g, is inserted between two plane wave launching horns. Waves will be
reflected and transmitted at each interface. Determine the ratio of £, / E, for a wave that passes

th h th ion b once.
rough the region e alble

39. A dielectric g that is A/4 thick separates two dielectrics. Find the value of € _so none of the
power launched from A will be reflected back to A.
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40. For the infinite parallel plate waveguide depicted in Figure 5-20, determine why an initial
assumption for an electric field E = E_(x,y) u_ will not lead to normal modes.

41. Show that the angle 8 between the electric field component wave direction and the conduct-
ing sheets in a dielectric filled parallel plate waveguide can be computed from 6 = sin™' (A/2a)
where a is the separation between the two plates.

42. Show that the phase velocity v, can be written as

c 1
v = =
® cos® [iEcosh

where the angle 6 is defined in problem 41.

43, Caiculate the cutoff frequency for the two lowest-order modes of a parallel plate waveguide
where the plates are separated by 3 cm. The region between the plates is filled with (a) paper or
(b) glass.

44, Show that a parallel plate waveguide operating at a frequency equal to the cutoff frequency
of a higher order mode can be interpreted in terms of a Fabry-Perot resonator.

45. Repeat Example 5-24 with (k/ct) = 1/2.
46. Repeat Example 5-24 with (h/ct) = 3/2.
47. The initial condition at T = O for a wave is
¢ = 9, sin (2z)

Write a MATLAB program to show the propagation of the wave in the region 0 < z < 1 if
c=1.

48. The initial condition at T = O for a wave is
9 = ¢, sin (22)
Write a MATLAB program to show the propagation of the wave in the region 0 <z < 1 if

c =4,
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49, The initial condition at ¢ = O for a wave is

¢ = 9, exp (—2z)

Write a MATLAB program to show the propagation of the wave in the region 0 < z < 1 if
c=1.

50. The initial condition at T = 0 for a wave is
¢ = ¢, tank (22)

Write a MATLAB program to show the propagation of the wave in the region 0 <z < 1 if
c=1,
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