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In writing (2.54), we have included the first postulate of electrostatics (2.23) to re-
place the volume charge density p . Equation (2.54) can be rewritten as

e
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W= [ V- E)-EVV]dv (2.55)

using the vector identity -
Ve@B)=BeVa+aV+B

The first term on the right hand side of (2.55) can be converted to a closed surface
integral using the divergence theorem

| J'AVV.(VE)dv=§VE-ds (2.56)

From (2.48) and (2.49), the electric field and the potential decay as K2 and R re-
spectively, where R is the distance from a charge that is located at the origin of a spheri-
cal coordinate system. The surface area of a sphere increases as R*2. Therefore, if the
charge distribution is not infinite in extent, the surface integral in (2.56) approaches 0
‘as R = oo. Therefore (2.55) can be written as

€ € €
W= AV[_E.vv]dv=_;_ LV[E-E] dv="2 jAsz dv (2.57)

where we have incorporated (2.51). Note that the electrostatic energy depends upon the
scalar quantity of the magnitude of the electric field squared. We will encounter (2.57)
later.

Example 2-9. Find the potential V far from two charges of the opposite sign that are
separated by a distance d. This configuration is known as an electric dipole. Using MATLAB,
sketch the equipotential contours and the electric field surrounding the charges. The
- volume integral in (2.52) leads to +Q/R, and —Q/R,. It also serves as a simple model for
" an atom. '
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Answer: The potential at a distance R from the center of the dipole structure can be
computed using the principle of superposition. It is given by

__o 0
4ne,R, 4mELR,

The normalized potential profile resulting from dipole charges at x=0and y =+ 0.3 is
shown in (a). Note that it rapidly decays to zero.

y=

Note that between the two charges, the electric field is directed from the positive
charge to the negative charge.
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With the assumption that R >> d, the three lines R,, R, and Rare almost parallel and
the three angles are almost equal, that is 6, = 9, = 9 Then we can approximate the
distances as

R, zR—-ﬁcosO
2

R, = R+%cos9

Substituting these distances into the expression for the potential and using the ratio of
(d/R) as a small expansion parameter, we obtain

(0] B -Q _ Qdcosb

V= d d = 3
4me, (R—Ecose) 4me, (R +5c059) 4me, R

The term Qd cos 6 is frequently written as p-u_, where p = Qd u, is the dipole moment
and u, is the unit vector from the center of the dipole to the point of observation.

The MATLAB; _program that was used to draw these figures is

clear; cif subplot(1,2,2);

[x, y] = meshgrid(-1:.1:1,-1:.1:1); [px,py]=gradient(V,.1,.1);

Rl= (x.A2+4(y-.25)."2).M.5; contour(V);

R2 = (x.M2+(y+.25).22).A.5; hold on

V =1./R1-1./R2; quiver(-px,-py);

subplot(1,2,1); hold off
surf(x,y, V) xlabel('X','fontsize’,18);
xlabel('X','fontsize',18); ylabel("Y','fontsize',18);
ylabel('Y"','fontsize',18); text(3,18,'(b)",'fontsize’,18)

zlabel('Z','fontsize’,18);
text(-.8,.9,15,'(a)', 'fontsize',18)

Example 2-10. The potentials are measured at several locations in space.
Equipotential contours are drawn on a graph. Estimate the electric field at the point P.
The graph is 5 meters x 5 meters.

Answer: The electric fieldE = =V V. The measured equipotential contours are separated
by a distance of ¥+ =2 meters. The electric field is

6V_8V 0V
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2Viu,+u volts
E=-VW=-2| 2 |=_[u_+u
«/-2-[ V2 ] [" ’] meter

In moving the charge from point a to point b in a region that contained an electric
field, we found from equation (2.38) that work was required. If we move it back to point
a along a slightly different path as shown in Figure 2-14 in an electrostatic field, we will
find that the expended energy is returned to us. In this case, we write (2.38) as

W,=QfE-dl=0 (2.58)

where a closed path integral is indicated. Equation (2.58) states that no energy is either
expended or created in this process. In this case, the electrostatic field belongs to a
class of fields that are called conservative fields. Equation (2.58) is the second postu-
late of electrostatics. This equation can be converted into a surface integral via Stoke’s
theorem. We write

o=§E-d1=jMVxE-ds (2.59)

In order for this integral to be zero for any arbitrary surface, the integrand must be
equal to zero This allows us to obtain the second postulate of electrostatics in differ-
ential form

VxE=0 (2.60)

We will encounter these postulates of electrostatics later when time-varying fields are
described. -

Figure 2-14. A closed path a = b = a.
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2 2 2
8V+3V 'V

ViV =
ox> 9y’ i dz°

The choice of which form of this operation to actually employ in a calculation is
usually dictated by any possible symmetry considerations inherent in the problem. For
example, the calculation of the potential within a spherical ball would suggest the ap-
plication of V2V in spherical coordinates rather than other representations for V2V. Definitions
for the Laplacian operator exist for other coordinate systems such as in (2.72) and (2.73).
A definition in a general orthogonal coordinate system can also be written. For compli-
cated shapes and/or very difficult problems, a numerical solution may have to be at-
tempted. This is typically the procedure that has to be followed in practice. We will

-encounter these procedures in the next chapter.

Example 2-13. The two-dimensional potential distribution can be approximated with the

expression
€

‘Find and sketch the charge distribution that could create this potential.
Answer: From (2.69) and (2.71), we find p, =—4 p,..

The MATLAB program that was used to draw this figure is
clear; clIf
[x,y]=meshgrid (-5:.2:5,-5:.2:5);
V=x."2+y."2;
mesh(x,y,V+10)
hold on
w=del2(V);
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mesh(x,y,w)
view(-37.6, 10)
xlabel('X','fontsize’',18);
ylabel('Y','fontsize’,18); .
zlabel('charge density and voltage,'fontsize',18);
set(gca,'ZTickLabel',[])
set(gca,'ZTick',[1)

Having derived Poisson’s and Laplace’s partial differential equations for three di-
mensional systems and having stated the definitions for V? in the three most useful
coordinate systems, we will now obtain analytical solutions for these equations. Rather
than first attempt a general three-dimensional solution, we will simplify the discussion
by assuming that the potential depends on only one coordinate. The procedure that we
will describe in this simpler problem will be followed in more difficult calculations.
Several important results will, however, be obtained as we pass through this fairly dif-
ficult initial stage. Techniques that are germane to these more complicated problems
will appear in the next chapter.

For example, the potential variation between two infinite parallel metal plates lo-
cated in a vacuum, as shown in Figure 2-17a, would require solving Laplace’s equation
in one dimension. This problem would yield a result that approximates the potential
distribution in a parallel plate capacitor where the separation between the plates is much
less than any transverse dimension. Since the plates are assumed to be infinite and the
conductivity of these metal plates is very high, they can be assumed to be equipotential
surfaces. We will discuss conductivity later; we can think just that these metal plates
have zero resistance. Hence, in the y and the z coordinates, we can postulate that

(b)

. X
0 X
Figure 2-17. (a) Two infinite parallel plates located at x = 0 and at x = x,- (b) Potential variation between
the plates as determined from (2.76).
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