ELECTROMAGNETICS with MATLAB

Fabry-Perot resonator

An examination of the standing wave depicted in Figure 5-14 leads us to conjecture that
it should be possible to insert another high conductivity metal wall at any of the nodes
where the tangential electric field is equal to zero without altering the remaining elec-
tric field structure. The applicable boundary condition is that the tangential electric
field must be zero at a conducting surface. This is depicted in Figure 5-15 where plates
have been inserted at two possible locations. For the moment, we will assume that the
plates that are infinite in transverse extent are inserted at the nodes in zero time such
that the electromagnetic energy is ‘trapped’ between the plates and nothing else is dis-
turbed. This energy is actually ‘coupled’ between the plates with an antenna structure,
a topic to be discussed later.

Let us now formally derive this result from the wave equation (5.18) which we
rewrite as

d°E “
L+k’E, =0 (5.60)

dz?

Recall that we have assumed a time-harmonic signal. The solution of this equation is
given by :

Ey = A sin kz + B cos kz (5.61)

The constants of integration A and B are specified by the boundary condition that the
tangential electric field must be equal to zero at a metal wall. These determine the con-
stant B = 0 and k = (nn/L) where n is an integer. If the maximum electric field has a
magnitude E  , then the spatial distribution of the electric field is given by
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Figure 5-15. By inserting thin conducting plates separated by (nA / 2) at the locations where the standing
wave is zero, the electromagnetic field structure will not be altered. Two of many possible locations are
indicated in the figure.
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E =E, sm(T) (5.62)

The parallel plate cavity depicted in Figure 5-15 is called a Fabry-Ferot resonator.
This cavity has a very high ‘Q’ which could approach one million. Remember that the
Q of an ordinary circuit is of the order of ten. Since it is so frequency selective, it has
received wide application as the cavity that encloses various ‘lasing’ materials. The

total lasing material — cavity entity carries the acronym laser. The term laser stands for = .

‘Light amplification by stimulated emission and radiation.” At light frequencies, it is
not a bad approximation to assume that the transverse dimension is a large number of
wavelengths in extent. This very large number is approximated as being infinity.

We recall that the wave number £ is a function of the frequency of oscillation ® and

the velocity of light in the region between the two parallel plates ¢=(1/ ‘/suo)where

€ = €, €,. For the cavities depicted in Figure 5-15, this resonant frequency © = w, will
be given by :
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For the two cavities depicted in Figure 5-16 which are either empty or filled with a
dielectric, we find that the two Fabry-Perot cavities will resonate with slightly different
frequencies. The difference of these two frequencies Aw is given by

nn 1 _nn 1
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If the resonant frequency for the vacuum case (Figure 5-16(a)) can be computed or
measured, this can be written as

rm 1 mm 1
Ao _®, -0, L Jely L g gl 1
= = =1._.
, ®, m_1 JE, (5.64)

L Je b,

Q = 2 (energy stored/power dissipated per cycle)
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Figure 5-16. (a) An empty Fabry-Perot cavity. (b) A Fabry-Perot cavity filled with a dielectric e = € ¢,

Example 5-16. An empty microwave Fabry-Perot cavity has a resonant frequency of
35 GHz. Determine the thickness AL of a sheet of paper that is then inserted between
the plates if the resonant frequency changes to 34.99 GHz. The separation L between
the parallel plates is 50 cm. Assume that the integer n that specifies the mode does not
change. You may ignore any reflection at the paper interface.

paper
<— AL

L ——P

Answer: The relative dielectric constant € aper of paper as determined from Appendix B
IS € e = 3 The relative dielectric constantseparating the plates with the paper inserted
can be approximated as

€L =,/epape,AL+1(L—AL) = JEpaper AL+ L

Therefore, we write

nt 1 nw 1
®yacuum ~ mpaper inserted __ L \/IJ'O € L Juo 8eﬁ'e() ~1 1 _ e
- STy © 57 Cpaper
O yacuum nn_ 1 L AL 2L
L Juo€o paper
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Inserting the values, we compute

35-3499 _01_ AL ,
35 35 2450

or AL = .01 cm.

From this example and the example mentioned earlier, we can discern that high fre-
quency electromagnetic waves can be used in the diagnostics of various materials. This
is a practical technique that has received wide currency in manufacturing paper where
the ratio of less expensive water to the more costly wood pulp determines the ultimate
grade of the paper. The relative dielectric constants of wood pulp and water are differ-
ent.

Medical diagnostics for the determination of the ratio of diseased portion to the undiseased
portion of a lung in an autopsy of a patient who died, of say pulmonary emphysema, can
be performed (Figure 5-17(a)). Assuming that one of the lungs or a reasonable portion
of one could be used to yield a value for relative dielectric constant for the lung, the
percentage of the diseased lung could be ascertained. The disease has ‘eaten’ holes in
the lung. ‘

Since the resonant frequency depends on the distance L, two Fabry-Perot cavities
could be set up as shown in Figure 5-17(b) and the thickness of the metal sheet could
be controlled in a rolling mill. This can be written as

ar 1 nm 1
A(.O= L xlsouo L, \/eouo =Lz_Lx
®, nt 1 L, (5.65)
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Figure 5-17. Two possible applications for the diagnostics of various objects. (a) Medical diagnostics to
ascertain the ratio of diseased to good lung. (b) Controlling the thickness AL of a metal in a rolling mill,
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If the separation L between the plates L = L, + L, + AL and the distance L, are known,
this can be written as

A® L,-L L,—(L-L,—AL) 2L,—L+AL
o L L == (5.66)

The assumption of knowing both distances is not unreasonable since the metal may be
constrained to pass on rollers that are fixed at a certain distance above one of the plates.

Reflection of an obliquely incident electromagnetic wave
We might suspect that all bodies, be they dielectrics or conductors, do not always align
themselves so that every incident electromagnetic wave has the wave vector k perpen-
dicular to every surface. The wave vector k may also not even be coincident with the
axis of a Cartesian coordinate system. This is shown in Figure 5-18. The vector r is a
position vector from the origin of the coordinate system to any point on the plane. For
simplicity, let us assume that the waves are propagating in a lossless space.

Intuition that we might have gained from sitting at a beach and noting that the waves
that crashed with a thundering roar upon the shore usually had some ‘velocity of crash-
ing.” We could even define this velocity in several directions. One direction could be
the velocity of this crashing directed along the water—sand interface. The study of the
reflection and the transmission of electromagnetic waves in this case will be slightly

Figure 5-18. Plane wave propagating at an arbitrary angle with respect to the axes of a Cartesian coordinate
system. Both the electric and magnetic fields have equiphase contours in the plane.

314



