ANTENNAS

In the previous chapters, we learned that electromagnetic waves can propagate in infi-
nite free space and that these same waves can also propagate along a common transmis-
sion line that can be held in our hands. A question that remains to be answered is whether
the same electromagnetic wave can be excited in a finite region and then launched or
radiated into infinite space. In this chapter, we will first examine the fundamentals of
the radiation of electromagnetic waves. We will base our argument on raterial that has
been uncovered in earlier chapters. This will naturally lead to an introduction into the
important topic of antennas. Several of the important parameters and terms associated
with antennas will be brought forth in this discussion.

Radiation fundamentals

Before we examine the radiation properties of an antenna, we should first understand
a physical process that can actually cause the radiation of electromagnetic waves. This
means that we have to examine possible radiation characteristics of an electric charge
from a fundamental basis. There are certain requirements that an electric charge must
meet in order to consider that it will actually radiate electromagnetic waves. These
requirements will be argued from an intuitive point of view. If we understand this ar-
gument, the development of antenna radiation theory follows immediately since the
principle of superposition applies in the linear medium that is being considered in this
text and the antenna can be considered to consist of a large number of charges. The
argument also illustrates the type of calculation that can be written on the backs of old
envelopes. )

We can understand radiation of electromagnetic waves using Poynting's theorem.
This theorem states that the total power that is radiated from a source is given by the
following closed surface integral

total radiated power = §E X He ds (1.1)

Poynting’s theorem tells us that the radiation of electromagnetic waves from a source
that is located within a volume that is completely enclosed by a closed surface requires
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both an electric field and a magnetic field, the two fields being coupled together via
Maxwell’s equations.

A stationary charge that was discussed in Chapter 2 will not radiate electromagnetic
waves. This can be easily understood since a stationary charge will cause no current to
flow, hence there will be no magnetic field associated with a stationary charge. From
(7.1), the total radiated power is therefore equal to zero. From this, we can conclude
that there will be no radiation of electromagnetic waves from a stationary charge.

We can also come to this conclusion from another point of view. If the point of ob-
servation where the power is to be detected is far from the source and if there were a
spherically radiating wave, it would appear to be almost a plane wave at large distances
from the charge and we can make use of the fact that the electric and magnetic field
intensities of propagating waves are related through the characteristic impedance of
free space Z, as given in Chapter 5. The magnitude of the magnetic field intensity H can
be found from the electric field intensity E via H = E/Z . _

Therefore, a source of electromagnetic power located at the center of a sphere whose
radius is R shown in Figure 7-1 would radiate a total power whose value can be written
as

2 2
(surface area of sphere) = 2

total radiated power = g 4nR? (7.2)

4

Let us assume at this stage that the antenna is an isotropic radiator and has no direc-
tional characteristics. The total radiated power is equal to that which is delivered from
the source that we will assume to be a constant. Hence, the total radiated power is
independent of the distance R. Therefore, we would conclude that the electric field E
of an electromagnetic wave must change with distance as R-!. However, we find that the
electric field from a static charge varies as R~ Hence, we again come to the same
conclusion that stationary charges cannot radiate electromagnetic waves.

Figure 7-1. Antenna radiation of electromagnetic waves. For a stationary charge, H will be equal to zero.
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Figure 7-2. Electric and magnetic fields due to a moving charge. The velocity v is a constant and
v << c.

The next question that should be posed is whether a charge that is in motion with a
constant velocity v << the velocity of light ¢ can radiate electromagnetic waves. We
know that a charge in motion constitutes a current and currents cause magnetic fields.
We are not able to invoke the simple argument based on the radiated power that we used
for the ldck of radiation from a static charge since both an electric field and a magnetic
field will now be present. We will, however, use a slightly different argument that is
still based on the Poynting vector.

Let us assume that a positive charge Q is moving in the positive u_direction with a
constant velocity v as shown in Figure 7-2. This velocity shall be chosen so that it is
much less than the velocity of light ¢ so it is nonrelativistic. We do not want to wade
into the deep waters of relativity or advanced topics in physics at this time.

The static electric field E from the charge Q is computed to be

I N
= 4me, R+ I

where r=+/R?+ x*. The magnetic field is computed from the Biot-Savart law. This
leads to

4y, Qvxr
T 4rm (Rz +x2)3/2 (7.4)

Let us compute the direction of Poynting's vector associated with these two fields. -

This is facilitated from an examination of a sphere centered on the charge at a certain
instant in time as shown in Figure 7-3. The electric field caused by a charge moving
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H E

ExH

Figure 7-3. The Poynting vector associated with a charge moving with a constant velocity v.

with a uniform velocity is entirely normal to the spherical surface (the charge is slowly
moving with a constant velocity) and the magnetic field is tangent to the surface. Hence,
the Poynting vector E x H is completely confined within the spherical surface and it
does not radiate in the radial direction away from the charge. Is there any hope for
radiation? '

Example 7-1. Calculate the component of the Poynting vector in the u, direction in Figure
7-2 and the total energy flow rate through an infinitely large plane placed normal to the
x axis. Discuss the meaning of this result.

Answer: The magnitude of the x component of the Poynting's vector is computed from
I(E, x B)/u,l. This leads to

.0 R & R | _ov F
e (R+)” | 4 (R 16m, (R +x7)

The total energy flow rate becomes

"« _ Q2v o2 R®
Power = jo S.2nTRdR = 3me Jo (R2 N x2)3 dR

The integral can be performed (see Problem 1) to yield
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o 1

32me, x°

Power =

The distapce Ixl is the instantaneous separation between the charge and the plane. In
the one-dimensional system being considered here (v — wu,), magnitude of the velocity
v can be written as v = dx/dt. The power can be rewritten in the form

2
Power = — 27 TEX ]
dr
The quantity
2
O 1 (x>0
32me, x,

is the electrostatic energy stored in the region x > x, (See problem 2). Therefore the
power that is calculated using Poynting's theorem can be interpreted as the flow rate of
electrostatic energy stored in space and has nothing to do with radiation. The magnetic
energy will be of the order of (v/c)? times the electric energy and will be very small in
nonrelativistic cases.

In order to answer the question whether there can be any radiation at all, let us con-
sider a charge initially at rest at point A, which is accelerated in the x direction as shown
in Figure 7-4. The acceleration lasts for a duration Ar seconds until it reaches a point
B after which the charge moves with a constant velocity v << the velocity of light ¢ to
a point C and beyond. Remember that a signal cannot propagate faster than c.

We know that stationary charges and charges moving with a constant velocity do not
radiate electromagnetic waves and have an electric field that is only radially outward
(a Coulomb field). Thus the electric field lines when the charge is at A and at the point
C are entirely radial. These electric field lines must be continuous since they are caused
by the same charge. They are connected with ‘kinked’ lines. The kinks, that are distur-
bances in the electric field lines caused by the acceleration of the charge, propagate
with the speed of light. It takes ¢ seconds for the charge to move from the point A to the
point B, therefore the separation between the two circles is approximately ¢ Az =
constant. In the kinks, there are components of electric field that are perpendicular to
the Coulomb field. These transverse components are responsible for the radiation. Note
that in this argument, there are directions where there are no radiated electric fields and
only the static Coulomb field exists. The maximum radiated electric field will occur
along the line that is perpendicular to the charge's acceleration.
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no radiation
field

Figure 7-4. A charge that is accelerated does radiate electromagnetic waves. The dark lines are electric
field lines E.

Consider a point L in Figure 7-5 that is normal to the direction of the charge's veloc-
ity at a certain instant. Let t be the time after the charge is accelerated from a stationary
point A to point B where it has a velocity v = a ¢ where a is the acceleration. We will
assume that Az << ¢ so the distance AB + BC = BC = vt.

At point L, there will be two components of an electric field. The first is the radial
Coulomb field that is given by

g1 901
*Tane, o e, () .5
The radiation field E, can be computed from the triangle JKL
JK__JK__JK_ch_ E
KL AB+BC BC w E (7.6)
Solving (7.6) for E,, we obtain
vt vt Q@ 1 o vl
E=-—FE=- 7=~ 2 1.7
c At cAt 47g, (ct) 47 c’ At p
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total electric field
_}_ J_ &

c At AE,
P L
$ KE, ?
o=ct
: L* Vv =aAt
AB C
|<—=.-vt—>

Figure 7-5. The components of the electric field caused by a charge Q that is accelerated during a
time ¢ from points A to B.

Eureka! This is what we were looking for! The transverse (or radiation) electric field
is proportional to the acceleration v/At and it has the proper spatial variation 1/p re-
quired in (7.2). The minus sign that appears here is due to the direction of E,, that is
opposite to the direction of the acceleration. From Figure 7-5, we note that there is a
preferred direction for this radiation. If we define the angle 6 as being the angle be-
tween the point of observation and the velocity of the accelerated charge, (7.7) can be
written as

Q asin®

E =- >
4meg,c”  p

t

(7.8)

The magnetic field intensity H, associated with E, can be computed by just using the
characteristic impedance of the material Z, and the fact that the electric and magnetic
field intensities are related by this characteristic impedance. We write

1 Q asinB

o=l
" Z 4me p (7.9)

Poynting’s vector is directed radially outward and it's magnitude S is given by

_ Q%* sin?@ 0
16n’eyc  p (7.10)
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7= -2,s8in ot (7.11b)

The acceleration for these two charges can be written respectively as
2

F4 .
a4, =—7= —z,0° sin ¢ (7.12a)
and
’z
a = Et? = 200)2 sin ¢ (7.12b)

where the subscript indicates the sign of the charge.
From (7.8), the electric field due to the positive oscillating charge is written as

2 . .
Q asin® 0 (-—zoco sin cot)sm 0
E|l =- =_

tlag yrI— e > (7.13a)

‘The radiation electric field for the negative charge is given by

2 . .

Zo®* sin ¢)sin 6

E| 0_ (o ) (7.13b)

-0 4meyc? p

For a vacuum, we can use the principle of superposition. This states that the total elec-
tric field is given merely as the linear sum of the fields from the two individual oscil-
lating charges. Therefore

z,@” sin @¢)sin 6
E,-—-Z{ 0 (u ) } (7.14)

4me,c’ P
The Poynting vector that is radiated from this dipole is found from (7.10) to be

Q%2 sin’ @
16n’e,c®  p*

®*sin* ot (7.15)

Again the numerical coefficient in (7.15) is small. The power is proportional to
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= (ke 4_ 2n \* .
©° =(kc) = TC . The radiated power is inversely proportional to the wavelength

to the power of 4.

Example 7-2. Explain why the sky appears blue during the day and red at night.

Answer: We consider atmospheric molecules excited by the sunlight to be dipole radiators
that are polarized by the incident sunlight as shown in the figure. Sunlight is sometimes
called white light since it contains all of the visible light and much more in its broad
spectrum of radiation. The power reradiated by the atmospheric dipoles will be predominantly
perpendicular to the polarizing electric field as shown in (7.15). From (7.15), the power
in the longer wavelength red will be less than in the blue and the sky will appear blue
during the day. At dusk, the light that reaches the observer lacks the blue! since it has
passed through more air molecules and has been scattered away. Hence, the sky appears

red. :
r’ E
' slncldent
]

—» P
‘sscattered E
o]
¥ ~ted ()
sscattered slncldent
day evening

In addition to the frequency dependence, we note that there is some directivity asso-
‘ciated with the dipole radiation in that the field strength and the Poynting vector depend
on the angle 6. In Figure 7-7, an equiamplitude contour IpE | of the magnitude of the
electric field as computed from (7.14) is displayed. The multiplication of the electric
field by the distance p removes the distance from the radiation field. Hence, universal
results can be obtained that can be applied in general to compare one type of antenna
with another.

A contour of constant electric field multiplied by the distance p (the product pE) is
called the radiation pattern or field pattern for an antenna. The radiation pattern for a
Hertzian dipole is symmetric about one axis and it does not depend on the coordinate
¢.2 We will calculate radiation patterns for other antennas later since this is one of the

! Thg wavelength 9f blue light is 5000 A and the wavelength of red light is 6500 A.The symbol A stands
for Angstrom (1 A = 107'° meters).
2 One might think of a doughnut or a bagel in order to understand this point.
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Fig.7-7 Radiation pattern for a dipole antenna.

fundamental properties that characterize an antenna. At least two reasons can be given
for its importance. The first is concerned with possible interference. Listeners or view-
ers would not like to have two radio or television stations radiating a signal at the same
frequency over the same region of the country unless one station is designed to ‘jam’
the other. The responsible government agency will order the stations to redirect their
propagation or change their frequencies. The second is related to economics. An indi-
vidual station located near the sea also has a strong interest in directing its signal to a
‘potential audience of humans rather than sea gulls. Its radiation pattern will be appro-
priately selected based on this desire not to deliver the power in the wrong direction.

Antennas of this simple dipole type have been used by scientists to detect electro-
magnetic waves originating from the outer reaches of space.! This is shown in Figure
7-8. By measuring the potential difference between the two spheres separated by a dis-

solar cells

loop antenna < ‘

insulated coaxial
boom

Figure 7-8. A satellite with its antenna arms and small loop extended to measure possible extra galactic
electromagnetic radiation.

! It can be shown that the radiation pattern of an antenna used as a radiator or as a receiver are the same.
This follows from a reciprocity relation,
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tance L, the electric field intensity of the wave can be computed. A small loop is also
employed in order to monitor the accompanying magnetic field intensity. As the satel-
lite meanders about, the reception pattern that is equivalent to the radiation pattern, can
be determined. By sampling the received signal at different frequencies, it is possible
to postulate the mechanism that excites the wave in some far off region in space. The
mechanism usually involves various plasma waves. From data obtained in these experi-
ments, the existence or nonexistence of magnetic fields at various planets has been
determined.

Formal treatment of a simple dipole antenna

In practice, we normally do not examine the radiation charac teristics of each individual
oscillating charge element in order to predict and understand the radiation characteris-
tics of an arbitrary antenna. Yes, we were able to obtain a ‘feeling’ for the radiation
process for electromagnetic waves caused by the oscillating charge but such an effort
for a realistic antenna would soon sap our patience. Here we will present a more general
approach that is based on a computation of the vector potential A caused by an oscil-
lating current. The components of the electromagnetic field E and H can be computed
from the vector potential.

Recall from (2.108) that the vector potential for a current carrying wire is defined
for a constant current j(r) via the integral

A(r)= % '[Av%—)dv’ (7.16)

where R = \Rx —x)V +(y- y')* +(z=2’)" . The vector potential A is in the same direction

as the current j as shown in Figure 7-9. From the vector potential, we were able to
compute the magnetic field B via the definition B =poH= VxA.

If the current varies in time, say as ¢/, we will still be able to follow the same
procedure with but one caveat. From our study in Chapter 5, we learned that it takes a
nonzero time for an electromagnetic wave to propagate from the location where the
current is located to the point of observation at a distance R from the current element.
The smallest time delay is dictated by the velocity of light c¢. This causes the vector
potential to be retarded in time by an amount equal to —Ig-:%?- seconds. This is some-
times given the descriptive name retarded potential. We regularly hear of recent detec-
tions or observations of effects such as the emergence or destruction of other galaxies
occurring in the outer cosmos in distances measured in light years and times measured
in eons. Hence (7.16) should be modified to read
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Figure 7-9. Vector potential A is created by the current density j. The volume Av encloses the current.

,) ej(“)“ﬂR)

A(r)e™™ = f:_i _[AV i ——d (1.17)

The equation that we have just obtained using an argument can also be obtained
directly from Maxwell’s equations. The formal procedure will be left as an exercise in
a later course due to our self imposed limitations. It is not a trivial calculation. We will,
however, use it in a rigorous derivation of the radiated electromagnetic fields from a
dipole antenna.

For the simple dipole that we are presently considering in Figure 7-9, the integral
over the volume Av can be easily performed. If the charge separation L is assumed to
very small compared with the distance R and the current is given by I = * joQu,, the
vector potential A(r) is then

TAL e"Bp
A=uzﬂ°4—n—(—5—J (7.18)

The Hertzian dipole is very small and it is justified to assume that it is at the center
of a spherical coordinate system. Hence, we have replaced R with p. In addition, we
have to write the unit vector u, in spherical coordinates as

u, =u,cos 6 — ugsin @ (7.19)
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In spherical coordinates, the components of the vector potential A = A u, are given by

A=A, +Agug +4A,u, (7.20

T

~ip ’
A, = A, cos 0= “—"Ltl—A—L[fp—)cos 6 (a2

v

: wol AL( PP
=—Asing=_H21E T 1a e
Ag , sin p [ > sin® (b)

A, =0 ©) (7.21)

J

The magnetic field intensity is computed from the vector potential using the defini-
tion of the curl operation, again in spherical coordinates. We find that

! 1 [a(pdy) 3Ap] IAL., . |1 1
H=—VxA=u - = —uy, ——B? sin O — +—— ¢~
Ho q’uop[ dp 20 ® 4n B el

The electric field is computed from Maxwell's equations to be

E =

1 1 1 O(H,sin6) d(pH,)
Jwgy - JwE,

VxH = “osne o8 ap] (7.23)

The components of the electric field after performing the appropriate differentiations
are written as

E = —ﬁchZZCos Ol: . ! >+ — : ; }e’m (a)
4n (/Bp)”  (jBp)
E, =-£ch2 sin e[ _1 - 7+ — : 3}"”" (®) ¢
4n jBp  (JBp)” (4Bp) (7.24)
E(p =0 (C)
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Figure 7-10. Electric field components caused by a simple dipole antenna.

where Z = Bo _120rQ. The electric field components are shown in Figure 7-10.

€

We have found the electric and the magnetic fields that are excited by a small Hertzian
dipole shown in Figure 7-6. Even in the case of this simplest of antennas, we find that
the structure is very complicated and consists of several terms. Note that the time de-
‘pendence ¢/ has to be incorporated into these expressions at some time so the wave
nature of the radiation becomes apparent. Since we wish to talk about the power that is
radiated from the antenna, the wave variable [j(w? — Bp)] is used. If we had chosen the
variable [j(®z + Bp)], the wave would have been excited at p = o and would be con-
verging toward the antenna and we could think of the antenna in terms of a receiver
rather than a radiator.

1
We are able to find an expansion parameter (;BE) that is common to all of the terms

of the fields. In the regions very close to the antenna (Bp << 1), the higher powers of
this parameter will be larger than the lower powers of this parameter. Conversely, the
lower powers of this parameter will dominate the higher powers at large distances from
the antenna (Bp >> 1). This fact will be used to separate and define the near field and
the far field of an antenna.

In the near field (Bp << 1), the product of Ep H‘P* and EgH * as computed from
Poynting's vector will have terms that contain an additional factor of ‘j°. This indicates
that the energy is not radiated away from the antenna but is only stored in the region
adjacent to the antenna. This is similar to storing energy in an inductor in a circuit. In
fact, these terms of the electromagnetic fields are sometimes called the inductive or
reactive terms of the radiation. In practice, this separation of the near field from the far
field (Bp >> 1) arises when accurate measurements of the phase of the wave are made.
Errors in the phase can be usually accounted for by examining the properties of differ-
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ent near field regions. In addition, there will be real terms that have a higher even power

of (713—5) than 2. These terms will rapidly decay to zero as the distance from the an-

tenna increases and are not important at large distances. They do not contribute to the
far field radiation.

The electromagnetic field in the far field (Bp >> 1) is of the most interest to us. Most
antenna systems operate in regions that are many wavelengths in size. This is not only
true for the Hertzian dipole that is being considered here, but also for most antenna
structures. Keeping only the far field terms in (7.22) and (7.24), we write the electric
and magnetic fields as

AL, . e
H,=j Bsin © 5 (7.25)

41

e—JBp

TAL
E = j——7ZBsin 0
Ol B (7.26)

We should stop at this moment and reflect on the meaning of the terms that we have
just calculated. First the terms H, and E, are in space quadrature (perpendicular to each
other) and in time phase. Second, the ratio of these two terms is equal to the character-
istic impedance Z, of free space. This means that the far field terms have the same
properties as the plane waves that were studied in Chapter 5. This should not be too
surprising since a spherical surface will approach a plane as its radius approaches in-
finity. Third, the total radiated complex power that is computed from Poynting's theo-
rem can be written in phasor notation as

%§ Ex H' ods= %j: psin 6d6 (/£ x H'|)de (7.27)

From (7.25) and (7.26), we find that both H 0 and E, decay with distance as (1/p). There-
fore, the dependence on the spatial variable p will cancel and the total real power that
is radiated from the antenna will equal the power that is supplied to the antenna. This
is a comforting conclusion after many lines of heavy mathematics and indicates that we
have made no serious errors along the way. Finally, the radiation of the electromagnetic
fields depends upon the angle 6 in the same fashion as the Hertzian dipole (7.14). Hence
the radiation pattern that is shown in Figure 7-7 can be employed here also.

In equations like (7.27), we encounter a factor of (1/2) that seems to mysteriously
appear in front of the integral. The implication of this factor is that the peak amplitudes
of the sinusoidally varying quantity are used in the integral and a time-average over one
period of the oscillation has been taken.
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Example 7-3. A small antenna 1 cm in length and 1 mm in diameter is designed to
transmit a signal at 10 MHz inside the human body in a medical experiment. Assuming
the dielectric constant of the body is similar to that of distilled water (¢, = 80) and that
the conductivity o can be neglected, compute the maximum electric field at the surface
of the body, 20 cm from the antenna. The maximum current that can be applied to the
antenna is 10 pA.

Answer: The wavelength of the electromagnetic wave within the body is computed to be

3x100 1
A=22 x— =33
J30 107 o

The characteristic impedance of the body is

L, 377

Z, = ==
¢ Sreo '\/-8_0

Since the dimensions of the antenna are much less than the wavelength, we can apply
(7.26).Therefore

=42 Q

-5 -2
|Ee|=£L—Zc[3sin el=£)_i10_x 42><—2—><—1-=3 UV /m
4 p 4w 33 02

Example 7-4. The measured electric field at a distance of 1 km from a small dipole
antenna is E,. At what distance will the electric field decrease by 3 dB?

Answer: Since the decrease is expressed in dB, we must take the logarithm of the ratio
to the base 10 and multiply by 20. This leads to

20 log,,

E(p) |_ B 1000
E(IOOO) =-3dB=20 log,o(—p—)

Solving for p, we obtain p = 1.4 km.
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Magnetic dipole
We will find the electromagnetic fields that are radiated from a magnetic dipole as a
second example of a small antenna. This antenna is depicted in Figure 7-11. It consists
of a small filamentary loop whose radius is a. The loop carries a harmonic current
i(t) = I cos @t around its circumference. The vector potential caused by this current loop
is determined from (7.16). Since the current is confined to the loop, this integral be-
comes (where the term e/ is understood to be included)

- B’
u'01§e / ’
A=——0¢p——dl
P (7.28)

This integral is not easy to evaluate since the terms within the integrand depend on
the particular location where dl' is being evaluated. We can, however, obtain an ap-
proximate solution using the following procedure.! The exponential term can be written
as

e~ B0 o~iBp ,~B(P"P) e-JBp[l - B’ _p)] (7.29)

In expanding the second exponential term, we have made the approximation that the
loop is small with respect to the distance p between the center of the loop and the point
of observation. Hence (7.28) can be written as

I _ ) dar . ,

Figure 7-11. A magnetic dipole.

" In order to obtain analytical solutions in electromagnetics, we have to resort to many approximations.
The ingenuity of the practitioner is tested when it comes to making sure that the approximations are
reasonable. The success of the practitioner is tested when it comes to deciding what ‘reasonable’means.
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The second integral is equal to zero since this integral is akin to running around in a
circle, we just return back to the same starting point and progress nowhere. The first
integral is evaluated in Example 7-5. We find that the final evaluation of this integral
leads to the vector potential being written as

2
uo(n a I) o _a
A= —;1—1-'l:p2_(1 + jBp)e P sin 8u, (7.31)
We recognize the term (7 a*I) from Example 2-24 as the magnitude m of the magnetic
dipole moment m = (ma’l)u,. A

Having found the vector potential, we can find the magnetic and the electric fields
from (7.22) and (7.23) to be

= _Mﬁzz cos e|: 1 + 1 }e‘JBP
P anz, (o) (JBp)’ 732)
 _ JOm B?sin 6{ LS S i}e"’ﬁ"
° 4nz, Bp (Bp)"  (jBp)’ (7:33)
JoUm s . 1 1 B
E, =—2"—[B%sin 6| — e
" an [JBP (ij)z} (739

If we compare (7.32)—(7.34) with (7.22), (7.24a) and (7.24b), we note a similarity in

1
that the various field components could be expressed in terms of the parameter (W)

to various powers. As we learned in our study of the electric dipole, we could express
the radiation of the electromagnetic fields in terms of near fields and far fields. The far
field radiation was of most interest to us since we could describe the power that actually
left the antenna in terms of the far field terms only. The far field components of the
magnetic dipole are given by

TR e B
- 0
anz Pom 0= (7.35)

H,=

e-JBp

oum , .
E =—“1°t—l381n9 (7.36)

°T g
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In the far field, the magnitude of the two fields each decay as p~! and the ratio of the
two fields is equal to the characteristic impedance Z_ of free space. This is similar to
the behavior that we had already obtained for the electric dipole.

dll
Example 7-5. Evaluate the mtegral .

p’

Answer: Use the vector identity (see Appendix A)
§Alad1 = JA: u,xVaeds

to convert the closed line integral into a surface mtegral The scalar quantity a is equal
to (1/p’). With reference to Figure 7-10, we note that u_ = u, since the loop is in the

xy plane. Therefore
di —I u xV’( ) j u x( ,2)

oG-

For large distances from the current loop, we can let p’ = p and u, = u,. With these
approximations, the integral becomes

o2 Lz g

The surface integral yields a factor of ra?. Finally, we make use of the vector relation

where

u, =u,cos 6 — u,sin 6
to compute in spherical coordinates that

u, X u, =u,sin
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Hence, the final result of the integrations yields

dll_u
§ —=—27a’sin O
P p

Thin wire antenna

We have now covered the basic idea of the radiation of electromagnetic waves by two
very small antennas, the electric and the magnetic dipole antennas. The mathematics
has been straightforward although somewhat tedious at times. As we take a short trip
away from this book and into the hinterlands, we may see some tall structures that reach
into the heavens and have flashing red lights at the top to warn passing airplanes. These
antennas certainly do not seem to fall into the class of being small. Herein we will
describe a technique to generalize our treatment of antennas so that more realistic an-
tennas can be studied.

Let us consider two thin metallic rods having a total length 2A. This length may be
of the order of the free space wavelength A of the electromagnetic wave that is to be
radiated. A sinusoidal voltage generator whose frequency of oscillation is ® is con-
nected between the two rods as shown in Figure 7-12. This voltage generator will in- .
duce a current in the rods that can have a distribution /(z) that is governed by the shape
and length of the conductor.

It is reasonable to assume that the current distribution at the ends of the antenna
(z = th) is equal to zero and that the current distribution is symmetrical about the center
(z = 0). The first assumption is predicated on the idea that no conduction current could
extend beyond the metallic surface. Since the antenna is ‘center-fed’, symmetry argu-
ments will follow. The assumption for the actual distribution I(z) that is used in the
integral requires some ingenuity. A typical requirement is that the current distribution

current distribution Kz)

Figure 7-12. A center fed dipole with an arbitrary current distribution I(z).
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Figure 7-13. Three possible distributions of current on an antenna. (a) Uniform distribution. (b) Triangular
distribution. (c) Sinusoidal distribution, § = n/2.

is selected so certain integrals can be actually be performed. Computers have now re-
moved this restriction and more realistic distributions can be employed. The investiga-
tor can iterate the sequence: (1) choose a current distribution, (2) compute the radiated
electromagnetic fields, (3) ascertain that the radiated fields satisfy all boundary condi-
tions, (4) ciperimentally measure the radiated electromagnetic fields, and (5) reiterate
the sequence with a modified current distribution. The computer, however, may intro-
duce a degree of obfuscation that we would like to avoid at this level and we will stick
with an analytical treatment.

Three distributions for the current that have received considerable attention and lead
to analytical solutions are

I, for—h<z<+h )

1)= { 0 elsewhere (@)

16)=1,(1- ) o)
(7.37)

1(z) = I, sin [B(h— )] (c)

They all have the property that the current is confined to the wire. These are shown in
Figure 7-13. The far field radiation properties are not extremely sensitive to the actual
choice for the current distribution.

Example 7-6. Describe the excitation of a center fed dipole antenna using a transmission
line model.
Answer: The current distribution of both the incident and the reflected components of
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the current on an open circuited transmission line are depicted in the figure. Its spatial
distribution is cosinusoidal as shown in (a). By bending the transmission line at \/4 from
the end, we form a half-wave dipole with the proper current distribution. This model has
assumed that the last A/4 of the transmission line is unaffected by the bending of the
transmission line. The distribution of the current on the line will be altered since the load
is not infinite due to fringing.

As we will see, once the current distribution is chosen, then the far field electromag-
netic distribution can be calculated. There is no absolutely correct assumption that can
be made. As just indicated, the procedure is iterative in that an assumption is first made
for the current distribution the calculation performed; experimental measurements to
check the predicted fields; modification of the assumed current distribution; and redo-
ing the calculation. The initial calculation stage will be illustrated for the current dis-
tribution given in (7.37c).

In (7.25) and (7.26), we found the far field electric and magnetic field distributions
caused by a small current element I(z)dz to be

I(2)dz [ e .
dEy,=ZdH = j—*—| —— |Z Bsin 6
0 = ZAH, = j=~ (p, Bsin (7.38)

The distance p’ that appears in two terms, can be written in terms of the distance P
between the point of observation and the center of the dipole as

p’= [p2 +z>-2pzcos 6]”2 =~p—zcos O (7.39)

See Figure 7-12. We are allowed to make this approximation since the field distribution
in the far field is to be determined, that is p >> z. The difference in magnitude between

1 1
—7 and o is insignificant and can be neglected. However, it is important that we incor-

p
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porate this difference in the phase term ¢7P"’. Small changes in distance may be a rea-
sonable fraction of a wavelength A that could cause this term to change sign from a "+"
to a "-". This will have dramatic effects as will be shown below.

In order to actually compute the electromagnetic fields radiated from an antenna, we
have to select the distribution for the current and perform an integration over the coor-
dinate of the antenna z. This will be done with the current distribution given in (7.37¢c)
for which we write that

sin 6 - zcos
E°=Z“H‘P=J4_Etpn_ e® [ sin[B(h-[)]e™ a2 (7.40)

Before actually performing the integration required at this stage, let us comment on the
terms within the integrand. The term sin [B(h - IzI)] is an even function in the variable
of integration z as shown in Figure 7-13c. The product of this term and

e**® = cos (Bzcos 0)+ jsin(Bzcos 8)

will yield two terms, one of which is odd in the variable z and one that is even in the
variable z. Since the limits of the integral are symmetric about the origin, only the integrand
that includes the even term will yield a nonzero result.! The integral (7.40) reduces to

E,=ZH,= 2—'”—CB%I£ "’B"j sm Izl)]cos(Bzcos 8)dz  (7.41)

Since we are considering vacuum or free space conditions, we can let Z_= 120 Q.
After performing the integration, we finally obtain

- Be

E,=ZH,= j60I,*—F(6) (7.42)

where

cos(Phcos 6) — cos Bh

F(O) - sin O

(7.43)

The final solution is the product of two terms. The first is a term that corresponds
to the radiation characteristics of an oscillating charge located at p = 0. The second
term F(0) is sometimes called the E-plane pattern function of the linear dipole antenna.
It has the property that F(6) = 0 at 8 = 0°. This function will change if the length of the

' As an example, the integral of the integrands x and x2, which are respectlvely odd and even, functions
between x = -1 and x = +1 yields 0 and 2/3.
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(a) (b) () Qd)@ |
CAN

Figure 7-14. E-plane radiation patterns for center-fed dipole antennas of different lengths. (a) A = A/4.
(b) A= A2. (c) h =3M\4. The antenna with the dimension s = A/4 is called a half-wave dipole.

antenna Bh = 2n—;t— is altered or if the current distribution is modified. In Figure 7-14,

we illustrate the E-plane pattern function for three different dipole lengths.

The H-plane radiation patterns are azimuthally symmetric circles since F(0) is inde-
pendent of the angle ¢. We note from Figure 7-14 that the maximum in the radiated
power tends to shift away from 6 = 90° as the length % is changed. If we set A = A in
(7.43), we find that the radiation at 8 = 90° is equal to zero. The contours depicted in
‘Figure 7-14 are called lobes. The lobe at 8 = 90° is called the main lobe and the others
are called side lobes. If we were to traverse about the antenna at a constant radius and
monitored the received signal with a meter sensitive to the phase, we would note a
phase shift of 180° as we move from one lobe to the adjacent one. The lobe structure
is another example of phase mixing that was discussed when the topics of dispersion
and group velocity were presented.

Antenna parameters
In addition to the radiation pattern for the antenna that was discussed in the previous
sections, there are other parameters that are used to characterize an antenna. If we con-
nected the antenna to a transmission line, we could think of the antenna as being merely
a load impedance. The radiation of electromagnetic power into the external environ-
ment removes the power from the circuit and hence acts like a resistor that just heats
up. This is depicted in Figure 7-15.

In order to compute the value of the load impedance Z,, we will have to return to
Poynting's vector. Recall that this quantity is a measure of the power density at a point
in space caused by the electromagnetic wave. The total power radiated from the antenna
can be computed by surrounding the antenna with a large imaginary sphere whose ra-
dius is R (Figure 7-16). The radius R will be chosen so the sphere will be in the far field
region. Then any power that is radiated from the antenna will have to pass through the
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Figure 7-15. (a) An antenna that radiates electromagnetic energy is connected with a transmission line to
a source of electromagnetic energy. (b) Coaxial cable connected to a ground plane. (c) Equivalent circuit

of either structure.

Figure 7-16. Electromagnetic power radiated from an antenna will pass through a sphere of radius R.
sphere in order to propagate to distances greater than this radius R.
The total average power that is radiated from the antenna is computed by integrating
Poynting's vector over this entire closed spherical surface. From (7.1), this becomes
1 17 e
average radiated power P, = 3 §E x H' eds= 5 f d(pj0 [EQH;]R2 sinde (7.44)
0
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The factor of (1/2) arises since we are considering a time - average power over a tem-
poral cycle of the oscillation. This average radiated power can be considered to be lost
as far as the source is concerned it acts as if the antenna were a resistor that dissipated
the power. This resistance is called the radiation resistance R, and it is defined as

2P '
R = T (7.45)

where I is the maximum amplitude of the current at the input terminals. We will cal-
culate the radiation resistance for the Hertzian dipole and a half-wave dipole.

The latter antenna is of particular importance due to its desirable radiation pattern
and as we will see, its impedance characteristics.

For the Hertzian dipole, we first calculate the power that is radiated from the antenna

e

(AL)ZZ B’ I(p—ZnJ' (sin 0) dede

Bsin G)]Rz sin 0d0 d(p}

(7.46)

To obtain the last result, we have used the characteristic impedance for free space
Z,= 1207 and the definition that B:Z—;t. The radiation resistance for a Hertzian dipole

follows from (7.45) to be

2
B =80n2(-%) Q (7.47)

Let us insert numbers that satisfy our requirement for a Hertzian dipole that L << A.
Choosing AL = 0.01 A leads to a radiation resistance of only 0.08€2, that is an extremely
small value. This implies that the Hertzian dipole will be a very poor radiator of elec-
tromagnetic power (or it will ‘dissipate’ only a small amount of electrical power in the
equivalent circuit shown in Figure 7-15c¢). An efficiency for an antenna can be defined
as the ratio of the radiation resistance of the antenna to the input resistance of the an-
tenna. Since the latter resistance includes ohmic losses in the antenna structure as well
as losses to the ground, the efficiency of a Hertzian dipole is extremely small.
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For the half-wave dipole whose length is 2h=-2—', we find that the pattern function

F(0) assuming a uniform current distribution becomes

14
cos[— coS 6]
FO)=—L 2 1 (7.48)
sin O

This function has a maximum at 6 = 90° with nulls at 6 = 0° and at 8 = 180°. The
radiation pattern for this antenna is shown in Figure 7-14. The far field electromagnetic
field components follow from (7.42):

14
e cos[icos 6]
E,= jGOIm[ep j s (7.49)
and
[ (e cos{g—cos 9}
= j=m 7.50
Hy JZn( p) sin (759

The total average power radiated from the antenna through the imaginary sphere
whose radius p = R is given from (7.44)

T

1°f. F(60L, [m I m
P=— Id(pj( “ cos[—cos GD(——'LCOS [—-cos ODR2 sin 6d6
2 R 2 2nR 2

0 0

2
n cos[gcos 9]
=301

7.
: sin 6d6 3
sin

The integral in (7.51) has to be evaluated numerically and it has a value of 1.217.
Therefore, the total radiated power P, has the value

P, =365412 W (7.52)
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Using (7.45), we compute the radiation resistance R_for a half-wave dipole to be R, =
73.1. This value for a radiation resistance indicates that the half-wave dipole antenna
can radiate significantly more power than the Hertzian dipole for the same value of
input current and it is thus more efficient.

There are several other antenna parameters that should be de fined as they are found
in practice. These terms are: (1) beam width, (2) directive gain, (3) directivity, and (4)
effective area. We will discuss each of these terms below.

(1) The beam width is a parameter defining the sharpness of the radiation pattern of
the main lobe. It is usually defined as the angular width of the pattern between the half-
power points (or -3 dB points). For the electric field, this means the points where

E= %’% =.707E,,, . For the Hertzian dipole, the E-plane beam width is computed from
(7.26) to be 90°. For the half-wave dipole, the E-plane beam width is computed from
F(8)=—

V2
From a comparison of the beam width of these two antennas, we can make a general
statement that will apply to other antennas. If one desires to make an antenna with a
very narrow beam width, then the physical dimension (normalized by the wavelengthX)
should be as large as possible. Antennas with a physical size of the order of a football
field have been used in some radar systems. Reception antennas with elements located
at various sites throughout North America are used in astronomical applications to probe
the mysteries of small areas in the heavens. Therefore, the total antenna size is of the
order of the size of North America. The rotation of the earth about its axis and the
earth's travel about the sun ensure that much of space can be scanned in a year.

(2) The second parameter that defines an antenna system is the directive gain or just
the gain. The gain of an antenna is defined as the ratio of the power density radiated in
a certain direction from the chosen antenna to the power density radiated in that direc-
tion from an isotropic source radiating the same total power. If we look for the direction
where the maximum radiated power is found, we call this the directive gain of the an-
tenna. The units of the time-average power per unit solid angle are watts per steradian.
The directive gain G can be written as

in (7.48) to be 78°.

P P
gz max max
P, (ﬁ.) (1.53)
4T

since there are 4 steradians in a complete sphere. In terms of the electric field E(6, ¢),
the gain of an antenna can be written as
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[E7ax 6.9)

G=
I (™ V2o 7.54
z;{jod(pjo (sin ©)” sin Gde} ( _)

The gain of an antenna is frequently given in units of decibels (dB) with unity as a
reference.
For the Hertzian dipole, we compute using (7.54) that the gain is

sin’@ 3
G=Tm =—sin’*@
ZE{ [ 4o [ (sin 6)’sin 00} 2 (7.55)

All of the other terms involving constants, current magnitudes and the radius have canceled
since they are common factors in both the numerator and the denominator. The maxi-

mum value of the gain is found at an angle of G=-725. Hence G = 1.50r 10 log,,(1.5) =

1.76 dB. A similar calculation for the half-wave dipole leads to a directive gain
G =1.64 or 2.15 dB.

Example 7-7. A thin quarter-wavelength vertical antenna is located above a perfectly
conducting ground plane as shown in (a). It is excited with a sinusoidal source at its
base. Find the radiation pattern and the radiation resistance of the antenna.

Answer: Since the current consists of charge in motion and the charge is located above
a perfectly conducting ground plane, we can replace the quarter-wavelength antenna
depicted in (a) with the half-wavelength dipole antenna depicted in (b). The image antenna
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has the same length but the opposite phase from the real antenna above the ground.’
The radiation pattern is therefore similar to that depicted in Figure 7-11 with the caveat
that the antenna radiates only in the upper half plane (0 <6 < 90°). Since it radiates only -
in the upper half plane, only one-half of the power computed in (7.51) can be radiated
from the antenna. The radiation resistance is computed from

2
R 2B _ 2(182712)

Lo

=36.54Q

This value is equal to one-half of the radiation resistance of the half-wave antenna.

(3) The directivity of an antenna provides us with some information about the entire
radiation pattern of the antenna. The beam width describes the properties of the main
lobe but it tells nothing about the side lobes and it is the directivity that includes these
features. The angles where the maximum directive gain can be found leads to the directivity
of the antenna.

(4) A parameter that is used to characterize a receiving antenna is the effective area.?
The effective area A'eff(e, @) of a receiving antenna is defined as the ratio of the average
power P, delivered to a load impedance that is matched to the antenna receiving the
incident time-average power density S,

_ExH| _E* _E’

S =
w= Ty T2z, 240m (7.56)
The incident wave arrives in the direction (0, ¢). We write
P,=S5,A,(6,9) (2.57)

The maximum effective area is attained if the load impedance is the complex conjugate
of the antenna impedance. Assuming that the receiving antenna has an impedance Z
this implies that the load impedance Z, must have a value Z, = Z__.
power that is dissipated in the load is given by

ant’

Therefore, the

! This is smiliar to an image charge in static fields. A positive charge +Q placed a distance d above an
infinite grounded plane will induce a negative surface charge density on the plane. To calculate the electric
field, we replace the surface charge with a charge —Q at a distance d beneath the surface. The calculated
electric field has a contribution from the real charge and the image charge.

’It is also referred to as the effective aperture or the receiving cross section.

435



ELECTROMAGNETICS with MATLAB

2 2
1., 1{ v 1 1% V2
P=—IR =—| —9___ | R == oc R =—oc
Lo mit 2(z,w+zL) L 2(zam+zm] “ " 8R,, (7.58)

where V__ = [IEl sin 6 x (effective length)] which is the parallel component of the inci-
dent wave. For the Hertzian dipole, the antenna resistance R, , = R, that was given in
(7.47) and we write

(Esin0AL)  E%sin? 92
2\ T 2
8(801:2 (%) J 640 (7.59)

We find the effective area of the Hertzian dipole from (7.57) using (7.56) and (7.59)
to be ’

1=

E*sin®0A?
_B _"es0pr _N(3_.,
Aeﬁ"(e’ (P)"' Sav - Ez - AT 2811'1 0 (7.60)
240m

The term within the parentheses is the gain G (8, @) of a Hertzian dipole antenna as
noted in (7.55). This is no accident and the effective area for any lossless antenna can
be written as

;\'2
A6, 0)= EG(G, ?) (7.61)

Let antenna A in Figure 7-17 transmit to antenna B. Both antennas must be in the far
field. The gain of the transmitting antenna A in the direction of Bis G, (8,, 9,). Hence,
the time average power density at B is

Figure 7-17. Two antennas separated by a distance r.
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P

S =756 (845 04) (1.62)

Write (7.57) and replace the effective area of antenna B Aeﬁ‘,, using (7.61)

P %
B = avAeﬁ',, (63’ (PB) = [ 41ttr2 GA(GA’ (PA)][EQ B(eB’ ‘ps)j| (7.63)

We finally write

P A Y
'F—f = GA(GA’ D, )G B(em Pz )(H) (7.64)

Equation (7.64) is called the Friis transmission equation.

Example 7-7. Find a criterion that a receiving antenna is in the far field of a transmitting
antenna.

point
source

/

d}/—-/)

Answer: A requirement that the Friis transmission equation be applicable is that both
antennas be in the far field. The radiation from a point source is always in the far field.
The receiving antenna will be in the far field if the incident spherical wave deviates from
a plane wave by only a fraction of a wavelength. The largest dimension of the receiving
antenna is D. This implies that the deviation A is approximately A = A/k, where
k = 2n/A >> 1. From the figure, we write
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2

& = (d-A) --d2—2dA+—lZ—

This implies that the receiving antenna will be in the far field if
DZ 2
dz—: kD
8A 8A

Antenna arrays
In many antenna applications, we will not find a single antenna tower located at the site
where the transmitting antenna is located. There will be a number of towers that are
situated at prescribed locations in order that the electromagnetic energy is radiated in
the desired direction. We will examine one method of accomplishing this goal here. The
technique to accomplish the desired radiation pattern that we will study is to set up an
antenna array.

An antenna array is defined as a group of antennas that are arranged in various con-
figurations (straight lines, squares, triangles, circles, etc.). We will initially assume that
each antenna is similar in order to simplify the presentation. Each individual antenna
that we will define as an element of the array is excited with the proper amplitude and
proper phase so the desired radiation pattern is obtained. Since the elements are indi-
vidually radiating into free space, we can find the radiation characteristics of the entire
array using the principle of superposition. We will be concerned only with the far field
radiation here. This principle we have employed before states merely that the field
from the entire array can be computed from the linear vector addition of the fields from
each individual element. '

We will illustrate this for an antenna array where the elements are situated in a straight
line. Such an array is called a linear array. To introduce the procedure, we will first
examine an array that consists of two elements that are excited with the same amplitude
but the phase in element b leads element a by an amount d. A linear array consisting of
two elements is shown in Figure 7-18.

We should note at this point that we have not specified the radiation characteristics
of an individual element. The individual element can be characterized by its pattern
function F(8, ¢) that generalizes our previous definition to the dependence on both
angles of spherical coordinates.

At point P in Figure 7-18, the total electric field consists of the sum of the contri-
butions of the two individual elements

- /Bpa - By , B -Bpa -Bpy , B
©—+EF(6, 9)——=EF(s, (p)[" +E }
Pa Ps P. Py

(7.65)

E=E,+E,=EF(8, 0)
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Figure 7-18. A two-element linear array.

In (7.65), the amplitude of the wave is E. Note that the pattern function for an indi-
vidual element F(0, ¢) has been factored out from the terms that represent the effects
of the array. This can usually be done and we multiply the effects of the array by the
pattern function for an individual element F(8, @). More about this later.

Remember that we are trying to find the total electric field in the far field. At this
location, we can again make the approximation that p, = p, in the amplitude terms of
(7.65) but that a better approximation is required in the phase terms. With the two el-
ements being almost parallel, we can write that

p, =p, —dsin Bcos @ (7.66)

in the phase terms. The angle 0 is the angle between an axis parallel to the antenna
element and a line to the point of observation. Substituting (7.66) into (7.65), we obtain
e'IBpa

E=EF(8, cp)( 5 )[1+ef‘5‘“i“°“°““’*5)] (7.67)

~JjBpa
oo yfold]  om

a
where

v =Pdsin Ocos @+ 6

The magnitude of the electric field of the two-element array is given by

|E|= %%—[F(G, o) (7.69)

Ad
Ccos )
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The term IF(8, ¢)! is the magnitude of the pattern function of the element and the term

cosE{ is the magnitude of the array factor of the antenna array. Note that this latter
2

term depends on the array geometry and the amplitude and phase of the individual ex-
citation applied to each element. In (7.65), the amplitudes were set equal, but this need
not be a general requirement.

Let us illustrate the far-field radiation pattern for two isotropic radiating elements
that are placed along the x axis. The two elements are separated by a distance 4 and the
elements are excited with equal amplitude signals having a phase difference of §. Both
d and § can be changed. For an isotropic radiating element, the pattern function for an
individual element F(6, ¢) = 1. From (7.69), we find that the magnitude of the electric
field for this array is given by

= % F( _ g , (p)llcos(ﬂ_di’f;_‘l‘ﬁ) - % cos(%%(pﬁ[) (7.70)

where we have specified that 9=§.

This suggests that this situation would correspond to two radio towers separated by
a distance d located on the ground. Each tower isotropically radiates an electromagnetic
wave having its electric field polarized normal to the ground. The station can adjust the
phase between the signals fed to the two elements. We walk around the array at a con-
stant distance from the array with a receiver that can pick up the radiated signal and plot
the amplitude of the received signal.

Example 7-9. Find and sketch the array factor for two antennas separated by 25 centimeters.
The frequency of the signal applied to each antennais f= 300 MHz. The phase & between
the two antennas can be changed in units of =/2.

Answer: The value of Bd is computed as

27 2n 1
d=—d=a——"—"—  _x—=7/2
P A 3x10° m/s) 4
- 3%x10® Hz

We find the radiation patterns change as shown in the figure with the change of phase.
(@ & =-n/2. (b) 6 = 0. (c) & = +n/2.
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(a) (b) (c)

~
1/ \_J

We find that by electronically changing the phase & of the applied signal, we can
have the antenna ‘sweep’ through certain regions of space. Such a structure is called a
phased-array antenna. Antennas of this type are of particular importance in large radar
installations where it would be mechanically impossible to rotate an antenna that may
be the size of a football field.

We can extend our investigation into these antenna array ideas in several ways. A
technique of extending the analysis of antenna arrays is to consider more elements than
two as shown in Figure 7-19. In this linear array, there is a progressive phase shift d in
the current that feeds the identical N elements. In this case, (7.67) generalizes to

e‘jkpa

)[1 + ¢/ (BdsinBeos +3) | J(N-1)(Bdsin Bcos "”8)] (7.71)

E~E,F(6, (p)(

a

Fortunately, we do not have to carry along all of the terms within the square brackets
since they can be summed using

Figure 7-19. A uniform linear array. The current on the first element is I(z), the current on the second
element is I(z) ¢°, the current on the third element is I(z) 25, etc.
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e—jkpa l—e JN(Bdsin 8cos 9+8)
E=Eo F(®, (P)( P J 1 _ej(Bdsin 8cos 9+8) (7.72)

a

If we examine only the magnitude of the electric field |El, we can simplify (7.72) with
the relation

—_— jg — L é Jﬁ/z _ . é
Il e l— 2]s1n2e =2sin 2
Hence, the terms within the square brackets in (7.72) become
. (Bdsin Bcos @+ &
'1 __ejN(BdsinOcoscp-p.s)l ‘sm N( 5 P )
G(8, 9)|= ___ _
I ( (p)l ' l"ej(ﬁ(fsmecosms) | sin((BdSin 8cos@+3)) 1.73)
2 /

The angles where the first null in the numerator of (7.73) occur define the main beam
in the radiation pattern of the linear array. Similarly, zeroes in the denominator will
yield maxima in the pattern.

In Figure 7-20, we show the variation of IG(8, @)! as the phase delay  is changed in
equal increments for a four element array. The separation of the elements d = A/2.
Hence, we observe that the antenna radiation pattern can be altered by changing the

(a) (b) (©)
(d) (e) )

RS S S

(@ - (h) ’ (i) ‘g

Figure 7-20. Field pattern of a four element phased array, d = M/2. (a) § = +4n/8. (b) & = +3w/8. (c) & =
+21/8. (d) d= +1m/8. (e) 3d=0. (f) d= ~-17/8. (g) S = -2m/8. (h) 8 = -37/8. (l) § = —4m/8.
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(@) (b)

Figure 7-21. (a) A three-element array. (b) Equivalent displaced two-element arrays.

phase even though the physical elements are not changed.
A second way would be to examine the expected behavior if there is a prescribed
nonuniform excitation of the elements. For example, let us assume that we have a linear

array that consists of three elements that are displaced by a distance d =% and each

element is excited in phase (8 = 0). The excitation of the center element is twice as large
as the outer two elements as shown in Figure 7-21a. The choice of this distribution of
excitation amplitudes is based on the fact that 1:2:1 are the leading terms of a binomial
series. The resulting array, that could be generalized to include more elements, is called
a binomial array.

Because of the excitation of the center element being twice the outer two elements,
we can consider that this three-element array is equivalent to two two-element arrays

that are displaced by a distance % from each other. This allows us to make use of (7.69)

where F(0, @) is interpreted to be the radiation pattern of this new element. We define

F(Q, (p) = Cos (g-cos (p) (7.74)

The array factor for these new elements is the same as the radiation pattern of one of
the elements. Therefore, from (7.69) we write that the magnitude of the far field radi-
ated electric field from this structure is given by

2

. 2E )
|E| = T" cos (Ecos (p) (7.75)

The radiation pattern for this array is shown in Figure 7-22. It is contrasted with the
two-element array and we note that the radiation pattern of the three-element array with
a nonuniform excitation is narrower. We note that in this binomial array that there are
no side lobes to absorb power. If more elements are included in the array, the beam
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(a) (b) (c)

O O

Figure 7-22. Radiation patterns of a two element dipole array and a three element binomial array. (a)
Antenna pattern. (b) Array factor. (c) Antenna array.

width will become narrower.

In drawing the composite figure for the antenna array that is comprised of two small
dipoles that are separated by a half-wavelength, we have multiplied the radiation pat-
tern of the individual antenna by the array factor. In this case, the array factor is the
same since this is a binomial array. The multiplication is illustrated best by working
through an example.

Example 7-10. Using the concept of the multiplication of patterns, find the radiation

pattern of the array.
Al A A
2 2 2

This array is to be replaced with two antennas

Answer: The radiation pattern of a pair of two nondirectional radiators separated by
M2 has aradiation pattern depicted below in (a). This is the antenna pattern. The radiation
pattern of two nondirectional radiators separated by A and fed in phase is shown in (b).
This is the array factor. The resultant pattern of the array is given in (c). We note that

the final pattern has a null value at the same angles that either the individual antenna
or the array factor has a null.

(@ @ (b) (4])/\ (c)
O
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Conclusion
The fundamental radiation characteristics of electromagnetic waves and its relationship
to accelerating and decelerating charges have been reviewed. Using these concepts, the
small Hertzian dipole radiator was described. A radiation pattern for such an antenna
was obtained.

A formal procedure that followed from the concept of the vector potential was intro-
* duced and applied to several antennas. We focused our attention to the examination of
the far field properties of antennas. If the media in which the waves are propagating is
linear, the principle of superposition applies. Constructive and destructive interference
between fields radiated by displaced antenna elements with differing phases in the ap-
plied currents led to different radiation or reception characteristic of an antenna. Terms
such as lobes, radiation resistance, beam width, directive gain, directivity, and effective
area were defined and applied.

The solution that we have obtained for the radiation patterns was predicated on a
valid approximation for the current distribution on the antenna. Several distributions
were analyzed. The method of moments which was introduced in Chapter 3 can be equally
well applied to antenna calculations. In this case, the field distribution is known and the
current distribution becomes the unknown term that must be ascertained.

The subject of an antenna array that consisted of several identical antennas was in-
troduced. By controlling either the phase or the amplitude of the signal that was applied
to each individual antenna or its spatial separation, we found that the resulting radiation
pattern could be changed. We found that predictions of the radiation pattern could be
found by multiplying the radiation pattern of an individual antenna times an array fac-
tor in order to find the radiation pattern of the entire antenna array.
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Problems
1. Perform the integration of the integral

R R3 o
IO 52 , .2\ dR
(R +x )
that arises in Example 7-1.

2. Using dimensional arguments, show that the term

2
o 1 (x,>0)
327e, x,

corresponds to the electrostatic energy stored in the region x > x, in Example 7-1.

3. Show that (7.9) follows from (7.8) using Maxwell's equations if a time dependence is as-
sumed.

4. Show that(7.8) and (7.9) are related by the characteristic impedance of free space.

5. Let both oscillating charges depicted in Figure 7-6 have the same sign. Calculate the radiation
pattern from this ‘antenna.’

6. Find the far field potential from a ‘Hertzian quadripole’. The charges are at the four corners
of a square.

H+

7. Verify that (7.22) and (7.24) are correct.

8. Sketch all of the separate terms of the field quantities in (7.22) and (7.24) as a function of
distance p assuming each term has a value of 1 at p = 1. Identify the ‘near’ field and the ‘far’
field.

9. Explicitly evaluate all of the terms that are computed from Poynting's theorem from (7.22) and
(7.24). Identify each of the terms.
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10. Calculate the far fields at point P created by an antenna consisting of two magnetic dipoles
in juxtaposition but separated by a distance L. The currents in the dipoles have a 180° phase
difference.

11. An AM radio station of 1 MHz frequency uses an antenna 20 m long that is placed well above
the ground.

(a). What is the radiation resistance of the antenna?

(b) If the station is to be operated at 50 kW power, what rms current should be applied to
the antenna?

12. Find the far field radiation pattern from a thin rod of length 24 if the current on the rod can
be described with the distribution

12) I, for—h<z<+h
Y10 for z>|H

Sketch this radiation pattern in the limit of 4/l << 1.

13. Find the far field radiation pattern from a thin rod of length 24 if the current on the rod can
be described with the distribution

I AP
I(2)= Im(l h for—-h<z<+h

0 for z>|H
Sketch this radiation pattern in the limit of A/A << 1.

14, Find the far field radiation pattern from a thin rod of length 44 if the current on the rod can
be described with the distribution

ld
1(2)= 1,,,(1—7 for —2h<z<+2h

0 for 2> 2|
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Sketch this radiation pattern in the limit of A/A << 1.

15. Calculate the radiation resistance of a magnetic dipole.

16. Calculate the radiation resistance for the antenna described in problem 12.
17. Calculate the radiation resistance for the antenna described in problem 13.
18. Calculate the directive gain G and the beam width of a magnetic dipole.

19. Calculate the directive gain G and the beam width of an antenna having the current distri-
bution stated in problem 12.

20, Calculate the directive gain G and the beam width of an antenna having the current distri-
bution stated in problem 13.

21. Find the effective area for a lossless half-wave dipole.

22. Assume that there are three identical antennas equally spaced along a straight line. Each
antenna is fed with the same current but there is a uniform progressive phase shift along the line.

d
phase shift 0 £ 2t

Find the array factor.

23. Show that the radiation pattern with § = 0° in Figure 7-19 can be obtained using multipli-
cation of patterns.

24, Show that an antenna with more elements that are equally spaced can produce a narrower
main lobe. Assume that each element is fed in phase
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