MATHEMATICAL AND NUMERICAL
TECHNIQUES

In the previous chapter, we learned that a static electric field would be created from a
charge distribution. In addition, it was possible to determine this static electric field from
a scalar potential. We also showed there that the potential V could also be obtained
directly interms of the charge distribution p, via one of two partial differential equations:
Poisson’s equation.

vy =-Pr
e (3.1)
‘or Laplace’s equation
ViV =0 - 32

if the charge density in the region of interest were equal to zero. In writing (3.1) or (3.2),
we introduced the operator V2and called it a Laplacian operator. The Laplacian opera-
tor depends on the coordinate system that is chosen for a calculation and in Cartesian
coordinates is written as

o’V 9V 9V

VVse—ast—+
ox* 9y’ 07’ (3.3)

The general procedure of solving (3.1) and (3.2) for the cases where the potential V
depended on only one spatial coordinate was given there. In this chapter, we will intro-
duce analytical and numerical techniques that will allow us to examine more complicated
problems. For mathematical simplicity, however, only problems that can be written in
terms of Cartesian coordinates will be examined.

We also introduce numerical techniques in this chapter and make extensive use of
MATLAB in the process. Several MATLAB programs (dot m files) that have been used
in this book are included in this chapter and in Appendix F for the reader’s benefit.
These programs can be easily altered and customized by the user. They can also be
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translated into the reader’s language of choice. They may also not be THE program for
a particular task but they do work.

Introduction to separation of variables

The study of systems that could be modeled with a differential equation that had only
one independent variable (say a distance x) has led to some important results that have
practical significance. There are cases, in fact probably a majority of cases, where it is
not justified to approximate a physical system with an equation that depends on only one
independent variable. A simple example would be the calculation of the steady state
temperature profile on a thin rectangular metal plate if a blowtorch were aimed at one
corner of the plate. In this section, we will introduce the methodical procedure to effect
the solution of this type of problem that is governed by Poisson’s or Laplace’s equation.
The technique that will be employed to obtain this solution is the powerful method of
separation of variables.

It is pedagogically convenient to introduce the technique with an example and then
carefully work through the details. The problem that we will initially examine is to cal-
culate the potential distribution within a charge-free region illustrated in Figure 3-1 where
the potential is prescribed on all four edges. In our example, we will specify that the
potential on two of the edges is equal to zero, approaches zero on the third edge, that is
taken to be at y = oo, and the potential has a particular distribution on the fourth edge.

Since there is no charge within the region, we should solve Laplace’s equation (3.2).
Since the object has rectangular symmetry and there is no dependence of the potential
on the third coordinate z, the form of Laplace’s equation in Cartesian coordinates (3.3)
that we will use is written as

*V(x,y)  9°V(x,y) ‘
V¥V = 2 Y) 4 P Y =0 (3.4)
o
y L)
>
V=0 V=0
0 a X
V =Vg sin Fg_x.

Figure 3-1. A rectangular region in which the potential V on two of the surfaces is specified to be equal

. X .
to zero, V= « asy = 0 and V =V sin— on the fourth side.
: : a
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In writing (3.4), we have explicitly stated that the potential V = V(x,y) depends on the
two independent variables x and y.

The philosophy of solving this equation by employing the method of separation of
variables is to assert that the potential V(x, y) is equal to the product of two terms X(x)
and Y(y) that separately are functions of only one of the independent variables x and y
each, that is .

Vix, y) = X(x) Y(y) (3.5)

This is a critical assertion and our solution depends on it being a correct assumption.
We may wonder if other functional forms would work at this stage. They might or they
might not. The resulting solutions that would be obtained using different combinations
might physically not make any sense or they might not satisfy the boundary conditions.
Therefore, we will follow in the footsteps of those pioneering giants who have led us
through the dark forest containing problems of this genre in the past and just use (3.5)
and not concern ourselves with these questions. “‘If it works, why fix it?”’ will be our
motto.

Substitute (3.5) into (3.4) and write

ron X9 L ¥y

d’Y(y)
ax? =0

dy*

(3.6)

Note that the terms that are to be differentiated only involve one independent variable.
Hence the partial derivatives can be replaced with ordinary derivatives and this will be
done in the subsequent development.

The next step in this methodical procedure is to divide both sides of this equation by
V(x, y) = X(x) Y(y). Our friends in mathematics may stand up in horror at this sugges-
tion! As we will later see, one of these terms could be zero at one or more points in
space. Recall what a calculator or computer tells us when we do this ‘evil’ deed of
dividing by zero. With this warning in hand and with a justified amount of trepidation,
let us see what does result from this action. In our case, the end will justify the means.
We find that :

1 &X(x), 1 &¥(y)
X(x) d&x*  Y(y) dy*

(3.7)

The first term on the left side of (3.7) is independent of the variable y. As far as the
variable y, it can be considered to be a constant that we will take to be -—kyz. Using a
similar argument, the second term on the left side of (3.7) is independent of the variable
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x and it also can be replaced with another constant! that will be written as + k2 There-

fore, (3.7) can be written as two ordinary differential equations and one algebralc equa-
tion.

d’x
| (x)+k2X( )=0 (3.8)
d’Y(y)
FE kY(y)=0 (3.9)
ki—k!=0 (3.10)

A pure mathematician would have just written these equations down by inspection in
order to avoid any problems with dividing by zero that we have so cavalierly glossed
over. :

The two second-order ordinary differential equations can be easily solved. We write
that

X(x)=Csinkx+C,cosk.x (3.11)
Y(y) =G, exp(k,y)+ C,exp(—k,y) (3.12) -

where we include the constants of integration, C, to C, Let us now determine these
constants of integration from the boundary conditions imposed in Figure 3-1. From (3.5),
we note that the potential V(x, y) is determined by multiplying the solution X(x) with
Y(y). Therefore, we can specify the constants by examining each term separately. For
any value of y at x = 0, the potential V(0, y) is equal to zero. The only way that we can
satisfy this requirement is to let the constant C, = 0 since cos 0 = 1. Nothing can be
stated about the constant C, from this particular boundary condition since sin 0 = 0. For
any value of x and in the limit of y = oo, the potential V (x, y = ) = 0. This specifies
that the constant C; = 0 since the term exp (kyy) = o asy = oo. The constant C,
remains undetermined from the application of this boundary condition.The potential on
the third surface V(a, y) is also specified to be zero at x = a from which we conclude

nw . . . ’
that k, = — since sin nm = 0. From (3.10), we also write that the constants kx = ky.
a

! Qur choice for the signs of the constants is arbitrary. They have been selected by the author based on his
knowledge of what was coming next. Another selection might have led to a later mecharical introduction

of an additional factor of j =+/—1 at some point in the development. It is also common to define i = 4/—1
in some mathematics or physics texts. We will follow the Electrical and Computer Engineering convention
of using j. '

176



MATHEMATICAL AND NUMERICAL TECHNIQUES

With these values for the constants, our solution V(x, y) = X(x)Y(y) becomes

nty\). (nTx

V(x,y)=[C C,]exp (-——X)Sln (———) (3.13)
a a

For this example, the integer n will take the value of n = 1 in order to fit the fourth

boundary condition at y = 0. Finally, the product of the two constants [C,C,] that is just

another constant is set equal to V. The potential in this channel finally is given by

nXx

V(x,y)=V,exp (—%stin (——) (3.14)

a

The variation of this potential in space is shown in Figure 3-2.

An examination of Figure 3-2 will yield some important physical insight into the vari-
ation of the potential. First, the potential V only approaches zero as the coordinate
y = . Second, the boundary conditions at x = 0 and at x = a were that the potential
V equaled a constant that in this case was equal to zero. Recall from the previous chapter

that E = —%—V;. This implies that the component of electric field £, must also be equal
Y

to zero along these two surfaces. We can make the general conclusion that the tangential
component of electric field adjacent to an equipotential surface will be equal to zero.
This conclusion will be of importance in several later calculations.

The procedure that we have conducted is the determination of the solution of a partial
differential equation. Let us recapitulate the procedure before attacking a slightly more
difficult problem.

Figure 3-2. Variation of the potential within the region depicted in Figure 3-1.
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(1) The proper form of the Laplacian operator V2 for the coordinate systém of inter-
est was chosen. This choice was predicated on the symmetry and the boundary condi-
tions of the problem.

(2) The potential V(x, y) that depended on two independent variables was separated
into two dependent variables that individually depended on only one of the independent
variables. This allowed us to write the partial differential equation as a set of ordinary
differential equations and an algebraic equation by assuming that the solution could be
considered as a product of functions of the individual independent variables.

(3) Each of the ordinary differential equations was solved that led to several constants
of integration. The solution of each ordinary differential equation was multiplied together
to obtain the general solution of the partial differential equation.

(4) The arbitrary constants that appeared when the ordinary differential equations
were solved were determined such that the boundary conditions would be satisfied. The
solution for a particular problem has now been obtained.

Note that this technique is similar to the methodical procedure that we employed in
the one dimensional case with the additional step unique to the separation of variables
technique included to take care of the higher dimensions.

Let us examine the potential distribution in a bounded space as depicted i in Figure 3-
3. The procedure will be the same as for the unbounded case treated above. In this case,
the potential is required to be equal to zero on three of the surfaces and it has the same
potential as examined previously on the remaining edge. :

In this case, the solution of Laplace’s equation is again given by

X(x) = C,sin (k_x) + C,cos (k_x) (3.15)
Y(y)=C, exp(ky y) + C,exp (—ky y) (3.16)

We will later find that we will have to expand the potential in a Fourier series in order
to match the boundary conditions at x = 0 and at x = a. However, we are able to predict
the functional characteristics of the basic eigenfunction. This is a German word that
means characteristic function. The values for k_ and k, are called eigenvalues or char-
acteristic values. In this case again, the eigenvalue k, = ky as determined from (3.10). We
may also find this function referred to as a proper function.

The constants are specified based on the following boundary conditions. The constant

C, = 0 since the potential V = 0.at x = 0. The constant k, =2 Since the potential
a
V= 0 at x = a. From (3.16), we write

C, exp (kyb) + C,exp (—-kyb) =0

since the potential V = 0 at y = b. Therefore, the potential within an enclosed region as
specified in Figure 3-3 can be written as
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y V=0

\Y

Il
o
<
1l
o

0 a X
V=vosinpg_xi

Figure 3-3. A boundary value problem for a bounded surface.

V= [c, C, exp (” Z b )]{exp(fl(y;_bl) —exp (_ nm(y — b))} “n (n__n_x )
a a 2

— 3.17
V=[2C,C3 exp(nnb)}sinh(nn(y b))sin(nnx) (3.17)
a .

a a

The constants within the square brackets will be determined in the same manner using
a Fourier series and the remaining boundary condition at y = 0 that we have just used.

The boundary condition at y = 0 states that V =Vosin(B) for 0 < x < a. Hence,
a

the constant n = 1 and

GG= b > b :
2exp (——) sinh (———) (3.18)
a a
.The potential is finally written as
y=—>» sinh(n(y—b))sin(n—x)
sinh(_:—b) a a (3.19)

This is shown in Figure 3-4. Note that we do satisfy the imposed boundary condition that
the potential equals zero on three edges.

Fourier series expansion
In the two examples that were treated above, we assumed that the boundary condition
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Figure 3-4. Normalized potential profile within the region described in Figure 3-3. Note that the potential
is equal to zero on three edges.

at y = 0 had a nonuniform distribution (a sinusoidal variation). This was an academic
type distribution rather than a realistic one and we were able to ‘carry out the details’ to
the very end without having to introduce more complicated mathematics. However, we
should look at the real world where we might expect that a more realistic distribution for
the potential at y = 0 in Figure 3-1 would be to assume that the potential at y = 0 would
be- a constant, say V = V. The boundary conditions on the other three edges could
remain the same in realistic situations. Let us carry through the details for this particular
boundary condition.

Since the other boundary conditions have not been altered, the solution of Laplace’s
equation with several of the constants specified is given by (3.13) that we write as

V=2cnexp(—nny)sin(nnx) (3.20)
a a

n=1

where n is an integer. In writing this relation as a summation of an infinite series of -
sinusoidal functions, we are being guided by the fact that each term does satisfy the
boundary condition that the potential V = 0 at x = 0 and at x = g, hence the infinite sum
will also. The coefficients ¢, will be determined to yield the best fit of the remaining
boundary condition at y = -0 that has now been specified to be a constant potential
V=1, ’

We may recognize (3.20) as the Fourier sine series and the constants c, as the Fourier
coefficients. The coefficients c, and d, are defined in general from the relations

2L . (2nng 2 2nng
C"_ZJ:) @sm( 7 )dc and d"_z-[’ @cos(—L—)dC (3.21)
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where the general Fourier expansion for the periodic function ® is given as

0= Zc sm( nC)+2d os( TC) - (3.22)

n=1 n=0

In this general expression, L is defined as the period of the function ©.

The potential V is specified only in the region 0 < x < a to be a constant. Outside of
this region, it is not determined and can have any value that we specify in order to ease
our mathematical difficulties.Let us choose it to be periodic in x as shown in Figure
3-5. In this case, the period of the wave is L = 2a. Our choice for the potential at the
boundary is to assume that it is an odd function in the variable x. An odd function is
defined as ®(x) = —-P(-x). An even function is defined as ®(x) = ®(—x). The sine
function is an odd function and a cosine function is an even function.

In order to represent the periodic potential depicted in Figure 3-5, we should employ
the series containing just odd functions, hence we will let the coefficients d, = 0. Recall
that the integral over a period or a symmetrical interval of an odd function times an even
function is equal to zero. For example, the integral of the odd functions sin £ or £

fm ®,sindE or f] D,EdE

are both equal to zero. In this example, @ which is a constant is an even function and
sin E and & are both odd functions.
Substitute the function defined in Figure 3-5 into (3.21) in order to determine the

coefficients c,
c, {j Vsn(nngjdc j V, sin (nnC)dC}

4V, nodd (3.23)
¢, =\ nw
0 neven
+VO p——— :- ----------- .
T S
0 ia 1 2a : 3a
......... Vo R ..

Figure 3-5. Periodic potential represents the constant potential V = V, within the region 0 < x < a.
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Figure 3-6. The potential variation within the region depicted in Figure 3-5 if the potential Vaty = Oisa
constant. The sum of the first three Fourier modes is shown.

The potential is finally given by

V= 4aVy {sin (—ni) exp (— E) + 1 sin(ig) exp (— 37t_y) + 1 sin (éﬁ) exp (—» 5_1ty_)+ . }
n a a 3 a a 5 a a

(3.24)
The potential variation of just the first three terms is shown in Figure 3-6.

Certain general comments can be made about the potential variation that is shown in
Figure 3-6, especially when it is compared with the potential profile in Figure 3-2 that is
just the first Fourier term of the Fourier series. Again, the potential V only approaches
zero as the coordinate y = oo. The fit to a constant value aty = 0 is better if more modes
are included in the expansion. We note that the higher order terms subtract from the

a . .
lowest order mode at x = ) and they add to the lowest order mode in the regions x = 0

and x = a. The fit at x = 0 and at x = a will not be possible as the function is double-
valued there. For y > 0, the potential V is zero at these boundaries. However, fory = 0,
V = V. If we had included more terms in the expansion, we would have observed a very
rapid oscillation at either edge. This effect is given the name Gibb’s phenomenon and it
is a topic for further consideration in an advanced calculus course.

Example 3-1. Find the Fourier coefficients for the boundary condition specified in Figure
3-1.
Answer: From (3.21), we write

c, =-22- 2aVo sin(ﬂ)sin(%)dc ’
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2 2 . (W
d,=—| V,sin = cos 2nmg dg
2ag %0 a 2a

The coefficient ¢, = V, for n = 1. All other coefficients are equal to zero.

In this section, we found that it was desirable to sum all of the terms in the Fourier
series in order to get a valid representation for the potential profile. As a general rule, we
can say that the more terms that are included in the summation, the better the represen-
tation for the potential. The question then arises, ‘‘Is there something unique about each
of the terms in the series?’’ We can answer this question by watching a gymnast jumping
on a trampoline. If the gymnast lands in the middle of the trampoline, the perturbation
in the canvas will be different from what it would be if the landing were at a point that
is away from the center or if two gymnasts were doing their thing in tandem. There are
different modes for the oscillation. The mathematical structure of the solution for an
equation describing the motion of the canvas for all possible landing points is a solution
that involyes finding all of the Fourier modes.

Numerical integration
In order to illustrate the procedure, we will find the potential variation at various dis-
tances along the z axis from a finite sized charged sheet. This is shown in Figure 3-7. The
potential from an arbitrary body of charge was obtained in the previous chapter and we
rewrite it below.

(x,, ” Z,) ’ 4 I’
V(x,y,z)=j‘AVEV—4;EX?—dx dy’dz (3.25)
0

where

Figure 3-7. A finite size sheet of charge.
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R=y (x- ) +(y -y’)é +(z=2) (3.26)

The primed variables refer to the location of the charge. We will let the charge be located
in a thin sheet at z'= 0. We will also let the sheet of charge be square in shape and have
it centered on the coordinate system. The charge density will be uniformly distributed
and have a value p. With these assumptions, (3.25) becomes

P a2 a2 1
V(x,y,2)=—— dx dy =
4n €, -al2 I—alZ ‘\/(x _ xr)2 + (y _ y/)~ + (Z)Z (3.27)

Since the potential is to be determined along the z axis, this simplifies to

V(0,0,2)= P (e dx'Jalz dy’ 1
T 4%80 -al2 -al2 \/(x')2+(y')2+(z)2 (3.28)
As defined by the charge distribution, there are two degrees of symmetry in this

problem. They are in the x' and the y' coordinates. Hence we have to evaluate the inte-
gral over only 1/4 of the entire surface and the just multiply the result by 4. Hence

V(0.0,2)= 4__ps__ al2 dx,J-alz dy’ 1
dme,to T )+ + @1 (329

In order to numerically evaluate the integral (3.29), we subdivide the entire plane in
the region {0 < x' < a/2, 0 < y' < a/2} into small squares whose dimensions are & X h
as shown in the inset. The maximum size that the square can be is given by 2 = a/2. If
there are N 2 squares in the quadrant, we have

h=—— 3.30
2N ( . )
The charge AQ that is in each square is given by

AQ = p, h?
since the charge is assumed to be uniformly distributed on the surface. The incremental

potential AV, due to charge in the small square that is identified with the labels “ij’ is
given by
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1 AQ

AV. =
Vy 4me, AN AT
(ih_i) +(jh-—§) +7 (3.31)

where (ih—g, jh—g) defines the center point of a charge square.

All that we need do now is use superposition and sum the incremental potentials due
to each incremental charge

N N 2
V=441i8 33— o —
T P e

Hence, the double integral in (3.28) has been converted into a double summation
The summation can be simplified by combining (3.30) and (3.32) to yield

¢

_4 a ps N N 1
V= 2N4n:a.2.2 1) 1V (2Nz)
ETCTE e

2 a

There is the integer N that specifies the number of small squares that are assumed to
comprise the large plane. This value is determined by the user’s compromising a desire
of accuracy against computer time. Note the term (2Nz/a) that appears in the denomina-
tor of (3.33). This states that the distance z from the plane of charge is scaled by the size
of the plane.

" Example 3-2. Evaluate the potential at z = a as the number of divisions N is increased
from 1 to 4. The accuracy should be written to four decimal places. The figure shows
the quadrant that is to be evaluated using (3.33).

Answer: For N = 1, there is one square in the quadrant and only one term in the
summation. We write (3.33) as

v=42_P: ! =P (9428)4

2 4me 2 2 4rme
-3 (14T v ™
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For N = 4, there will be 16 terms. We explicitly write out each of these terms in order
to show the details that must actually be performed by the computer. From (3.33), the
summation over j is performed first.

f‘ 1 1 3

1 2 1 2 ) 1 2 1\2 )
{0-3) +-3) s 133 o

a_ps
2 4me,

v=-—s (9295
4me

0
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X

If we continue the process of subdividing the square, we compute the tabulated values
for the coefficients. The MATLAB program is given in Example 3-3.

Example 3-3. Evaluate (3.33) at z = a using MATLAB.
Answer: Since we may wish to evaluate this sum several times for different values for
the maximum number of values of n [called ‘nmax’], we write this as a .m file.

clear
s=square(nmax)
% This .mfile allows us to evaluate the potential in (3.33).
' nmax=input('What is the value of nmax?:');
for n=1:nmax

s=0;
for j=1:n
for i=1:n _
s$=8+(2/n)/((i-.5)./2+(j-.5).A2+(2*n).A2).A.5;
end
end
N=4+n-1;
end
# of subsquares N # of iteration coefficient
1 1 : 0.9428
2 4 0.9320
4 16 0.9295
8 64 0.9288
16 ' 256 0.9287
32 ) 1024 0.9286

Example 3-4. Evaluate and sketch the potential along the z axis that is perpendicular to
the center of a uniformly charged plane. Choose the value of nmax = 4.

Answer: Using MATLAB, we write a .m file. At distances close to the plane, the voltage
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does not change with position. As the distance from the finite plane increases, the
voltage decays linearly with distance. The finite plane acts as a point charge. This is in
agreement with the results in Chapter 2.

clear
s=5(z,8);
clf
z=logspace(-4,2);
a=size(z);
for sz=1:a(2)
nmax=4;
for n=1:nmax
s(sz)=0.0;
for j=1:n
for i=1:n :
s(sz)=s(52)+(2/n)/((i-.5)*2+(j-.5)"2+(z(s2)*n)A2)A.5;
end
end
n=4.n-1;
end
end
loglog(z,s)
xlabel('Z")

ylabel('voltage')

10 , -

voltage

-1

10} 4

-2

10

Finite difference equations
We have found in the previous chapter that the electric potential could be determined
from a solution of differential equations called Laplace’s or Poisson’s equations. Analyti-
cal solutions can be obtained in several cases although not in full generality. Herein, we
will show that these differential equations can be converted into finite difference equa-
tions that can be solved on the computer. There are software packages that are available
that have been written to effect such calculations. These packages contain very efficient
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algorithms. Our goal here is to obtain a flavor of what lies behind the program. With our
choice of examples, we essentially will crack a walnut with a sledge hammer.

One dimensional problems

The first technique that will be examined is the numerical solution of Laplace’s and
Poisson’s equation in one dimension. The first order derivatives can be derived with
reference to Figure 3-8. We have three possibilities from which to choose. They are

dv V.-V, .

&, ~ % (Forward difference method) (3.34)
‘(1;/ ) ~ Zl_;_v_l (Backward diffe:ence method) (3.35)
%xo = %K (Central difference method) (3.36)

We can interpret the Central difference method as an average between the other two
methods. In order to ascertain which method is better, we must estimate the errors that
might be expected to be found in each case.The errors can be estimated by expanding the
voltage in a Taylor series about the point x,.

Vixg+h)=V(hy)+

hav| R dv| R av|] .
T dxlxo + T LO TR |x0 + higher order terms (3.37)

If we neglect the third derivative and higher order terms, we write

V(x)

Vo 1V
xo-h Xo xo+h

X

Figure 3-8. Voltage as a function of position. The finite difference equations will be derived with reference

to this figure
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av| _ V(x,+h)=V(x,) _h d*v| ‘
dx |y, A 247, (3.38)

A comparison of (3.38) with (3.34) shows that this is equivalent to the Forward differ-

ence method with the exception of the error term
,

hdV
247, (3.39)

There are, of course, additional higher order terms that must be included in thi$ error
term but they will be multiplied by 4 to a higher order power. If the parameter & can be
made sufficiently small, (3.34) could be useful. '

In a similar manner, we write the Taylor series expansion V(x, — &) about the point

X\ 4 B
Hdxl,  20ax’| ~ 3ad|

V(xg—h)=V(xy)— + higher order terms (3.40)

From (3.40), we compute

V| _Vi)=Vix-h) h d%v|
dxl,, h 24| (3.41)
for the Backward difference method. The error term is also glven by (3.39) plus hlgher

order terms.
Subtracting (3.40) from (3.37) yields

X0

av n d*v
V(xO +h)-—V(x0 —h)z 2hdx . 2—6—?‘x_3 (3.42)
dV| _Vio+h)-V(xg-h) K d°V|
el o 6 &, (3.43)

The error in the Central difference method is of the order of A%. Hence, the error in using
this method will be smaller than either of the other two methods and it will be the one
employed throughout the rest of the chapter.

Using the Central difference method, we find the representatlon for the second de-
rivative to be
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A R A
d2V| _ dx xo"‘% dx xo"g _ h - h
dx?| h h

%o

or

dv| v +v-2v,

a|, W2 (3.44)

Example 3-5. Find the potential distribution between two surfaces if V(x = 0) = 0 and
V(x = 1) = 3. There is no charge distribution in the space 0 < x < 1.

b % % %W Ve Vs Ve
0 ' 1 o 1
(@) (b)

Answer: Using the Central difference method, we write Laplace's equation as
d°V, _ Ve +V,-2V, _
o 1y
2)
for the first iteration depicted in (a) The boundary conditions imply V, = V(x =0) = 0and V,=
V(x =1) = 3. Hence

0

VO+V2"2V,=O+3—-2V,=O=>V1=.§.

The second iteration depicted in (b) with the boundary conditions V, = V(x =0) =0 and
V,= V(x=1) = 3 leads to

%+Vz-2V§___O.V,+V3—2V2=O
1\? ’ 1Y ’ 1)’
(Z> (Z) (Z)

Inserting the boundary condition's, we are left with three simultaneous equations to soive.
Note that V, is known from the previous iteration to be equal to 3/2.

V+V-2v o

The solution for the three intermediate points and the two end points are

3 6 9
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Example 3-6. Repeat Example 3-5 with a uniform charge distribution p (j)= — 4¢, in the space
0 < x <1. Find the potential distribution between two surfaces if V(x =0) =0and V(x=1) =3.

o M % %% Ve Vs Ve
0 ' 1 o
() (b)

Answer: Using the Central difference method, we write Poisson's equation as
%V, _Vy+V, -2V, _

dx? 1Y
@)
for the first iteration depicted in (a). The boundary conditions imply V, = V(x=0) =0
and V,= V(x = 1) = 3. Hence
Vo+V,=2V, 0+3-2V
1\ = 1\
5 G
The second iteration depicted in (b) with the boundary conditions V= V(x = 0) =0 and
V,=V(x=1) = 3leads to
VotV =2V, _, Vi+V-2V, _,

1Y ’ 1y 1Y
) I IR )
The solution for the three intermediate points and the two end points are

3 15

4

=4=V, =1

AN A A

The term V, equals 1 from the previous iteration.

Example 3-7. Using MATLAB, write a program that will yield the results that were obtained
in Example 3-6.

Answer: We write a .m file.

clear

%specify array size and boundary conditions
sz=input('ARRAY SIZE...");
md=(sz+1)/2;

%specify charge density ~
rho=input('Charge density ...");
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Y%specify boundary conditions
Ib=input('Left boundary ...");
rb=input('Right boundary ...");
v(1)=lb;
v(sz+2)=rb;
%set all cells to zero
for i=2:5z+1
v(i)=NaN;
end
w=0;
while w==
for i=2:5z2+1
if isnan(v(i))
w=0;
end
end
for h=md:-1:1
for i=2:5z+1
it (i+h)<=(sz+2) & (i-h)>=1
if isnan(v(i)) & ~isnan(v(i-h)) &~isnan(v(i+h))
v(i)=(v(i-h)+v(i+h)+rho*(h/(sz+1))A2)/2.0
end
end
end
end
end
%
% If the results are to be plotted on a graph, a semicolon must follow the line
% v(i)=(v(i-h)+v(i+h)+rho*(h/(sz+1))42)/2.0
% and the following line must be added to the program
%

Y%clf
%plot(1:52+2,v(1:52+2))
%xlabel('Z'")
%ylabel('voltage')
%
V =
0 NaN 1 NaN 3
V= :
0 0.3750 1.0000 NaN 3.0000
V =
0 0.3750 1.0000 1.8750 3.0000
>>

A critical restriction on the mesh size is that the first point must be in the center. This
point will be evaluated from the two boundaries. This will restrict the number of internal
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points N to contain the following number of points.
1; 3,7, 15; 31; 63; ...[2V - 1]
Let us call this the array size.

We may have noted that the length ‘A’ that appears in our application of (3.44) has
changed from 1/2 to 1/4. In the next step, it will be reduced to 1/8 and then 1/16 and so
on. We can also evaluate (3.44) and keep A as a prescribed value but as we will see, the
calculation will have to be repeated several times. The numbers will converge, hopefully
in a reasonable time, to the correct answer.

In order to introduce the procedure, we will redo the calculation of the one-dimen-
sional Laplace’s equation that we have just performed but now make the a priori
assumption that & = 1/4. We set the three values internal to the fixed boundaries as
initially being equal to zero.Hence, we write

V.(0) =0, V,(0) =0, V,(0) =0

The boundary values will remain fixed at all iterations, namely V, =0 and V,= 3.
In our first iteration denoted with the ‘(1)’ using (3.44), we write

V+ %O -2 _, VO+V0)-2V,0) _, V()+V, = 2VO _
1) 1) - 1\’ -
5 9 9
In the second equation, we include the value for V(1) that had just been obtained from
the previous equation since it is now known. A similar argument holds for the third

equation. In fact, this will be a general pattern. The simultaneous solution of this set of
equations leads to

0

0;

V,(1)=0,V,(1)=0,V,(1)=15

In order to compute the values at the second iteration, we use the values from the
first iteration and sequentially write ’

Vo +V,(H-2VQ) _, V@) +V:1)-2V,20) _, V,()+V,-2V,(2) _
1 2 % 1 2 - ) 1 2 -
5 5 (3

From this set, we compute
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V,(2)=0,V,(2)=0.75, V,(2) = 1.875

The third iteration is

%A@ -2,0) _, KA+R@-2%0) _, VG)+V,-2V,6)
l 2 - 1 2 -V l 2 -
4) %) (4)

V,(3)=0.375,V,(3) = 1.125, V,(3) = 2.0625

0

We obtain

We could keep going using our calculator, but let us stop here.The numbers seem to
be approaching an asymptotic limit. We will write a MATLAB program to do this work
below. A more interesting question arises at this point. Is the answer correct? We can
easily check this by dividing the parameter ‘A’ by two and redoing the calculation. If the
numbers are the same, we are finished.

Example 3-8. Write a MATLAB program to evaluate and plot the first six iterations of the
_solution of the one dimensional Laplace’s equation.The boundary conditions are:
V(1) = 0 and V(5) = 3.

Answer: We write the MATLAB program. The iterations are indicated with the integer
k. The analytical solution V(x) = [(3/4)  (x — 1)]. is shown with a dashed line. Note that
we include the iteration number k in the final figures.

clear
clf
Ib=0;rb=3;km=6;nx=4;
% specify boundary conditions
v(1)=lb;
v(nx+1)=rb;
% set all internal cells to zero
zeros(size(2:nx));
s="k=k';
for k=1:km
subplot(2,3,k)
for i=2:nx
v(i)=(v(i+1)+v(i-1))/2;
end
for i=1:nx+1
hold on
plot(i,v(i),'0")'hold off'
end
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%label graphs
s(3)=num2str(k);
text(.5,2.5,s)

xlabel('i")
ylabel('V")
%draw analytical solution
a=[1 1+nx];
b=[0 3];
plot(a,b,'linestyle','--")
hold off
end
3 k_ 1 /o 3 [ k— {p 3 i .P
i / =z v =3
‘ / z i) Vi S
= ;o= /> /
1 4 1 e 1 s 0
/s Py (o} /
Il oo nl s .
0 I 5 0 i 5 0 ' z
I
] 5 3 5 .
k=4 6'/ (o o’/p - .,y/
: /¢t - ,
= & = 5 > P
1 / 1 / : ,
R P P
" 0 ]
0 5 0 5 0 .

Example 3-9. Write a MATLAB program to evaluate and plot the first six iterations of the
solution of the one dimensional Poisson's equation.The charge density p, = —,The
boundary conditions are: V(1) = 0 and V(5) = 1.

Answer: We write the MATLAB program. The iterations are indicated with the integer
k and the computed solutions are shown with a 0. The charge is indicated with a+.
Points from the analytical solution V(x) = [(3/4)-(x—1)] are indicated with a*. The potential
profile in a vacuum is shown with a dashed line. Note that we include the iteration
number k in the final figures.
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clear

clf

L=1;lb=0;rb=1; nx=4; km=6;

LL=L/nx;

%charge density distribution
for i=1:nx+1

rho(i)=+1;

end
rho(1)=0;
rho(nx+1)=0;

% specify boundary conditions
v(1)=lb;
v(nx+1)=rb;

% set all internal cells to zero
zeros(size(2:nx));
s='k=k";
for k=1:km
subplot(2,3,k)
for i=2:nx
v(i)=(v(i+1)+v(i-1))/2+((LLA2)*rho(i))/2;
end
for i=1:nx+1
hold on
J=(i-1)/(nx);
plot(j,v(i),'0',j,rho(i),'+"
hold off
end
s(3)=num2str(k);
text(.1,.8,s)

xlabel('x/L")
ylabel('V'")
hold on
for i=1:nx+1
j=(i-1)/nx;
u(i)=-((j.72)/2)+3*j/2;
plot(j,u(i),"")
end
a=[0 1];
b=[0 1];
plot(a,b,'linestyle','--")
hold off

end
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1+++ﬁ1r+++;ﬁ1+++,§
k=1 % k=z % k=3 &
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Example 3-10. Using MATLAB, plot the voltage V = exp(—x?) and the electric field
E = -dV/dx as a function of x in the range -3 < x < 3.

The difference operation ‘diff(y)./diff(x)’ sequentially performs and stores the values
{v2)-v(1)I/h, TU3)-V(2)I/h,...[V(n)-V(n-1)]/h}. There are only (n—-1) values of the
derivatives. Therefore, if we wish to plot the results, we plot y in the range x, to x, at
increments of h and dy/dx in the range [x, + h/2] to [x,— h/2] with the same increment
h. The grid is added with the ‘grid’ command.

Answer: Using the ‘diff’ operator, we write:

cif

=-3:dx:3
V=exp(-x.A2);
hold on
plot(x,V);
dv=diff(V)/dx;
xx=-2.95:dx:2.95
plot(xx,- dV)
grid
xlabel(*X")
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1

05

Higher dimensional problems
The finite difference scheme outlined above can be extended to two and to three
dimensions as shown in Figure 3-9 to find V. The finite difference representation of
Laplace's equation in two dimensions is given by

82V o’V _VitV+V+V, -4V,
V¥V = P ay 7 =0 (3.45)

We write from (3.45) that
1
VO=Z(V, +V,+V,+V,) (3.46)

The procedure that is to be followed is indicated in Figure 3-9 for two dimensions.
The potential V| is the average of the four adjacent points. For Laplace’s equation, the
parameter ‘A’ factors out. However, in Poisson’s equation, it will modify the charge

* VY,
hoi
L
Vs : Vi
‘v,

Figure 3-9. A five-point star used in two dimensional difference equations to determine the voltage V.
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Vi+ Vo
2

Va

X

Figure 3-10. The value of the potential at the corners is chosen to be equal to the average of the adjacent
sides.

density that is to be evaluated at the point located at the central point. If the potentials
at the two surfaces at a corner are different, a convention is to assume that the potential
equals the average of the potentials of the adjacent sides as shown in Figure 3-10.

The extension to three dimensions is straight forward. In three dimensions, we would
use the four values of potential given in (3.46) plus two additional ones. In addition, the
factor (4) that appears in (3.46) would be replaced by a factor (6). The square has been
replaced by. a cube.

After computing the first iteration, let us determine the potential at other points within
the nine point mesh. This will involve two more iterations as shown in Figure 3-11. In
the second iteration, all of the potentials at the locations indicated by a solid circle ® in
Figure 3-11a are now known. The values indicated by a square W are to be computed in
this iteration using (3.46). In the third iteration, the values of the potential indicated by
the solid circles ® and squares B are known from the previous two iterations or initially
in the calculation. Again employing (3.46), the values of the potential at the locations

.:....?....,....9.....:

———

S S P
(a) (b)

Figure 3-11. The second and third iterations. (a) The values of the potential indicated by the solid circles
® are known. The values at the locations of the solid squares B are computed in the second iteration. (b)
The potentials at the boundaries indicated by the hollow circles O are assumed to be known. The potentials
at the locations indicated by the diamonds 4 are computed in the third iteration.
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indicated by the diamonds 4 can be computed. In this mesh, it is assumed that the
potentials at the boundaries can be stated, hence the potentials at the locations indicated
by the hollow circles O are also known.

This iterative procedure can continue until the adjacent pointsin the decreasing meshes
become close to each other. Accuracy of the calculation can be insured by repeating the
calculation with a different initial mesh size. Other meshes other than the mesh that has
been used here could be employed. In addition, the tedious reiteration procedure outlined
here can be performed with a computer.

A critical restriction is also found on the square mesh size in that the first point must
be in the center of the square. This point will be evaluated from the four boundaries of
the square. This will restrict the number of internal points N of the square to contain the
following number of points.

1% 3% 7% 152 31% 632 ...[2V-1]2

Let us call this the array size.

At this point, we shall assume that the region that we are to study has the shape of
a square. We could have scaled various dimensions to create this square. Later, we will
examine shapes that are more complicated. We will follow the reiterative procedure that
we have previously encountered in numerically solving the one dimensional Laplace’s

eauation
b ¢

Example 3-11. Given that the potential at the four sides of the square trough are as
indicated, compute the values at the indicated points.

Answer: Employing the convention that the potential at the corner is one-half of the two
adjacent sides, the potential at the top two corners is 8. Due to the symmetry of this
example, the potential only has to be calculated at a limited number of points. (first
iteration - (a))

_0+0+0+16

1%
£ 4

4

Then (second iteration - (b))
_0+8+16+4
4

7

and (c)
~0+4+O+0_
4

1

The remaining potentials (third iteration - (d)) are
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B
VH

Ve

7 +4
V _—:_-*.-_1_6:7—_=

4

_1+4+140

4
_ 0+

T+4+1

85

15

3
4

V=16

lllll.llllll.ll.lll.ll.'ll
.

.A .:B .C
"“.Q_fﬁu.ﬁn.
oG dH ol
|

(@)

OA .B OC
‘.G .H \\l"

4N AN
/ N

.~

/’ ~

(<)

PGALLE LI LR LR RS
\‘ ‘, \\ ’l
. ‘ N
o WBNE
. /N
. \\ 4 \\
oD oE JF
I

.G .H.

’
’
’

(b)

SERERNERPENANERNRERRENE

4R gE_gF
4G ot ¢!

202



MATHEMATICAL AND NUMERICAL TECHNIQUES

The potential within the square region is shown below.

10,

4o bW

Example 3-12. Write a MATLAB program to evaluate and plot the potential V in the
square region by numerically solving Laplace’s equation. The maximum potential on one
wall is 16 V, and the other three edges are grounded. Use an array size of 15 x 15.
Assume that nonzero wall potentials are (a) V = 16 sin (rx/a) and (b) V = 16. The
voltages at the corners are (a) [(16 sin (n/16) + 0)/2] and (b) [(16 + 0)/2]. Compare the
numerical solution with Figure 3-4 and Figure 3-6.

Answer: The MATLAB program is written as.
clear
clf
%specify array size and boundary conditions
sz=input('ARRAY SIZE ... ");
md=(sz+1)/2;
bndt=input('Top boundary ... ");
bndl=input('Left boundary ... ');
bndr=input('Right boundary ... ');
bndb=input('Bottom boundary ... ');
%specify boundary conditions
for i=2:sz+1

v(1,i)=bndt;

v(i,1)=bndl;

v(i,sz+2)=bndr;

v(sz+2,i)=bndb;
end
v(1,1)=(bndt+bndl)/2;
v(1,sz+2)=(bndt+bndr)/2;
v(sz+2,1)=(bndl+bndb)/2;
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v(sz+2,5z+2)=(bndr+bndb)/2;
%set all cells to zero

for i=2:sz+1
for j=2:5z+1
v(i,j)=NaN;
end
end
w=0;
while w==0
w=1;
for i=1:52+2
for j=1:52+2
if isnan(v(i,j))
w=0;
end
end
end
for h=md:-1:1
for i=2:sz+1
for j=2:5z+1
if (i+h)<=sz+2 & (j+h)<=sz+2 &(i-h)>=1 & (j-h)>=1
if isnan(v(i,j)) & ~isnan(v(i-h,j)) & ~isnan(v(i,j+h)) &
~isnan(v(i+h,j)) & ~isnan(v(i,jh))
v(i,j)=(v(i-h,j)+v(i,j+h)+v(i+h,j)+v(i,j-h))/4.0;
elseif isnan(v(i,j)) & ~isnan(v(i-h,j-n)) &
~isnan(v(i+h,j+h))& ~isnan(v(i+h,j-h)) & ~isnan(v(i+h,j+h))
v(i,j)=(v(i-h,j-h)+v(i-h,j+h)+v(i+h,j-h)+v(i+h,j+h))/4.0;
end
end
end
_ end
end
end

%plot the results
clg;surf(v(2:sz+1,2:5z+1));axis('equal');axis('square')
shading interp

colormap(jet)
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In the discussion above, we assumed that the region to which the star given in (3.46)
and depicted in Figure 3-9 had the shape of a square.This technique seemed to work
well. We will, however, suggest another technique here following our discussion of one
dimensional equations.

As an example to lead us into the two dimensional iterative procedure, we consider a
rectangular shape that is one and one half times as long as it is wide that is depicted in
Figure 3-12. The length could be greater than this but we will use this example to illus-
trate a point. For simplicity, we let the charge density equal zero. Superimposed on the
rectangle and centered on the points a and b, are the two stars depicted in Figure 3-9.
The potentials at these two interior points are a priori unknown. We will, however,
assume that they initially have the value of zero and then find their values

The values at the interior points will be found using an iterative procedure. In the
first iteration using (3.46), we obtain

V=0+0+0+0)/4=0andV, =(16+0+0+0)/4=4.
In the next iteration, we obtain
V=0+0+0+4)/4=1andV, =(16+0+0+1)/4=425.
Proceeding to the next iteration, we write to two place accuracy
V=0+0+0+425)/4=106andV,=(16+0+0+ i.O6)/4=4. 27
We see that the potentials at these two interior points seem to approach two asymptotic

values. There are questions of convergence that may have to be investigated. In particu-
lar, can we converge to the final answer faster using one scheme instead of another?

Example 3-13. Write a MATLAB program that will calculate the first ten iterations of the
potential at the points a and b in Figure 3-12.

V=0
s e
V=04.... a .. ..... b4 ....... 4 V=16
i
V=0

Figure 3-12. A rectangular region whose size is 34 times 2A.
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>> VA(1) ;
>> VB(1) ;
>> for j = 1:10

VA(j + 1) = (VB(})) / 4

VB(j + 1) = (16 + VA(j)) / 4,

end

>> [(1:11)', VA', VB
ans =

0
0
1

1.0000 0 0
2.0000 0 4.0000
3.0000 1.0000 - 4.0000
4.0000 1.0000 4.2500
5.0000 1.0625 4.2500
6.0000 1.0625 4.2656
7.0000 1.0664 4.2656
8.0000 1.0664 4.2666
9.0000 1.0667 4.2666
10.0000  1.0667 4.2667
11.0000  1.0667 4.2667
>> .
In this example, the columns are the step, VA and VB respectively and we have used the
transpose operation (') to form vertical columns.

Example 3-14. Write a MATLAB program that will calculate and show the first, the ninth,
and the seventeenth iteration of a two dimensional potential profile. The potential at one
edge is nonzero and it is zero elsewhere.

Answer: The program is

clear

clf :

Ib=0; bb=0; tb=0; rb=16; km=17; ny=20; nx=10;
s='(a)"

- %set boundary conditions
for i=2:nx
v(i,1)=tb;
v(i,ny+1)=bb;
end :
for j=2:ny
v(1,j)=Ib;
%constant boundary condition
v(nx+1,j)=rb;
%sinusoidal boundary condition-not used
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Y%v(nx+1,j)=rb*sin((j*pi)/((ny+1)));
end

%corners
v(1,1)=(lb+tb)/2;
v(1,ny+1)=(lb+bb)/2;
%constant boundary condition
v(nx+1,1)=(rb+tb)/2;
v(nx+1,ny+1)=(rb+bb)/2;

%sinusoidal boundary condition-not used
%v(nx+1,1)=0;
%v(nx+1,ny+1)=0;

for k=1:km
if k==
%set all cells to zero initially
%show boundary conditions

for i=2:nx
for j=2:ny
v(i,j)=0;
end '
end

subplot(1,3,k)
surf(v(1:nx+1,1:ny+1));
xlabel('x')
ylabel('y")
zlabel('V")
axis([0 20 0 12 0 16])
text(2,14,17,s)
s(2)=setstr(s(2)+1);
else
%calculate the interior voltages
for i=2:nx
for j=2:ny
V(i,))=(v(i+1,))+v(i-1,))+v(i,j+1)+Vv(i,j-1))/4;
end
end
if k==8(fix((k-1)/8))+1
subplot(1,3,((k-1)/8)+1)
surf(v(1:nx+1,1:ny+1));
xlabel('x")
ylabel('y")
zlabel('V")
axis([0 20 0 12 0 16])
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text(2,14,17,s)
s(2)=setstr(s(2)+1);
end
end
end

The results are shown below.

We note that the graph ‘fills in’ at each iteration.

The examples that are treated here are particularly simple. The convergence of the
numbers to a final value was also rapid. There are also techniques that can be employed
to enhance this rate of convergence. If the boundary of the object had a slope to it as
in a trapezoid, we may have to replace the star in Figure 3-9 that is based upon a square
to one based on aright triangle. It is not a large step to get into examples that are ‘beyond
the scope of this text.” We will let others tread in those waters.

Example 3-15. Write a MATLAB program to evaluate and plot both the potential
V=V, exp (-x* — y?) and the charge density from Poisson's equation.

Answer: The MATLAB program is:
clear;
clf
>>  [x,y]l=meshgrid(-2:.2:2,-2:.2:2);
>> z=exp(-X.A2-y.A2);
>> w= - del2(z);
>> mesh(x,y,10*w)
>> hold on
>>  surf(x,y,z+1)
>>  view(-45,10)
>>  whitebg
>> colormap(gray)
>>  xlabel('X")
>>  ylabel('Y")

208



MATHEMATICAL AND NUMERICAL TECHNIQUES |

Dielectric interfaces

In the material described so far, we have assumed that the potential was specified at
the boundaries of a uniform region for which the potential was to be numerically deter-
mined. If the region contains two dielectrics as shown in Figure 3-13, we have to obtain
an algorithm that will allow us to evaluate the potential on both sides of the dielectric
interface.

In order to calculate the boundary condition for the interface of the two dielectrics,
we make use of Gauss’s law. This is written as

§eE-ds=0,, =0 (3.47)

where we have assumed that there is no surface charge density at the interface.
With reference to Figure 3-13, (3.47) can be written as

§8E~ds=Az§£E~dl=—-Az§e%g-dl=0 (3.48)

where we have replaced the electric field with (dV/dn), the derivative of the potential
that is normal to the surface. The term Az is the distance in the third coordinate. The
surface integral has become a contour integral times this distance Az that is directed out
of the page. In terms of Figure 3-13, we write

ov V.-V h h V.-V
e—dl=—‘—°(s —+¢ —)+ 2__O(eh
on h 2 T2 h (&2)
_ _ 3.49
¥ V"(szﬁ+e,-h—)+v“ V°(ezh) 49
h 2 2 h
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Figure 3-13. Interface of two dielectrics. Points of the five-point star are in the two dielectrics.

Rearranging terms, we rewrite (3.49) as

28V, +2&,V, — 4, + £,)V, + (&, +&, )V, + (g, +&,)V, =0 (3.50)
or
1
‘/0 =m{281V2 +282V4 +(81 +82)V] +(81 +82)V;l} (3.51)

Using the algorithm developed in (3.51), we can relate the potentials on one side of
a dielectric to the other.

Example 3-16. In Example 3-11, the bottom half of the region is filled with a dielectric
that has a relative dielectric constant e, = 3. The top half is a vacuum where ¢ = 1. Find
the potential at all points within the region. The potential at the top two corners is equal
to 8 as noted previously.

Answer: We follow the sequence of computations outlined in Example 3-11. The potential
at point E requires that we use (3.51). Hence

Ve =;{32+0+0+0}=2
4(1+3)

The second iteration allows us to compute the potentials at A and C and at G and /
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V=16

Illll’lllll’lllll.lllll.

V=0

vy JB+16+240)
A C 4

(0+2+0+0)

Vo=V, = 4

0.5

The potentials at D and Frequire (3.25)

1
V,=V, = 13+3+0+8}=15
b 4(1+3){ }

The potentials at Band Hare

v, = (6.5+16:6.5+2) —775
v, = (0.5+2zo.5+0) 75

Note that the potentials differ from Example 3-11.

Method of moments
In the previous chapter, we found that the electric potential V could be computed
from a charge distribution via an integral that we rewrite here

— pv(x” y,’z,) ’ ’ ’
V(x,y,2) = -“Avm dx’dy’dz (3.52)
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If the charge distribution is known, then the potential can be easily computed. We have
just noted that (3.52) can be converted into a summation and hence the integral can be
numerically calculated.

There are cases, however, where the potential may actually be known and the charge
distribution may be unknown. Static fields abounds with such problems. An example
could be the determination of the surface charge distribution on a conductor that would
result in the wire's potential being a specified voltage.!

In order to introduce the procedure, consider that two charges are located on the x
axis as shown in Figure 3-14. The absolute potential at the point P, is known to be equal
to V=1 volt.

We write the potential at P, due to the two point charges as

1 [0 0
1= —{T“f—;'} (3.53)

4me,

Various combinations of charge values will satisfy this relation. Forexample: Q, = 0 and
Q,=20mng,C.or Q, =8 ng, C. and Q, = 10 g C. could be used. There is no unique
solution in this case. This is because there are two charges and only one condition (3.53).

Let us impose a second condition and require that the potential be equal to 1 V at two
points as indicated in Figure 3-15. Hence, we write

8]

T 4me, L4 5

1=__1__{_Q,_+_Q_2} (3.54)
4ne, (5 4
P

-

A Qy
Figure 3-14. Two charges yield the potential at P to be equal to one volt. The grid separation is in one meter
increments

' Several examples and references appear in L.T. Tsai and C.E. Smith, ‘Moment Methods in Electromagnetics
for Undergraduates,’” IEEE Transactions on Education, Vol. E-21, pp. 14-22 (1978).
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P Py

Y

:
Qe Qy

Figure 3-15. Two charges yield the potential at the two points P, and P,to be equal to one volt. The grid
separation are in one meter increments.

This set of linear equations can be written in compact matrix notation as

1 1
1 _ 1 z -g . Q]
1| 4ame, |l 1| |0 (3.55)
5 4
If we invert the matrix, we obtain
80Tme
9=0=— & C (3.56)

This solution is unique.

Example 3-17. Using MATLAB, solve for the charges in (3.56).

Answer: Type in the matrix elements

>> a(1, 1)
>> a(l, 2)
>> a2, 1)
>> a(2, 2)
>>a

a=

wnw unu

—-L—L_A—L

0.2500 0.2000
0.2000 0.2500

>> V1, 1) = 1;
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>> V2, 1) =1;
>>V
V =

1
1
Vi/a'

non

Q
Q
2.2222 2.2222

This is the result given in (3.56) if the numbers are multiplied by 4ne,. The term
Q = Wa'is Q = [V transpose] / [a transpose].

Example 3-18. Three charges are located at the indicated points on the graph. Determine
their values if the potential at the indicated points are all equal to 1 V.

‘ + +1V

&
01 02 Q3

Answer: Three simultaneous equations must be solved. They are

! {g+&+ 2, }

- 4me, |4 5 V& +6*
1:#{_Q_‘.+22.+_Qi}
4re, LS 45

= l Q] +.Q.2_+_Qi
ame, |J42+62 5 4

This set can be written in matrix notation as

- -

rr_ 1
1 1 ‘11 5 421+62 o)
1
1= - — — . Q2
4me, 5 4 5
1 1 1 1 0,
' _342+62 5 4
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The inversion of the matrix leads to

Q, = Q,=291 (4ng ) and Q, = -.66 (4me,).

—

gxample 3-19. Since MATLAB was originally written to manipulate matrix operations,

explicitly state the sequence of commands that will allow you to solve Example 3-16

using it. Use the more compact notation to represent vectors and matrices, i.e.
= [1/4 1/5 1/sqrt (16+36)].

Answer: The >>'is the MATLAB prompt for us to input data. The other numbers are the
MATLAB reply.
>> A =[1/4 1/5 1/(sqrt(16+36)); 1/5 1/4 1/5; 1/sqrt(16+36) 1/5 1/4]
A= .
0.2500 0.2000 0.1387
0.2000 0.2500 0.2000
0.1387 0.2000 0.2500

>> B=[1;1;1]

[ G Y

> Q=B'/A

2.9123 -0.6596 2.9123

Consider the configuration shown in Figure 3-16. Four charges are located in space.
A coordinate system is also introduced and the location of the centers of the four charges
are specified with reference to this coordinate system. The potential at two of the charges
(Q,and Q,) is specified to be V = -1 and at the other two (Q, and Q)), it is specified to
be V = +1. Let us find the value of the charges We write four linear equations for the
potentials at the four points.

ke

\' =’-1 \' =‘+1 X

Figure 3-16. Four charges distributed in space. The potential at the indicated points are V = —1 and
V=+1
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)

)

0,

# + + +
4ngylr, —nl  4nglr —-r,l 4melr, -1l 4mejlr, —r,l

N

e O .0 9 . 0
dngylr, -l 4me)lr, -1l 4megllr, -l 4negylr, —r,l
4ngylr,—rl 4me)lr, —r,| 4mejlr, -]l 4nejlr, —r,l

+l= 9 + 9, + 9, + 9,
4nglr,—nl 4meglr, —r,l 4meglr, —rl  4nglr, —r,l]
In matrix notation, we write this set of equations as
1 1 1 1] _

I, -l Ir-rl In-rl Ir-r,|l
-1 1 1 1 9
-1 |I-gl -5 In-nl In-rl| |G
+1| 4me,|__1 1 1 ! 0,
+1 e, -l In-r,l -5l Ir—r,l 0
1 1 1 1 ¢

|Ie,—xl Ir,—r,l Ir,—rl Ir,—r,l]

(3.57)

(3.58)

The main diagonal terms of this matrix appear to give us problems since they become
very large. These terms are called singular. We can get away from this problem if the
potential at these singular points is evaluated at the edge of the charge at a radius r = a
rather than at the center and assume that the entire sphere has this potential. The poten-
tial at the edge of the spherical volume of radius r = a is given by

Hence (3.58) becomes
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1 1 1 1]
» elz Ir, Irzl Ir, -l-r3l I, -i-l‘4| 0
-1 1 |Ip-rl a Ir, -x,l Ir,—-x,l| |2
+1| 4me,|__L 1 1 1 0; (3.60)
+1 I, =l Ir, —r,l a Ir, —r,l 0, :
1 1 1
Ir,-r] Ir,—xl Ir,—rl a |

Example 3-20. Find the values of the charges that will cause the potentials as shown in
the figure. The grid separation is 1 meter and the diameter of the charged region is
1 meter.

V=-1 V=41

0 X
0 5

Answer: The matrix (3.60) has the terms

1 1 1 1]
7_2_) 1 3 ;712+32 .
-1 1 1 1 1 Q
-1|_ 1 1 W2 i+ 3 | |2
+1| 4me,| 1 1 1 1 o,
3 2 2
+1 : «/ll+3 (1/12) i 0,
V12 +3? 3 1 1/2) |

Inverting the matrix leads to Q, = Q, = —-Q, = -Q, = —43 (4ne,).
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y P

r lrrl

aaccaa s
e

Figure 3-17. The potential at point P results from charges p, Ax,located at the centers of the j-th section.

We could continue on with individual charges as has been presented up to this point.
However, it is advantageous to examine cases where the charge is distributed in various
surfaces. If the charge were distributed on a line as shown in Figure 3-17, then there
would be a linear charge density p, Coulombs / meter. The charges AQJ =2na Ax A, Lj
would be located at the center of the j* section and we would proceed as has just been
described. The same problem with the singularity that was discussed above with indi-
vidual charges will also be encountered in cylindrical coordinates.

The singularity in the matrix is removed in the same way that we removed it for the
spherical charges. We evaluate the potential at the surface of the cylinder and assert that
it is also equal to the potential at the ‘singular point’. The evaluation of this potential v,
at the surface of this cylindrical section shown in Figure 3-18 is found from the mtegral

V.=

J

1 JAZ{L 2mp, adedx’

el (3.61)

a’+x"
The integral of (3.61) can be performed and we find

2
4 &, a2+(Al"]
2
a2+x'2] =Py,

4Te, | A28 | AL |, (ALY
’ 2 N7
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_@P A (3.62)
2¢,

Al Al 2

7 1+_1._ a 5
22| 2|(A
2

where we have employed the approximation that a << Al. Equation (3.62) is written
finally as

ap, Al]
V.= In| —-
j g, n[ 2 ] (3.63)
y
Alj ¢
a
X

¢ X >‘

Figure 3-18. The j* section of a linearly charged line.

Example 3-21. Find the charge distribution on the cylindrical conductor whose radius
is 1 m and whose length is 100 m. The potential on the surface is V = 1 V. You may
assume that the charge in each section is uniformly distributed. The term 2na Ax = 40r.

(EED-

Answer: The matrix equation relating the potentials to the charges is
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B T
smino) X Mmoo Am B
1] 40 20 i hr in | o
2T 4emeoy = =22 2Rt
1 20 20 40 60 Pra
1 407 407 407 407
1| = il T 4nmeoy X 2T oL,
|| 4me| & 2 o 20 L
On Bm BT grmeoy 2T | (P
1) S0 s 20 0 20 | |pus)
| adll adld i 2T 471n(20)
| 80 60 40 20 |

The inverse of the matrix leads to p,, = .2556 ¢, p,, = .2222 ¢, p,; = .2170 p,, p,, =
2222 gy, p,; = -2556 p.

Similarly, the charge could be distributed upon a surfaceresulting in a surface charge
density of p, Coulomb / meter?. We subdivide the surface into small rectangular areas
Asy. This is shown in Figure 3-19. As the reader should expect at this stage, we will again
encounter a singularity. The singular rectangular region whose area is As; will be re-
placed with a circular region containing the same incremental charge. We assume that
this charge is distributed within the perimeter of the circle and compute the potential at
the perimeter. The potential at the center is set equal to this value and is given by

1 m fa srdrd s s s Asii
Vi=3 Jo Lp =P gna=Lrg=L ,/ (3.64)
TE, r 4me, 2g, 2e,V T

where the radius of the circle is written in terms of the area of the grid element.

Figure 3-19. Charge is distributed on a surface and has a density p, Coulomb / meter?. Singular elements
in the structure are replaced with discs.
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Typical problems that are encountered in this case would be the calculation of the
capacitance of a parallel plate capacitor. In such a calculation, the two plates are each
subdivided into N? sections or subareas; as shown in Figure 3-20.

subsection ‘I’

Figure 3-20. A parallel plate capacitor.

Example 3-22. Set up the matrix that describes two parallel plates (1 m x 3 m) separated
by a distance of 1 meter. Each plate is subdivided into three equal sections. The potential
of the top plate is +1 V and the bottom plate is —=1 V.

0 1 2 3

Answer: The matrix is written in general as
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where la-bl is the distance between the center of subsection a to subsection b, la—cl
is the distance between the center of subsection a to subsection ¢, etc. The singular
terms that are found in the main diagonal are removed using (3.64). These terms are
equal to 2 Vr and As = 1. The matrix becomes

Inverting the matrix leads to p,, = (0.3497) 4ne,; p,, = (0.3124) 4ne; p, = (0.3497) 4ne;

2Jn %
+1 % 2Jn
+1 1 1
+1 _ As 5 -1-
~1| 4me| L L
-1 1 V2
11
1] 2 2
1 1
5 V2

[\ 9]
N | = él

- =855

I B

N
~
n—Alr—-sllo—n—Alr—-sll»—

-

[\
3

—_ | -

p,, = — (0.3497) 4ne ; p,, = - (0.3124) 4ne,; p,, =~ (0.3497) 4ne,.

1 1 1 1 1 1
la—al |b—al lc—dal ld—al le—al |f-adl
1 1 1 1 1 1 1
la—bl 1b—bl lc—=bl Id-bl le-bl |f-bl
|+ 1 1 1 1 1 1
1| As lla—c 1b—c lc—c Id—c le—cl If-cl
~1| 4me,|_1L 1 1 1 1 1
-1 la—dl Ib—dl lc—dl Id-dl le-dl |f-dl
. 1 1 1 1 1 1
S la—el 1b—el lc—el ld—el le—el |f—el
1 1 1 1 1 1
la=f1 1b=f1 lc=f1 ld=f1 le=f1 1f-fl]

Psa
Psb
Psc
Psd
Pse
| Psf

Psa
P
Pse
Psa

_psf i

Example 3-23. Solve Example 3-22 using MATLAB. Plot the charge distribution. Be able

to change the number of elements N.
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Answer: Using MATLAB, we write the program.

clear;clg;
N=input('Number of elements = ')
%set voltages on plates
for i=1:N
A(i,1)=1;
A(i+N,1)=-1;
end
%identify cells and locations
for i=1:N
dx(i)=i;
dx(i+N)=i;
dy(i)=1;
dy(i+N)=0;
end
%calculate matrix elements (4*eo)
for i=1:2*N
for j=1:2*N
if i==j
B(i.j)=2"sqrt(pi);
else
B(i.))=1/sqrt((dx(j)-dx(i))A2 +(dy(j)-dy(i))*2);
end
end
end
Q=A'/B;
plot(0:1/(N-1):1,Q(1:N))
hold on
axis([0 1 0.3 0.35])
hold off

35 :

w N=3

e N=5

¥ N=7

3, N =99

]

~

(S N

300 Y/
0 5 ' 1

distance

The values of Nare: N=3, 5, 7, and 99.
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Figure 3-21. Charged sheet model to represent the pn junction.

Let us now apply the method of moments to a slightly different topic, that of ascer-
taining the expected one dimensional charge distribution from an assumed potential pro-
file. The potential profile and the charge distribution could be very nonuniform as in, for
example, the depletion layer of a pn junction;. In this case, we assume that there are
distributed sheets of charge as shown in Figure 3-21. The charge on each sheet ‘j’ is
uniformly distributed and has a value o;. The separation between each sheet is also
assumed to be uniform and the separation is d.

The electric field surrounding an infinite plane of charge ‘; is given by

E=— (3.65)

The electric potential at a distance z from the charged sheet j is found from the integral
of (3.65).

S;
Vi==2.2 (3.66)

The constant of integration in (3.66) is set equal to zero due to symmetry. The potentials
at the two extremities (z = —2d and z = +2d in Figure 3-21) have a value that is equal
to 1/2 of the value that is given in (3.66). This additional factor of 1/2 arises since the
entire electric field is constrained to be directed into the junction. The singularity that
was previously encountered is automatically removed since a factor of ‘0’ is introduced
in (3.66). ‘
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Finally, the potential profile in the junction must be specified. There are several pos-
sibilities that could be employed. The simplest is to assume that the potential changes

linearly in position z. For the case depicted in Figure 3-21 where there are five charged
sheets, we write

V(-2d) = ;—;{92-1-(0) +0,(d)+065(2d)+64(3d) +%(4d)} (2)

V(-d)= -;%{%‘-(d) +06,(0)+ 05(d) + 0 4(2d) + 921(3d)} )

v

-1
V(0)= EE{%(w) +0,(d)+05(0)+0,(d)+ -62—5(2d)} ()

_ 3.67
V(+d) = 2—::{%(3(1) +6,(2d) + 65(d) +6,4(0) +%(d)} (d) (3.67)

V(+2d) = %{%(4@ +0,(3d)+6,(2d) +6,4(d) +921(0)} (e)

The factors of 1/2 that occur at either edge are explicitly stated for clarity. The MATLAB
program that can be used to generate the elements of the following matrix is in Appendix
F.

1
1

012 3 2
v2d] |1 ACh
V(-d) 2 0123 o,
V(0) =§%%101%63
V(+d) 3 51 0 LC (3.68)
|V(+24d) | 2 2 | o
2321 of
2 ]

A MATLAB program to generéte (3.68) of arbitrary size is given in Appendix F.
Let us now specify the values of the potential as
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vi<2d)] [=2]
Ved) | |1
Vo) |=|o
V) | |+ (3.69)
v2a)| |42

This implies a linear change of the potential or an electric field that is a constant in the
depletion layer. Inverting the matrix, we find that

(o, | 1]
c 0
2 2¢
03 = 7 0
s, 0 (3.70)
_65_ L+1_

This result expresses the fact that the electric field that is proportional to the negative
gradient of the linearly varying potential is a constant that is determined by charge den-
sities at either edge.

Other potential distributions can be employed. A different choice will, of course,
yield a different charge distribution. It is also applicable in other fields.!

Uniqueness

We have just encountered some heavy mathematics, but we have been able to obtain
a solution for the partial differential equation, in this case Laplace’s equation. If we had
a charge distribution within the region where the potential was to be examined, we would
then have to solve Poisson’s equation. For a given charge distribution within the region,
there can be only one potential distribution that satisfies the same boundary conditions.
This physical statement has its mathematical basis in that there is one unique solution;
for the problem. Let us substantiate this statement. By carrying out the verification, we
will gain a little manipulative skill with some vector identities.

Assume that there would exist two potentials ¢ and Y that were caused by the same
charge distribution p . Each potential must satisfy the same Poisson equation

' K.E. Lonngren, P.V. Schwartz, E.W. Bai, W.C. Theisen, R.L. Merlino, and R.T. Carpenter, ‘‘Extracting
Double Layer Charge Density Distributions using the Method of Moments,’’ IEEE Transactions on Plasma
Science, Vol.24, pp. 278-280 (1994).
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V2<P=—% (3.71)
Viy= pe" (3.72)

To show that the potentials ¢ and y are the same, let us multiply both sides of (3.72)
by ¢ and subtract it from (3.71) that has been multiplied by y. We find that

YV o—@Viy = —%(\v -) (3.73)

The term on the left hand side of this equation can be written as

YV - oViy=yVVop—-0oV-Vy
=[V+(yVe)-Vy +Vo|-[V (o Vy)-Ve+Vy]
=V (yVo-oVy)

(3.74)

Hence, we write that

V°(WV<p-<pr)=—%(\v—<p) (3.75)

The potential that arises from the charge distribution can be computed for an un-
bounded or a bounded volume. Let us initially assume that the volume is a large spherical
volume Av as shown in Figure 3-22. We can make the sphere large enough such that it
is possible to assume that the charge distribution is localized at the origin of the sphere.
Let us now integrate both sides of equation (3.75) over the volume Av of the sphere.

Figure 3-22. The charge density is localized within the spherical volume Av.
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[, V-wVo-ovw)av=-[ By-g)av (3.76)

Using Gauss’s law, this expression becomes

fwVo-oVy)-ds=—[ E(y-g)v (3.7

Let us examine the surface integral for two cases: an unbounded region where the sur-
face is taken to be infinite in extent and a bounded region where conducting surfaces
surround the region of interest. The charge density p is enclosed within the surrounding
surface.

For an unbounded region, it is possible to estimate the magnitude of the various terms
in the closed surface integral that we will later allow to become infinite is size. This is
an electrostatic field, we can therefore identify the electric field as E = -V (or —-Vy).
From Chapter 2, we found that both the electric field and the potential will decrease as
we move farther from the source. The potential decays as ¢ = (1/R) and the electric field
decays as E = (1/R?. The spherical surface area will increase with radius as 4mR2
Therefore, we write that

. (11 o,
;g§(wV¢—¢VW)-®~;g(EE;R )==>0 (3.78)

For the case of the bounded region, we employ the following argument to show that
the surface integral on the conducting surfaces is equal to zero. The surface integral will
be decomposed into two surface integrals. The first surface is taken to be the one that
approaches infinity and we have just shown that this integral approaches zero. The sec-
ond surface integral is over the finite surfaces where the potential is already known.
Hence, we write

$ (v Vo - oVy)-ds
= § (qu) . (pV\V) ’ ds infinite

=0+ § (yVo—oVy)- dsl

+§(WVo - pVy)-ds|
inite (3.79)

finite

The conducting surfaces are equipotential surfaces which states that the potentials are
constants. Therefore, the integral becomes
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§WVo-oVy)-ds =(v-p)f (Vo-Vy)-ds (3.80)

We note that the terms within the integral can be identified as the normal components
of the electric field since the vector direction of ds is normal to the surface. Since this
surface is a conductor, the normal component of the electric field must terminate on a
surface charge density. We write

(w—<p)§(V<p—Vw)?ds=—l;—(P (Pup — Py ) ds (3.81)

The two closed surface integrals of the surface charge density implied in (3.81) are
equal to the same total charge that is distributed on the surfaces. Hence, the contribution
given in (3.81) is equal to zero.

Therefore, we have shown that the left hand side of (3.77) for either bounded or
unbounded regions is equal to zero. For an arbitrary volume Av, the only way that the
right hand side will also equal zero is if the integrand is equal to zero.! Therefore g = ¢
that states that there is only one correct solution. It is the unique solution! This means
that students who solve a problem using a computer will obtain the same solution as
‘those who use a piece of paper, assuming both students make neither numerical nor
algebraic mistakes. Hopefully they will both agree with measurements performed in a
laboratory.

Conclusion

Solving boundary value problems for potentials has led us to certain general conclu-
sions concerning the methodical procedure. First, nature has given us certain physical
phenomena that can be described by partial or ordinary differential equations. These
equations can be solved, in many cases analytically, as has been done here. Other cases
may require numerical solutions. The solutions so obtained contain constants of integra-
tion. Nature also tells us enough information that will allow us to evaluate these con-
stants and thus obtain the solution for the problem of interest. Assuming that neither
mathematical nor numerical mistakes were made, we can rest assured that this is the
solution.

Four techniques that are frequently encountered when we attempt a solution of more
complicated problems in electromagnetic theory were introduced in this chapter. The
latter three techniques involve the application of numerical methods. Given a known
charge distribution, itis possible to numerically integrate over this charge distribution to
find the electric potential or the electric field. Poisson’s and Laplace’s equations, which

' Mathematicians also require that the terms within the brackets be ‘positive definite’. Subtleties of this
magnitude are beyond the scope of this text.

229



ELECTROMAGNETICS with MATLAB

are differential equations, can also be numerically integrated to yield the potential vari-
ation in a bounded region. Finally, the method of moments which allowed us to find an
unknown charge distribution from given voltage requirements was outlined. The numeri-
cal techniques that were introduced here are applicable to difficult problems that may be
later encountered. We applied the readily available MATLAB. Numerical questions con-
cerning other specific programming languages, convergence requirements, numerical errors,
aliasing, etc. are better left to later courses. As problems arise, solutions can hopefully
be found.
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Problems

1. For the indicated boundary conditions that are specified in the figure, find the potential
distribution within the enclosed region by solving Laplace’s equation.

y o
)
>
V=0 V=0
08 a X
-a—\-/-= EQ Sin‘%"

2. Find the Fourier series expansion for a potential V = V| (x/a) that describes a potential
variation in the region O < x < a. Sketch the sum of the first three terms of your series and
compare it with the actual function.

3. Find the potential within the channel given in problem 1 using the boundary conditions at
x =0, a and y = = as stated there. The boundary condition at y = 0 is given as E = Eouy where
E, is a constant.

4. Find the potential within the channel given in problem 1 using the boundary conditions at
x=0,aand y = « as stated there. The boundary condition at y = 0is: V= + V, for0 <x <
(a/2) and V = -V for (a/2) < x < a.

5. Using a product solution in cylindrical coordinates V(r, 0, z) = R(r)©(0)Z(z), show that the
term R (r) satisfies the ordinary differential equation

d*R(r) 1dR(r) 2 2_2_ _
32 +r ™ —[X rsz(r)-O

The solution for this equation can be found in terms of an infinite series. This series is given
the name — ‘Bessel series’. Find the corresponding ordinary differential equation for ©(8).

6. Using a product solution in spherical coordinates V (r, 8, 9) = R (r) ©(0) ¥(9p), show that
the term R (r) satisfies the ordinary differential equation

d*R()  2dR() _a?
dar* r dr r

R(H)=0

if the term ¥ (@) is a constant. The solution for this equation can be found in terms of an
infinite series. This series is given the name — spherical Bessel series. Find the corresponding
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ordinary differential equation for @ (0).

7. If the separation constant o = O in the Bessel equation given in problem 5, show that
R(r) = r'.

8. Using a power series expansion for R (r) for the equation given in problem 5. For n = 0, the
leading two terms of the Bessel series are given by

r 2
wo--()

Compare this approximate value with the cosine function that is found in solving Laplace’s
equation in Cartesian coordinates.

9. Compute the potential surrounding at the midpoint of a finite length of uniformly distributed
charge. The total charge @ = 1 C. Compare your numerical result with analytical predictions.

10. Repeat problem 9 with a nonuniform charge distribution p, = p, [1 - (/L)] where z = 0 is
at the midpoint of the line. Show that the value changes as you make finer approximations for
the charge distribution.

11. Repeat problem 9 but compute the electric field instead of the potential.
12. Repeat problem 10 but compute the electric field instead of the potential.

13. Compute the potential along the z axis from the square washer whose size is 3a x 3a. The
dimensions of the hole are a x @ Charge @ = 1 C. is distributed uniformly upon the shaded

region. y
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14. Compute the potential along the z axis from the circular washer. Charge O = 1 C. is dis-
tributed uniformly upon the shaded region.

15. Compute the potential along the z axis that is perpendicular to the plane containing the rods
as a function of two parameters. The linear charge density is 1 C./ m. Two parameters that can
be varied are the ratios (a/b) and (8/v).

16. Compute the potential along the z axis from a cube. Charge Q = 1 C. is distributed uni-
formly within the cube.

Zz
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17. Find the potential distribution between two surfaces if V (x = 0) =3 and V (x = 1) = 0.
There is no charge distribution in the space 0 < x < 1. Find at least three values in the range
0<x< 1.

18. Find the potential distribution between two surfaces if V(x=0)=3and V (x=1) = 0.
There is a uniform charge distribution p, () = -4 g, in the space 0 < x < 1. Find at least three
values in the range 0 < x < 1.

19. Solve problem 17 by writing a MATLAB program.

20. Solve problem 18 by writing a MATLAB program.

21. Find the potential distribution in the region between the two surfaces. Display the potential
profile.

22. Find the potential distribution in the region between the two surfaces. Display the potential
profile.

23. Find the potential distribution in the region between the two surfaces. Display the potential
profile.
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24. Find the potential distribution in the region between the two surfaces. Display the potential
profile.

V=0

25. Find the potential distribution in the region between the two surfaces. Display the potential
profile.

x

<< 4
]
o

26. Find the potential distribution in the region between the two surfaces. Display the potential
profile.

27. Find the potential distribution in the region y > 0. This problem models a VLSI circuit
where conductors lay on an insulating surface.

V=5 V=0
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28. Find the potential distribution in the enclosed region. The shaded region is a dielectric with
€ = 4.

r

01 2 3

29. Find the potential distribution in the enclosed region. The voltage on all boundaries V = 0
except one where V (x = 3) = 2. The shaded region is a dielectric with ¢ = 4.

30. Use the method of moments to find the charge distribution on the wire. The potential of
the wire is 1 V. The wire dimensions are d = 1 cm and L = 10 cm.

31. Use the method of moments to find the charge distribution on the wire. The potential of
the wire is 1 V. The wire dimensions are d = 1 cm and L = 10 cm.
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32. Use the method of moments to find the charge distribution on the wires. The wire dimen-
sions are d = 1 cm and L = 10 cm. The voltages V, =1 V and V, = 2V.

33. Use the method of moments to find the charge distribution on the strip lines. This distri-
bution will be p, where the third direction is out of the paper. The dimensions are d = 1 cm
and W = 10 cm. The voltages V, = +1 Vand V,= -1 V.

34, Use the method of moments to find the charge distribution on the strip lines. This distri-
bution will be p, where the third direction is out of the paper. The dimensions are d,= 1 cm,
d, = 1.25 cm and W = 10 cm. The voltages V,= +1 Vand V,= -1 V,
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