CHAPTER 9

TIME-DEPENDENT FIELDS

In all the previous chapters we have been primarily concerned with
static fields, i.e., fields that are independent of time. In this chapter this
restriction will be removed, and we shall then find that the electric and
magnetic fields are intimately related to each other. An example of this
interrelationship was provided by Faraday’s law, which showed that a
time-varying magnetic field induced an electric field. To complete the
picture we shall show that a reciprocal effect, namely, that a time-varying
electric field induces a magnetic field, also exists. This mutual support
of each other, i.e., a magnetic field producing an electric field and an
electric field producing a magnetic field, results in the phenomenon of
wave propagation. The prediction of electromagnetic waves and the
subsequent successful use of these waves in communication systems were
an outstanding climax to the centuries of exploration and experimenta-
tion that preceded it.

9.1. Modification of Static Field Equations under
Time-varying Conditions

Before presenting the general equations for the time-varying electro-
magnetic field we shall summarize the basic equations that govern the
static electric and magnetic fields and the stationary current flow field.
A number of equivalent choices are possible, but the following equations
are chosen because they clearly show the irrotational property of the
electrostatic field and the divergenceless property of the magnetostatic
and stationary current flow fields.

For the electrostatic field we have

VXE=0 (9.1a)
v-D=p (9.1d)

while for the magnetostatic field
VXH=] (9.1¢)
and for stationary currents _
v.] = (9.1e)
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We already know that some of the above equations must be modified
when the fields vary with time. In particular, Faraday’s law of induc-
tion shows that (9.1a) must be replaced by

9B
VXE=-% 9.2)

when the field B varies with time. Also we know that when J and p vary
with time, the continuity equation

v-l=-3 CE)
must hold since current is a flow of charge, and hence the divergence of
the current at a point must always equal the time rate of decrease of
charge density at that point.

At this time we might very well ask whether there is any need to modify
any of the other equations. The answer is, “Yes, there is,” for we may
easily show that the set of equations (9.1d), (9.1¢), (9.1d), (9.2), and
(9.3) do not form a self-consistent set. The divergence of the curl of any
vector is identically zero, and hence from (9.1¢) we obtain

V-VXH=0=V-] (9.4)

This result is in contradiction with (9.3) when J varies with time. If the
basic form of (9.1¢) is to be retained under time-varying conditions, then
the right-hand side must be solenoidal and reduce to J under time-sta-
tionary conditions. The necessary form of the right-hand side of (9.1c)
can be deduced from (9.3) if we make use of (9.1b) in the expression for p.
With this substitution we may write

v(]+m)=o  ©5)

The vector quantity in the parentheses of (9.5) is solenoidal and reduces
to Jif 8/8t = 0. Consequently, the previous equations will become con-
sistent if this quantity is substituted for the right-hand side of (9.1¢);
that is,

vXH=]+P o 9.6)

The term 0D/dt was originally introduced into the curl equation for H
by Maxwell and is called the displacement current density because it has
the dimensions of a current density. Although the way in which we
introduced this term above in no way proves the correctness of (9.6), it
has been found experimentally that the conclusions drawn from (9.6) are
in accord with all known experimental facts; so there is no reason to
doubt its validity. The sum of the terms on the right-hand side of (9.6)
is in the form of a total current, which, as we are aware, is solenoidal.
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As for the remaining equations, they are self-consistent and no experi-
mental evidence for requiring any further modifications has been found.
The above equations governing the time-varying electromagnetic field
are known collectively as Maxwell’s equations and will be discussed in
greater detail in the next section.

9.2. Maxwell’s Equations

From the previous section we have the following set of equations which
govern the behavior of the time-varying electromagnetic field

0B

vxE=-2 (9.7a)
v-D=p 9.7bY
VXH=J]+2 ©.76)
vV.B=0 ©.7d)
V.= — %’ 9.70)

In (9.7¢) and (9.7¢) the current J will consist, in general, of a conduction
current ¢E, caused by the presence of an electric field E in a material with
finite conductivity o, and a convection current pv, consisting of a free-
charge distribution p flowing with a velocity v. The convection current
is of importance in many practical devices such as electron tubes, cathode-
ray tubes, ete. In the majority of situations that we deal with in this
book, however, the convection current is zero.

In place of the above equations, which are in derivative form, we may
write an equivalent set of equations in integral form. Integration of
(9.7a) over an open surface S and application of Stokes’ law give

95Ed1——— B.dS (9.8a)

where C is the boundary of 8. For (9.7b) we integrate throughout a
volume V and use the divergence theorem to obtain

56SD . dS = /V pdV (9.8b)
Similarly, the remaining three equations give
95Hd1_— DdS+/J ds (9.8¢)
¢ B-dS =0 (9.84)
3
95S1-ds = 6t/ pdV (9.8¢)

The integral form of Maxwell’s equations is easier to interpret physically
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and is also useful in deriving the boundary conditions that the field
vectors must satisfy. However, in the solution of a phys1cal problem,
the derivative form is invariably used.

The first equation in the set (9.8) is just Faraday’s law of induction and
states that the total voltage induced around a contour C is equal to the
negative time rate of change of magnetic flux through this contour.
Equation (9.8b) simply states that the total displacement flux through a
closed surface S is equal to the enclosed charge (Gauss’ law).

Equation (9.8¢) is a generalization of Ampére’s circuital law by the
addition of the displacement current term. Without this term electro-
magnetic waves would not exist. It is not surprising that this term was
not discovered experimentally, since it is only at radio frequencies that
the displacement current becomes comparable to the conduction cur-
rent in its effects. At the time of Maxwell, means for generating high-
frequency currents and fields were virtually nonexistent and certainly, at
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F1c. 9.1. Tllustration of need for displacement current term in Ampére’s circuital law.

best, very poorly understood. After introducing the displacement cur-
rent Maxwell was able to show theoretically the existence of electromag-
netic waves having a velocity of propagation equal to that of light. This
prediction obviously led to the conclusion that light was electromagnetic
in nature. It was only years later that the brilliant experimental work
of Hertz, in generating electromagnetic waves by means of spark gaps and
demonstrating that their properties were similar to that of light, verified
the correctness of Maxwell’s assumption.

As an example to illustrate the need for the displacement current, con-
sider a parallel-plate capacitor connected to an a-c generator by means of
two conducting wires. If we draw an arbitrary closed contour C through
which the circuit passes and construct a surface S; that intersects the
conductor, as in Fig. 9.1a, Ampére’s circuital law gives

9SCH-dl=/SIJ-dS=I

where I is the total current flowing in the conductor. We could equally
well draw our surface as a surface S. that passes between the plates of the
capacitor, as in Fig. 9.1b. If we use the unmodified form of Ampére’s
circuital law, we should be led to the conclusion that the line integral of
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H around C was equal to zero since no conduction current flows through
the surface S.. This would be an embarrassing situation, since the con-
tour C is still the same contour as used in Fig. 9.1a. If we include the
displacement current in Ampére’s circuital law, we are able to resolve
this difficulty. Let A be the area of the capacitor plate, and let dy be
the separation. The capacitance C, is given by
_ «d

Cy= a4
if fringing effects are neglected. When a current I is flowing into a
capacitor, the voltage V across it is given by

av
I= Com

But the voltage V is equal to Ed,, where E is the electric field between
the plates. Hence
I=Cd, dE _ CudodeAE _ deAE

At @A dt  dt

The latter term is the total displacement current flowing between the
capacitor plates and is also given by

d _ deAE
Et(/;D-dS)— = =1

Hence 560H~d1=d%</;D-dS>=I

which is the same result as obtained by choosing the surface as S, in Fig.
9.1a. Of course, this example only confirms that consistent results are
obtained through the inclusion of a displacement current term in Ampére’s
circuital law. It does not verify that the law can be extended to the
time-varying case in the way stated. Only an appeal to experiment can
confirm this, as it does.

9.3. Source-free Wave Equation

In a source-free region of free space, J = p = 0, and Maxwell’s equa-
sions reduce to the following:

4B oH
VXE— —?t—— _#OE:_ (g.ga)
éD oE
V:D=¢gV-E=0 (9.9¢)

V-B=yuV-H=0 (9.94)
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If we eliminate either E or H, we obtain a three-dimensional wave equa-
tion for the remaining quantity. For example, take the curl of (9.9a) and
use (9.9b) to eliminate V X H on the right-hand side and thus obtain
é} J’E
VXVXE-= —Moa—tVXH— —#060'&;

We may expand V X V X E to get VV:-E — V2E, and since V- E = 0
from (9.9¢), we have

2 62
V E — MKo€o W 0
1 9%E
or VE — p —(W =0 (910)

where ¢ = (uoeo) *%. The parameter ¢ has the dimensions of velocity
and is numerically equal to 3 X 10® meters per second, i.e., the velocity
of light in free space or vacuum. FEquation (9.10) is the standard form
of a three-dimensional vector wave equation. The field H satisfies the
same equation, as may be readily shown by eliminating E from (9.95).
In practice, if we know E, we can obtain H by using (9.9a).

In order to examine the nature of (9.10) more closely, note that each
rectangular component of E satisfies the scalar wave equation; e.g.,

198, _ 9B, , 9. | 9B, _13E,

For ~ ot Topp T ¢ op =0

V2E, —

If we now assume that E, is a function of the z coordinate and the time
coordinate ¢ only, a further simplification results. We obtain

9E, 1 32E,
o e =0 (9.11)

for which any function f(z — ct) is a solution. This latter statement is
readily verified. If we let z — ¢t = u, then

of(z — ct) _ of(w) du _ of(w) _ f

a9z du 9z u
azf(z - Ct) __ {1
and 55 =
.. of(z — ct) _ of(w) 9w _
Similarly, T =t e = cf
2. —_—
and af(igtz ct) = 2"

Consequently, we obtain

o 10
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which verifies that f(z — ct) is a solution of (9.11). A function such as
f(z — ct) represents a disturbance that propagates along the z axis with
a velocity ¢. A typical plot of f(z — ct) as a function of z for various
values of ¢ is given in Fig. 9.2 and clearly shows that the disturbance
propagates in the z direction with a velocity c.

Another solution to (9.11) is any arbitrary function f(z 4+ ¢f). This
solution is similar to the previous one, except that it represents a disturb-
ance propagating in the negative z direction.

fz)
t=0
4 z
flz—ct,)
t-tl
N\
N z
fz—cty)
t=t,
N\
~ 2z
flz—ct3)
t=t,
N

z

F1a. 9.2. Propagation of a disturbance f(z).

In a homogeneous, isotropic, source-free material body with a permit-
tivity ¢ and a permeability u, a similar derivation shows that the wave
equation satisfied by E is

VE — ue2E _ 9.12)
at?
This equation is similar to (9.10), with ue replacing woe. The solution is
also similar, with the exception that the velocity of propagation is now
v = (ue)~% instead of c.

In a conducting body with parameters g, ¢, and ¢, where ¢ is the con-
ductivity, we expect to obtain a wave equation with a damping term
present. The presence of an electric field E will cause a conduction
current J = ¢E to flow, and this will result in a loss of energy because of
joulean heat loss. In a conducting medium We‘must replace (9.9b) by

VXH=e—+J—e +¢rE (9.13)
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The current that occurs here is not an impressed source current but
rather the conduction current that flows as a result of the presence of the
field E. The free charge in the conductor may be assumed to be zero,
and hence V - E is still zero. Any free charge initially present decays to
zero in an extremely short time interval since the relaxation time for a
good conductor is very small. If we now use (9.13) to eliminate
vV X H in (9.9a), we find that

2
VXVXE=VV.E —- VE = —V2E = —ye%—g—pa’%
oE J2E
2 — —_ - _— =
or VE — uo ETRLr Y 0 (9.14)

As anticipated, we obtain a damping term — uo(dE/dt) which is directly
proportional to the conductivity ¢. The presence of this term results in
an exponential decay of the wave as it propagates away from the source.
A fuller appreciation of (9.14) will be obtained in a later section when
sinusoidal time-varying fields are analyzed.

9.4. Power Flow and Energy

Energy may be transported through space by means of electromagnetic
waves. In addition, energy may be stored in the electromagnetic field,
a result we could well anticipate in view of our earlier results in connection
with energy storage in the static electric and magnetic fields. In this
section relations will be derived that permit the evaluation of the energy
stored in a given volume of space and the flow of energy in the electro-
magnetic field. In ordinary circuit theory, power flow is related to
the product of voltage and current. For the electromagnetic field we
shall find that the power flow across an element of area dS is given by
E X H-.dS. In this expression E is analogous to voltage and has the
dimensions of volts per meter, while H is analogous to current and has
the dimensions of amperes per meter. Power flow is a vector quantity,
and hence it is not surprising to find that it is given by a vector relation
such as E X H watts per unit area.

To derive the relations that we wish to obtain, consider a volume V
bounded by a closed surface S. Let the material inside S be isotropic,
homogeneous, and characterized by electrical parameters p, ¢ and con-
ductivity ¢. Consider the expression V- E X H, which we may expand
to obtain

V:EXH=H-VXE-E-VXH ‘
On the right-hand side we now replace V X E and V X H by —dB/dt and
dD/dt 4 oE, as obtained from Maxwell’s equations, so that

9B oD
V-EXH=-H-5 —E-°- —¢E-E
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When u and e are constant we can write

9B _ - OH _po(H-H) _ paH’
H-or =l =5 =5 o
6D_66E2

and similarly E "3 =3 ar
where H and E represent the magnitudes of H and E. We now obtain
the basic result

l¢]
v-ExH=—a—t(gH2+§E2)—aE2 (9.15)

In this expression we interpret (u/2)H? and (e¢/2)E? as the density of
energy stored in the magnetic and electric fields. This interpretation is
carried over directly from the similar results that were derived earlier for
the static fields. The term —gE?is interpreted as the power loss per unit
volume due to joulean heating brought about by the flow of conduction
current ¢E. Equation (9.15) is thus understood to relate the divergence
of power (which is a rate of flow of energy) from a unit element of
volume to the sum of the time rate of decrease of the energy stored in the
magnetic and electric fields per unit volume minus the power loss per
unit volume.

A macroscopic form of (9.15) is obtained by integrating throughout
the volume V and converting the volume integral of the divergence to a
surface integral by means of the divergence theorem. We obtain

=9 [ (r i -
SﬁsExH-dS— atﬁ,<2H2+2E2)dV fVaEde (9.16)

a result which states that the instantaneous flow of power across a closed
surface S is equal to the time rate of decrease of the energy stored in the
field in the interior of S minus the power loss due to joulean heating within
the volume V. The vector ‘

P=EXH (9.17)

is called the Poynting vector and gives the instantaneous flow of power
(both magnitude and direction) per unit area. The total power flow
across a given surface is obtained by integrating the normal component
of E X H over the surface in question. Energy flows in a direction that
is perpendicular to both the E and H field vectors. While the interpreta-
tion of E X H as representing power density at a point is ordinarily a
useful one, it should be noted that (9.16) states only that the total surface
integral of P gives a net power flow across a closed surface.

Example 9.1. Plane Waves. Let us assume that the only electric
field component present is E. and that this component is a function ox
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z and ¢ only, as in Sec. 9.3. If the field varies sinusoidally in time with a
radian frequency w, a possible solution to the wave equation is

E.,=f(z—ct) = E, sin%’ (z — c¢t) = Eysin (gz - wt) (9.18a)

where E, is an amplitude constant. From the equation

dH
VXE——MOR—
we obtain
a, a, a,
9H |9 o a| __ oE,
TS T ez oy 92| Moz
E. 0 0
and hence % == ‘—:‘—}fc—“a,, cos;—” (z — ct)

or by integrating with respect to time,

14
H, = _1_'7_0 sin (9 z — wt) = E, (i‘l> sin <9-z - wt) (9.18b)
HoC c Ko c

The parameter (eo/uo)** has the dimensions of admittance and is called
the intrinsic admittance of free space. The reciprocal quantity (uo/eo)”
is called the intrinsic impedance of free space and will be denoted by Z,;

that is,
14
Zo = (“—°) (9.19)

€o

Numerically, Zy = 120r = 377 ohms.

The particular solution of Maxwell’s equations given by (9.18) is called
a uniform-plane electromagnetic wave since both E and H lie in a plane
(zy plane in this case) perpendicular to the direction of propagation (z
direction in this example). The plane wave is uniform since neither E,
nor H, varies with the transverse coordinates z and y. The space rela-
tionship between E and H is shown in Fig. 9.3.

The power flow is given by

P=EXH-=EHa,Xa,=E,H,a,

and is seen to be in the direction of propagation. Substituting for E,
and H,, we obtain

E02 . 2(.0
P-a, —Z—osm E(z wt)

as the instantaneous power flow across a unit area of the zy plane. The
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Fi1a. 9.3. Space relationship between E and H in a plane TEM wave.

time-average power flow per unit area is given by

_1Eg

an—'éz—o

The instantaneous energy stored in the electric field per unit volume is

1 (1 [1
%’Eozf//sinzg(z—ct)dzdydz
o Jo Jo 4
1
=59E02] 1/2[1—cos%(zz—ct)]dz
2 0 [

- CinZ—e|
E, [z 2wsmc(z ct):l0

If we average over one period in time, we obtain

éoE’o2

U. = 1

(9.20)

as the time-average energy stored in the electric field per unit volume.
A similar derivation shows that the time-average energy stored in the
magnetic field per unit volume is given by

U =2 (‘z‘) =282 = U, 0.21)
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and is equal to the time-average energy stored in the electric field.
Power is a rate of flow of energy, and hence if we multiply the total energy
stored in the field per unit volume by the velocity of energy transport, we
should obtain the expression for power flow. For the present example,

_Copy € po
C(Ue + Um) 2 EO 2(#060)% EO
Eq2
= 2’207, = P, (9.22)

which checks with our earlier result. We are thus able to say that for a
plane electromagnetic wave, energy is transported with the velocity ¢ in
free space; that is, the velocity of propagation of energy is the same as the
phase velocity of the wave as given in (9.18a). Later we shall discover
circumstances where the two velocities are not the same.

9.5. Sinusoidal Time-varying Fields

In practice, we generally deal with steady-state sinusoidal time-varying
fields. Just as in circuit theory, it is convenient to introduce an abbrevi-
ated notation and to represent each field vector as a complex phasor. If
the angular radian frequency is w, we write, for the electric field,

E'(z,y,2t) = Re [E(z,y,2)e™] (9.23)

where the prime is used to signify the real physical field. For brevity, we
represent the electric field simply by the complex phasor E(z,y,2), where
E(z,y,2) is a complex space vector and a function of z, y, zonly. Logically,
we should adopt a different notation for the phasor quantity, but the use
of standard boldface type should provide very little confusion since we
shall be dealing almost entirely with sinusoidal time-varying fields in the
remainder of the book. FEach space component of the phasor E is a com-
plex quantity, for example, E.(z,y,2) = E..(z,y,2) + jE=(z,y,2), where
E., is the real part and E,; the imaginary part. Particular care must be
used to avoid thinking of E., and E,; as components of a space vector, as
is sometimes done in circuit theory. The quantity E., + jE.; forms one
component, the z component, of the complex phasor space vector E.
The physical field is always obtained by multiplying by e and taking
the real part (or the imaginary part).

When using complex phasor notation the time-average electric- and
magnetic-energy densities are given by

U, = iE .E* (9.24a)

Un = EH . H* (9.24b}
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where the asterisk denotes the complex conjugate phasor. The addi-
tional factor 14 arises because of averaging over one period in time. In
(9.24) it is assumed that ¢ and u are real; the case when ¢ and u are com-
plex will be considered later. The proof of (9.24) may be developed
along lines similar to the following. If E has only an z component, then
the physical field E.(x,y,2,t) is given by

E; = Re [Eﬂ(xyy’z) +jE2i(x:y)z)]ejwl
= E,, cos wt — E_; sin wt

where. E,, and E; are real. The time average of E.? is obviously equal
to Y5 (E2, + EZ), a result which is seen to be equal to L4 E.E* as well.

When we deal with steady-state sinusoidal time-varying fields, all time
derivatives 9/t may be replaced by jw. Thus Maxwell’s equations
reduce to the following form:

VX E = —juuH (9.25a)
VX H =jwE +]J (9.25b)
V:D =p (9.25¢)
V:B=0 (9.25d)
V] = —jwp (9.25¢)

When time-varying fields are applied to material bodies, the polariza-
tion vectors P and M vary with time at the same frequency as the applied
fields. Because of damping forces which are always present to some
extent, the polarization vectors P and M will usually lag behind the fields
E and H. This means that, in general, ¢ and g4 must be complex. The
complex nature of € and u is a manifestation of power loss that will occur
in the material because of the work that must be done in overcoming the
frictional damping forces. As an example, let E be the complex phasor
representing the field acting to polarize a dielectric material. The
polarization P per unit volume is given by

P = ¢ae7¢E

where « is a positive real constant and ¢ is the phase angle by which P
lags E. We now see that the susceptibility is given by

Xe = ae—fd’
and hence the dielectric permittivity e is given by
e = el + x) = (1l + acos ¢ — jasin ¢) =€ — j¢' (9.26)

and is a complex quantity.
If in (9.25b) we let ¢ be complex and let J be a conduction current, we
obtain
VX H = jw'E + (we’ + ¢)E (9.27)
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This result shows that the imaginary part of € is equivalent to an increase
in the conductivity of the medium. At high frequencies ¢ for a good
dielectric is very small and most of the energy loss is caused by polariza-
tion damping forces that bring in the term ¢’. For convenience when
dealing with dielectric materials that have a finite conductivity ¢, a single
complex dielectric permittivity
— s _JO

€= ¢ Je o
is usually introduced so as to include the effect of both damping losses
and conduction losses in a single term. The properties of the dielectric
material are usually specified by giving its dielectric constant « and its
loss tangent tan §. The value of € is then

e = keo(1l — j tan &)

In this equation tan §; includes the effects of finite conductivity as well as
the effects of polarization damping forces.

Remarks similar to the above may be made about the permeability p.
When it is necessary to consider complex u, we shall use the notation
p =4 — ju”’. In passive materials the imaginary parts of ¢ and u are
negative since these terms must correspond to a loss in the material. If
the imaginary parts were positive, they would indicate a generation of
energy by the material body, which is a violation of the condition that
the material is passive in nature. The proof of these remarks will be
given in Sec. 9.7.

9.6. Helmholtz’s Equation

For sinusoidal time-varying fields the wave equation for waves in free
space may be obtained from (9.10) simply by replacing 9%/9¢* by — w?;
thus

VE 4+ wueE = 0 (9.28)
or VZE + ko’E =0 (9.29)

where ko = w(uo€o)” = w/c is called the free-space wave number and E in
(9.29) is now a complex phasor space vector that is independent of time.
Equation (9.29) is commonly referred to as the vector Helmholtz equa-
tion. A simple application of this equation is given in the following
example.

Example 9.2. Sinusoidal Time-varying Plane Wave. As a simple
example of a solution to (9.29), consider the case where E is a function of
z only and, furthermore, has only an z component. We now have

3E,
922

+ k’E: =0
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for which a general solution is
E.(2) = Ae % + Aok : (9.30)

where A; and A, are amplitude constants. The physically real field
El(2,) is given by

E';(z,t) = Re ( A e Tkoztiot + 4 2ejkoz+j@[)
= Ajcos (koz — wt) + A, cos (ko + wi) (9.31)

provided 4, and A, are real. We thus see that A,e~%> represents a
plane wave propagating in the positive z direction while A se*#* represents
a plane wave propagating in the negative 2z direction.

The distance a wave must propagate in order for its phase angle to
change by an amount 2r is called the wavelength. In free space we shall
denote the wavelength by the symbol Ap. By definition we now have
ko)\o = 21!", or

_ 2w & _c
)\0—70— wc—-}, (9.320)
and also ko = -il' (9.32b)
1]

The relationship between wavelength, velocity, and frequency obtained
here is undoubtedly familiar to the reader from earlier courses in physics.

The magnetic field H corresponding to the electric field E given by
(9.30) is readily found from (9.25a) and is

H = a"(YoA 1e7k0r — YoAgejk"’) (933)

where Yo = (eo/no)” and is the intrinsic admittance of free space. It is
seen that the direction of H is reversed for the wave propagating in the
negative z direction. This is a necessary requirement in order to obtain
a reversal in the direction of power flow. Note that the electric and mag-
netic fields are in time phase but space quadrature.

The time-average power flow is given by one-half of the real part of
the complex Poynting vector (details of the complex Poynting theorem
are developed in the next section)

P = 4E X H* (9.34)

If we consider the wave propagating in the positive z direction only
(A, = 0), the power flow across a unit area in the zy plane is found to be

P.v = }é Yo]Al[2 (9.35)
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Helmholtz’s Equation in Dielectric and Conducting Media

In a dielectric medium with a permittivity e (relative dielectric constant
« = ¢/¢) and negligible losses, we have, in place of (9.29),

V2E + w2u¢eE = 0
or VE + k’E =0 (9.36)

where k = «¥ko = (kw2uoer)*. The solution to this equation is similar to
that for (9.29) with ko replaced by k. The velocity of propagation is
v = k¢ instead of c. The parameter «*¢ is called the index of refraction
and will be denoted by the symbol . In a dielectric the wavelength of
plane waves is A\, where

2r _ 2«
k& ko

A= 9.37)

S|

and is less than the free-space wavelength.

In a medium with finite conductivity ¢, the required Helmholtz equa-
tion is found by replacing 8/9¢ by jw in the general time-varying wave
equation (9.14). We obtain

V2E — joucE 4+ w?ueE = 0 (9.38)
This may be rewritten as
V2E — jup(jwe + )E =0

The term jweE is the displacement current density, while ¢E is the conduc-
tion current density. For metals, o is of the order of 107 mhos per meter
(for copper ¢ = 5.8 X 107 mhos per meter) and e is approximately equal
to ¢ = (367)~! X 10~° farad per meter. Consequently, o/we = 10w,
and hence for all frequencies up to the optical range we can neglect we in
comparison with ¢; for example, for f = 10,000 megacycles we have
we/o = 5 X 1078, so that we is certainly negligible in comparison with .
This means that in metals the displacement current is entirely negligible
compared with the conduction current.

In place of (9.38), we can now write

V2E — jwucE = 0 (9.39)

as the equation satisfied by E (and H also) in a metal. This equation is a
diffusion equation and not a wave equation, since for the general time-
varying case it would be of the form
U
VIE — W% =0 (9.40)
In metals the fields may be thought of as diffusing into the material and
will undergo both attenuation and phase retardation in the process. It is
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only when the displacement current term is predominant that we obtain
true wave propagation. On the other hand, (9.39) is similar to the free-
space Helmholtz equation, and consequently its solutions are also for-
mally similar. In fact, any solution of (9.29) is a solution of (9.39) if we
replace ko by (—jwuo)?® = (1 — j)(wuo/2)". For a plane wave depending
on z only and having only an E. component of electric field, a solution is

14 14
E, =4 exp»[—j (“’—g€> 2 — (‘%‘") z] (9.41)

The rate of attenuation is (wus/2)* nepers per meter. The skin depth &

is defined as
2 \%
6= (—~> (9.42)

Wuo

and is the distance the wave must propagate in order to decay by an
amount e~!. By using (9.42), we may rewrite (9.41) as

E, = Ae~G+asts (9.43)

9.7. Complex Poynting Vector

The basic relation between power flow and energy storage in the
sinusoidal time-varying electromagnetic field may be derived in a manner
similar to that used in Sec. 9.4. The curl equations for E and H* are

VXE=—jouH  VXH*= —jwe*E* 4 ¢E*

where we have assumed that p and ¢ may be complex. If we expand
V.E X H* we obtain

V.:EXH*=H*VXE—-E.VXH*
= —jopH + H* 4+ jwe*E - E* — ¢E . E* (9.44)

after substituting for the curl of E and H*. We now integrate (9.44)
throughout a volume V bounded by a surface S and use the divergence
theorem, with the result that

9§SE X H*.dS = —jw/V(e*E~E* — yH . H% 4V
+ /VaE-E*dV (9.45)

by taking the vector area dS directed ¢nto the volume V. The time-
average electric and magnetic energy stored in the field per unit volume is
given by
U.=1v/ReeE-E* = 1{/E.E* (9.46a)
Un=Y ReuyH -H* = 1/,/H -H* (9.460)
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The sum of the following terms will be shown to represent the time-
average power loss per unit volume:

%aE-E*+‘2—°Im(eE-E*+pH-H*)
o 140E - E* +§(€HE.E* + w'H-H* (9.47)

In (9.46) ¢, u’' are the real parts of e and p, while in (9.47) ¢, u'’ are the
imaginary parts that represent loss due to polarization damping.
If we separate (9.45) into its real and imaginary parts we have

%Resﬁ EXH*.dS = / ©('E.E* + 'H.-H* dV
S v 2
+ / %E .E*dV (9.48a)
vV
and Im 9§SE X H*. dS = 4o /; (Un — U dV (9.48b)

since e = ¢ — jé’ and p = p' — ju”’. Equation (9.48a) states that the

average power flow into the volume V is given by the integral of one-half-
the real part of the complex Poynting vector E X H* over the surface S

bounding V and that thisis equal to the time-average power loss in V due

to conduction current losses and polarization damping losses. The

expressions for polarization damping losses given in (9.47) are identified

by analogy with the expression for conduction current losses. For

example, Maxwell’s curl equation for H is

VX H = jueE + ¢E = jwdE + (v’ + ¢)E

and hence if (¢/2)E - E* is the average power loss per unit volume due to
joulean heating, then (we’’/2)E - E* is the average power loss due to elec-
tric polarization damping forces. From (9.48a) it is readily seen that the
imaginary parts of € and p must be nega-
tive, since these terms represent energy
dissipation and not energy generation in

L (Y R
AAY;
bI) passive materials.
+

vor— |

Equation (9.48b) states that the inte-

_ gral of the imaginary part of the complex

o V o- Poynting vector over the surface S bound-

Fic. 9.4. A series RLC circuit.  ing V is equal to 4w times the difference

in the average energy stored in the mag-

netic and electric field. This result is reminiscent of that obtained for
low-frequency circuits, as is shown below.

Consider a simple RLC series circuit, as in Fig. 9.4. With an applied

voltage V, a current I = V/(R + jowL + 1/jwC) flows. For this circuit
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we have
. (II*L Ir*

VI = T2 = IR + 20 (FE - LI ¢) 49
But Y4II*R is the average power loss in the resistor, II*L/4 is the
average energy stored in the inductor, and I7*C/4(wC)? is the average
energy stored in the capacitor since I/wC is the voltage across the
capacitor. Thus (9.49) is the low-frequency circuit equivalent of (9.48).
The result is not an unexpected one, since, after all, low-frequency circuit
theory is based on Maxwell’s equations. The relation between circuit
theory and field theory is examined in greater detail in Sec. 9.10.

9.8. Boundary Conditions

In an infinite unbounded homogeneous medium the solutions to the
field equations are relatively easy to obtain. In most practical situa-
tions, however, we require a solution for the fields in the presence of
conducting bodies and boundaries separating material media with differ-
ing electrical parameters ¢ and u. In order to obtain a solution, a
knowledge of the boundary conditions to be applied to the field vectors is
needed. The time-varying field satisfies boundary conditions similar to
those obeyed by the static fields, as
we show in the following analysis. & M

Boundary between Two
Dielectric Media

Consider two dielectric media with
electrical permittivity ¢; and e, and
permeability u; and p. and having
a common boundary, as in Fig. 9.5.

P . E, ¢
Construct an infinitesimal “coin”’- " 2 2

shaped box with end faces of area AS
in adjacent media and the end sur- tric media.

faces parallel to the common bound-

ary surface. Since V.D = 0 in the present case, it follows by applying
Gauss’ law to the volume enclosed by the coin-shaped box that

Fi6. 9.5. Boundary between two dielec-

/VV-DdV =0= 9SSD-ds
and hence lim sD «dS = (D1, — D3,) AS =0
h—0

where the subscript n denotes the component normal to the surface. The
limit A — 0 is taken to ensure that there will be no flux passing out
through the sides of the box. We now have

Dln = D2n or flEln = eZE/VZn
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which may be written in vector form as
n-D;=n-D, v (9.50)

where n is the unit normal to the boundary surface. This relation is the-
same as that derived for the static field.

If we apply Gauss’ law to the field B, we obtain in a similar way the
result

n-B;=n-B, (9.51)

since V- B = 0. Thus the normal components of D and B are continuous
across a surface separating two dielectric media.

To derive the boundary relations that apply to tangential field com-
ponents, consider a small contour C' of length Al with sides lying on

¢ s

/

E2‘
€3 U

F16. 9.6. Contour C for deriving boundary conditions for the tangential components
of the field.

adjacent sides of the surface, as in Fig. 9.6. Application of Stokes’ law to
the equation V X E = —jwB gives

.Sch.m:—jw[SB-ds

NOW lim E.dl = (Eu - E2t) Al
0/ C
and lim — jo [ _B-dS = lim — jwBh Al =0
h—0 8 h—0

so that we obtain
Eu = Egt (9.52)

A similar application of Stokes’ law to the equation V X H = jwD gives
Hy = Hy (9.53)

In (9.52) and (9.53) the subscript ¢ denotes the component of the field
that is tangential to the common surface separating the two media.
These equations state that the tangential fields are continuous across a
boundary between two different dielectric media.



Sec. 9.8] TIME-DEPENDENT FIELDS 319

Boundary of a Perfect Conductor

In the interior of a perfect conductor (¢ = =), the electromagnetic
time-varying field is zero. This may be seen from the expression (9.42)
for the skin depth 8. As o tends to infinity, § = (2/wue)* approaches
zero. Thus the field decays infinitely fast (by an amount e~!in a distance
8) and cannot penetrate into the conductor. Actually, we never have
perfect conductors, but in most cases o is so large that at high frequencies
negligible error is made in assuming that the field in the interior of the
conductor is zero. For example, for copper at a frequency of 1,000 mega-
cycles, & = 2 X 10~ millimeter; so we could consider the depth of pene-
tration as zero without appreciable error. On the other hand, for a fre-
quency of 1,000 cycles, we have § = 2 millimeters, which in many cases
would not be negligible.

€10 4y
¢=0

®

Fi16. 9.7. Boundary conditions at a perfect conductor surface.

Because of the phenomenon described above, which is called “skin
effect,” as ¢ approaches infinity, the current flows in a narrower and
narrower layer, until in the limit a true surface current exists on the
surface (this problem is examined in detail in the next chapter). With
reference to Fig. 9.7a, let J, be the surface current density in amperes per
meter. Since the displacement current in the conductor, as well as the
field H, is zero, Ampére’s circuital law shows that H, is perpendicular to
J. and equal to J, in magnitude; thus

H t = J 8
or in vector notation,
nXH=], (9.54)
Similarly, Gauss’ law shows that '

n- D = p. (9.55)
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where p, is the surface charge density, as in Fig. 9.7b. While these results
are rigorously true only for ¢ — c«, they are excellent approximations for
practical conductors at high frequencies, where by high frequency we
mean one that yields a value of skin depth that is small compared with all
conductor dimensions.

Since the field in the interior of the conductor is zero and the tangential
electric field E; and normal magnetic field B, are continuous across a
boundary, it follows that

E, =0 or nXE=0 (9.56)
n-B=0 (9.57)

at the surface of a perfect conductor.

In any practical problem it is sufficient to ensure that the tangential
components of the field satisfy the proper boundary conditions since this
will automatically ensure that the normal components of D and B satisfy
their respective boundary conditions. We may prove this statement as
follows. Let V = V, 4 V,, where V; is the part of the del operator which
represents differentiation with respect to the coordinates along the bound-
ary surface separating two different media, and V., = n(d/dn) represents
differentiation with respect to the coordinate normal to the boundary

surface. The equation V X E = —jwB separates into two parts,
Vo XE, 4+ V. X E, = —juwB, (9.58a)
Vi X E; = —jwB, (9.58b)

when the tangential and normal components are equated. This result is
arrived at by noting that

VxE=V;x(E;+En)+an(Et+En)
=ViXE+V.XE +V.XE,

since V. X E, =d(n X E,)/on = 0. The term V, X E, is a vector
directed along the normal n, while V, X T, + V. X E, is a vector in the
boundary surface. If we make E; continuous across the boundary sur-
face, then the derivatives of E; with respect to the coordinates along the
boundary surface are also continuous. Therefore V; X E: is continuous,
and likewise B, must be continuous across the surface since

—ij» = Vt X Et

For D, and H, we have the equation V, X H; = jwD,, and a similar
argument shows that D, is continuous if H, is continuous across the
boundary. In the case when H, is discontinuous across the boundary
because of a surface current, D, is also discontinuous. The discontinuity
in D, is equal to the surface charge density p,. Furthermore, the surface
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current J, and surface charge p, satisfy a continuity equation
Vi J. = —juwp, , (9.59)

on the surface. It turns out that if H, is made discontinuous by an
amount equal to the surface current density, this automatically makes
D, discontinuous by an amount equal to the surface charge density.

The above results are of great importance in practice, since they make
it necessary only to match the tangential field components at a discon-
tinuity surface. This simplifies the analytical details of constructing a
solution of Maxwell’s field equations.

For the time-varying field a uniqueness theorem existst which states
that if a solution to the field equations has been found such that all
boundary conditions are satisfied and also such that the fields have the
proper behavior (singularity) at the position of the impressed sources,
then this solution is unique. The proof may be constructed along lines
similar to those employed in the proof of the uniqueness theorem for
electrostatic boundary-value problems in Chap. 2. The details of the
proof are not too important; so we omit them. The important fact is
that such a theorem exists and thus guarantees the uniqueness of the
solution once it has been found.

9.9. Scalar and Vector Potentials

The existence of an electromagnetic field implies a source of impressed
currents and charges. If the impressed currents and charges are known,
then the field may be determined by means of the equations to be derived
in this section. We shall assume sinusoidal time variation, and hence all
quantities we deal with are phasor quantities. For time-varying currents
and charges the continuity equation V - J = —jwp serves to link the cur-
rent J and the charge density p. As a consequence, we may not specify p
and J independently.

The reader may readily verify that when J and p are not zero, the
separation of Maxwell’s equations into an equation for E alone or H alone
gives

VIE + KE = jou] + V (f) = jou] — J'}Te vw.J (9.60)

VH 4+ k*H = -V X]J (9.61)

These equations are referred to as inhomogeneous Helmholtz equations.
As seen, the impressed current density J enters into these equations in a

relatively complicated way. For this reason we generally do not find
the fields E and H directly, but rather first compute a scalar and a vector

t J. Stratton, “Electromagnetic Theory,”’ sec. 9.2, McGraw-Hill Book Company,
Inc., New York, 1941.
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potential from which the fields may subsequently be found. The advan-
tage of doing this is analogous to the similar procedure that was used for
the static fields.

The field B always has zero divergence, and hence we may take

B=VXA (9.62)
since V-V X A is identically zero. From Maxwell’s equation

VXE=—juB
80 We can now write
VXE=—juV XA
or VX (E+jwA) =0

The vector quantity (E 4 jwA) is irrotational; so it may be derived from
the gradient of a scalar potential ®; that is, the general integral of the
above equation is

= —jwA — V® (9.63)

where @ is, as yet, an arbitrary scalar function. If we now substitute
(9.62) and (9.63) in the curl equation for H, we obtain

va=%vxva=jweE+J=jwe(—V<I>—ij)+J

Expanding V X V X A to give VV - A — V2A, we get
VV-A — VA = —joeu V® + k2A + pJ (9.64)

According to the Helmholtz theorem, a vector function is completely
specified by its divergence and curl. Since (9.62) gives only the curl of
A, we are at liberty to specify the divergence of A in any way we choose.
If we examine (9.64), it is clear that this equation simplifies considerably
if we choose

VA = —jweud (9.65)
so that VV:A = —juweu VP

This particular choice is known as the Lorentz condition. Making use of
(9.65) reduces (9.64) to
VA 4 kA = —uJ (9.66)

which is simpler than either (9.60) or (9.61).

Up to this point all Maxwell’s equations except the equation V- D = p
have been made use of and are therefore satisfied. To ensure that
VD = p, we replace E by (9.63) and use the Lorentz condition (9.65) to
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obtain

V.E=V.(—jwA — V®) = —V2b — 2 = °
€

or VP 4 kP = —

Lk -

(9.67)

This equation determines ®, and then V - A is obtained from (9.65). The
divergence equation V + D = p is thus satisfied provided & is a solution of
(9.67), and the divergence of A is determined from the Lorentz condition.

In practice, we do not need to solve for the scalar potential ®. If we
make use of the Lorentz condition, we can express both B and E in terms
of the vector potential A alone. We have

B=VXA (9.68a)
E = —jwA + (Jweu)~1VV- A (9.68b)

This result may seem rather strange at first, since normally we should
expect to need both the scalar potential & and vector potential A in order
to completely determine the field. The explanation lies in the fact that
for time-varying sources the charge density p is determined by the current
density J through the continuity equation. Thus specification of J alone
is sufficient to completely determine all sources, and hence a solution for
A in terms of the current density J contains all the necessary information
to completely specify the time-varying field. In actual fact, the Lorentz
condition is merely the continuity equation in disguise, as the following
discussion shows.
If we take the Laplacian of (9.65), we find that

V. VA = —jweuViP
since V3(V:A) = V. (V2A)

Replacing V%A from (9.66) and V?*® from (9.67) gives

—k*WA — pVJ = —jueu (—k’@ - f

oxr =k (V- A + joeud) = u(V-J + jop) (9.69)

The left-hand side vanishes by virtue of the Lorentz condition, and hence
the right-hand side must also vanish. This means that

V-] = —jup

The Lorentz condition is seen to be a condition that ensures that the cur-
rent and charge satisfy the continuity equation; that is, it provides a
function ®, corresponding to an A that satisfies (9.66), so that ® is a solu-
tion of (9.67) for a source p that is related to J in (9.66) by the continuity
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equation. It is for this reason that & may be eliminated and the field
determined in terms of the vector potential A alone.

When w equals zero, the equations for A and ® reduce to Poisson’s equa-
tion, which is the appropriate result for static fields. In the static case
p and J are no longer related, and hence ® and A are now independent.
Thus for static fields we require a scalar potential ® to determine E and a
vector potential A to determine B. In this respect the determination of
the time-varying field is simpler.

The integration of (9.66) and (9.67) is very similar to the integration of
Poisson’s equation. If we let (z',y',2") be the source point and (z,y,z) be
the field point, the solutions are

A Y

A(zyz2) = i‘/;m'_’gﬁ—)' e kR gV’ (9.70a)
! Y

B(r0,2) = oo /V ‘ix-’}g-’-z—)e—fm v’ (9.70)

where R =[(zx — /)2 4+ (y — )2 + (2 — #)%* and k% = w?ue. These
solutions represent waves propagating radially outward from the source
point; that is, e/*+it ig g radially outward propagating wave. As the
wave propagates outward its amplitude falls off as 1/R.

To verify the above solutions consider (9.70b) and note that

U v |
(V2 + k?) / ”——‘Z;fe’é")e—m av’
14

o—ikR
o v’ (9.71)

We may treat R as the radial coordinate in a spherical coordinate system.
Since there is no 6 or ¢ variation,

T dne

o)+ )

1 9 5,0

2 = —
V=% 3R

By direct differentiation it is now found that

—JjkR 2
Gy T

Hence the integrand in (9.71) vanishes at all points except B = 0, where
it has a singularity. We now surround the singularity point R = 0,
that is, the point (z,y,2), by a small sphere of radius § and volume V.
For all values of 2/, y’, 2’ within this sphere we can replace p(z’,y’,2") by
p(z,y,2) and e*R by unity, provided we choose § small enough. Note
that the maximum value R can have is §, so that e % can be made to
approach unity with a vanishingly small error. The right-hand side
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of (9.71) thus reduces to

P(x;y;z) 9 l 7]
Bz A(V + k) z v

. 2
Now %dV' = [? / Rsin 6 d6 d¢ dR = 2xk?8?
Vo Vo

and vanishes as § tends to zero. We are therefore left with

p(z,y,2) 2 l r— P(x;y;z_)
dre )y " (R v’ = ¢

since /Vo Vv? (—%) dV' = —4r

as was demonstrated in Chap. 1, in connection with the integration of
Poisson’s equation. Therefore (9.700) is a solution of (9.67).

Equation (9.66) for the vector potential A may be written as the sum
of three scalar equations. For each component the above proof may be
applied to show that (9.70a) is a solution. Application of the above solu-
tions for the potentials will be made in Chap. 11, in connection with radia-
tion from antennas.

Quasi-static Potentials

Let us assume that we have impressed sources located in free space
where k = ko = 2r/\o = 2xf/c. If we are interested in the fields in the
immediate vicinity of the sources, and if the extent of the source region is
small compared with a wavelength, then kR = 2rR/\, is very small.
We may now replace e=*E by unity, and the solutions for the potentials
reduce to the static solutions

A= / 1@y ) ’y 2) gy 9.72a)
P(x :y Z’) 7
& = o / ___R v (9.72b)

with the exception that both J and p have a time variation according to
e, The fields derived from these potentials are called quasi-static
fields, since the fields vary with time but the frequency is sufficiently low
so that propagation effects are not important for the range of R of
interest. In other words, for a region containing the sources that are
small compared with the wavelength, the fields are quasi-static and
similar in character to the static field.
For somewhat greater values of koR, the approximation

etk = 1 — jkoR
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may be used, and we obtain

1 — jkoR. .,
=2 /V ] === , (9.73)
1 1 -7k
- f R o7

The presence of the term —jkoR is an indication that propagation effects
are becoming important and the contributions to the potentials from the
various source elements no longer add in phase. Higher-order approxi-
mations are obtained if more terms in the expansion of e~ are retained.

Retarded Potentials

If we replace k by ky = w/c and restore the time function ¢*t, the solu-
tions for the potentials may be written as

- Z__:r /V %ejw(t—li’/a) dv’ (9.74a)
- ;%r—e ] 1% eiol—RI0) G (9.74b)

In this form the potentials are referred to as retarded potentials. The
factor e/« —E/°) shows that at any point a distance R away from the source,
the effects caused by changes in the source are not felt until a time interval
R/c, the propagation time, has elapsed; that is, contributions to the
potential at a point from current or charge sources must include the
finite propagation time from each source element to the field point. This
means that the potentials are related to source distributions in effect at
an earlier time; i.e., they are retarded potentials.

The concept of a retarded potential, although introduced above for
sinusoidal time-varying sources, is valid for arbitrary time variation as
well. The retarded-potential concept is similar to the action-at-a-dis-
tance concept embodied in Coulomb’s and Ampére’s force laws as con-
trasted with the field concept.

9.10. Relation between Field Theory and Circuit Theory

~ Maxwell’s equations provide a rigorous and detailed description of the
electric and magnetic fields arising from arbitrary current sources in the
presence of material bodies. Because of the complexities, rigorous solu-
tions to time-varying electromagnetic problems are obtainable only under
very special circumstances, usually where the geometry is particularly
simple. In other cases simplifying approximations must be sought.
The reader may be familiar with the well-established techniques for
discussing the properties of electrical networks. These are usually
| characterized by constant lumped-parameter elements such as resistors,
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capacitors, and inductors. Under steady-state conditions the properties
of such networks may be established by setting up and solving a system of
algebraic equations. The latter equations arise from an application of
Kirchhoff’s loop and node equations to the given network,. with an
assumed current-voltage relationship for each element.

It may seem very surprising that such a relatively simple procedure is
available for circuit analysis. Viewed as an electromagnetic boundary-
value problem, it is almost hopeless to find a field solution that satisfies
the boundary conditions over the connecting

leads, the coiled wires of the inductors, and Wit -
the various shaped conductors that make up © VA ° R
the variety of types of capacitors, and for 1

which the primary source is, say, an electron
stream within a high-vacuum tube. Circuit
theory is obviously an approximation, and if
we are to understand the nature and limi- —_—

o+
gs
ol
h

tations of this technique, it is necessary to I

determine the assumptions that are required

to deduce circuit theory from Maxwell’'s + V,'(f) -

equations. ° N °C
As a start, let us briefly review the under- I

lying structure of circuit theory. We assume  Fic. 9.8. Circuit elements.
the existence of four network parameters, the

resistance R, the capacitance C, the inductance L, and mutual inductance
M. The properties of these parameters are defined in terms of their
voltage-current relationships as follows, where for simplicity the harmonic
time variation e** is deleted:

V =RI (9.75a)
V = jwLI (9.75b)
I
= jw—C' (9.750)
The above may also be specified in terms of the following inverse relations:
I =GV (9.76a)
I = juCV (9.76b)
14

where G = 1/R is the conductance. Figure 9.8 illustrates schematically
the three circuit elements described above. In each case the voltage V is
considered to be the difference in potential between the terminals of the
element. For an arbitrary network it is, furthermore, supposed that a
unique potential may be assigned each circuit node. Consequently, the
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sum of the voltages taken around any closed path is zero, which is the
statement of the Kirchhoff voltage law.

The current I is assumed to pass continuously through each element
from one terminal to the other. Only conduction currents of this type
are assumed to exist; consequently, their algebraic sum at any junction is
zero, in order to conserve charge. This is the statement of Kirchhoff’s
current law.

When two coils are coupled so that some of the magnetic flux is common
to both, a mutual-inductance term must be added to the circuit equations.
Figure 9.9 illustrates schematically a circuit ele-

= <= ment which requires the use of a mutual induct-
T j ance M. Since this is a four-terminal device, two
v, L,g 8L, V, equations must be written to describe its voltage-
l i current characteristics. These equations are
\ . .
M Vi = joliI, + joMI, (9.77a)

Vz = jwMIl + ijzlz (9771))

In the absence of mutual coupling, (9.77) gives the
voltage-current relations of the two separate inductors and is of the form
(9.750).

With these assumptions concerning the nature of V and I it is possible
to establish Kirchhoff’s laws. Using the latter and the properties of the
circuit elements as described in (9.75) and (9.77), the entire steady-state
theory of linear circuit analysis can be developed.t If we are to establish
a justification of this theory, we must confirm that (9.75), (9.77), and
unique relations for V and I can be derived from Maxwell’s equations
under suitable conditions. .

In order to establish the desired result, we shall assume, first of all, that
the maximum circuit dimensions are small compared with wavelength.
If we consider any electronic device for which we intuitively feel that
circuit theory should be applicable, we shall find the above assumption
well justified. For example, an ordinary radio receiver has dimensions of
much less than 1 meter, which is quite small compared with the smallest
signal wavelength, which is around 200 meters. As a consequence of the
above assumption, the fields will be quasi-static in nature; that is, when
we expand e %2 we obtain the following expansions for the potentials:

F1c. 9.9. Transformer-
type circuit element.

4 Y- y
Awye) = 22 [ LELD qy e [ 5y ) av

_kozl‘o ) ’ e
yo /VJ(:c,y,z)RdV +

t It is not difficult to extend this work to transient conditions as well, but it will
be easier to emphasize the fundamentals if we assume steady-state harmonic time
variations.
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_ 1 P(x z) y _ JRo ) ?
2r) = g [ 2EY ) avr - T / &) 4

4“0 p(w’,y',z’)R av’ +
where R = [(z — 2")* + (y — ¥')? + (2 — 2)*]*%. The first term in the
expansion for A and ® is the same as for stationary sources, except that
here both J and p are permitted to vary with time. These terms define
the quasi-static potentials. The second term in each expansion inte-
grates to a constant and drops out when the expressions V X A and V&
are formed. This term does contribute to the evaluation of the electric
field through the quantity —jwA, but the entire expression is proportional
to ko2 This is the same order in k¢ as the third terms for ® and A given
above. These terms, along with the higher-order terms in ko, are
negligible for circuit elements that are small compared with the wave-
length. Thus we may compute the instantaneous electric and magnetic
fields from the charges and currents that exist at that instant as if the
sources were time-stationary.

The characteristics of the R, L, and C elements in a circuit may be
specified from the field-theory point of view on an energy basis. Thus we
consider the ideal capacitor as a lossless element which stores electric
energy. A practical capacitor would then be one for which the magnetic
stored energy and the losses were negligible compared with the stored
electric energy. The ideal inductor would, conversely, store only mag-
netic energy, and in the practical case it would be assumed that the stored
electric energy and losses were negligible. The resistor, however, ideally
dissipates energy; practically, some energy storage is unavoidable, but
usually negligible. Let us consider each element in greater detail.

The Inductor

Figure 9.10 illustrates an inductor L. Physically, it usually consists of
a solenoidal winding of good conducting wire. Because of its construc-
tion it sets up a magnetic field which tends to be
localized in the region of the coil. Thisiseasily
confirmed for a solenoid whose length-to-diam-
eter ratio is large. Because of the quasi-static

1e— 92
nature of the field, the results of Chap. 6 apply \77 /
and reveal (see Prob. 6.8) that the magnetic \\\ ///
field is negligible, except within the solenoid, i

where it is essentially uniform. For moderate
length-to-diameter ratios the magnetic field
may still be assumed localized in the vicinity of the inductor. This
characteristic is emphasized in Fig. 9.10 by crosshatching the assumed
local region of the magnetic field.

F1c. 9.10. An inductor.
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If Faraday’s law is applied to the closed contour 1a2b in Fig. 9.10, we

_obtain
= -_9 . 9
561.125 E.dl /;az E-dl + [M E.dl = 7 / B-dS (9.78)

where the path 1a2 is along the coil wires, while 2b1 is any return path in
air. If the conductivity of the wire forming the inductor coil is suffi-
ciently great, then within the wires E = J/¢ = 0, so that (9.78) becomes

d
E.dl=—--=5 [ B.dS .

/;bl dt (9.79)
The assumption of quasi-static conditions means that we may use time-
stationary concepts to evaluate /B « dS, which is the total flux linking the
closed circuit indicated. By definition of inductance,

__/B-dS
L= I
and consequently,
/ E-dl =% (1) = juLl (9.80)
162 dt

after replacing d/dt by jw and changing the sense of the path 2b1 to 152.
We may note that the value of L depends somewhat on the external path
162, but to the extent that most of the flux is localized as shown, moderate
changes in 162 will not particularly affect the net flux linkage. As a
consequence, L may be thought of as a property of the inductor rather
than the circuit; that is, we anticipate that the inductor will be connected
to other circuit elements, and we assume that nearby resistors and capaci-
tors contribute negligible flux in the evaluation of the right-hand side of
(9.80). Furthermore, nearby coils are assumed also to provide negligible
flux. When the latter condition is not fulfilled, then a mutual-inductance
element is involved, for which a separate discussion is necessary. Thus
whether as an individual element or an element in a circuit, the right-hand
side of (9.80) depends on the self-inductance of the coil by itself and is

essentially independent of the path 152. This also means that . E.dl

is a unique quantity under steady-state conditions, and we may use it as a
definition of difference in potential V across the inductor terminals;
that is,

V= e E.dl = jouLI - (9.81)
where the path 152 is any path external to the inductor but in its general
vicinity. This result confirms (9.75b).
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For the case of mutual inductance, the procedure outlined above needs
to be modified only slightly. In this case,

d
E-d=2%[B.4ds
ﬁbz a dt/

as before, except that B arises from currents in the coil itself and from
currents in some other coil. Since quasi-static conditions are involved,
we know from Sec. 8.3 that the total flux linkage [B - dS is given by

/B-dS = LI, + MI, (9.82)

where L is the self-inductance of the coil being considered and M is the
mutual inductance to another coil carrying the current I,. Conse-
quently, we finally get

lsz +dl =V = joLl, + joMI,

Of course, the given coil can be magnetically coupled to more than one
coil. The modification in that case should be fairly obvious from both
the field and the circuit standpoint.

At this time it will be useful to consider how practical inductors depart
from the above ideal inductor in their behavior. First of all, we know
that the wire has a finite conductivity; so there will always be a potential
drop across the coil resistance. At very low frequencies the current is
uniform over the wire cross section, and hence if J is the current density,
the electric field in the wire is E = J/o. In (9.78) the first integral on
the right now becomes

I i
/;aZE.dl_ laZS—oO'dl_‘T_S—O

where [ is the total length of wire, S, is its cross-sectional area, and the
total current I = SoJ. The low-frequency resistance is B = l/aS,, so
that in place of (9.81), we have

V = joLI + RI (9.83)

In many applications wL >> R, so that R may be neglected. At higher
frequencies this approximation, however, becomes poorer, because the
current now flows in a thin layer at the surface of the wire (skin effect), so
that the resistance is much greater than the low-frequency value.

A second effect that exists in practical inductors is stray capacitance
between turns. The association of this “stray capacitance’” with the
inductor is merely the recognition of the fact that the electric field and
resultant accumulation of charge along the wire are not negligible. When
there is a net accumulation of charge, the conduction current flowing in
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at one terminal does not equal that flowing at various other points in the
inductor at each instant of time. The difference is equal to the rate of
accumulation or depletion of charge between the two points under con-
sideration; or in other words, the conduction current at the terminals of
the inductor is not continuous through the coil winding at each instant of
time. Only the total current, conduction plus displacement current, will
be continuous. The displacement current, of course, accounts for the
charging and discharging of the stray capacitance associated with the
inductor.

The effect of stray capacitance is particularly noticeable at high fre-
quencies since an increase in frequency is accompanied by an increase in
the displacement current density jwD. In fact, all practical inductors
behave as capacitors at sufficiently high frequencies. In view of the
above discussion, it is not surprising to find that most practical inductors
must be characterized by all three ideal parameters, that is, inductance,
resistance, and capacitance, particularly at the higher frequencies. An
analysis for the equivalent circuit under these conditions is given in a
subsequent section.

The Capacitor

Figure 9.11 is a schematic description of a capacitor. From a field
standpoint the practical capacitor is characterized by the storage of elec-
tric energy, with a negligible accompany-

é I} <2> ing magnetic energy or power loss. If we
I consider that a conduction current I flows

in the leads, then from the continuity equa-
tion a charge @ = I/jw accumulates on the
plates. The electric field between the plates can be written in terms of

the vector and scalar potentials as
= —VP — jwA

F1a. 9.11. A capacitor.

The scalar potential & arises essentially from charge stored on the capaci-
tor plates, while the vector potential A is due mainly to current in the
leads. For a given current magnitude, considering frequency as a vari-
able, jwA is proportional to frequency while V& is inversely proportional
to frequency (that is, ® « @ « 1/w). Consequently, a low enough fre-
quency exists for any capacitor so that [V®| > |jwA|. The exact frequency
below which this approximation is satisfactory can be specified only by a
detailed consideration of the particular capacitor configuration involved.

When the vector potential contribution is negligible, the electric field
may be derived from the negative gradient of ® only. However, it is
important to note that ® may arise not only from the charge accumulated
on the capacitor plates, but also from charge accumulations at other loca-
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tions in the circuit. But this is nothing more than additional capacitive
coupling between the capacitor under consideration and other nearby
bodies and can be taken care of by introducing additional capacitors to
describe the over-all circuit (see the discussion in Sec. 3.5 on multibody
capacitors).

In order to arrive at the desired voltage-current relationship for the
ideal capacitor, it is necessary to assume that the contribution to ® from
charges other than those on the capacitor plates is negligible in the region
between the plates. Consequently, we may write, for the field between
the capacitor plates,

E=-V®

If we define the voltage drop across the capacitor terminals as
V=/12E-d1=<1>1—<1>2 (9.84)

where the path is through the leads and arbitrarily across the plate spac-
ing, then the result depends only on the value of the scalar potential at
each plate. (We again assume good conducting leads and neglect
fE - dl along them.) But the scalar potential & is derived from the charge
on the capacitor according to the static formula, and so all the conse-
quences of the work in Chap. 3 must hold. In particular, we may define
the capacitance as C = Q/(®; — ®3) = Q/V, and in view of the con-
tinuity condition which requires Q = I/jw, we get

V= J&, (9.85)

thus confirming (9.75c¢).
The Resistor

We consider, now, the properties of the resistor. As an ideal circuit
element, it should set up negligible stored electric and magnetic energy,
but is responsible for the dissipation of energy. We illustrate a resistor,
schematically, in Fig. 9.12. At any point

. . . 1 R 2
within the resistor we have 5 AAA 5
—
E-1 !
a Fia. 9.12. A resistor.

If, for simplicity, we assume uniformity over the length of the resistor,
then
I
B=35
where S is the effective cross-sectional area. The value of I is the total

current and equals the terminal current provided that no substantial dis-
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placement current between the terminals exists. Since E is a constant,

then 1
ﬁ E-. dl_a—S -

where [ is the length of the resistor and the integration path is taken
through the resistor. There is no ambiguity in this result; so we define
it to be the potential drop V across the resistor; that is,

/12 E-dl=V=IR (9.86)

and R = /¢S is the usual definition. We note that (9.86) is in the form
of (9.75a).

The Circuit

In order to connect the elements together to make a network, leads are
necessary. From a field standpoint these should dissipate no energy nor
store any energy. In this case we treat them like resistances with zero
resistance. If the energy dissipated is not negligible, they will be treated
like true resistances.

We have at this point established the validity of the assumed voltage-

current relationships for the funda-

"‘O—L mental circuit elements, provided

¢ 5 certain given conditions are met.

: L We should like to illustrate the appli-

71" cation of these ideas to a simple cir-

cuit which includes an applied emf

F1e. 9.13. RLC circuit with source of and an R, L, and C in series. The
emf. cireuit is illustrated in Fig. 9.13.

If we integrate the electric field around the circuit, but follow the

dashed path 5-6 across the inductance, and integrate through the source
of the emf, then

fE- dl—a—d—" (9.87)

which is a generalization of Faraday’s law when the path of integration
includes a source of emf. Because the flux associated with the inductance
is excluded from the surface bounded by the chosen contour,

dy _
b7 = jwy =0
Thus

8=35E-dl=/12E~dl+/:E-dl+/:E-dl+/;E-dl
+f67E-d1+/71E-dl
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If the source of emf is, say, a rotating machine, then /7 'E. dl taken
through the high-conductivity armature winding is negligible, as is true
fm“ the high-conductivity leads in the case of /1 *E-dl and /; "E-dl.
Consequently,

1 .

which is the generalization of Kirchhoff’s voltage law to include sources of
emf.

In summary we may say that the usual circuit concepts hold provided:

1. Circuit dimensions are small compared with wavelength, so that
quasi-static conditions prevail. This ensures, among other things, negli-
gible radiated energy.

2. Inductors and capacitors dissipate negligible energy.

3. The magnetic field associated with resistances and capacitors is
negligible.

4. The displacement current associated with all circuit elements, except
that between capacitor plates, is negligible. Otherwise the entire terminal
current may not flow through the element. Furthermore, the Kirchhoff
current law can be violated if displacement current flows into or out of a
node as a result of the physical arrangement of a network.

The expert in working with circuits is, of course, aware of the above
limitations and often employs techniques to extend the realm of network
analysis. For example, if condition 2 is not satisfied, we have seen that
the lossy inductor may usually be satisfactorily represented by an ideal
inductor in series with a resistor, while the lossy capacitor may be repre-
sented by a series or shunt resistor with an ideal capacitor. Condition 3
is recognized in the ultra-high-frequency range as requiring the use of
short lead lengths to minimize lead inductance, as already noted.  Finally,
displacement current between windings of a coil is accounted for by the
“stray capacitance,” which can often be approximated by a circuit with
an ideal inductor paralleled by an ideal capacitor. How well these
approximate circuit techniques will represent the actual conditions cannot
be completely decided in advance, since what is involved is the detailed
account of construction, frequency, and dimensions of the actual
device.

When the frequency is such that circuit dimensions become comparable
to wavelength, field techniques begin to take over as it becomes more
difficult to continue to separate electric and magnetic stored-energy
regions. Even under these conditions it is still possible to specify an
equivalent two-terminal lumped-parameter network that -correctly
describes the behavior of the physical device at any given frequency.
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. The following section provides an introduction to this general-equivalent-
circuit analysis.

General Equivalent Circuits

Consider an arbitrary physical structure made up from conductors,
dielectric material, and magnetizable material in general. Let the device
have two terminals, asin Fig. 9.14. Fur-

r —i thermore, let a total current Ie/t flow into

I— ﬁz | the device at the upper terminal and flow
T | Physical | out at the lower terminal. Also, let the

v | device | voltage between the two terminals be
[ | Vet If we could solve the boundary-
L _____: value problem to determine the electric

and magnetic fields around the structure,
we could evaluate the energy W, stored
in the electric field, the energy W, stored
in the magnetic field, and the power loss P; due both to energy dissipation
within the structure and to power radiated. The integrals to be evaluated
to obtain the time-average quantities are (note that ¢ = ¢ — jé', -
p =4 — ju”, and are assumed to be constant)

Fre. 9.14. Terminal voltage and
current for a physical device.

/
W, = 54- / E-E*qV (9.89q)
v ,
W, = ‘i/ H-H*dV ‘ (9.890)
4 |y

Pi=g [ BErav 48 [ (@B Bt wHEY 2
vV 2 14
+3% § ReEX H*-dS (9.8%)

In the expression for P;, the integral of the real part of the Poynting vector
E X H* is to be taken over the surface of an infinite sphere surrounding
the structure. This integral gives the total time-average power radiated.
The terms involving ¢’ and x'’ give the losses due to polarization damping
forces present in the material.

We shall now define the capacitance, inductance, and resistance of the
structure by means of the following relations:

II*

=2 (9.900)
L= %‘ (9.90b)
=2 (9.90¢)

T IT*
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In (9.90a) and (9.90b) the numerical factor is 4, since we are considering
time-average quantities. The above definitions are consistent with those
which arise under time-stationary conditions, and their justification will
be discussed below.

The values of W,, W,, and P, are unique under a given set of terminal
conditions. If the voltage V and current I can also be specified uniquely,
then the circuit parameters—capacitance C, inductance L, and resistance
R—are uniquely defined by the above formulas. Under static conditions
it has been shown in earlier chapters that the above definitions for R, L,
and C are equivalent to the geometrical definitions. However, the above
definitions are more general in that they recognize the fact that ideal
circuit elements do not exist physically; e.g., a parallel-plate capacitor
has some inductance and resistance associated with it, as we have noted
earlier. In other words, by defining capacitance in terms of electric
energy storage, account is taken of all portions of the physical structure
that contribute to the capacitance of the over-all device, and similarly for
the inductance and resistance. It might be noted that these definitions
for R, L, and C are equally applicable to distributed circuits, lumped
circuits, or a combination of both. Again we emphasize that it is neces-
sary to be able to define unique terminal currents and voltages in order
for these parameters to have unique values.

In order to establish a relationship between the terminal current and
voltage, we shall make use of the complex Poynting vector theorem estab-
lished in Sec. 9.7. At the same time conditions for the unique specifica-
tion of the terminal voltage will be obtained. If the physical device has
two conducting leads, the terminal current is clearly unique, it being
simply the total conduction current
flowing into the structure in one
lead and out at the other lead.

Let us construct a closed surface,
consisting of an infinite plane (zy
plane for convenience) and the sur-
face of a hemisphere at infinity, that
completely encloses the physical de-
vice except for the, terminal leads
which protrude through the plane
surface, asin Fig.9.15. Theelectric
and magnetic fields are uniquely de-
termined by the scalar and vector g5 915 Closed surface S = So + 81
potentials ®, A, where ® and A are surrounding a physical device.
determined from the charge density
p and current density J distributed throughout all space, both inside and
outside 8. The electric field E is given by E = —jwA — V®. In terms

Physical

device
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of a line integral of E, the voltage between terminals 1 and 2 in Fig. 9.15 is
V=Vn-= —/12E~d1 - /12V<I>-dl—l—jw/.12A»dl
=4>z—‘1>1+jw/12A-dl (9.91)

The integral of V& from 1 to 2 may be taken over any arbitrary path with-
out changing its value. However, this is not true for the line integral of
A. We therefore see that the voltage V will be unique only if the con-
tribution to its value from the vector potential A is zero. In general,
this latter contribution is not zero, but as discussed earlier, it is negligible
at sufficiently low frequencies. Physically, it is easy to see why there is a
contribution from the vector potential A in general. If we integrate
A - dl from 1 to 2 along the path I'; and from 2 to 1 along the path T';, we
have

/nA.d1+/mA-d1 = 55F1+P3A-d1 =/S=V)(A-dS - [SCB-dS
(9.92)

where S. is the area bounded by T'; + T'; and Stokes’ law together with
the relation B = V X A has been used. The integral of A around the
closed path gives the total magnetic flux through the area S,. Since this
flux induces an electric field when it changes with time, it follows that
the condition for the vector potential not to contribute to the voltage V is
that there be no magnetic lines of flux cutting through the boundary
plane Sy on which the line integral of E is taken. This requires that the
vector potential A have no z or y (tangential) components on the surface
So.  When this is true a unique value for the terminal voltage V in terms
of the line integral of E may be specified.

According to (9.48) the integral of the inward normal component of
the complex Poynting vector over a closed surface S gives

%9§SEXH*-dS= —jg/v(e’E-E*—y’H-H*)dV

+ 24 / (we’E - E* 4+ wp’H - H* 4 ¢E - E*) dV
14
= 2jo(Wp — W.) + Pux (9.93)

where W,, and W, are the time-average magnetic and electric energy
stored inside V, and P;; is the time-average power loss inside V. We
may split the integral over S into two parts:

%9SSE)(H*-dS=%/SoExH*-dS+%/SIEXH*-dS

where —14 /S‘ E X H*.dS is the radiated power flowing out through
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the surface of the hemisphere. We may now rewrite (9.93) as

1% [(EXH*dS = 2%0(Wa— W)+ P - (0.04)

where P, = P;; — 15 /sl E X H*.dS.

We shall demonstrate shortly that under certain conditions E and H*
can be uniquely related to V and I'*, respectively, so that (9.94) becomes

BVI* = 2jo(W, — W,) + P, (9.95)

Since I is linearly related to V, we may now define an input impedance
Z;, for the physical device so that V = IZ,,. Hence

VZ.II* = 2jo(W,, — W,) + P, (9.96)
From (9.90) we have

I+
We = 1o
—_— L *
Wn = i II
= 1$RII*

When we substitute the appropriate terms into (9.96) and solve for Ziny
we obtain

L II
g = e[ (2117 = 1) 1 ygmar]

= R + joL — Z]C' (9.97)

An analysis similar to the above may be carried out when R, L, and C
are defined on a voltage basis as

*
R=h (9.980)
*
= fo- (9.98b)
c=3v. (9.98¢)

An admittance ¥;, may be introduced so that I = Y.V, and (9.95) then
gives
BYLVV* = —=2j0(W, — W.) + P, (9.99)

This leads to the result
1 1 .
Y. = B +jw_L + jwC (9.100)
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and specifies an equally valid equivalent circuit for the physical device.
However, it is important to note that the circuit parameters R, L, and
C in (9.100) are not, in general, the same as those occurring in (9.97)
since in the present case the normalization factor is VV* in place of II*.
The equivalent circuit specified by (9.97) is a series RLC circuit, whereas
(9.100) specifies an equivalent circuit consisting of R, L, and Cin a parallel
connection.

The use of the complex-Poynting-vector theorem and appropriate
definitions for B, L, and C thus leads to the specification of an equivalent
circuit for the physical device. It is important to note that since we
have considered a general device, the parameters R, L, and C do not
specify ideal elements, but rather only equivalent parameters for the
device. They will therefore, in general, be functions of the applied fre-
quency. As a matter of fact, this is also true of all practical circuit
elements.

We must now return to an earlier point and demonstrate that under
certain conditions

LVI* =%/SOEXH*-dS

Since we require a unique voltage V between terminals, we assume that
E = —V®; that is, the vector potential contribution —jwA is negligible.
Consequently, we can write

/SﬁExH*-dS= —]&(ch)xn*-ds

Now V X (BH*) = (V®) X H* + &V X H*
and hence

/soExH*'dS=/30¢VXH*‘dS—/S°VX<I>H*-dS

The last integral may be transformed to a contour integral around the
boundary of S¢ by means of Stokes’ law; thus

/Sovxch*-ds=9§r<1>H*~dl

Since & and H* vanish at infinity to at least an order 1/R? (R — «),
while I' increases only as R, this integral vanishes, and we are left with

[SDE X H*.dS = /So &(J* — jwD*) - dS (9.101)

upon replacing V X H* by J* — joD* from Maxwell’s equations. Pro-
vided the displacement current joD* can be neglected, (9.101) reduces
simply to an integral over the cross sectior of the leads of the physical
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Chapter 9

9.1. A cylindrical capacitor has an inner radius of a, an outer radius of b, and a
length L. A sinusoidal voltage V sin «t is applied and 2rc/w 3> L, so that the electric
field distribution is that for static conditions. Calculate the displacement current
density in the dielectric and also the total displacement current crossing a cylindrical
surface of radius r (a < r < b). Show that the latter equals the conduction current
in the leads to the capacitor.

9.2. Repeat Prob. 9.1, but for a spherical capacitor with inner radius a and outer
radius b, and find the total displacement current crossing a spherical surface of radius
r (@ <r <b).

9.3. (@) Confirm that the one-dimensional wave equation of (9.11) possesses a
general solution E, = f(z — ct) + f'(z + ct), where f and f’ are arbitrary functions.

(b) For the specific wave

E = Ejcos ko(z — ct) a; + Egsin ko(z — ct) a,

where ko = 2r/\¢ = w/c, compute H and the Poynting vector.

(c) For a given z, determine the locus of E as a function of time. This wave is
called circular-polarized.

9.4. The plates of the accompanying parallel-plate capacitor are circular and have
a radius R;, and the medium between the plates is conductive with conductivity o.
A battery with emf V, is connected to the
capacitor plates (assumed perfectly con-
ducting) as shown.

(a) Compute E and H in the conducting
media.

(b) Calculate the Poynting vector, and
verify that it correctly evaluates the power
flow from the battery. F16. P 9.4
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9.5. A shorted coaxial line has a resistive g =00
inner conductor and a perfectly conducting ™
outer conductor. A d-c battery with emf ) A
Vo is connected at the input end. The b 7 =0, (finite) T%

inner conductor has a radius of a, and the Al 7777,
inside of the outer conductor a radius of b. & “ 4
The length is L, and the total current is I,.

(a) Derive an expression for E and H
in the dielectric region of the coaxial line. 39
Assume that the battery is arranged to set I !
up a potential that varies as Inr on the
input surface. (If this is not done, is the F1c. P 9.5
problem uniquely specified?)

(b) Evaluate the Poynting vector, and compute the net power flow into the center
conductor. Compare with a conventional circuit analysis.

9.6. An electrostatic field due to static charges and a magnetic field due to a perma-
nent magnet are set up in the same region. In this way, a finite E X H = P can exist,
but no net power flow is taking place. Confirm that $'P+dS = 0 for any surface.

9.7. For a plane wave normally incident on an infinitely conducting infinite-plane
reflector, the E and H fields as a function of the distance z from the reflector (with the
given polarization) turn out to be

-

E = jE,sin koz a.
%
H= (ﬂ) E, cos kez ay
Mo

where ko = 2r/\ = w/c.

(a) What is the instantaneous Poynting vector at z = 0, Xo/8, No/4?

(b) Compute the time-average Poynting vector at the above positions.

9.8. For Prob. 9.7, calculate the currents and charges set up on the conducting
screen.

9.9. Given two uniform plane waves with electric fields as follows:

E; = E\e19lcg,
Ez = Ege‘f"’z‘”a,

Both propagate in the same medium simultaneously. If w1 5 wz, prove that the net
time-average power flow equals the sum of the individual time-average power flows.

9.10. Find the skin depth for the following common materials, whose conductivity
(mhos per meter) is given, at f = 1, 104, 108, 10 cycles per second.

Silver............... 6.17 X 107
Copper............. 5.80 X 107
Aluminum.......... 3.72 X 107
Sea water........... 4.5

9.11. At a frequency f = 108 cycles per second fused quartz has a relative permit-
tivity of 3.8 and a loss tangent equal to 10~%. Calculate the phase velocity, intrinsic
impedance, and attenuation constant for a uniform plane wave propagating in this
medium.

9.12. For the following media plot the attenuation of a uniform plane wave vs. fre-
quency over the range 0 to 10 cycles per second (¢ in mhos per meter):

Sea water............. ¢ =45 «x =80
Good ground.......... o =10"%« =15
Poor ground........... =103k =5
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9.13. A long cylindrical conductor of radius a is uniformly excited by an electromag-
netic field so that a current flows in the axial direction and has no circumferential
variations. We may take the current density at the surface to be equal to J, and
for the purposes of this problem it is possible to neglect the axial variations. If the
conductivity is ¢ and o > we,

(a) Show that

w20, = 14 (5 = jor,
where the axial surrent density is in the z direction and a function of r only.

(b) Solve (a) for J.,.

Answer. Solutions to (b) come out in the form of a Bessel function J,(j~%z), for
which tables are available. Often new functions are defined as

Ber z = Re Jo(j~¥%z)
Bei z = Im Jo(j%x)

in terms of which the solution can be written

Ber (1/27/8) + j Bei (1/27/5)
Ber (v/2a/8) + j Bei (\/2 a/s)

where 8 = 1/+/nfuos is the skin depth and J is the current density at r = a.

9.14. The current distribution in the conductor of Prob. 9.13 may be found approxi-
mately if a/é is large. In this case we may think of the conductor as if it were flat
with a uniform plane wave incident. The diffusion of current into the conductor
should be in the form of (9.43), except that the radial variable replaces the coordinate
normal to the surface; that is, since J and E are related by the constant o, we have

Ji(r) = J

J, = Je~id(a—n1b

By using the asymptotic expressions for Bessel functions of large argument, show that
the result of Prob. 9.13 reduces to the above expression.

9.16. Show that in a source-free region of space where V- E = 0, the electric and
magnetic fields may be found from a magnetic-type vector potential A,, by means of
the equations

E =V X Am
H = juh, — 2 An

Jwp

and A, is a solution of
VA, + wueAn =0

The derivation is similar to that for the electric-type vector potential A.

9.16. In a region of space where the only source for the electromagnetic field is a
volume dielectric polarization of density P, show that the electric and magnetic fields
may be found from a vector potential I, by means of the equations

H = jue V X II,
E =kole.+VV'H. =VXVXH¢ —62
0
and I, satisfies the equation
P

V’II. + ko’II, = — :
0

where ko? = w?ueo. The derivation is similar to that for the vector potential A, and a
Lorentz-type condition must be invoked. The polarization P is introduced by
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replacing D by ¢E + P in Maxwell’s equations. The potential function II, is known
as the electric-type Hertzian potential.
The above result may be extended to arbitrary source distributions through the
relations
p=—V-P
)34
T=%
9.17. If the only source for the electromagnetic field is the magnetic polarization M
per unit volume, show that the fields found from a magnetic Hertzian vector potential
II, by means of the equations

E= —jupV X Hn
H = koM, + VV -,
=VUXVXMNO, —M

satisfy Maxwell’s equations, provided II,, is a solution of
Vi, + kM, = —M

9.18. In an idealized velocity-modulated electron tube, the electron stream can be
taken to consist of d-c convection current of amplitude 7, and an a-c current of the
form

{ao = 1:16"""_7'8‘

where 7, and ¢, are in amperes per unit area of cross section. Note that the a-c current
is in the form of a wave and that a geometry is implied where there are no variations
with z or y. ‘

The a-c convection current sets up an electromagnetic field most easily found by
first computing the vector potential A. If, as we assume, 7; < 7o, then all a-¢c quanti-
ties have the space-time dependence e/“t=72, (The d-c¢ current can be ignored in
calculating time-varying fields.)

(a) Find the a-c charge density.

(b) Write and solve the differential equation for vector potential A.

(c) From (b) find the electric field E.

9.19. It is virtually impossible to obtain solutions to the vector wave equation if
the fields are written in terms of their spherical components and if spherical coordi-
nates are used. Yet for boundary conditions imposed on spherical boundaries, it is
equally difficult to utilize rectangular coordinates since the boundary is not a natural
one. It turns out, however, that the vector

M=rXvWwW

where r is the radius vector, satisfies the vector wave equation provided that ¢ satisfies
the scalar wave equation

VY + wluey = 0
Another solution is
1

w V pe

N =

VXM

Note that M and N may be identified with the E and H field, or vice versa. In view
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of the fact that M is transverse to spherical surfaces, spherical boundary-value prob-
lems may be readily formulated.
Confirm that N and M do indeed satisfy the vector wave equations

VA + wlueA = —VXVXA+VV:A+wlueA =0

provided that
VY + wluey =0

9.20. An isotropic dieleetric medium is nonuniform, so that e is a function of posi-
tion. Show that E satisfies

VIE + KE = -v(E-Vf

9.21. If the gauge is chosen so that V + A = 0, confirm that the following equations
for ® and A result:

Vip = —L
€0

VXV XA - oA = pu] — joeu VE

where E and H remain related to ® and A as in (9.62) and (9.63).

What is the relationship between the ® and A in this gauge as compared with that
for which the Lorentz condition is satisfied?

9.22. Confirm that ¢ = (1/4xR)e %R gatisfies the scalar Helmholtz equation
V% + ko?% = 0, provided R = 0. Show further that for a spherical (AV) volume of

vanishing radius surrounding the origin, /AV (V% + ko%) dV is finite and actually

equals —1.

HinT: Write V¥ = V - Vy, and use the divergence theorem.

As a consequence of the above, ¢y = (1/4rR)e~#%R may be said to be a solution of
the following inhomogeneous Helmholtz equation:

VY + koY = —3(r — 1)

where Ragp = r — r’ and r’ is the location of a unit (delta) source. The delta func-
tion has the property that

, _Jo if r’ is not contained in V
/V 3 —r)dV = { 1 if r’ is contained in V

9.28. Confirm the statement that appears in the text that if, at a perfect conductor,
we satisfy J, = n X H, then p, = n-D.



