CHAPTER 8

QUASI-STATIONARY MAGNETIC FIELD

In order to complete a discussion of magnetostatics, along lines analo-
gous to that in electrostatics, it will be necessary to derive an expression
for the stored magnetic energy. This will then make possible a full dis-
cussion of inductance (the counterpart of capacitance in electrostatics)
and also an analysis of forces between current-carrying circuits. It
turns out, however, that in order to determine the formula for stored
magnetic energy due to time-stationary currents, it is necessary to know
something about time-varying currents and time-varying magnetic fields.
Consequently, this chapter starts out with a statement and discussion of
Faraday’s law of induction. Following this, inductance, energy, and
force are considered, thereby completing the analysis of magnetostatics
and preparing for the subject of general time-varying fields.

The procedure used to derive the field expression for electric stored
energy involved evaluating the work done in assembling the charges that
established the electric field. For the static magnetic field we might
expect that a similar procedure could be used, except that in this case it
would be necessary to evaluate the work done in assembling a system of
current loops. This is true; however, the forces acting on the current
loops multiplied by their respective displacements are not alone equal to
the energy of assembly. In the process of moving the loops relative to
each other, the magnetic flux linking each loop continually changes. It
turns out that this changing flux results in an induced voltage in each loop
and the battery must do work (or have work done on it) in order to keep
the currents constant. This additional work must be taken into account
in evaluating the net energy of assembly of the loops, which by the above
definition equals the net stored magnetic energy.

Although we begin with a general formulation for time-varying mag-
netic effects, we shall be mostly concerned in this chapter with a quasi-
static field. By a quasi-stationary magnetic field we mean a field that
varies so slowly with time that all radiation effects are negligible. In
a following chapter we shall discover that a system of conductors carry-
ing sinusoidal currents must have dimensions of the order of a wave-
length in order to radiate efficiently. For a frequency f, the wavelength
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in free space is given by Ay = ¢/f, where ¢ is the velocity of light (3 X 108
meters per second). Thus, if the frequency is 100 kilocycles per second,
Xo = 3,000 meters. A typical system of coils and loops used in the
laboratory might have dimensions of around one meter; consequently,
for frequencies less than 100 kilocycles, radiation effects would certainly
be entirely negligible. The quasi-static application is thus widely
applicable.

8.1. Faraday’s Law

The discovery of electric induction by a changing magnetic field is
credited to Michael Faraday. On Aug. 29, 1831, the classic experiment
on induction was carried out. Faraday wound two separate coils on an

iron ring and found that whenever
the current in one coil was changed,
g an induced current would flow in the
other coil. He also found that a
similar induced current would be
produced when a magnet was moved
in the vicinity of the coil. At about
the same time similar effects were
being studied by Joseph Henry in
America. However, Faraday was
F1c. 8.1. Illustration of Faraday’s law. more fortunate in that he worked at
the Royal Institution in London and
his work was published and made known to the scientific world earlier
than the work of Henry. As a consequence, the law of electric induction
is known as Faraday’s law.

If we consider any closed stationary path in space which is linked by a
changing magnetic field, it is found that the induced voltage around this
path is equal to the negative time rate of change of the total magnetic flux
through the closed path. Let C denote a closed path, asin Fig. 8.1. The
induced voltage around this path is given by the line integral of the
induced electric field around C and is

Viea = $ E-dl
The magnetic flux through C is given by
¢ = /S B-dS

where S is any surface with C as its boundary. Thus the mathematical
statement of Faraday’s law is

i)
¢ E-dl =~ B-ds 8.1)
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Basically, the law states that a changing magnetic field will induce an
electric field. The induced electric field exists in space regardless of
whether a conducting wire is present or not. When a conducting wire
is present, a current will flow, and we refer to this current as an induced
current. Faraday’slaw is the principle on which most electric generators
operate. Note that the electric field set up by a changing magnetic field
is nonconservative, as (8.1) clearly indicates. The changing magnetic
field becomes a source for an electric field.

In addition to (8.1) there are several other equivalent statements of
Faraday’slaw. Since B may be obtained from the curl of a vector poten-
tial A, we have

__39 dS = _ 9 )
95CE-d1— 5 | VX A-ds = athCAdl (8.2)

by using Stokes’ law to convert the surface integral to a line integral.
Equation (8.2) permits the induced voltage to be evaluated directly from
the vector potential A.

The differential form of (8.1) is obtained by using Stokes’ law to replace

950 E . dl by a surface integral, so that
d
9SCE-d1_LVXE.ds—, —-&ﬁB-dS

or /(VxE+§§).dS=o
s at

Since S can be an arbitrary surface, the integrand must be equal to zero,
and we obtain
dB

VXE=— N (8.3)
This result again shows that the electric field induced by B is not of the
same nature as the electrostatic field for which the curl or rotation is zero.
Our concept of the curl or rotation as being a measure of the line integral
of the field around an infinitesimal contour per unit area makes (8.3) a
natural consequence of (8.1).

Example 8.1. Induced Voltage in a Coil. Figure 8.2a illustrates a
single-turn coil of wire of radius d. The coil is located in a uniform mag-
netic field B = By sin wt and with the normal to the plane of the coil at
an angle § with respect to the lines of magnetic flux. The induced voltage
measured between the two open ends of the coil is given by (8.1) as

_8
at |s

B.dS = — % (rd?B, cos 0 sin wi)

= —wrd?B, cos 6 cos wt
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since the total magnetic flux linking the coil is 7d?B, cos 8 sin wf. In
Fig. 8.2b a coil with N turns is illustrated. To evaluate ,/sB - ds, a

surface must be constructed so that the coil forms the periphery and the
total flux crossing the surface is evaluated. This surface resembles a
spiral staircase. The net result is roughly equivalent to the notion that
each turn is separately linked by the magnetic flux, a notion that is quite
good for tightly wound coils. With this point of view, then, in each turn
the induced voltage is given by the above expression. These voltages

¥
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Fi1ac. 8.2. Electric induction in a coil.

14

add in series, so that the total voltage across the complete coil is N times
greater and hence given by

V = —Nwrd?B, cos 0 cos wt

The induced voltage is proportional to the rate of change of the magnetic
field, the number of turns, and the magnitude of the magnetic flux linking
each turn.

8.2. Induced Electric Field Due to Motion

When conductors are moving through a static magnetic field, an induced
voltage (we shall define this more precisely later) is produced in the con-
ductor. This voltage is in addition to that calculated by (8.1). The
magnitude of this voltage may be found from the Lorentz force equation.
This states that a particle of charge ¢ moving with a velocity v in a mag-
netic field B experiences a force F given by

F=q¢gvXB (8.4)

This force, known as the Lorentz force, is similar to the analogous relation
F =TIdlXB. (Note that gv can be interpreted as a current element.)



Sec. 8.2] QUASI-STATIONARY MAGNETIC FIELD 269

The force is seen to act in a direction perpendicular to both vand B. The
interpretation of the Lorentz force gives rise to the concept that an
observer moving through a static magnetic field sees, in addition to the
magnetic field, an electric field also. A unit of charge moving with the
observer appears to be stationary, and any force experienced by that
charge is ascribed to the existence of an electrostatic field. But a force is
experienced and is given by (8.4). Consequently, in the moving refer-
ence frame, this fact is interpreted as revealing the existence of an electric
field E given by

E=—-=vXB (8.5)

|

Equation (8.5) gives an alternative and more general method of evalu-
ating the induced voltage in a moving conductor. This equation is the
mathematical formulation of Fara-
day’s second observation of induction
by moving magnets.

As an example, consider a con-
ducting wire moving with a velocity v
through a uniform field B, asin Fig. 8.3,
where B is orthogonal to v. Each
electron in the conductor experiences
a force F = —evB, which tends to
displace the electron along the wire
in the direction indicated. Asaresult p. g3 Tnduced voltage in & moving
of this force electrons move toward conductor.
the end marked P;, leaving a net
positive charge in the vicinity of the end marked P;. When equilibrium
has been reached, there is no further movement of the electrons along the
wire, and this requires that there be no net force. What happens is that
the displaced charges set up an electrostatic field which opposes the dis-
placement of the charges due to the Lorentz force. When sufficient
charge has been built up so that the electrostatic field produces a force
equal and opposite to the Lorentz force, equilibrium is established. In
this case E = —vB.

The induced voltage between the ends of the conductor is defined by

v=["E-a
and in this example

V =B /PP’ dl = vBL

a result that is true when v and B are orthogonal. The induced voltage
caused by motion of a conductor through a magnetic field is called
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motional emf (electromotive force).t The electrostatic field set up by
the displaced charges may be observed in both the stationary frame of
reference and the moving frame attached to the conductor.

Moving Conductor in a Time-varying Magnetic Field

When a closed conducting loop C, as in Fig. 8.4a, is moving with a con-
stant velocity v through a nonuniform time-varying magnetic field B, the

B
———-
c v
(@

©®)

Fic. 8.4. Conductor C moving in a time-varying field B.

induced voltage is given by
B
Vind = - a7

= dS+§60vXB~dl (8.6)

In this expression the first term represents the contribution due to the
time variation of B while the second term is the contribution representing
the motional induced voltage.

The velocity v of different portions of the loop need not be the same,
so that the loop C may be changing in shape as well as undergoing trans-
lation and rotation. However, in (8.6), the integral of 0B/t may be
taken over the original surface S, since the contribution arising from an
integration over the change AS in S is a second-order term.

The term 960 v X B - dl is the motional emf contribution. A further

insight into the connection between this term and the changing-flux con-
cept may be obtained as follows. With reference to Fig. 8.4b, it is clear
that an element dl of C' sweeps out an area dS = v X dl dt in a time

t The field structure is similar to that described for an open-circuited battery. In
the latter case chemical action sets up a nonconservative field within the battery
(analogous to the Lorentz force field) and also an electrostatic field which pervades
all space but cancels the nonconservative field within the battery (within the
generator in the present case). Accordingly, V = emf = vBL may be similarly
viewed as an open-circuit voltage.



SEc. 8.2] QUASI-STATIONARY MAGNETIC FIELD 271

interval d¢. The change in flux caused by the displacement of C is equal
to the integral of B through the swept-out area, i.e., equal to

dbs = P B+ (v X dl) de @8
Hence, —dy/dt = — 950 B:.vXdl = ¢c v X B - dl, which is the usual

form for the motional emf term. Consequently, we have shown that

Vina = —dy/dt, that is, equals the negative total time rate of change of

flux linkage. Thus, a generalization of Faraday’s law may be written
d

fﬁcE-dl——Et[gB-dS (8.8)

In the above case it was quite clear how the total change in flux linkage
could be evaluated since a definite closed contour C was involved. In the
case of a single conductor, as in Fig. 8.3, it is not clear how to evaluate a
change in flux linkage since a definite closed contour is not involved. In
a situation like this the use of the Lorentz force equation is the most
straightforward.

Example 8.2. Motional EMF. Figure 8.5 illustrates a single-turn
rectangular coil, with sides b and a, which is rotating with an angular

F1a. 8.5. Rotating coil in a magnetic field.

velocity w about its axis. The coil is located between the pole pieces of a
magnet which sets up a uniform magnetic field B. Since the magnetic
field B does not vary with time, that is, 9B/dt = 0, the induced voltage is
entirely of the motional type. We may calculate the induced voltage
from the negative time rate of change of the total magnetic flux linking the
coil. At any instant of time ¢ the flux through the coil is

abB cos wt
and hence the induced voltage is

d _ _dy _ .
- SB.ds_ E_wastmwt
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The above result may also be obtained by an application of the Lorentz
force equation. The velocity of an electron along the sides of the
coil is » = aw/2, and the sine of the angle between v and B is given by
sin § = sin wt, as in Fig. 8.5. The force on an electron is then

F =¢lvX Bl = eBsin § = engsinwt

This is equivalent to the presence of an electric field E, where

= g = g wB sin wt
In each side arm of the coil the induced voltage is Eb. Consequently, the

total voltage is just twice this amount; that is,
V = 2Eb = abwB sin wt

which is the same as that given earlier. The above result neglects the
effect of the ends of the coil; however, there is no induced voltage in the
ends since F is perpendicular to both v and B. This analysis is seen to be

equivalent to a formal evaluation of the

Brush motional emf term fﬁc v X B-dl

Example 8.3. Faraday Disk Dy-
namo. The Faraday disk dynamo is
illustrated in Fig. 8.6. It consists of a
circular conducting disk rotating in a
uniform magnetic field B. Brushes
make contact with the disk at the
center and along the periphery. The
problem is to determine if an induced
voltage will be measured between the
brushes. The answer is yes, and the
magnitude of the voltage is readily
Fia. 8.6. The Faraday disk dynamo. found from the Lorentz force equation.

An electron at a radial distance r from
the center has a velocity wr and hence experiences a force ewrB directed
radially outward. The electric field acting on the electron at equilibrium
is also wrB but is directed radially inward. The potential from the center
to the outer rim of the disk is thus

d d 2
V=/ E(r) dr = -—wB/ rdr = —“’—gd— 8.9)
0 0

The value computed by (8.9) is the open-circuit voltage of the Faraday
disk dynamo and therefore also represents the emf of the generator.
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8.3. Inductance

Consider a single current-carrying loop in which a constant current has
been established. A magnetic field is set up which could be calculated
from the given geometry of the loop and which is proportional to the cur-
rent magnitude. If the current is caused to change, so will the magnetic
field. But this means that the total flux linking the loop also changes
and, by Faraday’s law, a voltage is induced in the loop. If the problem is
analyzed quantitatively, it will be discovered that the self-induced voltage
always has such a polarity that tends to oppose the original change in
current. For example, if the current begins to decrease, the induced
voltage acts in a direction to offset this decrease.

If the problem involves two current loops, a somewhat more involved
sequence of events takes place, but with the same qualitative outcome.

Ci Ca

F1a. 8.7. Two circuits with magnetic coupling.

Thus Fig. 8.7 illustrates two circuits C; and C,, with currents I'; and I,.
The current I; produces a partial field B;, which causes a magnetic flux

Yio = /S B,-dS to link C; and ¢, = /S B;-dS to link C, (itself).
Similarly, the partial field B; due to I, is responsible for the flux

11/21 = /Sle‘dS

linking C; and ¢y, = f s B, - dS, which links itself. If now the current I,

is allowed to change, this causes a corresponding variation in ¥y, and y¥1..
The latter effect results in an induced voltage in C,, hence a change in I,.
This in turn causes ¥2; to be disturbed from its previous value, so that the
net flux linking C; (that is, ¥11 + 1) is altered. Again, if all possible
cases are considered analytically, it turns out that the change in both ¥,
and ., is always such that the induced voltage in C, is opposed to the
original perturbation of I;. The fact that the induced voltage always
acts to oppose the change in current that produces the induced voltage is
known as Lenz’s law.

The property of a single circuit, such as C,, that results in an induced
voltage which opposes a change in the current flowing in the circuit is
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known as self-inductance. The similar effect of a changing current in
one circuit producing an induced voltage in another circuit is known as
mutual inductance. Inductance is analogous to inertia in a mechanical
system. The symbol L is used for self-inductance, and M for mutual
inductance. The symbol L, with appropriate subscripts, is also used for
mutual inductance and is the notation we shall adopt. The unit for
inductance is the henry, in honor of Joseph Henry, who contributed much
to the early knowledge of magnetic fields and inductance.

There are several equivalent mathematical definitions of inductance.
One definition is in terms of flux linkages. If ¢;; is the magnetic flux
linking circuit C,, due to a current I; flowing in circuit C';, the mutual
inductance Li; between circuits €y and C is defined by

Ly = flux linking C due to current in Cy _ 1!1_113 (8.10)

current in C,

The mutual inductance is considered to be positive if the flux ;. links C,
in the same direction as the self-flux linkage 2, due to the field from the
current I. If y12 and y,, are in opposite directions, the mutual induct-
ance is negative. Reversal of either I or I, will change the sign of the
mutual inductance Lys. The self-inductance Ly, of circuit C is defined in
a similar way; that is,

_ flux linking C; due to current in C1 _ ¢u
Lu = ‘ current in C; T I (8.11)
The mutual inductance between Cy and C; may be defined by
Ly =¥ (8.12)

as well, where 3, is the flux linking C; due to a current I, in C,. We
shall show that L;; = Ly, so that (8.10) and (8.12) are equivalent.
Since C; and C; are two very thin current-carrying loops, it is a simple
matter to formulate the expressions for the flux linkage. However, in
the limit of zero cross section, (8.11) leads to an infinite value for Ly,
although the magnetic energy associated with the field remains finite.
The extension of the definition (8.11) to current loops or filaments of
finite (large) cross section can be made and is done in a later section.
The proper interpretation of y,; follows from a consideration of the
magnetic energy associated with the circuit and is fully discussed later.
The above definition of inductance is satisfactory only for quasi-
stationary magnetic fields where the current and the magnetic field have
the same phase angle over the whole region of the circuit. At high fre-
quencies the magnetic field does not have the same phase angle over the
whole region of the circuit because of the finite time required to propagate
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the effects of a changing current and field through space. A more general
definition in terms of the magnetic energy associated with a mrcult will
be given in the next section.

Neumann Formulas

Consider two very thin wires bent into two closed loops C; and C,,
asin Fig. 8.7. Letacurrent I, flowin C;. Since the wire is assumed to be
very thin, the value computed for B; will not be much in error if the cur-
rent is assumed concentrated in an infinitely thin filament along the center
of the conductor, provided only field points external to the wire are con-
sidered. With this limitation in mind, the field B; produced by I, is

given by
_ moly dli X ap _ pols 1
B=m b B " am Pa [V<E>] Xdh  (&13)
since V(1/R) = —ag/R% The integration is over the source coordi-

nates, while V affects only the field coordinates; so we have

><i‘lll - [v(%)] X dl,

since dl, is a constant vector as far as V is concerned. Then, in place of
(8.13), we can write

_ wols dl,
Bl—_‘lﬂ' Clva

and hence the flux ¢, linking circuit C is

/Bl-ds=“°11/895m x 2. as
_#011
- ¢Cl‘[gzvx

upon changing the order of integration. By using Stokes’ law the sur-
face integral may be converted to a contour integral around Cs,; so we get

‘I’IZ - #OII ¢Cl ¢Cz dll dlz (8.14)

From the definition of mutual inductance stated in (8.10) we obtain
Neumann'’s formula:

¢12 dll dl?
L12 - 1 ¢Cl ¢C’1 (815)

Since in (8.15) R is the distance between a point on C; to a point on C,,
the integral as a whole is symmetrical; that is, the subscripts 1 and 2
may be interchanged without changing the end result. This proves the

Vi
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reciprocity relation stated earlier:
Ly =Ly = 'PTII? = % . (8.16)
Equation (8.15) may be derived in an alternative way by noting that
B, = V X A,, where the vector potential A, is given by

_ s f dl
A1_4.1r a R

Thus
b= [ BidS= [ VXA-dS=¢ A-d

Using the expression for A; and dividing by I, leads to the desired end
result.

A formula similar to (8.15) may be written for the self-inductance also.
However, it is not permissible to assume that the current is concentrated
in a thin filament at the center since it is necessary to include values of B
at the wire itself where the approximation breaks down. For an idealized
infinitely thin wire, the analogous formula is

dr, - dl
L11=E£95C‘ R 8.17)

where dl; and dl, are differential elements of length along C, and separated
by a distance R. Since R can become zero, the integral is an improper
one and leads to an infinite value of self-inductance, which is actually
consistent with the assumption of infinitesimal wire diameter. To
evaluate the self-inductance of a practical loop, the finite thickness of
the conductor must be taken into account. A suitable procedure to
be followed will be presented later, but first we shall consider some
typical applications of (8.15) and also introduce the concept of internal
inductance.

Example 8.4. Inductance of a Coaxial Line. Figure 8.8 illustrates a
coaxial transmission line made of two thin-walled conducting cylinders

F1a. 8.8. A coaxial line made of two thin-walled cylinders.



Sec. 8.3) QUASI-STATIONARY MAGNETIC FIELD 277

with radii @ and . A current I flows along the inner cylinder, and a
return current — I along the outer cylinder. The inductance per unit
length is to be evaluated. '

It will be noted that this geometry does not correspond precisely to that
of the thin-wire loops for which the definition of inductance has been
formulated. At a later time a more fundamental definition of induct-
ance will be given which allows generalization in terms of distributed
current-carrying bodies. For the present we shall try to extend the
definitions of (8.11) in a plausible way and with the understanding that
future work will confirm its usefulness.

The field B is in the 6 direction only and is given by B = (uol/27r)as.
The total magnetic flux linking the inner conductor per unit length of line

is
ol [tdr _ml b
'P_—2?/; r = o PG

and hence the inductance per unit length of line is given by
L=¥_tyb (8.18)

If the center conductor is solid, the above result is not valid, since the
current I is distributed uniformly over the cross section of area wa?. To
treat this case the concept of partial flux linkages is required. The cur-
rent flowing in the portion of the inner conductor between 0 and r is
Inr?/wa® = Ir?*/a?. The field in the coaxial line is given by (see Example
6.7)

polr
=5 ot 0<r<a
=g§r—§ a<r<b

Since the field is circularly symmetric, each element of current in the
annular ring between r and r + dr is linked by the same flux. The
value of the magnetic flux linking this current is

b I [ I [tdr

r _I‘O Mo haddl

ay _/r Bdr—-2——7ra2/r rdr+—21‘_/l -
b

In the earlier calculation of inductance for the thin-walled inner con-
ductor the flux linked the total current flow I. Within the solid conduc-
tor, however, we have flux which links only part of the current. Now
since the flux dy’ does not link the entire current I, it seems plausible
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that we should reduce its contribution to the total flux linkage, for pur-
poses of inductance calculation, by the ratio that the actual current
linked bears to the total current. Since the current which is linked by
dy/ is the current in an annular ring of area 2zr dr, the reduction factor is
2xr dr/ma?, and the equivalent flux linkage dy is given by

dy = 21rr.drd¢,

Ta?

At a later point a firmer basis for this procedure will be given. For the
present example we have

12xr dr on a? /J.oI b
watl 47ra2( -+ l-

The total flux linkage is

_ [, _ ml ar—r @
¢—[)d _1ra2</¢; dr + In- [)rdr)

—wl wln b ga9)

dy =

Hence the inductance per unit length is

— Mo Ko b '
L & T2, In - P (8.20)
The first term po/87 is known as the internal inductance of the center
conductor since this term arises from the flux linkages internal to the con-
ductor. The second term is known as the external inductance since this
corresponds to the external flux linkages.

Evaluation of Self-inductance

For an infinitely long single wire of circular cross section the internal
inductance per unit length is obviously uo/8w, since a single wire has a
field internal to itself of the same form as the center conductor of the
coaxial line we just considered. The external inductance per unit length
is infinite, a result which may be obtained by letting b tend to infinity in
(8.20). In practice, we do not have infinitely long wires; so this latter
result is of no consequence. However, for a thin wire of total length I
bent into an arbitrary loop, the magnetic field near the surface is very
nearly the same as that for an infinitely long wire provided the radius of
curvature of the loop is much greater than the conductor radius at all
points. In other words, we may treat the wire locally as though it were
part of an infinitely long wire. It follows that the internal inductance of
any loop of mean length [ is uol/8x. This result is of great importance
since it leads to a simple method of formulating an expression for the
self-inductance of a circuit.
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Consider a conductor of radius ro bent into a closed loop C4, as in Fig.
8.9. Let the contour C coincide with the interior edge of the conductor.
The self-inductance of the circuit consists of the sum of the internal
inductance and the external inductance. The external inductance arises
from the flux linking the contour C;. To evaluate this flux linkage we
may assume that the current I is concentrated in an infinitely thin fila-
ment along the center Cy of the conductor with negligible error. The
problem is equivalent to that of evaluating the mutual inductance
between the contours Co and C;. Thus

_ i.l._o dlo . dl1
L. = 47 ¢Co Ci R

The self-inductance L is thus given by

T __#ol ~ Mo dlo‘dlx
L_L,+L,_§;+47r9500 o (8.21)

Example 8.5. Self-inductance of a Circular Loop. Consider a con-
ductor of radius r, bent into a circular loop of mean radius a, as in Fig.

F1c. 8.9. A conductor of finite radius ro F1a. 8.10. A circular conducting loop.
bent into a closed loop.

8.10. The internal inductance of the loop is we2ra/8r = woa/4. The
magnitudes of dly and dl; are given by

[dlo] = a db, ldly| = (¢ — ro) d8; = a db,
The angle between dl, and dl, is 8, — 6, and hence
dlo+ dly = a?cos (6, — 6,) dy db,
The distance R between the two elements of arc length is given by

R? = a? 4 (@ — r9)? — 2a(a — ro) cos (8; — 6)
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Hence the external inductance is given by

Moaz 2 cos (01 - 00) df; db,
L. [2a(a — ro) + ro* — 2a(a — 70) cos (8; — 80)]*

If we integrate over 6, first, we may change variables and replace 6; — \00
by 6 and df, by df; thus

poa2 cos 6 df db,
L, r02 + 2a(a — ro)(1 — cos 8)]*

It is not necessary to alter the limits of the integral because the origin for
6, is arbitrary in view of the circular symmetry. Since the result of the
integration in 6 is independent of 6, we may perform the integration over
6o at once, thereby obtaining a factor 2r. We now have

1, = wa? [ cos 0 df
7 2 Jo [re®+ 2a(a — ro)(1 — cos 6)]

This expression can be evaluated in terms of elliptic integrals. Only the
final result will be given here. It is found that

L. = poa [(% - k) K - %E] (8.22)

where k? = 4a(a — r9)/(2a — ro)? and K and E are elliptic integrals
given by

_ [ da I
K_/t; (1 — k?sin? a)* E_/(; (1 — k?sin? a)¥ do

The above integrals are tabulated.t For ry < a, the result (8.22) reduces
to

L. = ua <1n 8a _ 2) (8.23)
To
Thus the self-inductance of a circular loop of mean radius a is
L = L.' + Le = Wod <].Il —8; bl 175) To <La (8.24)
0

8.4. Energy of a System of Current Loops

Consider two closed conducting loops C; and (s, as in Fig. 8.7, with
currents 7; and 7,, which are initially zero. In the process of increasing 7,
and 4, from zero to final values I, and I,, work is done on the system.
According to the field theory, this work results in stored energy in the
magnetic field surrounding the conductors. To evaluate this quantity,
let us maintain 7, at zero while increasing ¢, from zero to its final value I,

t E. Jahnke and F. Emde, “Tables of Functions,” 4th ed., Dover Publications,
New York, 1945.
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first. When we change 7, by an amount d7, in a time interval d¢, the mag-
netic field B; due to 7, changes at an average rate dB,/dt. Consequently,
an induced voltage & = —dy.1/dt is produced in Cy, and similarly, an
induced voltage & = —dy1s/dt is produced in C,. Thus, in order to
change 7, an amount d7; in a time interval dt, we must apply a voltage
—&; in the circuit C;. At the same time we must apply a voltage —§&, in
C: to maintain 7; at zero. In the time interval dt the applied voltage
— &, does work of amount

dW, = =81 dt = i1 dyn = Lyt diy
since by definition Liyi; = 11 and because Ly, is constant Ly diy = dyyy.

The applied voltage — &, does zero work since 1, is kept equal to zero.
The total work done in increasing ¢; from zero to I is thus

Wy = [ Luidiy = BLuly? (8.25)

This is the energy stored in the magnetic field surrounding a single circuit.
Next we keep I constant and increase 7, by an amount dz; in a time
interval dt. This results in an induced voltage

—dyse diy

82 = dt = —Lzz Et‘ iIl Cz
—d di .
and & = _d'thg = —Ly, 7%2 in Cy

To maintain ¢; constant at its value I;, we must apply a voltage —&;.
In time d¢ this voltage does work (or has work done upon it, depending on
whether &; tends to increase or decrease 7;):

dle = —81[1 dt = I1L12 dlz

Similarly, the voltage —&, that must be applied to change 7, by an
amount dz; does work of amount

sz = —82i2 dt = L22i2 dlz
The total work done in changing ¢; from zero to a final value I, is
2 . I, ., .
Wi+ Wi = ILy, OI dis + Lo /0 15 dis
= I1I:L1s + Y4152Lo, (8.26)

The work done on the system is the sum of (8.25) and (8.26) and repre-
sents the energy W, stored in the magnetic field. This energy is given by

W = 2800 11% 4 LioI1 Iy + V4Ls,15°
2 2

=14 Z Z L;LI; (8.27)

1=1j=1
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This result is easily generalized to a system of N loops; the result is given
by (8.27) by increasing the summations in (8.27) for both 7 and j, up to N.

The magnetic energy in the field around a single current loop of finite
cross section may be written in a form analogous to (8.27). We may
divide the current-loop cross section into a large number of current fila-
ments of cross-sectional area AS; for the sth filament (see Fig. 8.11). If
Jiis the current density in the ¢th filament, then I; = J; AS; is the total
current flow in this flow tube or filament. Let : be the flux linking the
ith filament due to all the other current filaments in the current loop.
This in turn is given by

N N
¢;=ﬁ§:LﬁIj==§:LijASj
i=1 j=1
J#i J#i
where N is the total number of current filaments or flow tubes making up
the total current loop, L;; is the mutual inductance between filaments ¢
and 7, and I; is the current flowing in the jth filament. Since we have
divided our original current loop into N current filaments, we have
reduced the problem to one of a collection of N filamentary current loops
and (8.27) may be applied to give

N N N
Wan=12%% z LiI* + 14 z Z LyLI;

i=1

N

i=1 j=1
V5%)
N

=14 ) LI+ 14 Z il (8.28a)

i=1 =1

Now, as demonstrated in Example 8.5, the self-inductance L;; of a thin
current filament of cross-sectional radius ro becomes infinite as In ro.
However, the total current in the filament decreases as ro? as the cross-
sectional area is made smaller, so that in the limit as ro goes to zero for
each current filament, LI, vanishes as ro* In ro. The number of current
flux tubes N is inversely proportional to the cross-sectional area of the
flux tube, that is, N « ro2. Thus, for infinitely thin current filaments,
the sum of the “self-energy” terms in (8.28a), i.e., the terms L2, vanishes
as ro* In ro. Each term in the double summation of (8.28a) is also of
order ro*; however, the total number of such termsis N2 « r;% Conse-
quently, this summation may be expected to remain finite in the limit

ro— 0. Thus we are left with
N

W =14 z 28 (8.28b)

t=1
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This result expresses the energy of a single ‘““thick” current loop in terms
of the mutual energy between the current filaments that comprise the
current loop. Equation (8.28b) will be used in the next section to estab-
lish a suitable definition for partial and total flux linkages.

Equation (8.27) gives an interpretation of the coefficients of inductance
L;; as the coefficients in the quadratic expression for the energy stored in
the magnetic field. The terms L; (¢ # j) may be either positive or nega-
tive, depending on the direction in which the mutual magnetic flux links
the respective circuits. For two circuits with currents I, and I,, we have

Wa = 11:2L1y + 151,2Lyy + I,15L4,

which may be written as

Wa = Y[(I1 V/Lu — 1. VL)? + LIx(VLuLe + L)

The first term is always positive or zero. If we choose

LiVLiy = LV

so that the first term is zero, then since the energy stored in the field is
always positive, we see that the mutual inductance L,, must satisfy the
relation

L12 S \/L 11L22

in order that the second term may also always be positive. The coeffi-
cient of coupling k is defined by

L12 =k VL11L22 (8'29)

and has a maximum value of unity when all the magnetic flux set up by
the magnetic field of circuit 1 links circuit 2.

8.5. Energy as a Field Integral

In the preceding section the work done in setting up a system of
current-carrying loops was evaluated in order to determine the energy
stored in the magnetic field. As in electrostatics, it should be possible
to express this energy in terms of the field alone. The analogy with the
electrostatic field turns out to be a very close one, for we shall show that
the energy in the magnetic field is given by the following integral:

Wm=%/VB'HdV=%u/VH-HdV (8.30)
where the integration is to be taken over the whole volume occupied by

the field. The second expression in (8.30) is valid only if u is a constant.
We shall prove the above result for the special case of a single conduct-
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ing loop with finite thickness and carrying a current I, as in Fig. 8.11.
Replacing B by Vv X A in (8.30), we obtain

W,,.=%/V(VXA)-HdV

Next we use the expansion V- (AX H) = (VX A)-H— (VXH)-A
and replace V X H by J, thereby obtaining

Wa=35[,J-AdV +15 [ V- (A X H)aV
% [,J-AdV + 35§ AXH-ds

where the divergence theorem has been used to convert the second volume
integral to a surface integral over the closed surface S. If we choose S to

Current filament

F1a. 8.11. Cross section of conductor C.

be a spherical surface at infinity, then, assuming that the sources are in a
finite region, A « 1/Rand H « 1/R?on 8, as we may confirm from (6.9)
and (6.11). Thus, while S « R?, the integral behaves as 1/R, and since
S is at infinity, this integral vanishes.t Hence

Wn=1% [V J-AdV (8.31)
Now J = 0 everywhere except along the circuit C, where J dV = J dS, dl

and dS, is an element of area in the cross section of €, asin Fig. 8.11. We

t When we come to examine general time-varying fields, we shall discover that a
radiation field can exist for which H «1/R. Under these conditions the integral in
question does not vanish but represents radiated energy.
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may write (8.31) as follows:
Wa=15[ TdS$, A-a

where S, is the cross-sectional area of the conductor and C, is the contour
of an elementary filament of current. If J is constant over the cross
section Sy, we have I = JS,, and we get

W = W1 /q (‘%" <JI§C1A : dl) (8.32)

Equation (8.32) is readily seen to be the integral form of (8.28b) since
950 A - dl is the flux that links the current filament I dS,/S, and the

integral over Sy is merely the limit of the sum in (8.28b) as the number N
of current filaments is made infinite; i.e., the cross section of each filament
is made infinitesimally small. This result thus verifies the equivalence
between the field integral (8.30) and the expression (8.28b) for the energy
in the magnetic field surrounding a current loop.

The term (dSo/So) ¢ e A . dlis called the partial flux linkage dy because

f, A-dt=[ VxA-das=[ B-as

and is the flux linking the contour C,, where S; is the surface bounded by
Cy, as illustrated. It should be noted that the flux linking the contour C,
is multiplied by the fraction of the total current that flows in the thin
filament of cross-sectional area dS, to obtain the partial flux linkage.
Completing the integration we have

W = 141 fs,, dy = VI = LI (8.33)

This equation shows how the total flux linkage ¢ of a single circuit must
be defined in order that 141y will give a correct result for the energy
stored in the field. The alternative expression W, = L4LI? follows
simply by defining L as equal to /I, with ¥ understood as the sum of all
the partial flux linkages.

We now see that by a consideration of the energy stored in the mag-
netic field we are able to give a consistent and useful definition for the
total flux linkage ¢. The resulting definition for the self-inductance L is
thus based indirectly on energy considerations. We may, however, omit
the intermediate step which introduced the flux linkage ¢ and define L
directly in terms of the magnetic energy stored in the field. Thus, con-
sider a device with two terminals through which a current I enters and
leaves. Let W, be the energy stored in the magnetic field surrounding
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the device. Itsinductance may now be defined as [Eq. (8.33)]

2Wn

L= e

(8.34)

This definition is often easier to apply in practice in order to evaluate L
than the original definition in terms of flux linkages. A device of the
type above is called an inductor, and its circuit applications are discussed
at the end of Chap. 9.

It has thus been proved that (8.33) and (8.30) are equivalent expres-
sions for the energy stored in the magnetic field. In the proof of this
equivalence (8.30) was reduced to the form given by (8.32). The inte-
grand in (8.32) was next identified as the partial flux linkage of the total
current. This corresponds to the definition that was used in Example

8.4, where we chose

sy

dy =55 sﬁclA-dl (8.35)

as the definition of the partial flux linkage. If the current density J is
not constant over the cross section, the partial flux linkage must be taken

as
T dS,
& =7 ¢01A~m

instead.

The above proof may be generalized to a system of N current loops as
well, and hence (8.30) is a valid expression under all circumstances. At
times it is convenient to think of the integrand B - H/2 as the density of
magnetic energy at a given point in space. However, it must be kept in
mind that it is not possible to state where energy is located. Only the
total energy associated with a given field has a physical meaning.

8.6. Forces as Derivatives of Coefficients of Inductance

The force between two separate current-carrying loops or circuits
may be evaluated by means of Ampére’s law of force. However, an
alternative method that is much easier to apply in many cases may also
be used. This alternative method consists essentially in evaluating the
derivatives of mutual-inductance coefficients with respect to arbitrary
virtual displacements of the circuits with respect to each other. When
two circuits are displaced relative to each other, the mutual inductance,
and hence the energy stored in the magnetic field, changes. The change
in the magnetic energy is in turn related to the work done against the
forces of the field in displacing the circuits.

Consider two circuits C; and C; with currents I, and I,, as in Fig. 8.12.
The force F exerted on C; by C, will be evaluated by finding the work done
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and the change in field energy when C, is displaced by an amount dr.
During the displacement the currents I; and I, will be kept constant.
Initially, the flux ¢, linking C; due to the current I, in C, is given by
V12 = L12I; by definition of L;,. The energy stored in the magnetic
field isT

W = Y81.2Ly1 + I1lsLys + V515214, (8.36)

Consider that the displacement of C; by the amount dr occurs in a time

F1c. 8.12. Illustration of two circuits and their relative displacement (L, negative).

interval di. In this displacement the flux linking C; changes by an
amount
dyie = I,dLy,

As a result of this change in flux linkage an induced voltage

_ _ G
82 = dt

is produced in C,. In order to keep I. constant we must apply a voltage
—8&;in C;. This voltage does work of amount

dle = —8212 dt = 1112 dL12

t The interpretation of
Wa = YBLiI,% 4 YLoI52 + Lilil

may be made either in terms of infinitely thin circuit elements or in terms of finite
cross-sectional current-carrying conductors. In the latter case the modified definition
of self-inductance in terms of partial flux linkages must be used. For nonfilamentary
conductors we define the mutual inductance in terms of the mutual energy and, by a
derivation similar to that for self-inductance, are led to a generalized expression
Li; = i;/1;, where ¢;; is now the total partial flux linking the jth circuit due to .
Specifically, yq; = / Y0i(dSe/8S0), where g is the flux due to ¢ linking the

cross section .
current tube dS, of the jth circuit and S, is the total cross-sectional area of the jth

circuit. From a practical standpoint the internal flux is often negligible, in which
case L;; = y;;/I; and y,; is the flux linking any mean current tube in the jth circuit.
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in the time interval d¢. Similarly, the flux linking C; changes by dys,
and in order to keep I constant, we must apply a voltage —&; = dy2/dt
in C;. This voltage does work of amount dWy = —8&I1dt = I,1:dLs,
in the time d¢. At the same time the energy stored in the magnetic field
changes. This can be evaluated from (8.36) to be

AW = I115dLy;

If we now assume that the force F due to C; on C: is in the direction of dr,
then we must apply a force —F along dr in order to displace C; relative to
C:. The work we shall do during the displacement is

dW = —F .dr

In order to satisfy the law of energy conservation, the mechanical work
done plus the work performed by the voltage sources in keeping I, and
I, constant must be equal to the change in the field energy. Thus we get

—F.dr + 2[112 dL12 = Illz dle
and hence the force exerted on C; in the direction dr is given by

_ dLy,
F=1I, I (8.37)
The force between two circuits acts in the direction of increasing mutual
inductance.

If we have N circuits and displace the jth circuit by an amount dr;, we
shall find in a similar way that the force F; exerted on C; by all the other

circuits is given bv
N

dL;
F; = ZII,.———’” 8.38
1 - J drj ( )
n=i

where F; is the component of force along dr; acting on the jth circuit. The
result expressed by (8.38) is equivalent to

AW,

- d?‘j

N N

since Wa =1 2 E I1,I,L,,

n=1s=1

F; (8.39)

and we are assuming as a constraint that the currents be kept constant.
When circuit j is displaced by an amount dr;, it must be recalled that in
differentiating W, the right-hand side is differentiated with respect to
L.; and L;, (s = n) and the factor 14 is thus canceled.
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Usually one associates forces with the negative change in energy of a
system; i.e., the system moves in such a manner that the energy stored in
the system is decreased. The reason why the sign in (8.39) is positive is
that, because of the changing flux linkages, the batteries in each circuit do
work of twice the amount given by (8.39). Thus the batteries supply not
only the increase in the field energy, but also an amount of energy equal
to the work done by the field on the circuit during the displacement. The
situation here is similar to the electrostatic one when a constant potential
constraint is involved. Again it is

important to note that the force 1 L I,
exerted by the field is unique for a

given system of loops with specified C C;
currents. The use of a constant- —~—

current constraint under a hypo- C D )
¥,

thetical displacement is only a matter —_~— R
of convenience; any other assumed

constraint would lead to the same
value for the force. x

Example 8.6. Force on Two Par-
allf‘:l Wires. Consider two thin in- Fic. 8.13. Two infinite linear current-
finitely long and parallel conductors, carrying conductors.
as in Fig. 8.13. The conductors
are separated by a distance D. The currents in the two conductors are
I, and I,. The flux linking C; due to the current I,in C;is

p,oI 1 © dx

1,012 = -2—11'— b —5- per unit length

The integral cannot be evaluated since it is not bounded at infinity.
However, since we are going to differentiate it with respect to D, we do
not-need to evaluate it. From (8.37) the force per unit length exerted on
Cz by Cl is

dL12
dD

— 12 d\//m _ M01112

F= 1112 I =constant -d_D— - 21rD

a result in accord with Ampére’s law of force. The negative sign signifies
that the force is an attractive one for currents I; and I,, having the direc-
tions assumed in Fig. 8.13.

Example 8.7. Force between a Long Wire and a Rectangular Loop.
Figure 8.14 illustrates a rectangular loop C, carrying a current I» and
placed with its nearest side a distance D from an infinitely long conductor
C, carrying a current I,. With the assumed directions of current flow,
the flux linking C, due to I, is oppositely directed to that due to I..
Hence the mutual inductance is negative. The flux linking C» due to
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I;is

_ moly b"‘D_d_:E__uolla b+ D
‘p12_21ra/1_7 x—21rnD.

The mutual inductance L;; is thus

I, 2 D
The force exerted by the field on C, in the direction of increasing D is
F =11, dLys woabl I,

d_D I =constant - 27|'D(b + D)

This result is readily verified by Ampére’s law of force.
Example 8.8. Torque on a Rectangular Loop. The rectangular loop
C.in Fig. 8.14 is rotated about its axis by an amount 6 so that the resulting

I
(&1

AT
,1‘\/1112

i)

Cz

F1a. 8.14. Evaluation of force on a rec- Fig. 8.15. Evaluation of torque on a rec-
tangular loop. tangular loop.

configuration is given by Fig. 8.15. The torque exerted on the loop by
the field isrequired. The flux linking the loop due to the field set up by I,
differs from that ot the previous example approximately by a factor
cos 6 when a sin § < D. Hence we have in the present case
_ _macosf. b+ D
le = - In D

The torque exerted on the loop by the field, by a slight modification of
(8.38), is

b+ D

T = LI, dLq _ koasin 0 1., 1n %

de I =constant 2r

8.7. Lifting Force of Magnets

An equation for the lifting force of a magnet may be obtained by means
of an analysis similar to that used to obtain the force equation (8.39) in
the previous section. Consider two U-shaped pieces of iron with uniform
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cross sections of area S and with mean lengths I. The two sections are
separated by a small air gap of thickness z, as in Fig. 8.16. The upper
section is wound with N turns of wire to produce an electromagnet. A
current I flows in the coil. The per-

meability of the iron is assumed con- < sl
stant at the value u. The case when N turns

u varies is considered later. A solu-

tion of the magnetic circuit shows Ko
that the total flux in the cross section

of the circuit is given by

. NI
 21/uS + 22/

The inductance of the coil under the
given conditions is '

Ny _ SN
I 2l + 2z/p

since the flux y links N turns. If the
lower U section is displaced by an
amount dz in a time interval df, then, assuming constant current, the
flux ¢ changes by an amount

(840) —t L1, ¥
__f_ 2

L= (8.41)

F1c. 8.16. An electromagnet.

d¢=£‘£ iz = — 2NI dx — Yydr (8.42)
dZ |1 =constant S(ﬂ +2> (_l +£)
Mo HS [JDS Ho u o
This results in an induced voltage & in the coil, where
-y - 1%
&= N dt I =constant N I dt

In order to keep the current I constant, we must apply a voltage —& in
series with the battery in the coil. This applied voltage does work of
amount

dW, = —§&Il dt = I*dL

in the time interval di. During the displacement, the energy in the mag-
netic field changes by an amount dW,, = I?dL/2. If the field exerts a
force F on the lower U section, we must apply a force —F in order to
increase the air gap by an amount dx. During the displacement we do
work of amount dW = —F dz. Equating the work done on the system
to the change in field energy, we get

dW + dW,= —Fdz + I*dL = 141*dL

and hence F=1I % (8.43)
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Replacing IL by Ny and using (8.42), we obtain

F__ NIy
2 410S(l/wS + z/uoS)

for the force exerted on one pole or arm of the U section. In the air gap
we have

(8.44)

_Y
B=3%
=¥ _ NI
SH = po  2u0(l/pS + x/poS)
and hence (8.44) may also be written as

F
p

#oH 2

5 S (8.45)

BH
= - S = —
and the negative sign indicates that the force is attractive under the given
conditions. The interpretation of this result is that the magnetic field
exerts an attractive force along the direction of the field with a magnitude
or density given by
_ ﬁ _ poH?

f 3 5 newtons/sq m (8.46)

In (8.46) f is a force per unit area, the factor 2 having been absorbed by
the two pole faces. With this interpretation it is clear that it does not
matter if the magnet illustrated in Fig. 8.16 is an electromagnet or a
permanent magnet. As long as the flux density in the air gap is the
same, the lifting force produced by the field will be the same. This con-
clusion can be demonstrated to have very general application, and a dis-
cussion of this is reserved for the following section. First, however, we
shall consider the effect of variable u on the expression for the force
exerted by the field.

We have seen that under a constant-current constraint the force
exerted by the magnetic field could be expressed as [see Eq. (8.39)]

The derivation implicitly assumed that the permeability of all material
bodies involved was constant. When the permeability is a function of
the field H, then it will be found that the above equation is not correct,
although a very similar equation will be found to apply. For a ferro-
magnetic material the flux density B is a function of the field H, and
hence of the currents I that exist in the circuit. Thus the total flux in
the magnetic circuit of Fig. 8.16 is a function of the current I as deter-
mined by the B-H curve for the iron involved. In Fig. 8.17 the total
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magnetic flux ¢ is plotted as a function of the current I. If the current
is changed by an amount dI in a time interval d¢, an induced voltage
= —dy/dt is produced in the circuit. The battery consequently does
work of amount dW; = I dy in changing the current by the amount d1.
The total work done in increasing y from zero to the final value ¢, that is,
bringing the material from the point P, to P, in Fig. 8.17, is given by

Wi= W, = [0* Idy (8.47)

This is also equal to the energy stored in the magnetic field and is seen to
be given by the area that is singly hatched in Fig. 8.17.

Y
Magnehc energy W,,
\\\ P,
da[«}: / Magnetic coenergy W,,,

3
S

.| .

P dI I

Frc. 8.17. Nllustration of magnetic coenergy.

With the aid of (8.47) we shall now derive the expression for the force
exerted by the magnetic field on the pole piece of the electromagnet
illustrated in Fig. 8.16. If the field exerts a force F on the lower U-shaped
section, then the external mechanical work done in a virtual displace-
ment dr isdW = —F dz. If we assume a constant-current constraint as
before, then, because of a change dy in the flux through the circuit, the
battery does work of amount dW; = I dy in keeping the current constant
during the displacement. The change in magnetic energy stored in the
system may be found from (8.47) and is given by

v
AWn = d /0 Idy
Equating the external work done to the change in field energy we obtain

AW, + dW = dW.,
or —Fdx+1d.p=d/0¢1d¢
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This expression may be simplified if we integrate the right-hand side by
parts once to obtain

f0*1d¢ = I‘p\: -ﬁ)’“’ ¢dl

The latter integral, that is, / OW)

netic coenergy. With reference to Fig. 8.17 it is seen to be given by the
double-crosshatched area. If we denote the magnetic coenergy by W,
then we have

¥ dI, defines a quantity called the mag-

d/o‘”ld\b=1d¢—dwm,

since d(Iy) = I dy, because I is kept constant.
Our energy-balance equation now becomes

—Fdz+1Idy =1dy — dWae
AW _ d(coenergy)
dr dzx

or F = (8.48)
Thus, when u is variable, the force due to the field is given by the change
in the magnetic coenergy instead of by the change in the magnetic energy,
as is the case for constant u. When u is constant, then the relation
between I and ¢ is a linear one and W, = W, and also dW, = dW ..
Since many practical problems for which we desire the forces acting
involve iron, the concept of coenergy is a useful one in practice.f

8.8. Magnetic Stress Tensor

Ampére’s law of force between two current elements,

I,dl; X (I:dl; X ar)
Ko R

F =

is an action-at-a-distance law. It gives the force of one current element on another as
though the force were acting at a distance from the current producing the force.
When the field B is introduced, we have

F=1I1,dl; XB

This alternative form explains the force on I, dl; by means of the interaction of the
field B, set up by I, and the current I,. In the preceding section we found that the
force between an electromagnet and an iron bar could be expressed in terms of the
field B alone. One of the aims of field theory is to express all observables such as
forces and energy in terms of the field alone. Thus if we know the total field sur-
rounding a body, the force exerted on the body is desired in terms of the field alone.
This possibility was found to be true for the electrostatic field. In this section simi-
lar results for the magnetostatic field will be presented, but without proof.

The results of the previous section showed that along the lines of magnetic flux the

t An interesting discussion on the concept of coenergy from a thermodynamic
viewpoint is given by O. K. Mawardi, On the Concept of Coenergy, J. Franklin Inst.,
vol. 264, pp. 313-332, October, 1957.
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field produced a force per unit area given by

H?2
fo=55 , (8.49)

This force per unit area is equivalent to a tension. We may therefore picture the
magnetic lines of flux as elastic bands which are stretched, and hence are under ten-
sion. In addition to producing a tension along the lines of force, the magnetic field
may produce a compressional force perpendicular to the lines of flux. The density of
this compressional force turns out to be given by (8.49) also; i.e.,

2
fo= ’if— (8.50)

We may consider (8.49) and (8.50) as the pressure that the field H exerts. In vector
form the force acting on a body can be expressed by

F- 955 [p,oH(n ‘H) - B E H)n] ds 8.51)

where n is the unit outward normal to the surface S, and S is any closed surface sur-
rounding the body. Since the force or pressure produced by the field has the dimen-
sions of stress, (8.49) and (8.50) are called the components of the stress tensor. The
components of the stress tensor acting on a surface element whose normal is n are given
by the integrand in (8.51). This integrand is a vector force per unit area and was
designated T in the analogous electrostatic case. The component of T along n is

2T = w(-H?! -5 H-H

since the component of H along n is n+H. This force is a pressure force. The
remaining term, po(n - H)H, where H, is the component of H tangential to the surface,
represents a shearing force per unit area along the surface. As in the electrostatic
case, the magnitude of the surface force density |T|is wH?/2, and analogously, H
bisects the angle between T and n.

Example 8.9. Force on a Current Element. The stress tensor will be
used to obtain an expression for the force exerted on a linear current
element placed in a uniform field B,. Figure 8.18 illustrates a linear
conductor carrying a current I and located in a field B, directed per-
pendicular to it. To find the force acting on the conductor per unit
length we shall evaluate (8.51) over the surface of a cylinder of unit
length, radius 7, and concentric with the conductor. The magnetic field
that is required in (8.51) is in this case the sum of By = uoH, and the
field B, = pol/2nr due to the current I.

The field B, will be decomposed into x and y components first in order
to facilitate summation. We get

B¢ __ I'J'OI

pol o wel o
=5 % 271'7‘( a,sin ¢ + a, cos @)

and hence

I . I
B=B,+ By = —gi;a,sxn¢+ay(Bo+g£r—rcos¢)
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The unit normal n is equal to
n=a, =a,cos ¢ + a,sin ¢

and consequently the integrand in (8.51) becomes

pobl(n ) — % (1 E0n = [ = 5% a,sin g + 8, (Bo + 2L 105 ¢) |

2xr
( I sin ¢ cos ¢ 4 Hosiné + Ism2¢ cos ¢>>
T
_1
2

[ (I) sm2¢+<Bo+“°Icos ¢>(H0+Icos ¢>]

2nr
X (a;cos ¢ + a,sin ¢) (8.52)
The element of area dS is r d¢ for a unit length of cylinder. The expres-

sion (8.52) appears rather formidable to integrate but is in actual fact
rather easy to handle. As a matter of fact, because of the orthogonality

oo e BoﬂﬂyBa

= ~.

L -

| SRS PSR V)

<
Fic. 8.18. A conductor in a field B,.
property of the trigonometric functions, all terms in (8.52), when inte-

grated from zero to 2w, go to zero, except the terms in sin? ¢ or cos? ¢.
Thus (8.52) simplifies to give

= — mlHy 7 B, I I -
F = o azﬁ) sin Sy 22 |, €08 ¢dé = —a;lBo

(8.53)

Over the ends of the cylinder H-n = 0 and the integral of the term
—(no/2)(H - H)n vanishes, since n is directed in the opposite sense on
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time interval dt, the voltage induced in the toroid winding is

_ d‘p dB
& = % = —NS i
In order to increase I, the battery must do work against the induced

voltage of amount
dW = —§&Idt = NSIdB (8.54)

According to Ampére’s circuital law, the field H is given by H = NI/2ra.
Substituting into (8.54) gives

dW = 2raSH dB = VH dB (8.55)

where V' = 2raS is the volume of the torus. In changing the field B up
to B: along the path bc of the hysteresis loop, the work done by the
battery is

=V ﬁ) P HAB = V(S + 8y (8.56)

where S; + S is the area between the B axis and the portion bc of the
B-H curve. When we decrease B from B; to B, along the path cd, the
decreasing flux induces a voltage in the coil that tends to maintain the
current I. Thus work is done against the battery. The amount of work
done is

We=V BB’ HdB = —V8, (8.57)

where S, is the double-crosshatched area in Fig. 8.20. In reducing the
field to zero along the path de, the battery again does work, since the
direction of current flow is reversed but the induced voltage acts in the
same direction as for (8.57). The work done is

W3 = VSa ' (858)

where S; is the area indicated in Fig. 8.20. To cycle the material from e
to f and back up to b, the same amount of work is done as in bringing the
material from b to e along the upper half of the loop. The total net work
done by the battery in one cycle is therefore

W= 2V(Wy+ Wyt Wi) = 2V(S: + Sy — 8s + 85) = VS (8.59)

where S; = 2(S; + S;) is the area of the complete hysteresis loop.

Equation (8.59) shows that the area of the hysteresis loop represents
the work done per unit volume in cycling a ferromagnetic material around
the hysteresis loop once. This amount of energy is lost each cycle and is
dissipated as heat in the material. The energy loss is caused by the work
required to magnetize the material.



PROBLEMS 521

Chapter 8

8.1. (a) A rectangular loop is located near an in-
finite line current, as illustrated. If the current in A I cos wt
the linear conductor is I, cos wf, find the induced >V
voltage in the rectangular loop. T

a

(b) If the current in the linear conductor is a con-
stant I, find the induced voltage in the rectangular
loop as a function of z when the loop moves with a
velocity » away from the line current. )

(c) If the loop moves with velocity » away from the [ * ‘]‘7 b —
linear conductor and the current in the linear conduc-
tor is I,cos wt, what is the induced voltage in the
loop? Fic. P 8.1

8.2. A conducting sphere of radius ¢ moves with a constant velocity va, through a
uniform magnetic field B directed along the y axis. Show that an electric dipole field
given by :

_ vBa?
=

E (2 cos 0 a, + sin 0 ag)

exists around the sphere.

B
7
8.3. Alarge conducting sheet of copper (¢ = 5.8 X 10
mhos per meter) of thickness ¢ falls with a velocity »
through a uniform magnetic field B, as illustrated.
Show that a force F = gutB? per unit area resisting the |7
motion of the conductor exists.
lv
Fic. P 8.3.

8.4. A thin conducting spherical shell (radius a, thickness ¢, < a, conductivity o)
rotates about a diameter (z axis) at the rate  in the presence of a constant magnetic
field B directed normal to the axis of rotation (along y axis). Find the resultant cur-
rent flow in the spherical shell. Assume that the self-inductance of the sphere is-
negligible so that the current is determined only by the induced electric field and the
conductivity ¢. Since ¢, < a, each portion of the spherical surface may be considered
to be a plane surface locally.

Hint: Express the velocity of an arbitrary point on the sphere’s surface and the
field B in spherical components, and find the induced electric field along the surface.

Answer. For a stationary observer,

Is
Iy

1/2wastyB sin ¢
1/2waotyB cos 6 cos ¢

[
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Note that for steady-state conditions within the sphere

v-J=0 Jy=0atr =a,a + 1t

A secondary electric field will be induced and can be expressed as —V&. Since
V:vXB =0, V26 = 0. The boundary conditions on & are determined by those
imposed on J,.

8.5. For Prob. 8.4, show that cos ¢ sin? @ = C is the equation for the current flow
lines on the sphere. C is the constant which determines a particular member of the
family of lines.

8.6. For Prob. 8.4 let the magnetic field B be applied parallel to the axis of rotation,
and find the resultant current flowing in the spherical shell.

8.7. A circular conducting loop rotates about a diameter at an angular rate w in the
presence of a constant magnetic field B normal to the axis of rotation, as illustrated.

wt

Side view

Fi6. P 8.7

By making use of Faraday’s law and the definition of self-inductance, show that the
current flowing in the loop is given by

I = ma’Bw sin (vt — ¢)
= TRt DR

where a is the radius of the loop, R is its resistance, L is its self-inductance, and
tan ¢ = wL/R.
8.8. Show that in Prob. 8.7 the average power dissipated in the resistance R is

(ra’Bw)? R

P=pmr WD) 2

joules/sec

Show that a torque T resisting the rotation of the loop exists, where

(ra*)?B%w

T=® F e

sin (wt — ¢) sin w?

Hint: Consider the magnetic dipole moment of the loop.
Show that the average rate of doing work on the loop in keeping it rotating is equal
to the average rate at which energy is dissipated in the resistance B. As R goes to
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zero, show that the peak value of the current I approaches a constant independent of
w and that for B = 0 the average resisting torque vanishes.

8.9. A dielectric slab of thickness ¢ moves with a velocity v normal to an applied
uniform magnetic field B, as illustrated. Find the induced polarization charge within

and on the surface of the dielectric slab.
—=—

7 e
1

B N turns
Fi1c. P 8.9 Fic. P 8.10

8.10. A small loop antenna for use in a portable radio receiver consists of N turns
wound into a circular coil of radius a and height b < a. The input circuit to the radio
receiver requires that the inductance of the loop be 250 microhenrys. Using the
formula

_ 0.008a’n?

L b

microhenrys

(dimensions in centimeters, n = number of turns), find the number of turns N
required when a = 6 centimeters and b = 1 centimeter.

What is the voltage induced in the loop when a field H, = 0.1 microampere per
meter is present and the frequency is 1 megacycle per second? Assume H, normal to
the plane of the loop.

8.11. In place of an air-core loop as in Prob. 8.10, a ferrite rod antenna may be used
as illustrated. The rod is in the shape of a
prolate spheroid with a length 2d and a cross- i

2d '
section radius @ = 0.5 centimeter. The per- t.—- b —
meability of the ferrite is u = 200u,. The -

demagnetization factor D (see Probs. 7.15 and ’ ;D
7.16) is given by

Fic. P 8.11

a? 4d?
D=2—d2(ln?-—2) d>a

Find the number of turns N to give an in-
ductance of 250 microhenrys when d = 6 centimeters and b = 4 centimeters. Use
the formula

202

L= %0.039 nb microhenrys b>a
0

where . is given in Prob. 7.16 and @, b are in centimeters. What is the voltage



524 ELECTROMAGNETIC FIELDS

induced in the coil for the same applied field as in Prob. 8.10?7 Note that the flux
density in the core will be p.H,. What do you conclude regarding the merits of the
ferrite rod antenna vs. the air-core loop? The ferrite rod antenna is much smaller,
a factor of considerable importance for a portable radio receiver.

8.12. For the infinitely long thin conductor and the rectangular loop arranged as
illustrated, show that the mutual inductance is given by

= L
M= - o 0 G = 9% T 5T ¥ B

Loop
1 /%
I
2 R ¢

_L Top view

(R 2_ cz)l/z

F1a. P 8.12

8.13. For Prob. 8.12 show that the component of force acting on the loop in the
direction of R increasing is given by

_ roal 1, bR? — 2bc? + b2(R% — cH)%
2rR(R? — ¢?)% 2b(R* — c?)¥ 4 b2 + R?

F

when c is held constant. What is the component of force acting when R is held con-
stant and c is allowed to vary?

8.14. A toroidal coil of mean radius b and cross-sectional radius a consists of N
closely wound turns. Show that its self-inductance is given by

_ uoN?a?

L 2b

when b >>a. If the variation in B over the cross section is taken into account, show
that

L = poN?b — (b* — a?)¥]

8.156. Two circular loops of radii r, and r; carry currents I; and I.. The loops are
coplanar and separated by a large distance B. By using a dipole approximation for
the magnetic field set up by one loop at the position of the second loop, obtain an
expression for the mutual inductance between the two loops. What is the force
existing between the two loops?
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8.16. Design a winding for a U-shaped
electromagnet capable of lifting a 1,000~
kilogram mass. The cross-section area of
each leg is to be 20 square centimeters.
The air gap between the electromagnet and
the lower bar is 0.1 millimeter, as illus-
trated. What is the required number of
ampere-turns when the magnet mean
length is 30 centimeters and its effective
relative permeability is 4,000? Assume
that the reluctance of the iron bar is
negligible. AR

1000
kg

Fic. P 8.16

_0.1mm gap

8.17. A round conductor of radius r, is bent into a circular loop of mean radius a.
A current I flows in the circuit. Determine if a compressional or tension force acts on
the conductor, and also find the magnitude of the force.



