CHAPTER 7

MAGNETIC FIELD IN MATERIAL BODIES

According to the atomic theory, all matter is composed of a number of
basic elementary particles of which the electron, proton, and neutron are
perhaps the best known. These particles combine to form atoms, which
we may, for our present purpose, think of as a number of neutrons and
protons collected together into a central heavy core around which a
number of electrons rotate along closed .orbital paths. The electrons
rotating in orbital paths are equivalent to circulating currents on an
atomic scale. We may associate with each electron orbit a magnetic
dipole moment in order to account for the external effects of the material
body. The total dipole moment of an atom due to the orbital motion of
electrons is called the orbital magnetic moment and is the vector sum of
the moments of each orbit with its circulating electron. For a single
electron with an electronic charge e rotating around a circular orbit of
radius r and with a velocity v, the average circulating current is equal to
the rate of movement of charge ev divided by the length 2xr of the orbit.
Thus the magnetic dipole moment of the circulating electron is

m = circulating current X area of loop

=% = ’ 7.1)

In addition to the orbital magnetic moment, the electron itself is
endowed with an intrinsic magnetic moment which plays an important
role in the magnetic properties of material bodies. The physical struc-
ture of the electron that gives rise to its characteristic properties mass,
charge, and mechanical and magnetic moment is not known, but this does
not prevent us from discussing the external effects produced by these
intrinsic properties. The presence of a mechanical and a magnetic
moment has led physicists to think of the electron as having a spin, and
its magnetic moment is therefore referred to as the spin magnetic moment.

The above discussion was introduced in order to provide some insight
into the essential properties of matter which give rise to an interaction
with externally applied magnetic fields. A more complete account of the
physics of the magnetic properties of materials is given in a later section.
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7.1. Magnetic Dipole Polarization per Unit Volume

Consider a material body of volume V and bounded by a surface S, asin
Fig. 7.1a. In view of our earlier discussion we may think of this material
body as consisting of a large number of small circulating current loops
having a magnetic dipole moment m. In the absence of any external
applied magnetic field By, the dipoles of individual atoms are randomly
orientated and the body as a whole will have a zero net magnetic moment
(this is not true for permanent magnets,
which have a nonzero moment even in
the absence of applied external fields).

When we apply an external magnetic
field By, two things happen:

1. All atoms which have a nonzero
magnetic moment tend to have their
magnetic dipoles aligned with the ap-
plied field in accordance with the torque
relations for magnetic dipoles, as dis- @
cussed in Sec. 6.4.

2. Even if each atom has a zero
moment, the presence of an external
field distorts the electron orbits and I /
thus creates or induces magnetic dipole ”
moments. e M,

In many materials the individual < pad
atoms do not have an intrinsic mag- 7 Jid
netic dipole moment, so that only the Hi dy
second effect above takes place when dz z
an external field is applied. When in- ®
duced dil,mles gre prOd}lc,ed’ they a}re F1g. 7.1. A material body and the
always aligned in opposition to the in- equivalent circulating atomic cur-
ducing external field. This resultsina rents.
net magnetic flux density in the interior
of the material body, which is less than that of the external field itself.
Such materials are referred to as diamagnetic, and the effects as dia-
magnetism. Some of the materials in this class are copper, bismuth, zinc,
silver, lead, and mercury.

For materials with constituent atoms having nonzero dipole moments,
both of the above effects are present when an external field is applied.
However, the resultant dipole moment is always in the general direction of
the applied field because the first effect overshadows that of the induced
dipoles. Materials in this class are known as paramagnetic materials,
and the effect as paramagnetism. In these materials the aligned dipoles
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contribute a net flux in the same direction as that of the applied field, and
the resultant flux density in the interior of the material body is increased.
Both diamagnetic and paramagnetic effects are usually very small.
There does, however, exist a class of materials which exhibit very large
paramagnetic effects, and these are referred to as ferromagnetic materials.
Examples of ferromagnetic materials are iron, nickel, and cobalt. The
properties of such materials will be considered in greater detail later.
When an external field is applied to a material body we may describe
the external effects produced by the body by assigning to the material a
volume distribution of magnetic dipoles. If m is the magnetic dipole
moment of an individual atom or molecule and there are N such effective
dipoles per unit volume, then the magnetic dipole polarization M per
unit volume is given by
M = Nm amp/mt (7.2)

Having assigned this dipole polarization to the material, we may evaluate
the external effects of the material body without any further consideration
as to the exact physical process responsible for the existence of such mag-
netic dipoles.

7.2. Equivalent Volume and Surface Polarization Currents

Using (6.25), the vector potential A at a point (z,y,2) due to an infinites-
imal magnetic dipole m at («/,y',2’) a distance R away is given by

= K m
A—47erR

The contribution to the vector potential from the magnetic polarization
of a material body will be given by an integral over the body of the con-
tribution from each elementary dipole element M dV’. Thus we have

A(zy,2) = i—; /V vV X 1\—; av’ (7.3)

as illustrated in Fig. 7.2.

Since the physical basis of the magnetic dipole moment is the circulating
atomic currents, it would appear that we should be able to describe the
field produced by a magnetized body in terms of equivalent volume and
surface currents. This is indeed the case, and by a suitable juggling of
the expression (7.3), it can be put into a form that shows this explicitly.

t Because of the very limited size of the alphabet (both English and Greek) it is
sometimes necessary that the same letter mean several things. In Chap. 6, the letter
M designated the total dipole moment of an arbitrary current loop. For the remain-
der of the book, beginning in this chapter, M represents the dipole moment per unit
volume. With a little care it should be possible to avoid confusing the two.
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The desired result, which we shall prove, is that

! / A

Almys) = 1 ﬁ TXVPEY ) gy 4 = -“%‘ s (7.4)
where n is the unit outward normal to the surface S of the body, and V’
indicates differentiation with respect to the source variables z’, 3/, 2. If
we compare (7.4) with the expression for the vector potential from a dis-
tribution of true currents, we are led to interpret the term V' X M in the
volume integral as an equivalent volume density of polarization current
J» and similarly to interpret the term M X n in the surface integral as the
equivalent surface polarization current J.,. Hence we may write

VXM=], (7.5a)
MXn=Jn (7.5b)

= (/ J"'dV’ J""dS’) (7.5¢)

Equations (7.5a) and (7‘5b) are more than mathematical equivalents
in that they represent net effective, though inaccessible, currents. These
currents arise when adjacent molecu-
lar current loops do not quite cancel

and (7.4) becomes

each other. This will take place if A
the magnetization is inhomogeneous, R 3.2)
including, particularly, the discon-

tinuity at the boundary of a magnetic &

material. Figure 7.1b illustrates

three adjacent molecular current

loops, which, for simplicity, are Fic. 7.2. Illustration of evaluation of
chosen to be square and to lie in  vector potential from a volume distri-
the yz plane. They represent the z bution of magnetic dipoles.
component of the net magnetic

moment per unit volume for the cube with sides dz, dy, and dz. If M
is the dipole moment per unit volume, then

m = Mdzdydz = IdS

is the moment of a molecular loop of area dS with a net circulating current
I. Applying this to loops 1, 2, and 3 in Fig. 7.1b leads to

M, dz dy dz
dy dz

I2=< -I— zdy)dx-—Md + zdxdy

I]_-':— =M,dx

—(M + ’dz) —de+ ’dxdz
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A net current flows in the z direction if I, # I and in the y direction if
I, # I;. The net current is given by

M, oM, '
I, = — 3y dz dy I, = % dz dz
or in terms of a current density,
oM, _ oM,
Jo= - S Ty = 3z

The remaining components follow from cyclic permutation; that is, we
replace z by y, y by 2, and 2 by z, and the final result is simply (7.5a).
Consequently, that expression represents the physical picture presented
here, of a net effective molecular current due to incomplete cancellation
of adjacent current loops in the interior of a magnetizable body. A
similar demonstration would show the physical basis for (7.5b).

If the magnetization of the body is uniform, M is constant throughout,
the curl of M is zero, and the equivalent volume polarization current is
zero. The surface polarization current vanishes only when M is per-
pendicular to the surface so that M X n is zero.

Derivation of Eq. (7.4)
From (7.3) we have
= PO M(z',y',2") A Pt (_1_) '
A(x,y,z) ir v VX "——R av’ = . /V M(z Y ;z) XV B 'A%
since V = a, 8/0z + a, /9y + a. 8/9z does not operate on M(z",y’,2"). Now
—M(z,y",2") X V(1/R) = M(z,y',2") X V'(1/R)

M@'y'2) _ 1 ( 1 )
’ i SedP LA LA v 2] ! ! W N
and v X i RV X M(z',y',2) — M XV B
so that we obtain
— ko VXM r _ Mo ’ M ’
A= 4«/1; XMay o [ v x g av (7.6)
If we make use of the following vector identity,
[ oMy o MXn
4 VV X R av' = 4T 955 R a8 @7

then (7.6) is converted into (7.4), which is the desired relation. Equation (7.7) can
be thought of as a form of Stokes’ theorem; a proof is given below.

Let C be a constant vector, and F a variable vector function. Then we have
v - [F(z,y,2') XCl= (V" XF)-C— (v XC)+F=C-V XF, since C is a con-
stant vector and v/ X C = 0. Using this result and applying the divergence theorem
permits us to establish the following vector relations, namely,

/Vv’ (F x C) dV"’ =9§SFxc-nds' =co/Vv' X F v’

= —C-S(;SF X ndS (7.8)
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where F X C'n = —C+F X n has also been used. The constant vector C is arbi-

trary, so that the result above can hold only if / v V. XFdV' = — 963 F X ndS'.

If we now let F be equal to M/R, the relation (7.7) follows at once and the proof of
the equivalence of (7.3) and (7.4) is completed.

7.3. The Magnetic Field Intensity H

When dealing with dielectric bodies in the presence of electrostatic
fields, it was convenient to introduce the displacement vector D in order
to eliminate the necessity of taking the electric dipole polarization P of
the material into account explicitly. A similar procedure is used for the
magnetic case.

Let us consider a material body of infinite extent in which a true cur-
rent distribution J exists. This current gives rise to a partial magnetic
field Bo, which in turn gives rise to a magnetic polarization of the mate-
rial. The secondary field B; from the magnetic dipole polarization may
be evaluated from the equivalent volume polarization current J,. The
total magnetic field is thus given by

B=B+B:=VXA +VXA=VXA

where A, is the vector potential from the true current J, and A; arises
from the polarization current J,. Introducing the current sources into
the expression for A results in T47
Ko + Jm '
B—VXZ;/V B av (7.9)
In Sec. 6.6 it was shown that the curl of B was given by V X B = uoJ
for currents located in vacuum. The derivation was performed by taking
the curl of both sides of an expression similar to (7.9), replacingV X V X by
VV . —V?and then using the singularity property of the function v2(1/R)
to obtain the final result. If we take the curl of (7.9), we have a com-
pletely analogous development, the only difference being that the term
J + J appears instead of J. Therefore (7.9) leads to

VX B = ulJ + Jn) (7.10)

This result should not surprise us since the separation of current into
the components J and J.. is, in a sense, an artifice. We have seen that
J» has all the physical characteristics of current flow, and if measurements
were made on an atomic scale, there would be no basis for distinguishing
Jm from J. Consequently, (7.10) may also be thought of as evolving
from (6.41) by generalizing the total current to include the sum of the
true current J and magnetization current J, = V X M. The viewpoint
noted here is quite similar to that presented in electrostatics. In the
absence of material bodies, the electric field E is related to true charge,
just as magnetic field is related to true current. The presence of material
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bodies can be considered in terms of equivalent sources that are set up,
sources which act in every way similarly to true sources. In elec-
trostatics these are equivalent polarization charges (p, = —V-P,
pep = 0+ P), while in magnetostatics they are equivalent magnetization
currents as given in (7.5a) and (7.5b).

Since the equivalent volume polarization current J,, is equal to the curl
of the magnetic dipole polarization M, in place of (7.10) we also have
VXB=puJ+uwVXM, or

v X (% - M) =7 (7.11)

The vector B/uy — M on the left-hand side of (7.11) has as its source
only the true current J. Therefore, to eliminate the necessity of dealing
directly with the polarization M, a new vector H is introduced by the
relation

B

H==-M (7.12)

Ko
The vector function H is called the magnetic-field-intensity vector, and
its (vortex) source is the true current distribution J; that is,

VXH=] (7.13)

Note that V- H = —V - M, so that an irrotational component of H exists
for which the sources correspond, mathematically, to an equivalent mag-
netic charge. The unit for H is amperes per meter.

For most materials (ferromagnetic materials excluded) it is found that
the polarization M is directly proportional to the applied external field
By, and hence, because of the linear relation (7.12), M is then directly
proportional to H also. Following the conventional procedure, we may
therefore write

M = x,.H (7.14)

where the dimensionless constant of proportionality x. is called the mag-
netic susceptibility of the material. It is a measure of how susceptible
the material is to polarization by an applied field. For diamagnetic
materials x is negative, while for paramagnetic materials it is positive.
A relation like (7.14) may be written for ferromagnetic materials also, but
for these materials x.. is a function of the field intensity H as well as the
past magnetization history of the material.
If (7.14) is substituted into (7.12), we get

B = po(l + xm)H = pH (7.15)

where p = po(1 + xm) and is called the magnetic permeability of the
material. In practice, the permeability p is determined experimentally.
When it is known, the effects of material bodies mav be accounted for by
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using (7.13) to evaluate H and (7.15) to find the total net magnetic flux
in the body. This process eliminates the necessity of takmg the dipole
polarization M into account explicitly.

In the interior of a material body both B and M vary rapidly in the
region between individual atoms or molecules. However, in any prac-
tical procedure that might be used to measure B or M, the field is sampled
in a space containing many atoms. Consequently, what is important
are the space-average fields, where the average is taken over the domain
of many atoms but which at the same time is small from the macroscopic
viewpoint. Hence, in future work, when we speak of the polarization
M and the total field B, such a space average is assumed. This con-
cept is equivalent to the one introduced in discussing polarization in
electrostatics.

For paramagnetic and diamagnetic materials p differs from uo by
an amount which is entirely negligible for many practical situations;
e.g., for bismuth, which is the strongest diamagnetic material known,
g = 0.99983uo, while for aluminum p = 1.00002y,. For ferromagnetic
materials u is much greater than uo; for example, for silicon iron
w = 7,000u; for permalloy 78 u is about 10° greater than uo.  Alloys with
even larger values of u exist. It must be kept in mind, however, that a
unique value for u does not exist for ferromagnetic materials because of
strong nonlinearities. In ferromagnetic materials the relation between
B and H is usually presented graphically in the form of a curve known as
the hysteresis curve, or B-H curve. The nature of this relationship is
discussed in the next section from an engineering viewpoint. The
physical processes which give rise to the hysteresis curve are considered
in Sec. 7.8.

7.4. B-H Curve

Consider a specimen of ferromagnetic material in the shape of a toroid,
as in Fig. 7.3. The cross-section radius is ro, and the mean toroid radius

2—)

Cross section

Fia. 7.3. A toroidal specimen of ferromagnetic material.
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isd. The toroid is wound uniformly with N turns of wire through which
an adjustable current I flows. The cross-sectional radius ry is assumed
to be much smaller than the toroid radius d, so that the length of any
closed circumferential path within the toroid may be taken as 2rd.

The magnetic field intensity H in the interior is essentially uniform
over the cross section and circumferentially directed when rgis small com-
pared with d. The magnitude of H may be found from Ampére’s circuital
law. Starting with V X H = J, an application of Stokes’ law gives

/vaH-ds=9§CH-d1=[SJ-ds

If the line integral is taken along the path C in the interior of the toroid,
as shown in Fig. 7.3, we get

¢0H-dl — 2rdH = NI

since the total current linked by C, that is, cutting through a plane surface
with boundary C, is NI. Hence the field intensity inside the toroid is
H = NI/2xd and may be varied by changing the current I.

If the ferromagnetic material is in an unmagnetized state (this condi-
tion can be arrived at by reversing the current I several times while at
the same time gradually reducing the current magnitude to zero), it is
found that as I, and hence H, is increased, the flux density B in the
specimen increases from zero along a curve such as P;P, in Fig. 7.4. If
the current is now reduced from I, to —I; so as to change H from H, to
— H,, the flux density B will change according to the pattern illustrated
by the curve PyP3PsPs. Increasing H from —H,; to H, again causes the
flux density to return to its value at the point P, along the curve P;PgP..
The resultant closed curve P.P3;PsP¢P, is called a hysteresis curve.
Further reversal of the field H between H, and —H; causes the same
hysteresis loop to be retraced. The initial part of the curve from P; to P,
is called the initial magnetization curve. When H is reduced from Hj,
a value of H = 0 is reached for which the corresponding flux density B
is nonzero (i.e., at P3). The particular value B = B, at the point H = 0
is called the remanent flux density, i.e., the remaining flux density in the
material. The value of H required to reduce B to zero is —H¢ and is
called the coercive force and is the value of H at the point P4 on the curve.

If H is increased from H; to H, and then reversed between the limits
H; and —H,, a new hysteresis loop with extremities P; and Ps is traced
out. When the magnitude of H increases beyond a certain range, the
magnetization M does not increase any further because the material
becomes magnetically saturated. In this condition all the magnetic
dipoles are aligned with the field. In the saturated condition incre-
mental changes in H cause changes in B according to their vacuum rela-
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tions. For the hysteresis loop that brings the material into saturation,
the value of remanent flux density is called the retentivity and the value
of the field intensity H required to reduce B to zero is called the coercivity
of the material. In the next chapter it will be shown that the area of
the hysteresis loop is proportional to the energy dissipated in cycling the
material around the hysteresis loop. This energy is dissipated as heat in
the material.

The ratio of B to H is the slope of a line joining the origin to a point on
the hysteresis curve and gives the permeability u. Clearly, there is no

B

F1c. 7.4. A typical hysteresis (B-H) curve for a ferromagnetic material.

unique value of permeability. The tangent to the hysteresis curve at
any particular point gives the differential permeability at that point.
However, if H is varied between the limits H; + AH and H, — AH, a
new minor hysteresis loop centered about H, is traced out so that the
differential permeability has little significance. The slope of the line
joining the tips of the minor hysteresis loop is called the incremental
permeability. It is the effective permeability for a small a-c current
superposed on a d-c current.

7.56. Boundary Conditions for B and H

In the discussion leading to the introduction of the field intensity
vector H, we considered an infinite medium and thereby avoided con-
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sideration of the equivalent surface polarization current J.. = M X n.
Consequently, the relationships that have been developed are applicable
everywhere within or external to-a finite body,
Material és but for points at the surface, either they must
body 4 vacuum be modified to take account of the surface
PR ') magnetization current, or a limiting procedure
7 adopted that includes the discontinuity in M.
Rather than deal with the surface currents ex-
plicitly, we shall demonstrate that they may be
H, T g Al accounted for by specifying certain boundary con-
¢ 1 ditions for the field vectors B and H at the
c boundary between two different media. This
—t procedure duplicates that adopted in electrostatics
w_[ ].__ where the effect of surface polarization charge on
the E and D fields was considered in terms of

1 >n certain boundary conditions.
& Consider a material body with a permeability g,

different from o and located in vacuum, as in Fig,.
7.5. Let Hy be the component of H which is
F;ng'idgftergiﬁggg tangent to the surface S on the vacuum side of
gn th: ta.ngyential com. the boundary, and let Hy be the tangential com-
ponent of H. ponent of H at the surface in the interior of the
body. From (7.13) we have VX H = J. The
integral form of this law is obtained by applying Stokes’ theorem and leads

to Ampére’s circuital law for H; that is,
fASVXH-dS=9§CH-dl=/ASJ-dS (7.16)

where C is the contour bounding the open surface AS. Let C be a small
loop with sides parallel to the boundary surface S in Fig. 7.5 and an infini-

tesimal distance on either side. Applying (7.16) we have 56 c H.d =0,

if, as we suppose, no true current is enclosed by the contour. For the
small rectangular path illustrated, whose length is Al, the line integral
gives essentially Hq Al — Hy Al = 0, or

Hu = Hzt (7-17)

since the contribution from the ends is negligible; that is, the width w of
the rectangular path can be made as small as we wish without affecting
Al.  This relation tells us that the tangential magnetic field is continuous
across a surface discontinuity separating a material body and vacuum.
The same result is obviously also true at the boundary between two
different material bodies.
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Since B = pH, the corresponding boundary conditions for the tangential
components of B are
By _ By

o ” (7.18)

Thus the tangential components of B are not continuous since p and p,
are not equal. At first we might be somewhat puzzled over this result,
but it can be explained quite readily. In fact, the tangential component
of B is discontinuous because of the presence of the surface polarization
current Jn, = M X n. This result may be demonstrated as follows.
We have

B, = MoHl

Bz = MH2 = #O(Hz + M)

and subtracting the tangential components of B gives
By — Blt = #O(Hzt - Hlt) + I-'-oMt = ﬂoMt (7~19)

since Hy = Hy, from (7.17). The polarization vector M may be written
as the sum of a tangential component M, and a normal component M,.
The cross product of M with the surface normal n

thus gives S

MXn=M,Xn+M,.Xn=M:Xn=Jm: # Fo

The magnitude of J., is M, since M, and n are per-
pendicular. Thus the tangential components of B
are discontinuous by an amount equal to uo times the
magnitude of the polarization current Jn.,., With B
reference to Fig. 7.6, let the surface polarization
current flow into the paper. The field produced
by this current sheet is denoted by B,, and the
field produced by all other current sources as Bo.
The field B, is continuous across the surface S, but
the field B, is oppositely directed on the two sides
of the current sheet. It is for this reason that the
tangential component of the total field By + B, is Fic.7.6. Discontinuity
discontinuous across S. in thettanfge]r;n:l colr.r;:
A further demonstration of the discontinuity in B 33’0’:3 b; the poﬁar‘iw_
may be had by applying (7.10) to the contour tion surface current.
shown in Fig. 7.5. In this case the current term
in the right-hand side of (7.10) is the total current, which includes polari-
zation currents. Consequently, in place of the expression leading to
(7.17), we get By Al — By, Al = poJ ., Al, and this reduces to the result of
(7.19). Note that since J ., is a surface current, it does not disappear no

o
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matter how small the loop width w is allowed to get. The boundary
conditions (7.17) and (7.18) take into account the effects of the surface
polarization current, so that we do not need to include these explicitly
when we are dealing with the interaction of material bodies with magnetic
fields.

To determine the boundary conditions on the normal components of B
and H, we note that since B is always equal to the curl of a vector poten-
tial A, the divergence of B is always zero; that is, V- B = 0. An applica-
tion of the divergence theorem gives

/Vv.BdV=[SB-ds=0

We now apply this result to the closed surface of a small coin-shaped box
with end faces on adjacent sides of the surface S of the material body, asin
Fig. 7.7. The height w of the box is
assumed to be so small that the mag-
netic flux through the side is negligible.
Since the total flux through the closed
surface is zero, just as much flux leaves
face 1 as enters in through face 2.
Thus By, ASo = B, AS,, or

B, = Baa (7.20)

Material

body Vacuum

Ko

The corresponding boundary con-
dition on the normal component of H
is obtained by using the relationship
between B and H to get

HOHln = qun (721)

o It is seen that the normal component
Fic. 7.7. Derivation of boundary £ B i . but not for th
conditions for the normal component ~ © 1s continuous, but no sq or the
of B. normal component of H. This result
for the normal component of H is the
consequence of the magnetic polarization of the material. We shall
show later that we can think of the magnetic polarization as equiva-
lent to a magnetic charge distribution in analogy with the similar situa-
tion in electrostatics. With this alternative viewpoint, the discontinuity
in H arises because of an equivalent surface layer of fictitious magnetic
charge.

Refraction of Magnetic Lines of Flux

At a boundary surface between two different materials with permeabili-
ties p and p,, the boundary conditions on B and H are
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Bin = Bsn (7.22q)
u2By = p1Ba, (7.22b)
Hy = Hy © (7.22¢)
piH 1, = paHon (7.22d)

These boundary equations are of a similar nature to those occurring in
electrostatics as well as those occurring in the study of stationary current
flow fields. For this reason one expects to have a refraction or bending
of the flux lines associated with B at a surface separating two different
materials.

Thus let us consider the geometry shown in Fig. 7.8, where the field B
makes the angles 6, and 6, with the interface normal in mediums 1 and 2,
respectively. In accord with (7.22) we have

B, cos 0, = B, cos 0, B,
[.LzBl sin 01 = p,le sin 02
. .. . B<u, H2
It is possible to eliminate B; and B; by taking
the quotient of the two equations, with the result 6.
that u, tan 8; = u, tan 65, or !
B,

tan 02 = %tan 01 (723)
1

Equation (7.23) shows that the magnetic lux Fis. 7.8. Refraction of
lines are bent away from the normal in the magnetic flux lines.
medium with the highest value of permeability.

If medium 2 is a ferromagnetic material and medium 1 is vacuum or air,
pe is much greater than u; = wo. In this case tan 6, is very small and the
flux lines are for all practical purposes normal to the surface on the air
side, provided 8, does not equal exactly 90°.

Discontinuity in H at a Current Sheet

In this section we shall examine the behavior of the magnetic field H
in the vicinity of a thin sheet of conduction current. Such current sheets
are of particular importance in the general boundary-value problem for
time-varying magnetic fields. The surface of a closely wound solenoid
also essentially constitutes a surface current sheet. Applying the right-
hand rule, i.e., with the thumb of the right hand turned in the direction of
current flow the fingers of the right hand are along the direction of the
magnetic lines of flux, we see that the magnetic field is perpendicular to
the current flow lines, as illustrated in Fig. 7.9. The line integral of H
around the small contour C is equal to the total current passing through
the contour C, that is, passing through the surface AS,. If the enclosed
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current has a volume density J, we obtain
p H-a=[ 7-as
Because the contour is of infinitesimal size and we assume h << Al,

(Hi — Hy) Al = J AS, (7.24)

since in the contour integral the contribution from the ends is negligible.
If we let the thickness h of the current sheet tend to zero and increase the
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Fig. 7.9. Illustration of current sheets. (a) A uniform current sheet, (b) cross section
of a solenoid.

volume density of current J so that the total enclosed current per unit

length remains constant, i.e.,
limhJ = J,
h—0
we obtain a true surface current sheet with a current J, amperes per

meter. In the limit, (7.24) gives

(Hy — Hay) Al = lim hJ é,%’
h—0
= J, Al
or Hu b Hzg = J, R (725)

since ASy = h Al. Thus the tangential component of H is discontinuous
across a current sheet by an amount equal to the surface current density.
This behavior is similar to that noted for the tangential component of B
at a polarization current sheet. In vector form (7.25) may be written as

nX H; —Hy,) =], (7.26)

since n X H selects the tangential component of H. In (7.26) n is the
unit outward normal to the current sheet.

The normal component of H is continuous across the current sheet
since the normal component of B is, and H = B/u, on both sides.
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Example 7.1. Far Field from a Long Solenoid. Consider a long uni-
form solenoid having N turns per meter and carrying a current I , as in
Fig. 7.10. The solenoid is of length L and has a radius a. - We choose
the coordinate system with the z axis coinciding with the axis of the
solenoid.

We wish to determine the field at the point (z,y,2), which is at a much
greater distance from the solenoid than the solenoid radius a. We may
treat the solenoid as a stack of current loops of total height L. For a

Y2

x

Fi16. 7.10. A long uniform solenoid.

section of length dz’ there are N d2’ turns, each with a current I, so that
the dipole moment of such a section is

m = NI dZ ra’a, (7.27)

We could now proceed to compute the total vector potential set up by
integrating over the length of the solenoid the contribution from each
infinitesimal section. However, since we are looking for the field B, we
shall use the relation (6.26) of Sec. 6.4 and find B directly. The field dB
at a long distance from a dipole m is given by

“&ol= )

where 7, is the distance from the center of the dipole at 2’ to the field
point (x,y,2). The total field B is given by

L/ L/:
B=£3v/ ; m-v<l>dz' =ﬂv/ ? v(l>.a,NIm2dz' (7.28)

dr  J-1s2 Ty dr * J-1;2 \11



242 ELECTROMAGNETIC PIBLOS [Crar. 7

Now V(1/ry) = —ry/ri®, where r; = a,x + a,y + a,(¢ — #). Hence
(7.28) gives

B — -—Nltzzm)vfl‘/2 (z —2)d?
4 —p2 (et + Yyt + (2 — 2)YPH
—NTa%u L/2

i Cl o A ol CRa L
—L/2

_ —NlIa’u [V <l):|l:/2 _ “NIGZMOV 11

4 ri) |-rs2 4 Ry, Ry
where R; and R; are the distances from the ends of the solenoid to the
field point, as in Fig. 7.10. We may approximate R; and R, as follows:

Ryl = [xz + 2+ (z _ %)z]—%

I\ ~1
= [xf* + ¥+ 2%+ (—2~> - chosa]
= (r? — Lr cos 0)~%

~ r1 (1 +élircos 0)

where z is replaced by r cos 6, (I/2)? is dropped in comparison with 72, and
the binomial expansion used. We similarly find that

L
-1 ~ p—1 —_—
R1l'=r <1 5 cos 0)
and hence

_ —poNIa®L cos 0\ _ po 2 cos 6 sin 64
B = 1 V( rZ)-;;M(a,——;a———i—ag r3> (7.29)

where N Ima?L, the total dipole moment of the solenoid, is designated by
M. The relation (7.29) is of the same form as that derived in Sec. 6.4 for
a small elementary magnetic dipole. It is, of course, valid only at a dis-
tance r that is large compared with the length L.

Example 7.2. Far Field from a Long Cylindrical Bar Magnet. Figure
7.11 illustrates a cylindrical bar magnet of length L and radius a. The
magnet is assumed to be permanently magnetized with a uniform mag-
netic dipole moment M, per unit volume, where M,is directed in the posi-
tive 2z direction.

The external field produced by the bar magnet may be computed in
terms of the equivalent polarization currents. A cross section of the
magnet is shown in Fig. 7.11b and illustrates the nature of the equivalent
atomic circulating currents. In the interior the volume density of polar-
ization current is given by J,, = V X M,. If M, is constant, J., vanishes.
This result is intuitively obvious from Fig. 7.11b, since with M, constant,
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the circulating current loops all carry the same current, and hence all the
interior currents effectively cancel. If M, were not uniform throughout,
there would be incomplete cancellation from one loop to the next and a
residual volume current density would be left, as we have already dis-
cussed. Along the outer boundary there is no cancellation of the cur-
rents of each adjacent small loop. Thus all the individual current loops
combine to produce a net surface polarization current flowing along the
surface of the bar magnet. The value of this current has already been

12

02

A

x Nl
() I'T'l ()

F16.7.11. (@) A cylinder bar magnet; (b) enlarged cross section illustrating equivalent
circulating polarization currents.

determined to equal My X n. Since M, = a,M, and n = a,, the surface
current is given by ‘

Joms =My Xn=2Mpa, Xa, = Moa¢

and flows circumferentially around the cylindrical bar magnet. It isnow
apparent that the field from the bar magnet will be the same as that from
an equivalent solenoid having an effective surface current of M, amperes
per meter. A closely wound solenoid of N turns per meter carrying a
current I would be equivalent to the bar magnet if NI = M, The
total moment of the magnet is ma?LM, = M, and substitution of this
into (7.29) gives the resultant field.

7.6. Scalar Potential for H

In the introduction to Chap. 6 it was pointed out that the early theory
of magnetism developed along lines parallel to that of electrostatics.
This alternative theory is useful for computing the fields produced by
magnetized bodies, and it will therefore be worthwhile to examine it in
some detail.
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Let us consider a permanently magnetized body of volume V bounded
by a surface S and located in a region of space where the true conduction
current density J is zero. Since J is zero, we have VX H = J = 0 also.
But this is just the condition that the vector field may be derived from
the gradient of a scalar potential. Thus let

H=-V¢, (7.30)

where ®,, is called the magnetic scalar potential. The negative sign in
(7.30) is chosen only to make the analogy with electrostatics a closer one.
A field H determined by (7.30) will have zero curl since V X V&, is
identically zero.

In electrostatics the source for the scalar potential is the charge density
p. In magnetostatics we do not have a physical magnetic charge (or unit
magnetic pole), but we are nevertheless able to recast our expressions for
the magnetic field produced by magnetic dipole polarization of a body
into a form which gives the potential ®, in terms of equivalent magnetic

charges.
According to (6.26) of Sec. 6.4, the field B from a single isolated mag-

netic dipole m is given by
VR AW |
By = 2 {v[v- BELA | e (B) s

At all points except B = 0 we have V3(1/R) = 0, so that if we restrict
attention to the fields external to a magnetized body, the second term is
absent. If the body has a polarization M per unit volume, the field from
the dipoles in a volume element dV’ at (2',y',2’) is given by

_4aB _ 1 My 20 | gy
dH_“o_%v[v 2 ]dV

The total field H is then

1 M,
foLo([ v Mar)

1 1\ ..

41FV[/VM-V<R>dV]

If we compare this with (7.30), we see that the scalar potential &, is given
by

5, = — - M. v( )dV' (7.32)
4z

Now

’ ’ M _ 4 _]'_ _1_ o
(-—)=—V(R) and V-(TB)— Y R>+RV M

M
_ (Y M _1y.
and hence —M . V(R)—M~V<->—V i RV M
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Substituting into (7.32) we get

1 , M (VM
®, = 41(/v v /V———dV)

_ 1 M:n_, [(V-M_,
“G(?SS_R“dS /V . dV) (7.33)

after converting the first volume integral to a surface integral by means
of the divergence theorem. We now compare (7.33) with the expression
for the scalar potential ® due to a volume and a surface distribution of

charge in electrostatics and are thus led to interpret| M - njas an e?uiv-

alent surface density of magnetic charge pn, and to interpret +V’ - M |as
equivalent to a volume density of magnetic charge p,. It must be
stressed that this equivalence is a purely mathematical one and does not
prove a physical existence of magnetic charge.

The result obtained in (7.33) can also be derived by analogy with the
relationships found for the electrostatic field. We recall that the E field
due only to a polarization source satisfies the following equations:

v-P

(]

VXE=0 V-E=— (7.34a)

where P is the dipole moment per unit volume. Under these conditions
it is also true, according to (2.97), that E is related to the sources that
produce it by

7 P.n ’
E=- 4m (/—“‘”’ §5STdS>

Now if the only source of magnetic field is a permanent magnetization
M, the H field satisfies

VXH=0 V.-H=-V-M (7.34b)

If we compare (7.34a) with (7.34b), it is noted that the equations are
intrinsically the same, it being necessary only to exchange E for H and
P/e¢; for M. Now the Helmholtz theorem states that a vector field is
completely determined by its divergence and curl. Thus (7.34a) com-
pletely specifies E, as does (7.34b) specify H. Then since E also satisfies
(2.97), it must be that the latter inevitably follows from (7.34a). Conse-
quently, H must also satisfy such an equation, it being necessary only to
replace E by H and P/e, by M. If we carry out this substitution, the
result obtained is precisely that given by (7.33).

The above is an excellent illustration of the power of the Helmholtz
theorem. This theorem enables us to recognize basic common properties
of vector fields independent of their individual physical properties. The
results (7.33) and (2.97) are essentially embodied in the general vector
formulation of (1.103).
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The magnetic field intensity H is obtained by taking the negative
gradient of (7.33) with respect to the coordinates z, y, z of the field point.
The field B is given by B = yoH. It is important to note that these
results hold only for points exterior to the magnetized body since the term
— (po/4m)V*(m/R) was dropped in (7.31). In the interior of the body
@, is still given by (7.32) and H by (7.30), as we shall show presently.
However, the relation between B and H is

B = uH + M) (7.35)

and this equation must be used to find B in the interior.

The above results for B and H in the interior of a magnetized body are
readily proved. In the interior of the body we see from (7.31) that the
field B is given by

B(z,y,2) = — / v. 571 dV’ 41_ V2 (%) av’

= — _ Ko 2 (M ’
o V&P, y VV (R)dV

since the first term defines the magnetic scalar potential ®,. We have
already noted that the remaining volume integral is zero for external field
points since in this case R # 0 and V2(1/R) = 0. However, if the point
(z,9,2) lies interior to V, then R = 0 is included in the integral. In this
case it is necessary to consider the singularity property of V2(1/R), as was
done in the derivation of (6.41). With this result we have

_ ko [ oo (MY _ [ mM(zy2)  z,y,zi0V
dr Jv R 0 z, y, z outside V

Hence in the interior of the magnetized body the field B is given by
B = —uoV®, + uM. Since B is also given by (7.35), it follows that
(7.33) is a valid expression for the scalar magnetic potential ®,, for H both
interior and exterior to the magnetized body.

At this point it will be worthwhile to summarize briefly the major
results that have been obtained thus far in this chapter. This is desirable
in order to correlate the different approaches that may be used to treat
the magnetic effects of material bodies. In the absence of any material
bodies the magnetic field B is computed from the true current distribution

-], either directly or by means of the vector potential A, according to the
methods of Chap. 6. When we are dealing with the field produced by a
permanently magnetized body in a region where J is zero, there are two
equivalent approaches available.

For one, we represent the state of polarization of the body by an equiv-
alent volume polarization current J,, = V X M and an equivalent surface
polarization current J,, = M X n. From these current sources the field
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B may be evaluated either directly or through the intermediate step of
finding the vector potential A first. In the region surrounding the body
the field H is given by H = B/u,, while at all points interior to the body
H is given by uoH = B — uM.

In the second approach the field intensity H is computed first. The
magnetic polarization of the material is represented by an equivalent
volume distribution of fictitious magnetic charge p, = —V - M, together
with an equivalent surface charge pm, = M - n. The field H is given by
—V®,, and the magnetic scalar potential &, is evaluated by methods
analogous to those used in electrostatics. From the known value of H,
the field B may be found from the relations

B = uH outside body
B=uyH+M) interior to body

The parameters u and xn. are unnecessary with a theory that takes
explicit account of the magnetic polarization of the material.

When the problem involves both magnetizable material bodies and true
conduction currents J, the use of the magnetic scalar potential is usually
avoided since H is no longer a conservative field and &,, becomes multi-
valued. An exception is the class of problems that are dual of the d-¢
electric circuit, where this approach is particularly useful. The best
procedure is to obtain appropriate solutions for B in the regions internal
and external to all material bodies and then match these solutions at the
boundaries according to the boundary conditions on B and H which were
presented in Sec. 7.5. For problems
of this sort, if VX M = 0, then it is
preferable not to introduce the mag-
netic polarization of the material
explicitly but to use the relation
B = uH, together with the boundary
conditions on B and H instead. The
examples to be discussed now will
clarify some of the above concepts.

Example 7.3. Use of Scalar Po-
tential to Find Field from a Bar
Magnet. The cylindrical magnet is
of length L and radius g, as in Fig.
7.12. It is assumed to be uniformly
magnetized with a magnetic dipole F1e. 7.12. A cylindrical bar magnet.
polarization M, per unit volume.

We shall compute H at all exterior points, remote from the magnet, by
means of the scalar potential ®,. Since M, is constant, V- My = 0 and
there is no equivalent volume charge. On the two end facesatz = +L/2,
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we have an equivalent surface charge given by pme = Mo-n = M, - a,
OF pme = Mo at z =L/2 and —M,at z = —L/2. There are no surface
charges on the sides since M, is parallel to the sides. The total charge on
each face is of magnitude Q. = ma%pn; = wa?’M, For r>> a we may
consider this charge to be lumped together at the center of each face. The
scalar potential from two such charges is given by an expression similar
to what one has in electrostatics and is

_@n(1 _ 1\ _maM, _1___1_)‘
-t -2) - " (& ® (7.36)
The field H is thus given by
_B_ gy mmeMeg (11
H = = Ve, = o v (R2 Rl) (7.37)

which is the same as that obtained in Example 7.2 by treating the magnet
as an equivalent solenoid.

For r>> L the dipole relations obtained in Sec. 2.11 apply, and we
obtain
_ QumLcosf  Mrpcos b

P 4rrr T 4ar?

where My = wa’LM, is the total effective dipole moment of the mag-
netized rod. :

Example 7.4. Field around a Cut Toroid. Figure 7.13a illustrates a
highly permeable (u >> o) toroid wound with N turns of wire carrying a
current I. The mean radius of the toroid is d. The cross section of the
toroid is circular, with a radius ¢ much smaller than d.

The tangential field H is continuous across the boundary separating
the toroid and the air region just outside but inside the helix winding.
Therefore the flux density B in the interior is much greater than that out-
side the toroid since B = pH inside and uH outside and we are assuming
that uis much greater than uo. Most of the flux lines are concentrated in
the interior except for a small amount of leakage flux on the outside, as
illustrated in Fig. 7.13a. If we apply Ampére’s circuital law for H around
a closed circular path in the interior of the toroid (path C in Fig. 7.13a), we
obtain

950}1 dl = fSJ : dé = NI (7.38)

since the total current cutting through the surface of a disk with boundary
C, that is, total current linked by C, is NI. From symmetry considera-
tions we conclude that H is not a function of the angle 6 around the
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toroid and also that H is tangent to the curve C; so (7.38) gives

2r
b H-dl = Hy ["rdo = 20rH, = NI
NI NI
and Ho = % = % (7.39)
where r is the radius of the path C. Since a < d we have r = d for all
closed paths within the toroid; so for a first approximation we may

assume that Hy is given by NI/2xd at all points interior to the toroid.
The flux density Bs is given by uHo,.

Fi6. 7.13. (@) A toroid wound with N turns; (b) the same toroid with a small section
removed (gap shown enlarged).

In the second situation illustrated in Fig. 7.13b, a small section of
thickness ¢ has been removed from the toroid. If ¢ K< a, the flux in the
air gap is essentially uniform apart from a small amount of fringing or
bulging of the field near the edge. The field By, which is normal to the
faces, must be continuous across the face, and hence B; has the same
value in the air gap as in the interior of the toroid. The field Hy is equal
to Bg/uo in the gap and B,/ in the toroid. If we let H; be the interior
field and H, be the gap field, Ampére’s circuital law gives

H;2rd — t) 4+ Ht = NI
and hence, substituting for H; and H, in terms of B, we get
Be org — o) + B0y = NT
u Ko
Solving for By gives
— NI [dad)
2mdpo + (k0 — o)t

From (7.40) the fields H, and H; are readily found. When ¢ is zero, the

B,

(7.40)
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field H; is given by NI/2nd, but when ¢ is not equal to zero, H; is reduced
in value to

_ NI

— 2md 4 (b — po)t/mo

When the toroid is made of ferromagnetic material, the magnetic polar-
ization will generally not be zero when the current I is reduced to zero.
A determination of the exact values of B and H when I = 0 can be made
only if the relationship of B to H is specified, as would be the case with an
appropriate B-H curve. Let us consider how the desired result may be
obtained. When [ is zero, let the flux density in the toroid and air gap be
B. 1In the air gap the magnetic field intensity is

H;

0 -8
i Ko
while in the interior to the toroid
-
“

Applying Ampére’s circuital law we get

H;2rd — t) + Hit = 0
gince I = 0, and hence ‘
_ —Hgt
T ord — ¢

(7.41)

Equation (7.41) shows that inside the toroid H; must be oppositely
directed to the field H, in the gap. However, in the gap H, and B are in
the same direction and B is continuous into the toroid. Therefore, in the
toroid, B and H; are oppositely directed, as illustrated in Fig. 7.14a.

H Eq. 7.42

(a) /_t—\ -8B ®) Shearing line

F1a. 7.14. The field in a magnetized cut toroid (gap shown enlarged).
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Hence p must be negative. a situation which is possible if the state of
magnetization of the material corresponds to a point such as P on the
B-H curve illustrated in Fig. 7.14b. If we substitute B/uo for H, in
(7.41), we get H; = — Bt/po(2rd — t), or

_ —moHi(2rd — 1)

B t

(7.42)

This equation determines & relation between B and H;. It is a straight
line, called the shearing line, with negative slope, as shown plotted on the
B-H curve in Fig. 7.14b. It intersects the B-H curve at the points P
and P’, which are the only two points that can simultaneously satisfy
(7.42) and the relation between B and H; given by the B-H curve. The
flux density in the cut toroid is thus that given by the point P (or P’).

The above behavior may be understood by recalling that the residual
polarization M, of the material when I is reduced to zero is equivalent to
a magnetic surface charge density M, - n and —M, - n on the faces of the
toroid at the gap. These charges result in a field H, which is oppositely
directed on the two sides of each face. From the point P on the B-H
curve, B and H are determined. Thus, using the relation

B = uH = uo(H + M,)

we may calculate M, and u. The value of M, turns out to be

My=t—tg_B _ g
Ho Ko
This last result may be used to find the equivalent magnetic charge
density on the end faces of the toroid.

An alternative interpretation of the results for the cut toroid involves
consideration of the equivalent currents due to the residual magnetic
polarization. Because of the assumed uniformity of M, we have
V X M, = 0, so that J, = 0. However, My, X n # 0 along the toroidal
surface and thus leads to equivalent circulation currents along the merid-
~ ians of the torus. These currents behave as a source for B just as do the
true currents in the helical winding when I 0. The residual Jm.
accounts for the solenoidal nature of B and the persistence of flux when I
is reduced to zero.

The above example illustrates several points which are of interest in
the design of permanent magnets. For permanent magnets it is desirable
to use materials that have a high retentivity and also a high coercivity.
A magnet in the form of a ‘“horseshoe’’ is magnetized by completing the
magnetic circuit with an iron bar and winding the magnet with a coil
through which a large steady current is passed. Upon removal of the
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coil and iron bar, the magnetization decreases in the manner indicated
for the cut toroid because of the demagnetizing effect of the free poles, i.e.,
because of the equivalent magnetic charge on the end faces of the magnet.

A point such as P on the B-H curve in Fig. 7.14b is not a stable point
since the application of a small magnetic field causes the magnetization to
move along a new small hysteresis loop away from P. Since a magnet
may at times be subjected to small stray fields, it is stabilized by applying
a small negative field to bring the magnetization to the point P, and then
removing this field to permit the magnetization to move along a new
hysteresis loop up to the final point P,, asin Fig. 7.14b. Application of a
stray field now causes the magnetization to move along this new hysteresis
loop. However, now upon removal of the stray field, the state of mag-
netization returns very nearly to the point P, whereas without the above
stabilization technique the magnetization would not return to the initial
value at P upon removal of the stray fields. In the absence of stray fields
the magnetization will always lie on the shearing line; that is, P, lies on
the shearing line.

7.7. The Magnetic Circuit

The solution to the general magnetostatic boundary-value problem
involving conduction currents in the presence of ferromagnetic material
bodies is extremely difficult to obtain. Fortunately, for many engineer-
ing applications involving ferromagnetic materials, good approximate
solutions can be obtained by means of an analysis that parallels that
used to analyze d-c circuits composed of series and parallel combinations
of resistors. The ideas and limitations involved in this equivalent-
circuit approach will be discussed below:

If we return to the cut-toroid problem of Example 7.4 and reexamine
the method of solution presented, it will be seen to be similar to that
which we would use for a simple d-c circuit of two resistors in series
together with an applied voltage source. We consider the line integral
of H around the circuit as being the magnetomotive force 3¢ which causes
a total flux ¢ to flow through the circuit. The magnitude of y is deter-
mined by 3¢ and a property of the circuit called the reluctance ®, where ®
is analogous to resistance.

According to (7.40), the flux density in the cut toroid is

NIM#O

B = 2rduo + (b — wo)t

The total flux ¢ through the circuit is ¢ = AB = wa?B, where 4 is the
cross-sectional area of the toroid. The line integral of H around the
toroid is equal to the ampere-turns NI and gives the magnetomotive
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force 3¢. The solution for ¢ may be written as

4= i
(2rd — t)/ud + t/uA

v =B (7.43)
The first term in the denominator is similar to that for the d-c resistance
of a conductor of length 2rd — ¢, of cross-sectional area A, and having
a specific conductivity u. Thus this term is interpreted as the reluctance
®; of the section of toroid. For the same reasons the second term is
interpreted as the reluctance ®: of the gap. We may now rewrite (7.43)
as

3
V=  F & (7.44)
rd —
where ®R, = WZA ¢
t
Ry = [MJ—A

The close analogy between the d-c¢ current circuit and the magnetic
circuit may be seen from a comparison of the two following examples.

I 4
£ e H,
% Nturns E 1
gi % N Hy
E, Hy
L7 K2
1, i 1y
¢ ‘K—g Uniform cross sections
ofarea A
(a) ®

F1c. 7.15. (@) A d-c current circuit; (b) a similar magnetic circuit.

Figure 7.15a illustrates a d-c current circuit consisting of two sections of
mean lengths [; and I; and having a uniform cross-sectional area A. The
two sections have specific conductivities ¢; and ¢, and are submerged in a
medium having a much lower conductivity ¢o. The two sections are
connected in series with an applied electromotive force &.

Since ¢o is much smaller than ¢; or ¢,, most of the current flow is con-
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fined to the highly conducting sections. The line integral of E around
the circuit gives the applied electromotive force:

960 E-dl = § = Efy + Eils (7.45a)

The current density J is given by ¢E, and the total current is obtained by
multiplying this quantity by the cross-sectional area A. Since the cur-
rent is continuous, we get

I1 = Iz = I = 0'1E1A = O'2E2A (7451))

where the leakage current through oo is neglected. Hence E; = (01/02) E;,
and from (7.45a)
&

El = l + (01/0‘2)l2

(7.45c¢)

Thus
0‘1A & 8 §

- l1+0’1l2/0‘2— ll/A0'1+l2/A0'2 R
where R = l;/Ac, + 12/ Aos and is the total resistance of the circuit.

Figure 7.15b illustrates a magnetic circuit which is similar to the above
d-c circuit. Provided u; and u, are much larger than o, most of the mag-
netic flux is confined to the highly permeable sections. The line integral
of H around the circuit gives the applied magnetomotive force

I=1 (7.45d)

950 H-dl =3 = NI = Hjl, + H, (7.46a)

The flux density B is given by uH, while the total flux, analogous to cur-
rent, is obtained by multiplying by the area A. Since the flux ¢ is
continuous,

Y=y =y =pH:4 = poH A (7~46b)

Hence Hy = (u1/p2)Hi, and from (7.46a)

3
Hi= s (7.46c)
Thus e _x (7.46d)

v = L/ Apr + Lo/ Ap. R

where ® = I;/uA + 1,/p24 and is the reluctance of the circuit.

The validity of the solutions to the above two circuit problems depends
on the accuracy of the assumption that the fields are uniform over the
cross-sectional areas and that the current flow or flux is also uniform and
confined to the sections of the circuit only, i.e., confined to the cross sec-
tion of the two segments of length I, and I,. In the case of the current
circuit, this assumption is usually more nearly correct since the ratio
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o/a¢ is generally very much larger than u/u, for the magnetic materials.
In spite of these limitations, the concept of a magnetic circuit is of great
utility in the engineering application of ferromagnetic, materials. The
ease with which it provides a solution for the magnetic flux ¢ in a circuit
makes it superior to other approximate methods of solution when the
requirements on the accuracy of the

solution are not too stringent. . ]

Example 7.6. Iron-core Trans- - lr -
former. Figure 7.16a illustratesan I e an )
iron-core transformer of uniform ‘¢ ¢ 3

T pu

cross section and having a small air m B
gap of thickness ¢ in the center leg. L
Such air gaps are frequently used in
practice in order to increase the
reluctance of the magnetic circuit
s0 as to prevent magnetic saturation
of the material. The left leg is
wound with N; turns of wire, and
the right leg with N, turns. The
problem is to compute the flux
linkage for the coil with N, turns
when a current I flows in the other
coil. ®

The equivalent magnetic circuit gy 7.16. An iron-core transformer and
is illustrated in Fig. 7.16b. The its equivalent magnetic circuit.
magnetomotive force applied to the
circuit is N1J and acts in series with the reluctance ®; of the left side leg.
This reluctance is shown arbitrarily split into two parts of magnitude ®,/2
each. In series with ®, is the reluctance ®; of the right side leg in parallel
with the reluctance of the center leg. The reluctances are given by the
following expressions:

_ L
= %
—_ lz
(R2—‘;:4—
14

(Rg m

Following the usual circuit-analysis approach, the following two equations
may be written:

L = ¢1(R1 + 2R + ®,) — ¥:2R: + ®,)
0 = ¢12R: + ®,) — ¥2(®Ry + 2R, + ®,)
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Solving for y. gives ¥» = NiIQ2R: + ®,)/Ri(®R: + 4R2 + 2®,). The
flux linkage for the secondary coil is thus given by Nys.

We should like to summarize in a more formal way the duality between
electric and magnetic circuits that have been illustrated in the previous
examples. As a starting point we note the similarity in the relations

SE-dl =8 SH-dl=NI=23%

In the study of stationary currents in Sec. 5.2 it was pointed out that
external to the sources (i.e., battery, etc.) #E-dl = 0, so that for the
external region the electric field could be related to a scalar potential func-
tion. The potential concept must be handled carefully, however, since
if a closed path is taken which includes the battery, the net change in
potential is not zero but equals the emf of the source; that is, the potential
is actually multivalued because the E field is not conservative. In elec-
tric-circuit theory this difficulty is avoided by assigning a potential rise of
& to the integral of E through a source of emf. In this case, if A® is the
potential drop across a portion of a loop, then the requirement that
FE-dl = 28 (the total emf) can be written

2 AP= Z 8
loop loop
or T Ap+ Z (—8) =0
loop loop

The above relation is one of Kirchhoff’s laws and symbolizes the state-
ment that the sum of the potential drops taken around any closed loop
equals zero.

In an analogous fashion the magnetic field H can be derived from a
scalar magnetic potential provided the multivalued nature of the field is
taken into account.t If we adopt a similar convention to that in electric

circuits we can write
23 = 2 A,

loop loop

The magnitude of the mmf taken around a closed path equals the total
number of ampere-turns linking that path. Often this quantity is con-

t We are assuming that the true current is not zero; otherwise V X H = 0, in
which case H can be derived from a scalar potential unambiguously. The multi-
valued nature of &, in the presence of a current loop can be demonstrated directly,
for it can be shown that if we were to require H = —V®,, then ®, must satisfy
A%, = (I/4r) AQ; that is, in the presence of a current loop, the change in magnetic
scalar potential as a consequence of a change in position of the field point equals the
change in subtended solid angle times the current in the loop divided by 4. For a
path encircling the loop, AQ will change discontinuously by 4 at some point on this
contour, hence producing the multivalued nature of ®». The total change in poten-
tial for one complete loop equals I; that is, £ H +dl = I, as we already know.
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centrated over a small region of the magnetic circuit, just as in the elec-
tric circuit the source of emf is usually highly localized. If this is not the
case, as in a uniformly wound toroid, it is not possible to separate the
sources from the circuit. It is as if in an electric circuit the battery were
split up and continuously distributed through the circuit.

In addition to the above equations we also have the following similar
relations:

$£J-dS=0 FB-dS =0
J=¢E B =uH

In view of the fact that the three electric-circuit equations given above
form the basis for all d-c circuit theory, magnetic-circuit theory follows
immediately by duality. It is only necessary to replace J by B, E by H,-
& by 3¢, and ¢ by u. For example, since the total current is obtained
from

I= /S J-dS
then by duality, total flux ¢ is
= [,B-ds

As a further illustration we may obtain the reluctance of an arbitrary
shaped magnetic material from (5.36). By duality this is clearly

L dul
® = 0 /S (uhzhs/hl) d'M2 du;;

It should be noted that the derivation in Sec. 5.5 tacitly assumed no
current flow in the external medium, a relatively easy thing to achieve.
In magnetic circuits the medium will invariably carry some leakage flux,
so that true dual conditions cannot be provided, as we noted in an earlier
example. However, with highly permeable materials, good results can
be expected even though leakage is neglected.

7.8. Physical Properties of Magnetic Materialt

As demonstrated earlier in this chapter, the magnetic properties of
materials may be described in terms of a magnetic polarization or dis-
tribution of magnetic dipoles per unit volume. In this section we shall
take a closer look at the properties of materials that give rise to a volume

t For a much more complete discussion, see, for example, A. J. Dekker, “Solid
State Physics,”” 1957, or ‘“Electrical Engineering Materials,” 1959, Prentice-Hall,
Inc., Englewood Cliffs, N.J.
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density of magnetic dipoles. There are essentially three mechanisms,
or properties, of atoms that give rise to a magnetic dipole moment:

1. The orbital motion of electrons around the nucleus is equivalent to
a circulating current loop.

2. The spinning electron has an intrinsic magnetic dipole moment of
magnitude eh/4rw, where e is the electron charge, w is the mass of the
electron, and h is Planck’s constant (6.62 X 10—%* joule-second). The
magnitude of the spin magnetic moment of the electron is called a Bohr
magneton.

3. The nucleus of an atom contains charged particles, and since the
nucleus also has a spin, there is a magnetic dipole moment associated with
the nucleus.

In most materials the dipole moment of the nucleus is negligible in
comparison with the orbital and spin magnetic moments of the electron.
The reason for this is the large mass of the nucleus in comparison with that
of the electron (at least 10* larger). The angular momentum of the
nuclear spin is about the same as that for the electron spin. Since the
mass is so much greater, it follows that the angular velocity is much
smaller, and hence the equivalent circulating current and dipole moment
are also much smaller. It is the orbital magnetic dipole moment and,
even more important, the electron-spin magnetic dipole moment that are
largely responsible for the magnetic properties of materials.

Magnetic materials are classified according to the following scheme:

1. Diamagnetic Materials. These are materials which do not have a
permanent magnetic dipole moment in the absence of an external applied
magnetic field.

2. Paramagnetic Materials. These materials have a permanent mag-
netic dipole moment, but the interaction between neighboring dipoles is
negligible, with the result that in the presence of an external field the flux
density in the material is increased by only a small amount.

3. Ferromagnetic Materials. In these materials the dipoles interact
strongly and all tend to line up parallel with the applied field so as to
produce a large increase in the flux density in the material.

4. Antiferromagnetic Materials. In these materials the permanent
dipoles tend to align themselves so that alternate dipoles are antiparallel
to the applied field. The result is a cancellation of the effects of each
dipole and a zero net increase in flux density in the material.

5. Ferrimagnetic Materials. In these materials magnetically polarized
domains of unequal magnitude align with alternate domains parallel and
antiparallel to the applied field. Usually a relatively large increase in
flux density is produced since the strong dipoles align themselves with the
field and the weak dipoles are aligned antiparallel to the applied field.
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Diamagnetism

The nature of diamagnetism may be understood from the following
example. Consider an atom with several electrons which rotate in orbits
orientated so that the net magnetic dipole moment is zero. Instead of
considering each orbit in detail, we consider a particular orbit for which
the magnetic field has maximum effects. We shall then assume that the
change in magnetic moment produced by the magnetic field is of the order
of magnitude of the net change per orbit in the atom. The simplicity
achieved outweighs the loss in quantitative precision. Accordingly, we
specify our model to consist of an electron orbit whose plane is perpendicu-
lar to the externally applied field By, as in Fig. 7.17, and which is elec-
trically balanced by a +e nuclear charge. Let the radius of the orbit be
ro and the angular velocity be wo in the absence of the external field.

(a) ®)

Fic. 7.17. Illustration of perturbation of electron orbit by an external field B,.

When By is not present, the orbital angular velocity is determined by
the condition that the outward centrifugal force wwo?ry equals the inward
coulomb attraction force e?/4meqre®.  Solving for we gives

62
R -
W' = s (7.47)
In the presence of the external field B, there is an additional inward
(Lorentz) force Fr whose magnitude is evBy = erwBy. In place of the
relation that led to (7.47) we must now have
2

+ erwBy = ww?r (7.48)

4regr?

To a first approximation the radius may be assumed to remain constant
at the value ro, and hence, using (7.47) in (7.48), we get

w? = we? + %’ w (7.49)
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The field B, produces only a small perturbation in w, so that.

2

w? = wo? = (0 — wo)(w + wo) = 2wo(w — wo)

With this result, (7.49) may be written as

By
2w

w— wy = (7.50)
In the absence of the field, the dipole moment of the rotating electron is
—evgrro®/2mre = —ewore?/2, while in the presence of the field B, the total
dipole moment is —ewr?/2. Prior to the application of B, the contribu-
tion from all electronic orbits leads to a zero net dipole moment. The
change due to By is in a common direction for all orbits, hence resulting in
a total net moment. The order of magnitude per orbit is the difference
in dipole moments just evaluated and is
L —ere?(w — wo)
= 2
— 627' 02B 0
4w

—e?ro’uoH,

0 (7.51)

where poHo = Bo. It should be noted that this induced moment is
directed antiparallel to the applied field. If N is the effective number of
such orbits per unit volume, the induced dipole polarization M per unit

~ volume will be M = —Ne?r2uoHo/4w, and hence the susceptibility xm is
given by
_ —Nerou,
Xm = iw (7.52)

Substitution of known typical values of N and r, shows that x., is of the
order of —1075, a result in essential agreement with measured values.
The small resultant value of x,, justifies the assumption that the orbital
radius remains essentially constant and that only a small change in the
angular velocity w, results upon application of an external field.

Although the above result was based on a classical physics approach, it
still explains the basic process responsible for diamagnetism and may be
verified by the methods of quantum mechanics.

Paramagnetism

Paramagnetism is due almost entirely to the spin magnetic dipole
moment of the electron. Consider a material with N spinning electrons
per unit volume. For paramagnetic materials the interaction between
neighboring dipoles is negligible; so we may assume that the field acting
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on each dipole is just the applied field B,. In the presence of the field B,
some of the magnetic dipoles (each with a moment equal to one Bohr
magneton) are aligned with the field while the remainder are aligned
antiparallel to the field. The relative number in each position depends
on the energy difference of the two positions and is essentially governed
by Boltzmann’s statistics. If N, represents the number of dipoles per
unit volume that are aligned parallel to the field and N, is the number
aligned antiparallel to the field, it is found thatf

N. = N
? 7 1 + exp (—ehBo/27wkT)
N, = N

1 + exp (ehBo/2rwkT)

where k is Boltzmann’s constant and T is the absolute temperature.
The net magnetic polarization is given by

N, — N, oh = Neh tanh (ehBo/4rwkT)
4rw N 47w
For normal temperatures and fields the argument of the hyperbolic
tangent is small, so the approximation tanh z = z may be used and (7.53)

gives

M = (7.53)

NezhzyoHo
(4rw) kT

Hence the susceptibility is given by

M Nethy, _C
Xm =Wy~ (daw)%kT T (7.55)

M = (7.54)

where the constant C, defined by this equation, is called the Curie con-
stant. Typical values of x, for paramagnetic materials are of the order
of 10~% in magnitude. As (7.55) shows, x. is inversely proportional to
the absolute temperature 7' (Curie law). This is very reasonable, since
at higher temperatures molecular activity opposes the effect of the applied
field to orient the dipole moments. At the low temperatures the Curie
law breaks down since the approximation used to obtain (7.55) is no
longer valid.

Diamagnetic effects are also present in paramagnetic materials, but
since the contribution to the susceptibility by the induced dipoles is of
the order of —1075, it is completely masked by the paramagnetic effect.

Ferromagnetism

In ferromagnetic materials the effective field acting on each spin
magnetic dipole is the vector sum of the applied field plus a strong inter-

t See Sec. 3.1, where an analogous derivation for electric dipoles is given.
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action field arising from all the neighboring dipoles. This interaction
field has been found experimentally to be much greater than the classi-
cally calculated magnetic field from the neighboring dipoles. These
large “exchange forces” can be explained only by quantum mechanics
and exist because of the wave nature of the electrons.

A theory for ferromagnetism was proposed by Weiss in 1907 and has
been verified by quantum mechanics. The two basic postulates made
by Weissare: (1) There exists a strong interaction field from neighboring
dipoles that tends to aid the alignment of the dipoles with the applied
field. Thus the internal field acting on a dipole may be expressed as
B; = us(Hy + aM), where « is called the internal field constant. (2) A
ferromagnetic material consists of a number of domains with linear dimen-
sions us large as or larger than 10— centimeter. In each domain all the
spins are aligned in parallel but the direction of magnetization differs
from one domain to the next. Also, each domain is spontaneously
magnetized even in the absence of applied fields. However, because of
the random orientation of the domains, the net flux density in the material
is swall. )

By means of the domain theory a satisfactory explanation of the charac-
teristic hysteresis curve for ferromagnetic materials can be given. Each
domain can have its spins aligned along several possible directions or axes.
The field strength required to produce magnetization along the various
permissible axes differs, so that there are “easy’’ and “hard’” directions
of magnetization. In a ferromagnetic specimen which is originally
unmagnetized, the application of an external field causes the following
sequence of events to take place:

1. For weak applied fields those domains whose easy direction of mag-
netization is in the direction of the applied field, i.e., which are spon-
taneously magnetized in this direction, grow at the expense of the other
domains. For small applied fields the domain wall movement is reversi-
ble. For large applied fields the wall movements are irreversible and a
negative field must be applied to return the domain walls to their original
positions. This irreversible wall movement gives rise to the hysteresis
effect.

2. Asthe applied field is increased in strength, this domain growth con-
tinues until the whole specimen is essentially a single domain. At
high field strengths some domain rotation takes place also. This process
continues until the specimen becomes magnetically saturated. Figure
7.18 illustrates schematically this magnetization process.

Upon reducing the field the domain walls begin to move so as to pro-
duce more nearly equal sized domains again. When the applied field
has been reduced to zero, a net magnetization remains, since many of
the domains are still magnetized in the direction of the applied field. A
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microscopic examination of the magnetization curve shows that the
process of magnetization is not a smooth one. This effect, known as the
Barkhausen effect, is produced by random motion of the domain walls.

Curie-Weiss Law

If the expression po(Ho + aM) for the internal field in a ferromagnetic
material is substituted into (7.53), which gives the magnetization for

) 4 t ¥
- — =K —> l«] —> —
v ¥ V
Unmagnetized Initial Partly Saturated
magnetization magnetized
(@ ® ©@ d)

Fi6. 7.18. Tlustration of the growth of domains in the magnetization process.

paramagnetic materials, the equation for the magnetization in a ferro-
magnetic material is obtained; i.e.,

_ ML ehuo(Ho + aM)

M W tanh 47wk T

(7.56)

This result is based on the paramagnetic model that electron spins are
aligned either parallel or antiparallel to the applied field. For weak
fields and high temperatures, (7.56) reduces to

which may be solved for M to give
M=o (7.57)
where C = %(%)2 and 0 = aC |

This law is known as the Curie-Weiss law, where C is the Curie constant
and 6 is the Curie temperature. For T > 6, the behavior of a ferromag-
netic material is similar to that of a paramagnetic material. Below the
Curie temperature (T < §) the Curie-Weiss law is no longer applicable,
since the hyperbolic tangent cannot be replaced by its argument in this
range. For T < 6 a finite value of the magnetization can exist even
though the applied field H, is zero. This magnetization is called the
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spontaneous magnetization. With H, = 0 the magnetization is given
by (7.56) as
M = Neh tanh pocha M

47w 4wk T (7.58)

The value of M may be solved for as a function of the temperature T, and
a curve of the form illustrated in Fig. 7.19 is obtained. At the Curie
temperature T = 6, the spontaneous magnetization vanishes. Above

My

M,

sat.

o 6 T

F1c. 7.19. Spontaneous magnetization as a function of temperature.

this temperature, (7.58) does not have a solution. At zero temperature
the magnetization is equal to the saturation value Neh/4rw corresponding
to the condition where all the spin magnetic dipoles are aligned in the
same direction. In a ferromagnetic medium it is actually each domain
that is spontaneously magnetized in accord with (7.58). This spon-
taneous magnetization accounts for the residual magnetization in the
absence of an external applied field.
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Chapter 7

7.1. A permeable sphere of radius a is magnetized so that M within the sphere is
uniform.

(a) What is the distribution of magnetization current in and on the sphere?

(®) In Prob. 7.15 we show that for this case B is also uniform within the sphere.
From this information design a current winding that will set up a uniform B field over
a spherical region of space.

7.2. A permeable sphere of radius a, whose center is at the origin of a system of
coordinates, is magnetized so that

M = (A2 + B)a,
Determine the equivalent magnetization currents and charges.
7.3. The magnetic moment of a magnetized body is given by the integral / v Mdv

taken over the body. If the body is placed in a uniform B field, determine the total
torque in terms of the total moment.

7.4. A spherical shell of magnetic material is uniformly magnetized so that M =
M a, in the shell. Find the scalar potential produced along the polar axis inside and
outside of the shell. The inside radius of the shell is R;, and the outside radius is R,.

7.5. A very thin cylindrical iron rod and a thin (compared with radius) iron disk are
placed in a magnetic field B, with their axes parallel to the field. Find B and H
internal to the iron specimens. Calculate the values of M in each case, given that B,
is 1.0 weber per square meter and g = 5,000u,.

7.6. An infinitely long straight copper wire of circular cross section has a radius of
1 centimeter. It is surrounded coaxially by a permeable hollow cylinder which
extends from a radius of 2 to 3 centimeters and whose relative permeability is 2,000.
A current of 25 amperes flows in the wire.

(a) Calculate the total flux in the magnetic material per unit meter.

(b) Calculate the magnetization M in the permeable material.

(¢) Find the induced magnetization currents in the magnetic medium.

(d) Show that the field for r > 3 centimeters is the same as it would be in the
absence of the magnetic material by considering the net effect of the magnetization
currents.

7.7. Find the field produced by a line current I located parallel to and above the
plane interface of a magnetic material occupying the half space below the line current.
The permeability of the material is u.
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HinT: The problem may be solved by an Line Ie
image method. Show that all boundary current |
conditions can be satisfied if the field in the
air is calculated from I and a current I’
at a mirror-image position (assuming that
both I and I’ lie in free space), while the
field in the magnetic material is due to I
and I"”, where I" is located at I, and I and
I'" are assumed to lie in an infinite mate-
rial with permeability u. The values of I’
and I’ can be determined from the bound- Fi6. P 7.7
ary conditions at the interface. Show in
general that, for u — o, lines of B on the air side must be perpendicular to the inter-
face, while H in the iron goes to zero, and confirm that the above solution reduces to
these results. Sketch the field lines.

Answer

B — Mo
=2 207
I o+ po
" = =T

7.8. (a) Consider an arbitrary current loop as illustrated. Show that the magnetic
scalar potential & at an arbitrary field point P can be expressed as

IQ

T 4r

&, =

where Q is the solid angle subtended at P by an arbitrary surface whose periphery is
C; that is,
Q= / r- :iS
s r c

Hint: Divide the surface into a large number of small cir-
culating current loops as was done in Fig. 6.13.

(b) Consider the surface (with periphery C) chosen in (a) I
and assume that a uniform electric dipole layer lies on this
surface. (P, is the dipole moment per unit area such that
P, - dS is the electric dipole moment of a differential surface
dS. We assume P, to be uniform and normal to the surface.)
Show that an electric scalar potential at P can be expressed as

_ [PJa
47r€o

Note that the potential is discontinuous as the dipole layer is Fic. P78
crossed. In the case of the current loop, the discontinuity is ) ’
not associated with a physical surface, but may be any surface whose periphery is C.

If one integrates the field (either E = —V® or H = —V&.) over a closed path that
intersects this surface, a discontinuity in @ of 4r results such that for the magnetic field
SH-dl =1

as we expect. The multivalued electric field that results, while mathematically cor-
rect, violates the known conservative nature of the E field and cautions us that a true
electric double layer cannot be achieved physically.
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7.9. A toroid has the dimensions of 15 centimeters mean radius and 2 centimeters
radius of circular eross section and is wound with 1,000 turns of wire. The toroid
material is iron, with an effective relative permeability of 1,400 when the current is
0.7 ampere. '

(a) Calculate the total flux.

(b) If a narrow air gap of length z is introduced, determine how the total flux
depends on z (assuming z < 2 centimeters and p remains the same in the iron).
Compute total flux for z = 0.1, 1.0, 5.0 millimeters.

15cm

7.10. A ferromagnetic material is formed
into the illustrated shape, where the cross 5
section is everywhere square and 2 centi-
meters on a side, and the remaining mean +—3
dimensions are illustrated. If the winding —t
carries 500 turns and a current of 0.3 g
ampere and if g = 2,500y, calculate the —
total flux in the central and right-hand
leg. (Neglect leakage.) l‘— 7.5cm —= —!

J
10cm

F16. P 7.10

7.11. Repeat Prob. 7.10, but assume that a 2-millimeter air gap is cut in the
central leg. Neglect leakage at air gap, and assume that p remains constant.

7.12. Repeat Prob. 7.9, except that instead of assuming u to be constant, the
actual B-H relationship will be utilized. For this purpose the following data are
available:

H, amp-turns/m. . ... ] 50 ' 100 l 150 l 200 ] 250 | 300 ' 400 | 500 l 600 | 800

B, webers/sqm. .. ... l0.07]0.23]0.60(0.85|1.00|1.07|1.18]1.25] 1.30[1.33

7.13. A region V contains a permanent magnet of arbitrary shape. No additional
sources of magnetic field exist. Show that

14(B-HdV =0

where the integral is over all space. (In Chap. 8 we show that this integral evaluates
the stored magnetic energy.)

7.14. The magnetic circuit shown consists of a permanent magnet of length 8 centi-
meters, two lengths of soft iron of 10 centimeters each, and an air gap of 1 centimeter.

lcm

-1

10cm — ~——10cm

7 8cm
Fia. P 7.14
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The cross sections of each are the same, and fringing is to be neglected. The B-H
data for the magnet are given below, and u = 5,000, for the soft iron.

(@) What is the flux density in the air gap?

(b) Sketch the B and H fields in the magnetic circuit.

H, amp-turns/m. . . . . l 0 —10,000| ~20,000) ~30,000 —35,000l —40,000l —45,000

B, webers/sqm. .. ... 125 1.22 | 118 | 108 | 1.00 | 0.80 | 0.00

7.16. A permeable (magnetizable) sphere of radius @ is placed in a uniform external
magnetic field a.Bo = a.uoH,. Introduce a scalar magnetic potential ®», and find the
induced magnetic field intensity H; inside and outside of the sphere, as in Prob. 2.15.
Show that for r > a, H; is a dipole field, while for » < a, H; is uniform. In the
interior of the sphere, show that the relation between the magnetic polarization M
and the applied field H, is

M=3P”_M0H
B+ 2m

by using the relation B = uH = uo(H + M), where B and H are the total fields in the
sphere. Next show that the field H is also given by

H=Ho'——"‘ r<a

Eliminate M from the relation B = uo(H + M) to get B = —2u¢H 4 3uH,. This
is the equation of the shearing line. Plot this equation on a B-H plane, and indicate
by the point of intersection with the B-H curve (sketch a suitable B-H curve for the
purpose) what the remanent flux density B: in the sphere will be when H) is reduced to
zero.

7.16. The only shapes for which a rigorous solution such as that in Prob. 7.15 can be
found are the ellipsoids and their degenerate forms such as spheroids and the sphere.
For these bodies the interior field is uniform and the distant induced field is a dipole
field when the external field is applied along an axis. The solution is of the form
H = H, — DM, and D is called the demagnetization factor. Show that in order to
obtain a high remanent flux when the applied field Hy is reduced to zero, D should be
as small as possible. In the interior of the body show that.

B = _L.__
1+ D(u/wo — 1)

by using the relations B = yH = u(H + M) and H = Hy, — DM. Thus the effec-

tive permeability of the body may be considered to be

- s
B = 1T+ D/ — D

since the flux density B is increased by u./uo in the body relative to its value uoH, for
the applied field.



