CHAPTER 6

STATIC MAGNETIC FIELD IN VACUUM

Our knowledge of magnetism and magnetic phenomena is as old as
science itself. According to the writings of the great Greek philosopher
Aristotle, the attractive power of magnets was known by Thales of
Miletus, whose life spanned the period 640?-546 B.c. It was not until
the sixteenth century, however, that any significant experimental work
on magnets was performed. During this century the English physician
Gilbert studied the properties of magnets, realized that a magnetic field
existed around the earth, and even magnetized an iron sphere and showed
that the magnetic field around this sphere was similar to that around the
earth. Several other workers also contributed to the knowledge of mag-
netism during this same period.

The eighteenth century was a period of considerable growth for the
theory and understanding of electrostatics. It is therefore not surprising
to find that in the eighteenth century the theory of magnetism developed
along lines parallel to that of electrostatics. The basic law that evolved
was the inverse-square law of attraction and repulsion between unlike
and like magnetic poles. Indeed, it would have been difficult for the
theory to develop along any other path since batteries for producing a
steady current were nonexistent. With the development of the voltaic
cell by Volta, it was not long before the magnetic effects of currents were
discovered by Oersted in 1820. This was followed by the formulation,
by Biot and Savart, of the law for the magnetic field from a long straight
current-carrying wire. Further studies by Ampére led to the law of force
between conductors carrying currents. In addition, Ampére’s studies on
the magnetic field from current-carrying loops led him to postulate that
magnetism itself was due to circulating currents on an atomic scale.
Thus the gap between the magnetic fields produced by currents and those
produced by magnets was effectively closed.

Today it is expedient to base our entire theory of magnetism and static
magnetic fields on the work of Biot, Savart, and Ampére. A formulation
in terms of fields produced by currents or charges in motion is perfectly
general and can account for all the known static magnetic effects. The

magnetic effects of material bodies is accounted for by equivalent volume
198
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and surface currents. This is not to say that the early theory, based on
concepts similar to those used in electrostatics, is of no value. On the
contrary, it is often much simpler to use this alternative formulation
when dealing with problems involving magnetized bodies (magnets) and
the perturbing fields set up by permeable bodies placed in external mag-
netic fields. Throughout the next two chapters we shall have an oppor-
tunity to examine both theories. Our main efforts will be devoted to
the study of the magnetic effects of currents, since this provides us with
a general foundation for the understanding of all static magnetic phe-
nomena. Ampére’s law of force between two closed current-carrying
conducting loops will be elevated to the position of the fundamental
law or postulate from which we shall proceed.

6.1. Ampeére’s Law of Force

With reference to Fig. 6.1, let C; and C; be two very thin closed con-
ducting loops (wires) in which steady currents I; and I, flow. The
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F1a. 6.1. Illustration of Ampére’s law of force.

f

coordinates along the loop C; will be designated by zi, ¥, z: and the
vector arc length by dl;. Points along C; are designated by the variables
Tq, Y2, 22 and the vector arc length by dl.. The vector distance from dl,
to dl; is rs — r; = Rap, where ay is a unit vector directed from z;, 1, 21
to Zo, Yo, 22 and R = [(xz - .’1)1)2 + (yz - y1)2 + (22 - 21)2]%. From
the work of Ampére it is found that the vector force Fy; exerted on C.
by C,, as caused by the mutual interaction of the currents I; and I,, may
be expressed as
F, = 0 Ipdl; X [I1dl X (r: — 11)]

dr Ve o [t — r1|3

I,dl; X (deh X ag)
¢Cz ¢Cl (61)

The force F,; is measured in newtons, the current in amperes, and all
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lengths in meters. The currents are assumed to be located in vacuum.
The constant u, arises because of the system of units (mks units) which
we are using and is equal to 4r X 10~7 henry per meter. Thus g, has
the dimensions of inductance per unit length. This constant is called the
permeability of vacuum, and for practical purposes one may take the
permeability of air equal to o also, with negligible error. An apprecia-
tion of the term permeability will have to be postponed until we take up
the properties of magnetizable material bodies. It will suffice to note
that permeability has much the same significance for magnetostatics
that permittivity has for electrostatics.

Equation (6.1) reveals the inverse-square-law relationship. The dif-
ferential element of force dFs; between I, dl; and I, dl; may be regarded
as given by the integrand in (6.1) and is

#oI L2

Fu = Yrge

dl; X (dl; X ag) (6.2a)

The triple-vector product may be expanded to give

ﬂoI P

Fu = T ge

[(dlz aR) dll (d12 . dll)aR] (62b)
One should note that (6.2) does not correspond to a physically realizable
condition since a steady-current element cannot be isolated. All steady
currents must flow around continuous loops or paths since they have
zero divergence.

A further difficulty with the relation (6.2a) or (6.2b) is that it is not
symmetrical in I; dl; and I, dl,. This superficially appears to contradict
Newton’s third law, which states that every action must have an equal
and opposite reaction; i.e., the force exerted on I.dl; by I;dl; is not
necessarily equal and opposite to the force exerted on I;dl; by I.dl,.
However, if the entire closed conductor, such as C; and C., is considered,
no such difficulty arises and Newton’s law is satisfied. Recalling that
ag/R? = —V(1/R), we can replace the first term in (6.2b) with

—pol1]s d11
— (R) . dl,

In an integration around C,, this term vanishes, since V(1/R) - dl; is a
complete differential; that is, V(1/R) - dl, is the directional derivative of
1/R along C; and is equal to

d(ji{zR Y, = d(R)

The integral of d(1/R) is 1/R, and since this is a single-valued function,
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it is equal to zero when evaluated around
the closed contour C;. For closed current
loops, an equivalent form of Ampére’s
law of force may now be obtained by inte-
grating (6.2b) and using the result that
the first term vanishes; thus

wol I (dly- dly)ag
Fau = - wauggcz cl—le (6.3)
This alternative relation is symmetrical
with respect to loops 1 and 2 (that is, P
F:1 = F1) and therefore obeys Newton’s an /
third law. dF;;

Using the expansion of the integrand ®)
as given in (6.2b) shows that dF, is a
vector in the plane containing the vec-
tors dl; and ag and in addition is perpen-
dicular to dl,, as in Fig. 6.2a. When dl;
is perpendicular to ag, the force is entirely
radial, as in Fig. 6.20. When dl, and dl,;
are perpendicular, the force is directed
parallel to dly, since the component propor-
tional to dl; - dl; along agis zero. Finally,
when dl, is perpendicular to az and dl; and  Fie. 6.2. Space relation between
dl, are also mutually perpendicular, the ®u dlx ag, and dFa.

force vanishes, as illustrated in Fig. 6.2¢c.

6.2. The Magnetic Field B

In electrostatics the concept of an electric field was developed and
found to be of great importance. This work stemmed from the defini-
tion of the electric field as the force acting on a unit charge. The field
concept proves equally important in the magnetic case, and we find it
possible to set up an analogous definition of the magnetic field B. In
place of (6.1) we can write

Fa = ¢, L:dl X By (6:4)
where B = :—1: c MLR—Z—(——% (6.5)

Equation (6.1) may be thought of as evaluating the force between current-
carrying conductors through an action-at-a-distance formulation. In
contrast, (6.4) evaluates the force on a current loop in terms of the
interaction of this current with the magnetic field B, which in turn is
set up by the remaining current in the system. The current-field inter-
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action that produces F3; in (6.4) takes place over the extent of the current
loop C,, while the magnetic field B,; depends only on the current and
geometry of Cy which sets up the field.

Except that the relations are vector ones, this work reiterates the field
concept as developed in electrostatics. If we always assume orientation
for maximum force, then B is the force per unit current element. In
particular, (6.5) can be considered as a formulation for the magnetic field
at any point in space which is independent of the existence of a testloop
C: to detect the field. Furthermore, each element of current may be
considered to contribute an amount
pol(z'y'2) dl” X (r — 1')

4r|r — 1|3
to the total field B(x,y,2). (The generalized notation here follows the
definitions introduced in Sec. 1.17.) From this formula the field of an
arbitrary current distribution can be found by superposition.

One of the advantages of the field formulation of (6.5) is that when B
is known, this relation permits one to evaluate the force exerted on a
current-carrying conductor placed in the field B without consideration
of the system of currents which give rise to B. Equation (6.5) is the law
based on the experimental and theoretical work of Biot and Savart and
is therefore usually called the Biot-Savart law. Since this law may also
be extracted from Ampére’s law of force, it is sometimes referred to as
Ampére’s law as well.

A charge ¢ moving with a velocity v is equivalent to an element of
current I dl = ¢v and hence in the presence of a magnetic field experi-
ences a force F given by

dB(z,y,2) =

F=¢qvXB (6.6)

This force is called the Lorentz force, and (6.6) is often taken as the
defining equation for B.

In practice, one does not always deal with currents flowing in thin con-
ductors, and hence it is necessary to generalize the defining equation
(6.5) for B so that it will apply for any arbitrary volume distribution of
current. The steady-current flow field is divergenceless, and all flow lines
form closed loops. Let us single out a short length di of one current flow
tube of cross-sectional area dS and compute its contribution to the total
field B. Let the current density in the current tube under consideration
be J, as in Fig. 6.3. We may associate the direction with the current
density vector J rather than with the arc length di, and hence the current-
flow-tube element of length dl at (z’,y’,2") produces a partial field dB at
(z,y,2) given by

dB = %—";tﬁ J(&'y,2) X agdldS
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since the total current is J dS. The total current contained in a volume V
will therefore produce a field B given by

B(z,y,2) = / Iy 2) X az z) X az jy 6.7)

where the integration is over the source coordinates z’, 4/, 2’ and dV’
is an element of volume dSdl. For a surface current J, amperes per

Fic. 6.3. A current flow tube.

meter flowing on a surface S, a similar derivation shows that the field

produced is given by
/ I X az g (6.8)

The unit for B is the weber per square meter, which is also equal to volt-
seconds per square meter.

The equation for B is a vector equation, and its evaluation in practice
is usually carried out by decomposing the integrand into components
along three mutually perpendicular directions. If the current J is referred
to a rectangular coordinate frame and has components J,, J,, and J,,
then

a ay a,

J J J. 1
IXar= r— 7 y_”y/ o =a=[Jy(z_z’)—"]z(y_y’)]R

R B R

+alle — &) = . — Dl + allly — 1) = Lo — Dl g

The z component of magnetic field is thus given by

(e = &J,@Y' ) = (Y = Y002 s g gy

Blowd) = g |, =) + =) F G = )P
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with similar expressions for B, and B,. Integrals of the above form are
not always very easy to handle, and in practice it is convenient to com-
pute an auxiliary potential function first from which B may subsequently
be found by suitable differentiation. Such a procedure was used in
electrostatics and found to be of considerable value as an intermediate
step in finding the electric field. The next section will consider the
potential function from which B may be obtained.

6.3. The Vectpr Potential

For convenience, the general equation defining the static magnetic
field B is repeated here:

B(z,y,2) = fo / MdV' (6.9)

If we replace az/R? by —V(I/R), the integrand becomes —J X V(1/R).
The vector differential operator V affects only the variables z, y, 2, and
since J is a function of the source coordinates z’, 3/, 2’ only, this latter
relation may also be written as follows: —J X V(1/R) = V X (J/R);
thatis, VX (J/R) = (1/R)VX J — J X V(1/R) = —J X V(1/R), since
VX J =0. Thusin place of (6.9) we may write

B(2,y) = Z—;/Vv x L av = v x %ﬁ,ﬁilg—“ av’ (6.10)

The curl operation could be brought outside the integral sign since the
integration is over the ', ¥/, 2’ coordinates and the differentiation is with
respect to the z, y, z coordinates. Equation (6.10) expresses the field B
at the point (z,y,2) as the curl or circulation of a vector potential func-
tion given by the integral. From (6.10), the definition of the vector
potential function, denoted by A, is

Alzyz) = 2 / J&y' 7) ’y 2) gy (6.11)

The integral for A is a vector integral and must be evaluated by decom-
posing the integrand into components along the coordinate axis; e.g.,

the & component of A is given by A, = (uo/4r) [V (J./R) dV'. Note
that the integral for each component of the vector potential A is of the
same type as the integral for the scalar potential from a volume distribu-

tion of charge in electrostatics. Having computed A, the field B is
obtained by taking the curl of A:

B=VXA (6.12)

‘The integral for A is easier to evaluate than the original expression (6.9)
for B, and since the curl operation is readily performed, the use of (6.11)
as an intermediate step provides us with a simpler procedure for finding B.
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Example 6.1. Field from an In- 2
finite Wire Carrying a Current 1. T %tz
Consider an infinitely long straight '
wire in which a steady current [
flows, as in Fig. 6.4. The magnetic I (8
field B will be determined at points
which are much farther away from the

|

|

|

|

|

|

|

|

|
that we may assume that the wire is ~ -\J/

By

wire than the diameter of the wire, so ¢_/\>\\ 0 Y
infinitely thin with negligible error. “%

To form a closed loop we may imagine F1e. 6.4. An infinitely long wire with
that the wire is closed by an infinitely & current 7.

large semicircular loop which does

not contribute to the field in any finite region (as we could verify).
According to the Biot-Savart law,

I [=d'Xr
Bloys) = 47 [~ 4 XD

The vector r; is given by r; = a,z + a,;y + a,(z — 2’), and dl’ = a, d2,
and hence

a. a, a,
0 0 dz'

x y z—2

dl! Xr, = = —ayds + axd?

We may evaluate the z and y components of B separately. For later
work it will be desirable to have an expression for the field contributed
by a finite length L of wire so that the integral will be evaluated between
+L/2 first. The z component is given by

= —rly [ dz
Bz - 4 _/—L/2 [3;2 + y2 + (Z — z/)g]% (613)

The integral may be evaluated by making the substitution

z2—12

tan a =

where p = (22 4 y?)** and is the radial coordinate in a cylindrical coordi-
nate system p, ¢, 2. The differential dz’ becomes

—pd tan o = —p sec? a da

The term =22+ y?+ (2 — 2/)? becomes p%(1 + tan? a) = p?sec? a.
“When 2/ = +L/2, the corresponding values of the angle « = ay,, are
siven by tan a; 2 = (2 F L/2)/p, or since tan? a = sec?® a — 1, we get
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cos a2 = p/[p? + (2 F L/2)** and

2 ¥ L/2
[* + (¢ F L/2)4*

Hence the component B, is given by

sin ay 2 =

poly [ poly , . .
B, = 43”’2 ‘[’2 cos a da = 4;’)2 (sin oy — sin ay)
Substituting sin~! (z F L/2)/[p® + (¢ F L/2)?}* for a; and a; yields the
final result

_ koly z—L/2 B 2+ L/2
B, = 4arp? [[pz FG-L2P [+ &+ L2 (6.14)

The evaluation of B, is similar and can be found from the expression for
B, by replacing y by —z. If we now note that the unit vector a, is
given by a, = —a, sin ¢ + a, cos ¢ = (—y/p)a, + (z/p)a,, we see that
the two components of B combine to form a vector along the direction of
the unit vector a,. The total field B is thus given, in this case, by

B = Bzaz + Byay = B.;,a.,,
_ ol d L2 a— L2
dmp |[p* + (= + L/2)°1% [p* + (2 — L/2)%®

For an infinitely long wire, L tends to infinity, and the limiting form of the
expression for By becomes

a, (6.15)

ﬂol
since for L >> p and L >> z the terms (z + L/2)/[p* + (2 + L/2)?* and
(z — L/2)/[p* + (2 — L/2)?]* approach 1 and —1, respectively. That
B should have only a component B, could have been anticipated from the
cylindrical symmetry of the problem.

Example 6.2. Field from a Conducting Ribbon with a Current I, per
Unit Width. Consider a thin conducting strip of width d, infinitely long
and carrying a uniform current I, amperes per meter, as in Fig. 6.5. The
field from a strip of width dz’ carrying a current I, dz’ and located at
y = 0, z = 2’ is equivalent to that from a thin wire similarly located.
From (6.16) this field is seen to have components dB, and dB, given by

_ —pols Yy dz’
B: = =5 v+ (z — 2')?
ol (z—12)d
B, =5 v+ (z — 2)?
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when dB, is decomposed into components along the r and y axis and z
is replaced by z — z’ (new origin) throughout. The total field is found

2 XY 2

-

F1a. 6.5. Current I, in an infinitely long strip.

by integrating over z’ from —d/2 to d/2. The essential integrals to be
evaluated are

—a2 Y+ (x — 2)? y Y o l-an
Y2 (g — ) da ¢/2
A A 2 Y
f-—d/2 yz T (CE — $l)2 72 In [y + (27 27) ] _a/

Utilizing the above results, the components of the magnetic field
become

27

_wols, y? 4 (x4 d/2)?
Bu(xyy;z) = - lnm (617b)

Bu(z,5,2) = :ﬂii(tan—l ’iyd/—z — tan-! i—“f@) (6.17a)

Example 6.3. Force between Two Infinite Wires. Consider two thin
infinite wires which are parallel and spaced at a distance d. The cur-
rents flowing in the wires are I; and I,, as in Fig. 6.6. From (6.16) the
magnetic field at C; due to C; has a ¢ component only and is given by

e
¢ 2rd
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The force exerted on C: -per unit length is given by Ampére’s law of
force (6.4) and is
Fo = I,a, X a4By
—NOI 1I 2
2rd

a, newtons/m (6.18)

When I, and I, are in the same direction, the two conductors experience

&> &>

F1c. 6.6. Two parallel current-carrying wires.

an attractive force. When 7; and I, are oppositely directed, the con-
ductors repel each other.

Example 6.4. Field from a Circular Loop and Use of the Vector Poten-
tial. Consider a thin wire bent into a circular loop and carrying a current
I. The radius of the loop is a, and it is located in the zy plane at the

xlylz

F1G. 6.7. A circular current loop.

origin, as in Fig. 6.7. We shall compute the field B at all points whose
distance from the origin is much greater than the loop radius a by the
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direct method and by using the vector potential A. By the direct method
B is given by the integral (6.5) as

I dlXr
B = £~ !
4

where in this case
dr’
Iy

Consequently,

agadé’ = (—a, sin ¢’ + a, cos ¢')ad¢’
a,(x — acos ¢') + a,(y — asin ¢') + a,z

dl' X r; = [a,2 cos ¢’ + a,z sin ¢’ — a,(y sin ¢’ + z cos ¢’ — a)]ad¢’
The expression for rd is
= [(x — acos ¢')* + (y — asin ¢')? + 2%*
= (z* 4+ y* + 22 + a® — 2azx cos ¢’ — 2ay sin ¢')*
= (1 - g—;ﬂ: cos ¢’ — g;_z—zy sin ¢’)%
since a? < r%.  For r;—3 we have approximately

3azx

rl—szr~3(1+——cosq5 + —= Y sin ¢)

upon using the binomial expansion and retaining only the leading terms.
We now obtain for the field B the expression

#ola

2
— ’ : ' _ : ’
B = [ /(; [a;z cos ¢’ + a,zsin ¢ a,(y sin ¢

+xcos¢’—a)]<1+3r— ¢+ s1n¢>) ¢’

The integration is straightforward, with most terms going to zero, and

we are left with
wolmra? 3xz 3yz 3y? | 3x?
= o= o2 _ g, (2L 42— 1

y—; [az > + a, a, + 2 (6.19)

It will be convenient to refer this field to a spherical coordinate sys-

tem r, 6, . For the purpose the following substitutions are required,

namely,z = rcos §,z = rsin 6 cos ¢,y = rsin fsin ¢. The component

of B along the direction of the unit vector a, is given by the projection

of B on a, and is (B - a,)a,; along the unit vector a, it is (B - as)as, and

similarly for the ¢ component. To evaluate these components note that

a,+a, = sin 6 cos ¢ a,+a, = sin # sin ¢
a.+ap = cos 6 cos ¢ a,-ap = cos 0 sin ¢
a,-a, = cos 0 a,-as = — sin 0

&, a; = — sin ¢ a,-a; = cos ¢ a;*a;, =0
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Using the above relations in (6.19), the following expression for B is
obtained:

po[ﬂ'a

T (a,2 cos 8 + a sin 8) ' (6.20)

As may be anticipated from the symmetry about the z axis, B has no
component along the direction of the unit vector a,.
For the second method we must evaluate the following integral for A:
_ ol dl
=% Porm
For r? > a? we have

r! = ! <1 + % cos ¢’ + %‘g sin ¢'>

by using the binomial expansion, as was done to obtain an approximate
expression for r;=3. The integral for A becomes

A= ’2’:?/ (—a, sin ¢’ +a,,cos¢)(1 —|—~—cos¢ +——sm ¢)d¢'
and integrates to give
I 2
= #317:;? (—a.y + a,z) (6.21)

Referred to a spherical coordinate system, A is given by

= (A-a,)a, + (A-az)a, + (A-agay = a¢ sin § = Agsa; (6.22)

I
4
and has only a component A,.

The magnetic field B is given by the curl of A. In spherical coordi-
nates we have
a, rap rsin fa,
1 a 9 0
r’sin 0|0or a9 EXs
0 O rsinfd,

VXA=B= (6.23)

where A, is given by (6.22). Expansion of this determinant gives

B=a 2 (sin04,) — arr o (-AL)
Substitution for 44 from (6.22) will now yield the same expression as
given by (6.20). The use of the vector potential in the present example
leads to the end result in a simpler manner than the use of the defining
relation (6.5) for B.

The previous results are restricted by the condition that r > a. If
the field point is chosen to be along the axis of the loop (z axis), then a
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rigorous solution is easy to obtain. In the first method we note that
since z = y = 0, we have
rid = (a® + 2%)%
dl! X r; = (a.z cos ¢’ + a,z sin ¢’ + aa,)a de’

The expression for magnetic field

_ pol dl X1 _ pol [%r (a2 cos ¢’ + a,zsin ¢’ 4 aa,)adg’

T 4 ré 4w o (o +2%)%

then evaluates to

_ pola®
B = st % &

6.4. The Magnetic Dipole

The distant field B produced by a small current loop will be shown to
be similar to the electric field from a small electric dipole. For this
reason a small current loop is called a magnetic dipole. Its dipole
moment M is defined as equal to the prod-
uct of the area of the plane loop and the 2z
magnitude of the circulating current, and t M=ma]a,
the vector direction of the moment is per-
pendicular to the plane of the loop and T
along the direction a right-hand screw
would advance when rotated in the same y
sense as the current circulates around the
loop. For a circular loop of radius a the %
magnitude of the dipole moment is ra?7, Fic. 6.8. The magnetic dipole.
as in Fig. 6.8.

From (6.21) in Example 6.4, we have A = (uoM/477r3)(—ay + a,r)
for the vector potential from a small circular current loop described as in
Fig. 6.8. We now note that

a, Xr=a,X (ra, +ya, +2a,) = —a,y +azx

and hence we may write

L PV 1
A= i a, X T & XV <r> (6.24)
since V(1/r) = —r/r®. Now M = a,M is a constant; so we may also
write in place of (6.24)
_ g M
A= i vV X - (6.25)

The steps involved in arriving at (6.25) are the same as those used to
derive the integrand of (6.10).
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The magnetic field B is given by
= = Mo M
B—VXA—%_VX(VX r>

This expression may be simplified by using the definition
VXVX =VV.—-V?

and the fact that V2(1/r) = O for r > 0. Remembering that M is a
constant, we now get

B = %%[V<V-llf—) - v2¥] =:—;V<V-¥> =£7—‘:V[M-v(rl>] (6.26)

This last result is of the same form as the expression

wa[270)]

for the electric field from an electric dipole p. Thus the electric and
magnetic dipoles give rise to sim-
ilar fields, as illustrated in Fig. 6.9.
There is a fundamental difference,
however, in that the electric lines of
flux leave and terminate on charges
while the magnetic lines of flux are
continuous closed loops. Infact, we
shall show in a later section that
this property is always true for the
magnetic field B. This difference is
not revealed by (6.26) and the
equivalent electric dipole expression
because these expressions are valid
only for field points whose distance
from the dipole is much greater than
the extent of the dipole. Even for
infinitesimal dipoles we may not use
those expressions to reveal the be-
Magnetic dipole havior of the fields in the immediate
Fig. 6.9. Comparison of electric and vicinity of the sources.
magnetic dipoles. For an arbitrary current loop the
magnetic dipole moment is defined as
equal to the product of the loop current I and the vector area S of the
surface bounded by the loop; thus

M= IS (6.27)

Electric dipole
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The positive direction of current flow is related to the positive direction
of the surface by the usual right-hand-screw rule. This definition is
illustrated in Fig. 6.10. It is not hard to show that the magnetic field
from an arbitrary current loop of moment M, as defined in (6.27), is
also given by (6.26), provided the distance to the field point is large

@ ©®

F1a. 6.10. General magnetic dipole.

compared with a characteristic linear dimension of the loop (see Prob.
6.16).

To facilitate the generalization of the magnetic dipole moment to a
volume distribution of stationary currents, we first express the vector
area S as an integral. Let r be a vector from some convenient origin to
a point on the loop C. The arc length along the loop is dr. The vector
area of the infinitesimal triangle shown shaded in Fig. 6.10c is

4r X dr = dS

Note that this element of surface is in the positive direction as defined
by the sense of the contour indicated in Fig. 6.10. The vector area of
the cone with apex at O and subtended by the contour C is

S = 9§Cds =1 Sﬁcr X dr (6.28)

This result is the same for any surface whose periphery is C, as we know
from vector-analysis considerations. For example, if C is a plane curve,
|S| is the plane area circumscribed. The magnetic dipole moment of an
arbitrary shaped loop is therefore given by

I
M= 960 r X dr (6:29)
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The extension to a volume distri-
bution of current is now a trivial
one. Since the current is diver-
genceless, we may separate it into a
large number of infinitesimal closed
current flow tubes, as in Fig. 6.11.
For any one flow tube the total cur-
rent is dI = J dS, where dS is the
cross-sectional area and J is the cur-
rent density. Although dS may
vary along the tube, the product
o J dS is constant. A single flow

Fic. 6.11. A volume distribution of cur- tube contributes an amount
rent separated into infinitesimal flow s

tubes. dM=-@2£frxdr=f—2—rXJdT

dI=JdS

to the total dipole moment, since we may associate the vector direction
with J instead of with dr. Now dS dr is an element of volume dV, and
summing over all current flow tubes (integration over dS), we get the
general result

M=}gﬁrxjdv (6.30)

Torque on a Magnetic Dipole

An electric dipole p placed in a uniform electrostatic field E experiences
a torque T = p X E but no translational force. A similar result holds
for a magnetic dipole in a field B with the torque T given by

T=MXB (6.31)

The torque is such that it tends to align the dipole with the field. The
relation (6.31) is readily proved for a rectangular-loop dipole, as in Fig.
6.12.

Let the sides of the loop be L. The current in the loop is I, while B
is chosen so that the plane defined by B and the surface normal is orthog-
onal to two sides of the loop, that is, C; and C, in Fig. 6.12a. B makes
an angle 6 with the surface normal. By Ampére’s law of force (6.4), the
force on the segments C; and C, is IBL and has the directions indicated
in Fig. 6.12b, i.e., perpendicular to B and I. The forces on the segments
C; and C; are equal, opposite, and directed along the axis of rotation and
hence produce neither a torque nor a translational force. The product of
the force F and the moment arm L sin 6 gives the torque as

T = IBL?>sin § = MB sin 6
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or in vector form, T = M X B, since the magnitude of the dipole moment
M is IL?. If the direction of B is arbitrary, then it may be resolved into
components of the above type and the resultant torque found by super-
position. The analysis shows that
the relation T = M X B holds for
arbitrary orientations of B relative
to M.

The generalization to an arbi-
trary current loop is obtained by
considering the loop as made up

M

M

"No
] L_"/i‘ ﬁ‘
/8\ ///0// I
-

F -
) Moment arm =L sin §
Frc. 6.12. Illustration of torque on a Fig. 6.13. Decomposition of dipole M
square-loop dipole. into elementary square-loop dipoles dM.
(Currents along all interior boundaries
cancel.)

of a large number of infinitesimal square loops, each with a dipole moment
dM, as in Fig. 6.13. The torque on each square-loop dipole is given by
dM X B = I(dS X B), where [ is the current magnitude and is con-
stant. Integrating over all the infinitesimal dipoles gives the relation
(6.31) if B is constant over the whole region. If B varies across the
region occupied by the dipole, then (6.31) must be replaced by

T=[dM XB (6.32)

Example 6.5. Torque on a D’Arsonval Movement. The D’Arsonval
moving-coil instrument for measuring current consists of a rectangular
coil, of n turns, which is free to rotate against the restoring torque of a
hair spring. The coil is placed between the poles of a permanent magnet,
which produces a field B, as in Fig. 6.14, which we may assume to be
uniform. The current 7 to be measured passes through the coil of cross-
sectional area S. The magnetic dipole moment of the movement is nSI.
The torque produced on the movement is then BnSI sin # = BnSI cos a,
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where a is the angle of rotation from the zero current equilibrium position.
Rotation stops when the restoring torque ke of the hair spring is equal to
the torque produced by the field, i.e., when ko = BnSI cos «. For small
angles cos a is approximately unity, and hence « is directly proportional
to the current 7. In practical instruments special shaped pole pieces

Permanent
magnet
poles

B ?
2T

0

M

/77,@ Hair spring

n turn coil of area S

Fic. 6.14. The D’Arsonval moving-coil instrument.

are often used so as to produce a field B that will result in a linear scale
over a larger range than that available with a uniform field.

6.6. Magnetic Flux and Divergence of B

We have seen that the magnetic field B can be derived from the curl
of an auxiliary vector potential function A. This result leads at once to
an important physical property for the field B. The divergence of the
curl of any vector is identically equal to zero, and hence V-V X A = 0,
from which it follows that the divergence of B is also identically zero; i.e.,

V:B=0 (6.33)

In the next chapter we shall show that the effects of material bodies can
be accounted for by equivalent volume and surface magnetization cur-
rents. Thus even in the presence of material media it is possible to
derive B from the curl of a vector potential, and hence the relation (6.33)
is true in general. It now follows that the flux lines of B are always con-
tinuous and form closed loops. This property of B is the mathematical
consequence of the formulation of Ampére’s law, which in turn is based
on experiments that do not reveal the existence of free magnetic poles,
or “magnetic charge.” All magnets have both a north and a south pole,
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and the field B is continuous through the magnet. For this reason the
magnetostatic field B is fundamentally a different kind of field from the
electrostatic field E. As discussed at several points earlier in this book,
it is frequently advantageous to consider a vector field as representing the
flow of something. The magnetic field B is often thought of as represent-
ing a magnetic flux density. Then the flux through an element of area

c

g

q

(@ ®

F16. 6.15. Magnetic flux through a surface S. (a) Open surface; (b) closed surface.

dS is given by the dot product of B with dS, B -dS. The dot product
selects the normal component of B through the surface dS. For an arbi-
trary surface S bounded by a closed contour C, as in Fig. 6.15a, the total
magnetic flux ¥ passing through the surface is given by

v = /S B.dS (6.34)

The flux passing through the surface S bounded by the contour C is
said to link the contour C and is commonly referred to as the “flux
linkage.”

For a closed surface S, as in Fig. 6.15b, just as much flux leaves the sur-
face as enters because of the continuous nature of the flux lines. Hence
the integral of B -dS over a closed surface is equal to zero. Mathe-
matically, this result follows from (6.33) by an application of the diver-
gence theorem. In the present case V+-B = 0; so we have

/Vv-BdV=/SB.ds=o (6.35)

The flux which links a contour C may be expressed in terms of the
vector potential A also. Since B = V X A, we have

\p=[SB-ds'=/vaA.ds

The latter integral may be transformed to a contour integral by using
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Stokes’ law; thus
\1/=/sv><A-dS=¢CA-d1 | (6.36)

This latter integral is sometimes more convenient to evaluate than (6.34)
is.

6.6. Ampére’s Circuital Law

So far we have dealt only with integrals that give the field B or the
vector potential A. What we need to do next is to obtain an equation
for B that relates B to the current which exists at the point in space
where B is being evaluated. A general vector field is a field which has
both a divergence and a curl, neither of which is identically zero through-
out all space. When the divergence and curl are both identically zero,
the field vanishes everywhere. A field with a zero divergence but a
nonzero curl is known as a pure rotational or solenoidal field. A field
with a zero curl and a nonzero divergence is called an irrotational or
lamellar field, of which the static electric field is a well-known example.
We have seen that B is a solenoidal field with a zero divergence every-
where. Therefore the source J for the field B must be related to the curl
of B in some manner.

To obtain the relation we are seeking we begin with (6.10) and take the
curl of both sides to get

VX B(zyz) =VXVX f‘ﬁ /V L’”éﬂ av’ (6.37)

The curl-curl operator may be expanded into the VV . —V? operator.
We may also carry out the differentiation first and then the integration,
because of the independence of the variables z, y, z and z’, 3, 2/.  Hence
we have

vXB=k / [vv J(x"y )y g v <R>] dv' (6.38)

We shall show later that the integral of the first term vanishes, so that

VXB= - / CETEANE (%) v’ (6.39)

By direction differentiation one readily finds that V3(1/R) = 0 for all
finite values of R. Thus if the field point (z,y,2) is outside a finite source
region, then R will never vanish, and it is clear that V X B = 0. But
if the field point is within the source region, then in the process of inte-
gration it is possible for R to be zero. This condition requires more care-
ful attention since the integrand of (6.39) has a singularity at R = 0.
Actually, as we shall now verify, the singularity of V2(1/R) in (6.39)
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is integrable and yields a finite result. We proceed by noting that in the
immediate neighborhood of the point B = 0 the current density function
does not vary much from its value at the point R = 0, that is, at the
point ' =z, ¥’ = y, 2/ = 2. Since the integrand is zero everywhere
except at R = 0, we need only integrate (6.39) over a small sphere with
center at (z,y,2), asin Fig. 6.16. We may take J(z,3',2’) equal to J(z,y,2)
throughout the volume of the sphere for the reason just given, and hence
(6.39) becomes :

_ _ M 1N v
VX B = e J(z,y,2) j; Vv? <R> v (6.40)

Now since R = [(z — 2)2 4+ (v — ') + (¢ — 2')?]"%, we have the result
V(1/R) = —V'(1/R) and V*(1/R) = V'*(1/R) = V' - V/(1/R), where V'
signifies differentiation with respect

to «/, ¥/, and 2’. In place of (6.40) dS = a?d0
we have

) vy (LY gy

£ (2,2 fv‘v v (R) av
) (LY. g
- 4r J(x,y,Z) %SV <R> ds

where we have also made use of
the divergence theorem. The ele-
ment of area in spherical coordi-
nates is nR? dQ, where n is the unit
outward normal and dQ is an ele- Fic. 6.16. Small sphere of radius a
ment of solid angle, that is, surrounding singularity point z’ = z,

=y, 2 =z
dQ = sin 6 d¢ do
Also we have V/(1/R) = ag/R?, and hence

1
V’(R)-dS’ =n-azdQ = —dQ
since ag points toward the center of the sphere. Therefore (6.40) gives
VX B = £ 560 [ dt = wln) (6.41)

since there are 4r steradians in the solid angle of a closed surface.
Hence we see that the curl or rotation of B is equal to uoJ.

ProofofLVV-I—{,—dV’=0

Having obtained the desired relation (6.41) between B and J, we must
now return to (6.38) and show that the first integral vanishes as stated.
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The integral in question may be rewritten as

JEY D) g gy
/Vvv gV =v [ v.zdv

where one of the differentiation operators has been brought outside the
integral sign. To prove the desired result, rewrite the integrand as

follows:
v ](x’,y’,z’)v ]- v 1 _ ]‘ v 1 — v . J

since V'- (J/R) = 1/R)V' - J+ J:V/(1/R) and V'-J is zero for sta-
tionary currents. The integral becomes

| S SV R T o s
v/Vv-RdV_ V/VV 2qv 95 ds’  (6.42)

by using the divergence theorem, where S is a closed surface surround-
ing V.t Since J is a stationary current and confined to a finite region of
space, we may choose S so large that

22 all currents lie within and in particular
: so that J-dS’ equals zero on the sur-
a face S. Hence the integral vanishes as

stated.

fr )

N D

r

F16. 6.17. An infinitely long coaxial Fic. 6.18. Field By as a function of radial
line. distance from center of wire.

Equation (6.41) is Ampére’s circuital law in differential form. By
applying Stokes’ law, an integral form of this law may be obtained. If
we integrate V X B over a surface S bounded by a closed contour C
and use Stokes’ law, we get

[SVXB-dS=/S#oj°dS=360Bod1 (6.43)

This equation states that the line integral of B - dl around any closed
contour C is equal to uo times the total net current passing through the
contour C. The law is particularly useful in solving magnetostatic prob-

t Note that the divergence theorem can be applied only to the second integral in
(6.42), where the variables of the differential operator and of integration are the same.
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lems having cylindrical symmetry, as the following examples will
demonstrate.

Example 6.6. Field from an Infinite Wire of Finite Radius. Consider
an infinite wire of radius a with total current I (Fig. 6.17). The current
density J is equal to I/ma® and uniform over the cross section of the wire.
From symmetry considerations the field B has only a component By,
which is a function of r only. TUsing Ampére’s circuital law (6.43) and
integrating around a circular contour of radius r gives

2r T 27
9SB¢dz=f B¢rd¢=uo// Jr de dr
0 0 0

2w T
=%§[) [)rd¢dr r<a

polr r<a

or By = 500 <

For r > a, the total current enclosed is I; so

" Byr dg = wol

or By = sl a<lr
2mwr

A plot of the intensity of By as a function of r is given in Fig. 6.18.

Example 6.7. Magnetic Field in a Coaxial Line. Consider an infi-
nitely long coaxial line consisting of an inner conductor of radius a, an
outer conductor of inner radius b, and thickness . A current I flows
along the inner conductor, and a return current —I along the outer
conductor, as in Fig. 6.19.

r~
L

F16. 6.19. An infinitely long coaxial line.
In the region r < b the solution for By is the same as in Example 6.6:

wolr
= — r<a
¢ 2ma? -

pol
= —__ <
6 =5 a<r<bd
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In the region b < r < b 4 ¢t we have

27 _ P-OI
ﬁ Byrdo = pol — [(b+t)2—b2]/ / rde¢dr
wol (r? — b?)

(42— b2

since the current density in the outer conductor is I/x[(b + £)* — b?.
Hence

or 2rrBy = pol —

Cued | wol(r? — bY)
* 7 2rr 2mr[(b + 1) — b

b<r<b+t

For r > b + ¢ the field B, is zero, since no net current is enclosed by the

contour of integration. The above expression for B, is seen to vanish
when r is placed equal to b + ¢ A
plot of By as a function of r is given in
Fig. 6.20.

A word in retrospect on the subject
of vector fields. By definition, the
vector field of a physical quantity is

_» the totality of all points in a given
region for which the direction and
F1c. 6.20. The field By as a function of magnitude of the quantity are speci-
rin a coaxial line. fied. Physically realizable fields are

given by vector functions of position
which are mathematically well behaved. To the list of vector fields
given in Chap. 1, we may now add the fundamental field of electrostatics
E and magnetostatics B.

The formal mathematical description of a vector field gives no insight
ingo its physical properties. This means that an E or B field could also
be thought of as representing a hydrodynamic velocity field, and vice
versa. The hydrodynamic analogy was introduced in Chap. 1 in several
places in order to develop some ‘““feel” for the abstract vector calculus.
We should like to follow this a bit further, but would like it clearly under-
stood that only an analogy is being depicted. Other analogies could be
formulated; indeed the reader may be satisfied with no analogy at all.

We plan to represent an arbitrary vector field by assigning a propor-
tional value of velocity to each corresponding point in an infinite volume
of incompressible fluid. Thus the condition that the fluid is at rest cor-
responds to a null field. There are two ways whereby we may bring
about motion in the fluid and hence correspondingly set up a field. The
simplest way is to ““stir things up’’; we could do this, for example, with a
paddle wheel. But to allow for greatest generality we can think of the
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paddle wheel as infinitesimal since this permits us to synthesize a more
arbitrary ‘“stirrer” by means of an aggregate of paddle wheels (vortex
source) whose direction and magnitude vary with position. Thus if a
large paddle wheel is used to set the fluid in motion, i.e., create a vector
field, this macroscopic source can be synthesized by an appropriate sum-
mation of infinitesimal vortex sources. Since the curl of the vector field
is a measure of how effectively the source has stirred things up, it is an
appropriate measure of the source strength.
In the case of the magnetostatic field we determined that

VX B =puJ

which establishes uoJ as a vortex source. The existence of a current
density in space may be thought of as causing a B field to exist by “stir-
ring up”’ of the media.

A second way of causing fluid motion is to inject fluid or to remove
fluid. If the total source plus sink is zero, then the net amount of fluid
remains constant. Point sources refer to an idealization of sources where
the fluid enters in a spherically symmetric uniform flow from a mathe-
matical point. Similarly, a negative point source (or sink) removes fluid
in an analogous pattern. While the over-all quantity of fluid is constant,
there can be a net positive or negative flow in a limited region, and this
net amount is proportional to the sum of sources within the region. The
divergence of the vector function is a measure of the source strength at
each point, where the source is considered as being distributed throughout
a volume. In electrostatics the E field arises from divergence-producing
types of sources and is given by the formula

In the most general case the fluid may be set in motion, hence represent
an arbitrary field, by a combination of sources such as described above.
In this case the vector function has a nonzero value of both divergence
and curl in at least some region of space. An example of such a field is
the D field in electrostatics in the presence of dielectric materials, with
permittivity that is a function of the coordinates. For in this case

V:D=p
VXD =VX(e«E) +VXP
=VXP

The true charge causes an outflow of D from their positions, while the
source V X P acts to stir up the D field.
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6.7. Differential Equation for Vector Potential

In electrostatics we showed that the scalar potential ® was related to
the charge sources that produce it by means of the following equation:
1 .
P = Z—ﬂ'é—o 14 dV
We determined further that the scalar potential ® satisfied the following
partial differential equation (Poisson’s):

Vip = P
€
so that the integral formulation could also be considered as a solution to
Poisson’s equation.
In magnetostatics we have found, analogously, that the vector potential
A is related to the current sources through the following expression:

_ ko [JaV!
4 R
If we consider the rectangular components of this equation, that is,
_ ko [ J.dV’
=% F
_ o [ Sy dV’
4, = 4r / R
_ ko [ J AV’
4. = 4 R

then each is a scalar equation of precisely the type dealt with in electro-
statics. Then by analogy it is clear that each component must satisfy a
Poisson equation with the corresponding current component as a source;
that is,

VIA, = —pod. VA, = —pd, VA, = —pod,

If, now, each equation is multiplied by the corresponding unit vector and
all three summed, we obtain the following vector Poisson equation:

VA = —u(J

This result can be obtained in a more formal mathematical way. If we
take the double curl of A, which is equal to the curl of B, and use (6.41) to
replace V X B by wuoJ, we get VX VX A = V X B = yJ. Expanding
the curl-curl operator gives

VYA — V2A = ] (6.44)
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Since A is given by A = (uo/47)[(J/R) dV’, the divergence of A is given
by V+A = (uo/4m)fV - (J/R)dV’. This latter integral occurred, and
was shown to vanish, in the derivation of (6.41). It follows then that
V+A = 0 and (6.44) reduces to

VIA = —pJ (6.45)
which is an alternative proof that A is a solution of the vector Poisson
equation.

We can also confirm that
_ b [T
=& /;, 7 av (6.46)

is a particular integral of (6.44). This can be established by using the
singularity property of V2(1/R), as was done to obtain (6.41). The
details are left as a problem. To the particular solution (6.46) may be
added any solution to the homogeneous equation VZA = 0 as dictated by
the boundary conditions which A must satisfy.

Gauge Transformation

In the earlier work A was defined by (6.11), as a consequence of which V+ A = 0and
Vv X A = B. If, alternatively, A was simply specified by the requirement that
V X A = B, then there is a certain arbitrariness in the choice of A. We could equally
well use a new vector potential A’ which differs from A by the addition of the gradient
of a scalar function &, since V X V& = 0. Thus let

A=A+ Ve (6.47)

The field Bis given by B=V X A' =V X A +V X V® =V X A and is invariant
to such a transformation to a new potential A’. The transformation (6.47) is called
a gauge transformation, and the invariant property of B is known as gauge invariance.
In view of the gauge invariance of B it is always possible to introduce a gauge trans-
formation, as in (6.47), to make the new potential A’ have zero divergence in the case
when A does not have zero divergence. It is only necessary to choose ® so that

V'Ah=0=V-A+4V® (6.48)

Consequently, we can always work with a vector potential which has zero divergence
if we wish, or on the other hand, if more convenient, we can choose a vector potential
with nonzero divergence. In the general case A is then a solution of (6.44) rather
than (6.45).

From another point of view we note that in defining the vector potential A, only
its curl has been specified; that is, V. X A = B. From the Helmholtz theorem we
understand that this does not completely specify the vector A; in fact, the diver-
gence of A is completely at our disposal. If we choose as a fundamental relation
A = (uo/4r)[(J/R) dV’, then, as we have seen, we are inherently specifying V- A = 0.
This condition is usually a satisfactory one, but as pointed out above, it is not neces-
sary. We could think of (6.45) as arising from a choice of integration constant equal
to zero. This is equivalent to establishing an arbitrary reference potential, just as
was discussed in the electrostatic case.
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Chapter 6

6.1. Use the Biot-Savart law [Eq. (6.5)] to find the field B set up by two infinitely
long line currents located at z = +1, y = 0 and parallel to the z axis. The currents
flowing in the line sources are I and —1I.

6.2. For the line sources in Prob. 6.1, find an equation for the lines of flux and show
that these are the same as the constant-potential contours around two line charges of
opposite sign.

6.3. Use Eq. (6.14) to find the field B at the center of a square current loop with
sides d and current I.

6.4. Consider the rectangular U-shaped con- T I
ductor illustrated. The circuit is completed by

means of a sliding bar. When a current I flows 4
in the circuit, what is the force acting on the
sliding bar? When a = 4 centimeters, b = 10 L
centimeters, and I = 5 amperes, what is the
value of the force?

b —y
F1c. P 6.4

6.6. Consider two square loops with sides d and equal currents I. One loop 1s
located a distance k above the other loop, as illustrated. Find the force acting on one
loop due to the other loop.

d
AI,
—,- d Iz 1
L a
h d i

1 IO

d

Fic. P 6.5 Fic. P 6.6

6.6. A rectangular loop is located near a current line source as illustrated. Find the
force acting on the loop.

6.7. Find B at any point along the axis of a circular current loop of radius a and
current I.

6.8. A solenoid of length L > a, where a is the radius, has n turns per meter. A
current I flows in the winding. Find the field B along the axis.

6.9. A regular polygon of N sides has a current / flowing in it. Show that at the
center

_ kNI ™
B = ord tanN
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where d is the radius of the circle circumscribing the polygon. Show that as N
becomes large, the result reduces to that called for in Prob. 6.7.

6.10. Use Ampére’s circuital law to find the field due to the two line sources specified
in Prob. 6.1.

6.11. A z-directed current distribution is given by

Je=r*4+4 r<Xa

Find B by means of Ampére’s circuital law.
6.12. The vector potential due to a certain current distribution is given by

A = z%ja, + yiza, — 4zyza,

Find the field B.
6.13. A current distribution is given by

J = a.Jor r<a

where r is the radial coordinate in a cylindrical coordinate system. Find the vector
potential A and the field B. Also find B directly by using Ampére’s circuital law.

Hint: Solve the differential equation for A in cylindrical coordinates in the two
regions r < a and r > a. The arbitrary constants of integration may be found from
the condition that A is continuous at r = a, equals zero at » = 0, and for r - « must
be asymptotic to C In r, where C is a suitable constant.

6.14. A square loop with sides d and current
I, is free to rotate about the axis illustrated.

If the plane of the loop makes an angle 6 with L
respect to an infinite line current I,, find the
torque acting to rotate the loop.
Hint: Consider the loop to be made up of
infinitesimal dipoles of moment dM = I, dS.
F16. P 6.14

6.16. Show that Eq. (6.46) for A is a solution of (6.45) by substituting (6.46) into
(6.45) and using the singularity property of V*(1/R).

6.16. Given a current loop of arbitrary shape with current magnitude I. Show
that (6.26) correctly gives the magnetic field if the magnetic moment is defined as in
(6.27).

Hinr: First find the vector potentia! A starting with

u0195
|r~—r|

where r is the position vector of the field point and r’ that of the source point. Make
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use of the approximation
. !
It =t t= (412 -2r1) % = % (1 + r_2r_)

and show that
dr' (t' - 1) = (' Xdr') X1+ ¥dr'(r 1))

to eliminate all terms except
= wl rsedr) x X
A=7 (}éggr Xdr)xr,

Note that 14 ¢ r’ X dr’ equals the vector area of the loop and that the integral of

d[r’(r - r')] around a closed loop is zero since the latter is a complete differential.



