CHAPTER 5

STATIONARY CURRENTS

In the previous chapters the characteristics of an electrical conductor
were noted, namely, that it was a repository of free electronic charge
which would readily move under the influence of an applied field. A par-
ticular consequence of this, that the electric field within a conductor
must be zero in the presence of an electrostatic field, has already been
described.

In this chapter we look into the conditions required for the production
of steady current flow in conductors and for a description of the proper-
ties of current flow fields. We could take advantage of the existence of
a large body of knowledge dealing with the flow of current in electric
circuits that is available in electric circuit theory. We prefer, however,
to describe current flow in terms of an appropriate electric field. The
field-theory approach may then be related to the circuit approach.

In the region external to batteries, the field producing a current flow is
the electrostatic field. Since the current density is linearly related to the
electric field, an interesting duality between the current flow field and
the displacement flux exists. This duality may often be made use of in
the solution of current flow problems. In particular, we shall show that
there exists a simple relationship between the capacitance and resistance
between two electrodes.

Many current flow problems cannot be solved analytically. Therefore
a discussion of flux-plotting techniques and experimental techniques, such
as the electrolytic tank, is included in the latter part of this chapter.

6.1. Ohm’s Law

In the conducting medium it is found experimentally that the current
is related to the electric field by the following expression:

J =oE (5.1)

In this equation ¢ is the conductivity of the medium in mhos per meter

and J is the current density in amperes per square meter. The past

chapters have dealt with vector fields where, for conceptual reasons, we

interpreted them in terms of flow (Aux) fields. The current flow field,
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however, truly involves flow, and J represents the quantity of coulombs
flowing across a unit cross-sectional area per second. As usual, to cal-
culate total current flow across a surface, the following surface integral
must be evaluated: .

I=[73-ds (5.2)

The phenorenon of conduction in a metal can be considered from an
atomic viewpoint, in which case a fundamental understanding of the
dependence of ¢ on atomic structure, impurities, and temperature can
be developed. It will be sufficient for our purposes, however, to have in
mind a very simple physical model. We may think of the conductor as
composed of a lattice of fixed positive ions containing an electron gas
free to move about. Ordinarily, these free electrons are in a state of
random motion because of their thermal energy. The space-time-
average charge density, however, is zero. Conduction arises from the
drift of electrons because of the action of an applied electric field.
Except for an initial transient, the electron velocity reaches a steady-
state value when the accelerating force of the applied field is exactly
balanced by the scattering effect of electron collisions with the lattice.
These collisions may also be viewed as the mechanism whereby some of
the energy of the electrons, hence of the field, is dissipated as heat. At
equilibrium the current density at any point is simply the electron charge
density at the point times its drift velocity. Thus it can be shown that
the time-average drift velocity ist

_ eEN
2mug

(5.3)

vhere \ is the mean free path of the electrons, and v, the mean thermal
velocity. Then, if the density of charge is N electrons per cubic meter,

J = —Ne ¢EN _ _ NeE (5.4)

2mug 2mu,

This expression reveals the linear relation between current density and
field and also relates the conductivity to the atomic quantities. Note
that, by convention, positive current is associated with the flow of posi-
tive charge.

Equation (5.1) implies that conduction is both linear and isotropic.

t In obtaining this expression it is assumed that the scattering of electrons by the
heavy-metal atoms occurs in a completely random manner so that the average
velocity after collision is zero. Consequently, the average drift velocity is that which
is acquired between collisions under the action of the electric field force, that is,
v = }4at, where a = ¢E/m is the acceleration and ¢ = N/, is the time between colli-
sions. Ordinarily, the thermal velocity »o >> v; hence the dependence of ¢ on v, only.
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3, This is'not always true. However, for
metals, under a wide range of current
densities it does apply.- We shall as-
/E sume that (5.1) correctly relates the

current density and electric field in
conductors.
Equation (5.1) is a point relationship

I

R L and is true even if ¢ is a function of
/ the coordinates. For a homogeneous

g

P

w body with uniform current, it is rela-

Fre. 5.1. Uniform current flow in a  tively easy to find the total current and

rectangular bar. to obtain a relationship between it and

the applied field. Such a formulation

would be desirable in a circuit analysis. A simple case is illustrated in

Fig. 5.1, where a uniform axial applied field exists in a conductor of rec-
tangular cross section. The total current that flows is

I =JWH =EWH (5.5)
If we assume, for the moment, that over the extent of the conductor E
is conservative, then E = —V®, and the difference of potential between
the ends of the conductor, V, is

V=& —&,=EL . (5.6)
Combining (5.5) and (5.6) gives

1=PHy _gv 6.7
where G = UWICH

is the total conductance of the parallelepiped.

It is more common to specify the resistance of the conductor. This
is the reciprocal of the conductance and so may be written
L _ oL
T oWH WH
where p (not to be confused with charge density), the resistivity in ohm-
meters, is the reciprocal of the conductivity; i.e.,

1
p=- (5.9)

g
From (5.6) and (5.7) we get the well-known statement of Ohm’s law as
applied to the macroscopic circuit:

V=1IR (5.10)

R (5.8)
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6.2. Nonconservative Fieldss—EMF

We should like to produce a steady current, and we inquire now into
methods whereby this may be accomplished. As we know from (5.1),
it will be necessary to start with an electric field. So far, however, we
have considered only the production of an electrostatic field by stationary
charges. Will this suffice?

Suppose we consider the electrostatic field set up within the parallel-
plate capacitor of Fig. 5.2, into which we now insert the conductor of
Fig. 5.1. At this instant the conductor finds itself in a uniform axial E

+ + +

F1c. 5.2. A rectangular conducting bar placed in the electrostatic field between two
charged plates.

field, and consequently a uniform current I = ¢WHE flows. But this
current is nothing more than the movement of charge, and as time
increases, it must be that negative charge accumulates at A while B
becomes positively charged. These charges represent secondary sources
of field, and it is not hard to see that they set up a field within the con-
ductor that opposes the primary (capacitor) field. Actually, we have
already considered this kind of problem and were led to the conclusion
that the total field within the conductor would soon reach the equilibrium
value of zero. In that case, though, the current would stop. It seems
that an electrostatic field is not capable of setting up steady currents.
Further consideration explains why an electrostatic field alone cannot
be the cause of steady currents. Consider an electron which is an element
of a steady conduction stream. Since steady-state conditions exist, it
must make a complete circuit and return to an arbitrary starting point,
thence to repeat the circuit ad infinitum. In any such circuit the electron
gives up energy to the conductors in the form of heat, as a consequence of
the finite resistance of the conductors. The energy, however, comes
ultimately from the field, since this is the basis for the current flow. But
an electrostatic field is conservative; it is not capable of giving up energy
indefinitely. As a matter of fact, if we assume the field to remain
unchanged, as must be true where steady current exists, then an electron
making a closed circuit in an electrostatic field gains no net energy from
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the field. Clearly, another source of field is required for the maintenance
of steady currents, and this field must be nonconservative.

The action of a chemical battery may be interpreted from a field stand-
point as producing such a nonconservative field E’. In general, an elec-
trostatic field will also be created by a battery as a result of the accumula-
tion, at the battery terminals and elsewhere in the circuit, of stationary
(capacitor) charge. Designating the latter field by E, the total field is
then

E.=E+FE (5.11)
Equation (5.1) applies to the total field, so that
J=e¢E+E) ‘ (5.12)

This equation holds at all points, but it is important to note that E’ may
be zero at some points in the circuit; e.g., outside the battery E’ is zero
but E is not. If we integrate (5.11) over a closed circuit in which steady
current flows and make use of (5.12) and the conservative nature of E

‘that is, 56c E-dl = 0), then

9SCE,-d1=¢CE'-dl=8=9SCLU—d—1 (5.13)

where & is a measure of the strength of the nonconservative source. It is
called the emf, an abbreviation of electromotive force. The current that
flows depends on the conductivity, geometry, and the value of §&. If the
current density is uniform over a constant cross section 4, then we have

s=1§ 2 - Ir (5.14)
In (5.14) E=¢ adTl1 (5.15)

is the total circuit resistance and is a simple extension of the result given
by (5.8).

Under open-circuit conditions (consider a battery with no circuit con-
nections) an electrostatic field exists everywhere because of the accumula-
tion of charge on the battery terminals. From a field standpoint the
chemical action of the battery may be described by postulating a noncon-
servative field within the battery which just neutralizes the electrostatic
field there. As viewed by a test charge, it is possible to acquire energy in
moving from the positive to the negative terminal external to the battery,
but by completing the circuit through the battery, where no field exists,
this energy is not returned to the field (as would be the case in a purely
electrostatic field). The test charge thus makes a complete circuit with
a net accumulation of energy. With an actual circuit and real batteries,
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the accumulated energy is simultaneously dissipated as heat. The elec-
tron is capable of making repeated circuits, hence constituting a steady
current. :

With special arrangements, a nonconservative field can be set up so
that the energy accumulated in a complete circuit by a unit of charge is
available as kinetic energy. Repeated circuits continue to add energy to
the charge, yielding the high-energy particles produced by devices such
as the cyclotron, betatron, etc.

Making use of (5.11) under open-circuit conditions and integrating
through the battery from terminals 1 to 2, we have

_/le.dlz_;_[le'.dl:& (5.16)

Thus the total emf just equals the open-circuit electrostatic voltage
between the battery terminals. In general, points 1 and 2 may be arbi-
trarily chosen provided that the line integral just traverses the entire
nonconservative field. Then the open-circuit -electrostatic voltage
between those points also equals the total emf of the source.

In the region external to that containing the nonconservative field,
e.g., external to the battery, only an electrostatic field exists. Since the
external region contains only a conservative field, it is possible to derive
this field from the gradient of a scalar potential. This accounts for our
ability to discuss d-c circuits in terms of potentials and potential differ-
ence, in spite of the nonconservative nature of the field as a whole. By
describing the line integral of E; through a battery from negative to posi-
tive terminal as a voltage rise (an increase in potential) equal to the emf
of the battery, the multivalued nature of potential energy in a noncon-
servative field is avoided,f and one may now state the Kirchhoff loop
equation

Potential change over a closed loop = 0 (5.17a)
or emf = ZIR (over a closed loop) (5.17b)

5.3. Conservation of Charge

Since current consists of the flow of charge, a relationship between the
two should be available. This is indeed the case. If we consider a
volume V, then the net flow of current into this volume must be accom-

t As an analogy, consider the polar angle of a vector rotating in a counterclockwise
direction. The angle increases from zero to 2, thence from 2r to 4m, 4w to 6, etec.
But if we make a cut along # = 0° and agree every time we cross it in a counterclock-
wise sense to subtract 2r, then we avoid the multivalued nature of the angle. The
battery is analogous to the cut, and its strength is not —2r but whatever its emf
might be.
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panied by an increase of charge within V. We can express this as
—/J-ds=i pdV ' (5.18)
s ot Jv

where the left-hand side of (5.18) gives the net inflow of current (coulombs
per second) and the right-hand side represents the net rate of increase of
total charge (coulombs per second). In (5.18) the surface S bounds the
volume V, of course.

Using Gauss’ theorem, (5.18) may be transformed to

‘A<V~J+§9dV=O (5.19)

Since this must be true regardless of the choice of V, the integrand must
itself be zero and we are led to the differential form of the law for conserva-
vion of charge.

v+ = (5.20)

This equation is commonly referred to as the continuity equation also.
Where steady currents are involved, then of course dp/dt = 0. In this

case
vV-J]=0 (5.21)

That is, for ““stationary currents,” the current density is solenoidal. We
are restricting our attention in this chapter to steady currents and have
already noted that such currents must form closed loops.

If (5.21) is applied to a volume that contains a junction of conductors
in a network, then the second of the Kirchhoff equations results, namely,

Z I,=0 (5.22)

This equation states that the algebraic sum of the currents flowing into
(or out of) a terminal is zero.

6.4. Relaxation Time

If a charge distribution is placed within a conducting body, the charge
will move to the surface and distribute itself in such a way that zero field
exists within and tangent to the conductor surface. The length of time
required for this process to essentially take place is called the relaxation
time. Whether this time is measured in millimicroseconds or in days
Is, of course, extremely important. A quantitative evaluation of this
characteristic time is presented below.

Consider a homogeneous conducting region with a permittivity e and a
conductivity o. From the divergence equation for D we have V+ E = p/e
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when e is constant. Within the conductor J = ¢E, so that (5.20) can
be written as

V-J=V-aE=—g—? (5.23)

From (5.23) and replacing V « E by p/¢, we obtain

E— = - ; E (524)
t
Thus 7 / dt=— ["%
€ Jo po P
and hence p(z,y,2,t) = po(z,y,2)e""* (5.25)

where po is the initial charge density when ¢ = 0. The relaxation time =
is defined as

T =

(5.26)

Qe

and is the value of elapsed time required for the initial charge distribution
to decay to 1/e of its initial value.

Table 5.1 gives the value of = for several common materials. We note
the extremely short duration for good conductors and the relatively large
value for insulators. As a matter of fact, it is the relaxation time itself
which truly measures what we choose to call a conductor or an insulator.
When 7 is extremely short compared with a measurement time, the mate-
rial is considered as a ‘“conductor’’; however, if 7 is very long compared
with the duration of a measurement, we consider the material to behave
like an “insulator.”” Note that our prior assumption of zero charge and
field within a metallic conductor is amply justified by the numerical
results in Table 5.1. '

TaBLE 5.1. RELAXATION TiMEs FOrR SoME CoMMON MATERIALS

Material Relazation time
Copper......coovvuenn. 1.5 X 10719 sec
Silver.................. 1.3 X 10719 sec
Sea water............... 2 X 10719 sec
Distilled water.......... 1076 sec
Fused quartz............ 10 days

5.5. Resistance of Arbitrary Shaped Conductors

Equation (5.15) gives the total resistance of a uniform cylindrical con-
ductor. For a homogeneous body of conductivity ¢, but of an arbitrary
shape, a more general formula is required. In order to derive it, we start
with the conductor illustrated in Fig. 5.3, which is representative of a
generalized shape.
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If we visualize a battery connected to the ends of the body, then a
current will flow and its density will be nonuniform. For simplicity we
take the end surfaces 4, and A4, to be equipotentials; this could be assured,
for example, by coating these surfaces with a perfect conductor.f Since,

Fic. 5.3. An arbitrary conductor.

as we have already noted, the field external to the battery is conservative
and can be derived from a scalar potential,

ch vdl = &, — @, (5.27)

where C is any path starting at A, and terminating at 4, and &, — ®;is
the difference of potential between the surfaces A; and 4,. If the bat-
tery and lead resistances are negligible, then it is also true that

[C E-dl=¢ . (5.28)

where & is the emf of the battery.

Consider any cross-sectional surface in the conductor such as 4 or A’
in Fig. 5.3. Since the current is solenoidal, the same total current crosses
surface A;, A, A’, and 4A,. We can evaluate this current over any sur-
face A as given by

I= /A J-ds (5.29)
Now J = ¢E; so
I =a‘/AE'dS (5‘30)
By definition the resistance between the two faces A; and A, is
_ E.dl
. [ E-dS
A

t Coating the ends with a material whose conductivity was very much greater than
that of the body would suffice.



Sec. 5.5] STATIONARY CURRENTS 173

Although the above formula is rather simple in concept and form, the
integrals cannot be evaluated before a detailed solution for the field E
(or current flow density J) has been obtained. For a general shaped
conductor this is usually not feasible and one is forced to resort to approxi-
mate methods of analysis or experimental methods in order to determine
the resistance E.

Fic. 5.4. Two equipotential surfaces within an arbitrary current-carrying conductor.

Another expression for R can be formulated that demonstrates the
geometrical properties of the resistance more clearly. Again, it is neces-
sary to know the field and current distribution everywhere within the
conductor. In Fig. 5.4, a general conductor is illustrated and two equi-
potential cross-sectional surfaces S, and S, are indicated. Let the
potential difference between these surfaces be designated by A®; The
volume between S; and S;;; may be decomposed into a number of ele-
mentary flow tubes of length Al; and cross-sectional area AS;. For each
small tube the resistance r; is given by

A% E Al Al;

"I AL T GEAS; 7 AS; (5-32)
The conductance of this flow tube is
AS;
gi=rl= GAZ‘ : -(5.33)

Since conductances in parallel add directly, the total conductance
between the surfaces S; and S;;, is

_ _ o AS;
AG; = Z g = z AL (5.34a)
J J

and the corresponding resistance is

AR; =

1

Z a AS,‘
¢ AL

7

(5.34b)




174 ELECTROMAGNETIC FIELDS [CrAP. 5

In general, Al; will vary over the cross section since the spacing between
the equipotential surfaces is not necessarily uniform. If we break up
the whole conductor into n such sections, then (5.34b).is the resistance
of the 7th section. The total resistance is the series combination of all
the AR; and is given by

(5.35)

R=2_1_
- EG'AS,'
YL TAL

7

From (5.35) we can see how the resistance formula may be obtained
by passing to the limit AS; and Al; approaching zero. In order to obtain

\</_——-L

hodu, 172

dl=hydu,

Cross section

Fi1c. 5.5. Orthogonal curvilinear coordinates used to describe current flow in a
conductor.

a meaningful formula, we have to digress for a moment and introduce a
suitable set of curvilinear coordinates to express the variables in. Since
oE = J = —¢ V® and V® is normal to the constant potential surfaces,
we may introduce a curvilinear coordinate u; which increases in the direc-
tion parallel to the current flow lines and is normal to the constant poten-
tial surfaces. Distance dl along the flow lines is then given by A duy,
where h, is a scale factor and will, in general, vary over the cross section
of the conductor. Over the constant potential surface we shall assume
that two additional orthogonal curvilinear coordinates ., %3 can be intro-
duced in order to measure the cross-sectional area of an elementary flow
tube.f The cross-sectional area AS; is now given by AS; = hshs Aus Aus,
as in Fig. 5.5. The factors h; and ks are scale factors introduced so that
hsdu, and h;dus are differential lengths in the direction of increasing

t If u2 and u; do not form an orthogonal system, the problem cannot, in general,
be solved analytically anyway, so that the restriction is not a serious one from a prac-
tical standpoint.
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uz and u;, respectively. For (5.35) we may now write

1

R = 2 z (7h2h3(AU2 Aug),-

hi(Auy);

(Aul),

E 2 7hahs (Aug Aug);

since u;, us, u; are independent variables because of their mutual ortho-

gonality. In the limit we obtain 0

du, (5.36)

/ / hahs oty duy

This equation is clearly a function of the
geometry of the conductor only. Ina
later section we present a flux-mapping
technique which is essentially a graphi-
cal procedure for evaluating the above
expression for resistance. The follow-
ing example will also help to clarify
some of the concepts involved.

Example 5.1. Resistance of a Spher-
ical Section. Consider two concentric
spheres of radii @ and b, as in Fig. 5.6. Let the inner sphere be kept at
a potential V relative to the outer sphere, and let the medium between
the spheres have a conductivity o. From the work of previous chapters
it is clear that the potential ® is given by

ab 1 1

Fi1G. 5.6. A spherical resistor.

since this makes ® = Vatr=q, ®=0at r =5, and V26 = 0. The
radial electric field E, is given by —d®/dr, and hence the current density
is

ab 1

Vo = (5.38}

J'=UE'=b—a r2

The total current is equal to 4ra? times the current density at r = a
and is given by

4rab
I= b—_—aaV (5.39)
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The total resistance between the two shells is

(5:40)

The above solution is a direct application of (5.31).

Let us now consider just a portion of this spherical resistor as obtained
by lifting out a section contained within a cone of semiangle 6,, as in
Fig. 5.7a. The end surfaces r = a, b are kept at a potential V and 0 as

rdo

2 ,rsing
rsinf d¢

(@) ®)

Fic. 5.7. (a) A conical resistor; (b) orthogonal curvilinear coordinates 6, ¢ on an
equipotential surface.

before. Consequently, all surfaces r = constant are equipotential sur-
faces. On an equipotential surface the element of area dS may be
described in terms of the spherical coordinates 6 and ¢, as in Fig. 5.7b.
The separation between equipotential surfaces is simply dr. Our curvi-
linear coordinates u;, us, u; and scale factors hy, hs, h; in the present case
are

Uy =rh =1 U =0, hy =7 U3 = ¢, hy =rsin 6

From (5.36) we obtain the following expression for the resistance:
R = b dr _[? dr

a /2' [w or? sin 6 d0 do o or?27(1 — cos o)

o Jo

1

b—a
" 2ro(1 — cos 6,) ab (5.41)
If 6o = , this result reduces to (5.40), as it should.

The result expressed by (5.41) could have been arrived at in another
way also. Let the solid angle subtended by the end surface of the conical
resistor be 2. In the volume between the two spheres 47/Q, such resistors
may be placed in parallel. The resistance of any one individual resistor
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is equal to 4r/Q times the combined total resistance, i.e., equal to 4r/Q
times (5.40). For a surface such as that in Fig. 5.7a, the solid angle @
is given by 2x(1 — cos 6), and hence (5.41) follows at once.” For exam-
ple, if 8o = 7/2, the resistor of Fig. 5.6 consists of two of the resistors of
Fig. 5.7a in parallel. Therefore the resistance of a half-spherical section
is twice the value given by (5.40). This result is verified at once from -
(5.41) by placing 8, equal to =/2.

In addition to the two formulas (5.31) and (5.36), the resistance of a
circuit may be defined on an energy basis. Only the results are presented
here; the derivation is given in Sec. 5.8. For the conductor as a whole,
the power dissipated is given by I*R. The power dissipation is given by
one of the following volume integrals also, so that

op - [ 1. - [ .E. L1
IR_fVJ EdV /VEEdV U/VJJdV (5.42)

Once the field has been found, the volume integral may be evaluated and
R is then determined by the above equation. This latter method is often
the easiest one to formulate.

6.6. Boundary Conditions and Refraction of Current Flow Lines

An examination of the flow of current across an interface between two
media of different conductivity, a1
and o, reveals that the flow lines
are refracted. What happens is
analogous to what has already been
noted in electrostatics with respect
to electric flux lines at a dielectric
interface.

Figure 5.8 shows the interface of
medium 1 (conductivity ¢;) and @ o
medium 2 (conductivity o;). If a
oin-shaped surface is considered Fra. 5.8. Boundary between two con-

ducting media.
which has a broad face in medium
1 and a broad face in medium 2, then over the volume V occupied by this

surface

[,@-nav=§ 5-as=0 (5.43)

Let the surface area of the coin faces be AS, and let the thickness of t}}e
coin approach zero. Then no contribution to the surface integral in
(5.43) comes from the edges. The remainder of the integral can be

written
1 — Ja2) AS =0
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The notation J,; refers to the nor-
mal component of J at the interface
in region 1, and similarly for J,2 in
vl region 2. The element of surface
@ \ AS is arbitrary; so we have

%1€\ Ju1 = Iz (5.44)

\ Since the electric field is conserv-

\ ative throughout the region in ques-

0\ tion (we assume this region to be

@ oy outside the nonconservative source),

Ty € \ it follows that VX E =0. As a

Fia. 5.9. Refraction of current flow lines. ~cOnsequence, the development in

Sec. 3.3, which leads to continuity

of tangential E, applies in this case also. This result can be stated in
terms of the tangential current density as

Ju _Ja

g1 g2

(5.45)

By combining (5.44) and (5.45) and noting the definition of 6, and 6.,
as illustrated in Fig. 5.9, we may write

_Ju _Jt2 _szJu
tan 6, = T tan 6, = T~ oe
Therefore tan 0, = Z—z tan 6, (5.46)
1

If region 1 is a good conductor and region 2 an insulator, then o1 >> o2,
and the current leaves the surface in medium 2 at right angles. This
corresponds to the requirement that the electric field be normal to the
surface of a good conductor.

At the interface of lossy dielectrics, the above boundary condition
which holds for the normal component of the current density is, in general,
incompatible with the boundary conditions on the normal component of
the displacement flux density D, for a dielectric material with finite con-
ductivity, unless a layer of surface charge is assumed to exist on the
boundary separating the two media. With reference to Fig. 5.9, let
the permittivity of the two media be ¢; and €. From (5.44) we have
Ju1 = 01En = Jp2 = szEnz, or

1B = 02Ers (5.47)

If a surface layer of charge of density p, exists on the boundary, the
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boundary condition on D, gives

Dn2 - Dnl = Ps ’
or elne — el = Ps (5-48)

Only if es/e; = o2/, will p, vanish. Combining (5.47) and (5.48) gives

Ps = (62 - €1 :—f) E,.z = <€2% - €1> E,.l (549)

During the transient state while the current is building up to its final
steady-state value, charge accumulates on the boundary. Once steady-
state conditions have been reached, no further accumulation of charge
takes place. If we introduce the relaxation time constants 71 = e/oy,
T = €3/0; and replace ¢E, by J,, we have in place of (5.49)

ps = (12 — 11)Jn (5.50)

Some of the practical implications of the above results are presented in
the following example.

Example 5.2. Capacitor Filled with Lossy Dielectric Material. For
simplicity consider a parallel-plate capacitor with spacing 2d and plate
area A, as in Fig. 5.10. The region between the plates is filled with two

N
J, d
t

€2\ % E,

N

Fia. 5.10. Capacitor filled with lossy dielectric slabs.

lossy dielectric slabs of thickness d and with parameters e, o1 and e,
os. A potential V is applied across the plates. When steady-state con-
ditions have been reached, the electric field between the plates must
satisfy the following conditions:

J1 =v0'1E1 = Jz = O'QEQ (552)

Ps = €2E2 _ ElEl (553)

and consequently E, = o :f . ;—, (5.54a)
1 2

Eo= -2V (5.54b)

g1 +02d_
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The surface charge density on the boundary separating the two dielectric
media can now be found from (5.53) with the aid of (5.54) and is

€201 — €102 V

“T et d (5.55)

If now we turn our attention to the transient interval during which p,

increases to its steady-state value, then (5.52) no longer applies. This is

because (5.52) is derived from the continuity equation under stationary

- conditions. For the time-varying case it is necessary to use (5.20). If.

this equation is applied to a coin-shaped surface centered at the interface

using the, by now, familiar arguments, it is possible to establish the fol-

lowing general boundary conditions:

:—‘:‘ = J1 it Jz = 0'1E1 hand 0'2E2 (556)
Note that if dp,/9t = 0, then (5.56) reduces to (5.52). An expression for
E, and E, in terms of p, and V can be obtained from the simultaneous
solution of (5.51) and (5.53). Substituting these values into (5.56)
yields the following differential equation:

3P:___ _ 0'1+0'2 620'1—0261_K
at - Ps €1 + €2 €3 + €2 d (557)
The general solution to (5.57) is
_ o1+ o €01 — aser V
ps =4 exp( P t) + PR (5.58)

where 4 is an arbitrary constant. When ¢ — «, (5.58) correctly reduces
to the steady-state value already found. The constant A is determined
from the initial condition that p, = 0 when ¢{ = 0. Consequently, we

finally have
pe = %52_"1_____‘”‘1 [1 — exp (— A t)] (5.59)

61+02 61+62

If the dielectric conductivity is very small, as is usual, then the time
constant in (5.59) will be very large. Suppose that measurements are
to be made which involve a lossy dielectric, under d-c conditions. If the
duration of the experiment is short compared with the relaxation time
(e1 + €)/(o1 + 02), then (5.59) ensures that the dielectric may be con-
sidered to be essentially perfect.

The problem discussed here can be analyzed by setting up an equiva-
lent lumped-parameter circuit and proceeding to the analysis of this cir-
cuit by conventional techniques. While no new information can be
expected by this procedure, it is of considerable interest since it relates
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field theory to circuit theory. Accordingly, we present and analyze a
circuit structure in Fig. 5.11 which represents the lossy dlelectrlc problem
of Fig. 5.10. The conductances @,

G, and capacitances C,, C; are given /’I
by G, TC v,
V=
g =04 1og, =74
B = G} g Bi=G=7 c;z% TC, v,
C, = .el_A Cy, = eg_A
d d Fic. 5.11. Equivalent circuit of capaci-

. . tor filled with lossy dielectric.
Under steady-state conditions it is

clear that the division in voltage between the two halves of the capacitor
is determined by the conductances only. From the equivalent circuit it
is seen that for steady-state conditions

Vi _ G
VQ_GI
_ G _ G
and "Cara’ VTara’

But Exd = Vi, Exd = V,, so that this is just the circuit equivalent of
the field relations (5.54).

On the capacitor C; a total charge @, = C,V exists on the upper plate
and a total charge —{); on the lower plate. Similarly, on C, a total
charge Q, = C:V exists on the upper plate and a charge —Q, on the
lower plate, under steady-state conditions. On the lower plate of C,
and the upper plate of Cy, which together represent the boundary surface
between the two d1electr1c slabs, the net total charge is @, — Q; and is
given by

Q: — Q1 = C.V, — 1V, (5.60)
This result is the same as that given by (5.53), since
Ap, = €2A E.d — GIA d = CVy, — C1V,

Because of the finite conductivity, the structure of Fig. 5.10 does not
behave as a pure capacitor; rather it is a parallel-series combination of
resistance and capacitance, as illustrated in Fig. 5.11. The transient
build-up of surface charge p, may be found from a study of the transient
behavior of the equivalent circuit. A transient analysis is readily carried
out if it is assumed that the internal resistance of the battery is negligible
(this assumption is really not valid, and its consequences will be pointed
out later). Referring to the equivalent circuit, it is seen that the current
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flowing through the C, G, combination is
=GV = V) + GG (V=T

The same current flows through the C;, G, combination; so we have

GV = Vo) — 0 = G, + 0, O

since dV /dt is zero because V is constant. This equation may be written
as

de Gl

+ V2 = __Gl + Gg V (5-61)

01 + C: _ (Ci+ Co)RiR,
G1 + G2 Rl + R2

where

i.e., the product of the parallel combination of Cy, C; and R;, B;. The
solution to (5.61) is

G:

V.=t

V + Bet" (5.62)
where B is a constant to be determined. If we assume that the battery
is connected at time ¢ = 0, then at ¢t = 0,

%

Vi= o r G

14 Vi=V—=V,= (5.63)

Cs
Ci+ C,
However, this initial condition is not physically possible, since if we begin
with zero charge on the capacitors, it implies an infinite current flow as
soon as the battery is connected. If we actually had a battery with
zero internal resistance, this could be accomplished since an uncharged
capacitor behaves as a short circuit. An actual battery has finite internal
resistance R, and the initial flow of current is finite. If, however, R, is
very small compared with R, and R,, the current is initially limited only
by Rs, Ci, and C,, since the current flow into C; and C, will be much
greater than the small amount of current flowing through R; and R..
Thus the voltage across C; and C; builds up very rapidly. These remarks
apply also to the field solution where the assumption that ® = V when
t = 0 implied a source with no internal losses. Using the idealized con-
dition (5.63) in (5.62) gives

_ GlV _ T—T1 _ I
Ve= g (1 e ) (5.64a)

_ _ _ Gz G11‘ ot
Vl - V V2 - Gl + G2 (1 + G2 r ”) (5«641))
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where 7, = C1R;. Ast— o, these expressions clearly give the correct
steady-state values of V;and V;. From (5.60), the surface charge den-
sity p, is found to be '

Q=G _Ciy _Cip _CCi=CGY

= X< X _——_c s T — p—tIT
ey il y) G106 44—
_ €01 — oV s
= T 4 (1 = et (5.65)

where 7 = (e2 + €1)/(61 + o2). This result checks with that found from
the field point of view as given in (5.59).

As we have already noted, for time intervals that are short compared
with 7, we can assume that p, is negligible, and hence the boundary con-
dition D = D, is a good approximation. This boundary condition
could be assumed if the applied voltage were sinusoidal and the period
much shorter than r (high frequencies); that is, if the following inequality
holds,

1 _1_Ci+6
%‘_w<<G1+G2

then the capacitor behaves essentially as if there were no losses. This
inequality may be rewritten as
1 R.\R,

oCi¥Cy) “Eir R

which from a circuit standpoint simply states that the resistances may be
neglected if their parallel combination is much greater than the parallel
capacitive reactance.

If we are interested in time intervals comparable with =, that is, low
frequencies, then the boundary condition D,, — D,; = p, must be used
since the surface charge density will not be negligible. Since most dielec-
trics have a finite conductivity, these considerations are of importance
and some care must be exercised in using the assumption of zero surface
charge density, as is commonly done by many authors.

As a point of further interest, if the time constants are equal, that is,
if = 7, then p, is always equal to zero. An examination of (5.64) now
shows that V,/V, = Ri/R,. Thus the circuit of Fig. 5.11 provides a
frequency-independent voltage divider.

6.7. Duality between J and D

The current density J and displacement flux density D are both lin-
early related to the electric field E in many materials. A consequence of
this property is the existence of dual relationships between J and D. In
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a region whiere nonconservative fields are absent, i.e., external to the bat-
tery, the following equations apply for linear, isotropic materials:

Conducting media Dielectric media
VXE=0 VXE=0
J =¢E D =¢E (5.66)
v-J=0 V.-D=20

In a homogeneous material where e and ¢ are constant, we also have
VvXJ=0 VXD=0 (5.67)

This latter property shows that both J and D may be derived from a
scalar potential; hence

J=-V® D= -V& (5.68)

and V2@ = 0 in both cases by virtue of the divergence relations given in
(5.66). It should be noted that the divergence and curl of J and D can
be zero only over part of space, or else J and D would vanish everywhere.
In the present case we are limiting consideration to regions that are
external to all sources, so that both the divergence and curl of J and D
may be zero. The solution for J and D is uniquely determined by finding
a scalar potential function & that satisfies Laplace’s equation and any
imposed boundary conditions.

An examination of the above equations shows that any solution for J
can be transformed into a solution for D, and vice versa, by means of the
following interchange of quantities:

joD | (5.694)
sore (5.690)

This means that if a solution to a boundary-value problem in electro-
statics is known, it is also the solution to a corresponding problem in
steady current flow. This procedure is valid only if the boundary con-
ditions are equivalent in both cases. Where a boundary is an interface
between different media, then

Conducting media Dzelectric media
J,.l = J,.z Dnl = Dnz
Ju _ Ja Du _ Da (570)
g1 g2 €1 €2

Note that (5.70) conforms to the duality relations expressed by (5.69),
as we should expect.
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Certain boundary-value problems involving steady current do not have
a dual in electrostatics. This occurs when a region witho = Oisinvolved,
i.e., a perfect insulator. Duality requires an electrostatic region with a
relative dielectric constant of zero; however, it is not possible to achieve
« < 1. Thus consider, for example, the steady flow between parallel
plates as illustrated in Fig. 5.12a. Since o5 = 0, the flow lines will be

&, &,
2 7
0,=0 0=5 € €=5¢,
®, L)
(@) 2 ) 2

F1a. 5.12. Equivalent conductance and capacitance problems.

Frc. 5.13. Duality between conductance and capacitance for two arbitrary bodies.

uniform and directed normal to the parallel plates through the conduct-
ing medium of conductivity ¢;. In Fig. 5.12b a dielectric is placed
between the parallel conducting plates. This is not quite the dual of
Fig. 5.12a because it is impossible to provide a zero permittivity region
surrounding the capacitor. As a consequence, fringing of the D lines
occurs, such as did not happen in the case of current flow.

In Fig. 5.13 we show two arbitrarily shaped conducting bodies in a
uniform, infinite medium. If the medium is a conductor, then the total
resistance between the bodies is

R = M (5.71)
368 oE - dS

where L is any path from one body to the other and S is any surface
enclosing either body. The numerator of (5.71) is the difference of
potential between the bodies; the denominator evaluates the total cur-
rent that flows between them.
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If the conducting bodies are immersed in a dielectric, with a permit-
tivity ¢, then the capacitance C is given by

C=L£d$
[,E-a

where S and L are taken as before. That this evaluates the capacitance
is clear, since the numerator determines the total charge on either con-
ductor by application of Gauss’ flux theorem, while the denominator is
the difference of potential between the conductors. If we assume that
the same difference of potential is maintained in both cases, then in view
of the uniqueness theorem, E is the same in (5.71) and (5.72).

In comparing (5.71) and (5.72), one notes a dual relationship between
1/R = G and C. Provided that the conducting boundaries are identical
and that everywhere ¢ is replaced by ¢, then
e C
-=0 (5.73)

Equation (5.73) does not hold for the geometry of Fig. 5.12 unless
fringing effects are negligible. In the case of the spherical resistor in
Fig. 5.6, the capacitance between the two spherical shells, when the
intervening medium has a permittivity ¢, may be found from (5.40) by
using the relation (5.73). The result is

(5.72)

RC =

_ 4rabe
T b—a

c¢ (5.74)

6.8. Joule's Law

The energy required to maintain a steady flow of current through an
arbitrary conducting body of total resistance R (e.g., Fig. 5.3) can be
found from basic principles. Let the total difference of potential across
the body be V. Then the work done on a charge @ moving through this
potential difference is W = QV. The rate at which work is expended
by the field is then

aw _ p_ 99 _
T =P=V=VI (56.75)

Or, since V = IR,
P =1R (5.76)

This is known as Joule’s law. As already noted, the work done by the
field in moving the electrons through the conductor is in turn dissipated
as heat as a consequence of electron-lattice interaction.

A formulation of Joule’s law in differential form will also be useful.
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Consider the differential volume element
described in Fig. 5.14. The axial extent 95 —
of the element is dl, and this is taken in
the direction of current flow. If the
electric field is E, then the difference of
potential across the ends of the element is

E Fi16. 5.14. A differential element of

dd=E-.dl = —TJ dl a resistor.

The total current through the element, dI, equals J dS. According to
(5.75), the total power dissipated in this element is

dP =dId® =E-JdldS

X\j\\‘v

Consequently, the differential form of Joule’s law is

dP

av = U;=E-] (5.77)
where dV is an element of volume dS dl. The electric field E therefore
gives up E - J watts of power per unit volume to the steady electron flow
J. We have already noted that, since the current flows in a conductor,

this power is converted into heat.

F1c. 5.15. An arbitrary resistor.

We are now in a position to derive the energy formula (5.42) for resist-
ance. Figure 5.15 illustrates a conductor with end surfaces S;, S2 kept
at constant potentials ®; and ®,. The current density J flows normal to
these end surfaces and parallel to the sides of the conductor. From
(5.76) and (5.77) the total power (energy per second) dissipated in the
resistor is

P=12R=fE-JdV=/l'—JdV=faE.EdV
14 v o Vv

/E-Jdv
R=1v__~ (5.78)

and hence T
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We may readily show that this definition of total resistance is identical
with that given by (5.31). We note that E = —V® and

~(V8)-J = =V- (@])

since V+J = 0. The volume integral in (5.78) becomes, upon applica-
tion of the divergence theorem,

—[,v-@nav=-4¢

where S8 + S; + S, is the total surface of the resistor and n is the out-
ward normal. Since J - n = 0 except on the constant potential end sur-
faces, we obtain

&) -ndS
84814 8:

I’R = @J&J. (—n) dS — «pzfs J-ndS = (& — &)
and hence B = (&, — ®,)/1, which is (5.31).

b.9. Convection Current

The flow of current in conductors, under the action of an electric field,
that has been considered so far is called conduction current. In contrast,
if an insulator carries charges and the entire

> body is in motion, an equivalent current also
flows. An important special case is that of
the movement of the charges themselves in

a vacuum, under the influence, perhaps, of
an electric field. In these cases the relation
between current and electric field is no
dl longer described by Ohm’s law. The cur-
Fic. 5.16. A volume element of rent developed by moving media depends
convection current. . . .
on the mechanics of the moving particles;
the motion of charges in an evacuated region containing an electric field
can be described by the laws of mechanics with the inclusion of forces of
electric origin. The term convection current is applied to describe this
latter type of current.

Given a flow of convection current, then the electron stream is specified
by a charge density p and a velocity v at any point. The current density
at each point can be found by multiplying the charge density by the
velocity; that is, if we consider a volume element with length dl in the
direction of flow (see Fig. 5.16), then in a time interval dt = dl/v, all the
charge (p dS dl) flows out of the region. The total current, by definition,
is

pdSdl _

al = BT

pv dS
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Hence the convection current density is given by
J=pv o (5.79)

The vector notation in (5.79) follows by inspection since J and v must
obviously be in the same direction.

For convection currents in the presence of an electrostatic field, energy
will be interchanged between the two. The development leading to
(5.77) can be repeated for a conservative E field acting on a convection
current, and the result is

Us=E-J=pE:v (5.80)

In this case the energy absorbed by the electron stream from the field,
as given by (5.80), is not converted into heat, but into an increase in the
kinetic energy of the particles. A further discussion of the interaction
of charges and fields will be found in Chap. 12.

5.10. Flux Plotting

The solution of Laplace’s equation forms the foundation not only for
problems in electrostatics, but also for problems involving current flow
fields. This is made clear by (5.68), which states that J can be derived
from the gradient of a scalar potential ®, where ® is a solution to Laplace’s
equation. A full description of the J or D flow fields is consequently
specified by the related function ®. This may be of interest in itself or
form the basis for further calculations such as for total resistance or
capacitance.

The mathematical techniques for finding solutions of Laplace’s equa-
tion are rather severely limited to certain geometry, e.g., boundaries that
are spherical, circular, cylindrical, ete. For more arbitrary shapes other
methods are required. This section is devoted to an explanation of an
approximate graphical procedure known as the method of curvilinear
squares, or simply flux plotting. In the next section the use of the elec-
trolytic tank will be described. The technique of flux plotting is usually
limited to two-dimensional problems.

By a two-dimensional problem, we refer to those cases where flowt is
independent of one dimension; it can therefore be completely described
in terms of the remaining two dimensions. Figure 5.17 shows the cross
section of a solid, with surface S; at an equipotential ®, and surface S,
at an equipotential ®,. Flow takes place through the body, but in view
of the axial uniformity, the direction of flow is confined to cross-sectional

1 We have already noted the duality of J and D and that both may be derived from
a scalar potential. When we refer to flow functions here, we do so in a general way;
we refer to either J or D, or for that matter any vector function that can be derived as
the gradient of a scalar potential. '
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planes. The uniformity further requires that the flux and potential dis-
tributions be the same in any transverse plane. For these reasons we
can concentrate attention on finding a solution to the potential problem
in such a typical plane.

The general technique involves making a guess as to the location of
equipotential lines and flux lines. For reasons that we shall discuss in a

Sb——

® d+AP

Fre. 5.17. A two-dimensional flow F1c. 5.18. A portion of a flux plot.
problem.

moment, equipotential lines are spaced at equal increments, with the
magnitude of the spacing dependent on the coarseness or fineness of the
desired plot. The flow lines will intersect these equipotentials orthog-
onally since the lines of flow are derived from the gradient of the poten-

tial. For example,
J=—aVd (5.81)

We shall show that the flow lines should be spaced so that they form,
as nearly as possible, curvilinear squares. Since certain boundary con-
ditions are known, they serve to specify certain potential and flow lines
at the outset. For example, in Fig. 5.17 the right- and left-hand edges
must be equipotentials. Furthermore, if this represents a current flow
problem with zero conductivity outside the body, then flow lines must be
tangent to the remaining boundaries. Working from this point and by
trial and error, the region can finally be covered with curvilinear squares.
We proceed now to a justification of this method and an interpretation of
the results.

For this purpose, consider a portion of a flux plot as just described.
With respect to cell 1, in Fig. 5.18, since the width is Aw and the length in
the direction of increasing potential is Al, the field is approximately
given by

AP

Ez'—zz'

(5.82)
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From (5.81) the current density can be evaluated and is

AD
J = Y : (5.83)
The approximation improves as the size of the cell is made smaller.
The total current in the tube of width Aw per unit length normal to the
flux plot is then

AT = AW, = —0 AD %’-;’ (5.84)

If the body were a dielectric and electric flux were being considered, then

Aw

AY; = —e AQA—I

(5.85)

In the above, ¥ represents total flow, either of current or of electric flux.

For the latter case, since A¥; = D AS, the dimensions of ¥ are charge.
If the above procedure is followed at. cell 2, then

sz

A‘I’z = =0 Aq’z A_lz

(5.86)
Since the flux (either J or D) is solenoidal, A¥, must equal A¥, in order
that the total flux within a tube be conserved. This can be accomplished
by taking equal potential increments (itself a desirable procedure which
simplifies the layout of the equipotential lines) and by making the aspect
ratio Aw/Al a constant throughout the tube.

To facilitate interpretation of the entire flux plot, it is desirable that

“adjacent flux tubes represent equal quantities of flux. In this way the
density of flow is graphically revealed by the spacing of flow lines. This
will be accomplished by using the same potential increment A® and aspect
ratio Aw/Al everywhere throughout the plot. And since the eye can
most readily gauge a square shape rather than a particular rectangular
one, we choose Aw/Al as unity. This is the basis for the method of curvi-
linear squares just described. For a conducting medium, then,

AY = Al = —¢ AD (5.87)
and in a dielectric medium
A¥Y = —eAD (5.88)

One objective in mapping a region may be to calculate the capacitance
or resistance of a particular body. Let us see how thisis done. Consider
Fig. 5.19, which shows the plot of potential and flow fields between two
cylindrical conductors of quite arbitrary space. The flux through any
flux tube is given by (5.88). Then, if Ny is the total number of flux
tubes, the total flux ¥ is

¥ = Ny AY = —Npe AD (5.89)
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The total difference of potential, if Np is the
number of potential increments, is

V =Npad (5.90)

The total charge per unit length on the
conductors equals the total flux ¥ per unit
length terminating thereon. Consequently,
by definition, the capacitance C' per unit
length is

_ N
=N (5.91)

By duality, if the material between the
conductors has a conductivity o, the leakage conductance per unit
length is -

<l

F1e. 5.19. Flux plot between . C=
two arbitrary conductors.

N
L= NP

For the structure shown in Fig. 5.19, the number of potential divisions
Np = 3, while the number of flux divisions N = 22. Consequently, for
an air dielectric,

(5.92)

= :% X 100 X 234 = 65 uuf/m

A summary of the remarks concerning flux plotting, plus several addi-
tional suggestions on procedure, follows:

1. Examine the geometry to take advantage of any symmetry that
may be present. For example, in Fig. 5.19, only the upper half need be
plotted since mirror symmetry exists. If the cross section were elliptical,
for example, only a quadrant would have to be considered.

2. Draw in the boundaries indicating those that are conducting and
those that have zero conductivity.

3. Starting with known potentials and/or known flow lines, work out
a rough sketch of the entire field, maintaining orthogonality between flow
lines and equipotentials.

4. Refine the map to ensure that cells are curvilinear squares. If the
rectangles remain very irregular, it may be desirable to cover the field
with a finer net.

5. Several revisions may be necessary in order to achieve a satisfactory
plot.

6.11. Electrolytic Tank

We have considered analytical solutions to Laplace’s equation for con-
ducting bodies in a homogeneous medium. We recall that solutions for
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potential and flow functions could be obtained only if the geometry were
quite special. Under the restriction of two-dimensional variation, arbi-
trary shaped boundaries can be treated by means of the graphical
method described in Sec. 5.10. A restricted class of such problems may
also be handled analytically by means of conformal transformations, as
was explained in Chap. 4.

This section is concerned with the determination of the potential field
under completely arbitrary boundary conditions by means of an elec-
trolytic analog, the electrolytic tank.
Essentially, this involves setting up a
model of the actual problem, using an
electrolytic solution as the conducting
medium and real electrodes of proper =
shape and positioning for the conducting
boundaries. Potential and flow can now % A B
be measured using appropriate electrical AZY
instruments. Since the battery is exter-
nal to the tank, the region in question 37
contains a conservative electric field. /V\ Probe
As a consequence, a scalar potential that
is a solution to Laplace’s equation is, in  F1c. 5.20. The electrolytic tank.
fact, set up.

Figure 5.20 illustrates a simple two-conductor problem where the shape
of the field set up by electrodes A and B is desired; that is, A and B in
Fig. 5.20 represent, to some scale, the actual electrodes in both shape and
spacing. They are shown immersed in an electrolytic tank (shaded in
the figure). A battery is connected across the electrodes, and this sets
up a potential field within the electrolyte that is a solution of Laplace’s
equation and satisfies the appropriate boundary conditions on A and B.

The physical extent of the tank constitutes an additional boundary
(the edge of the tank is characterized by requiring zero normal compo-
nent of flux). Depending on the actual problem, this may represent only
an approximation to actual conditions. For example, if the flow between
the electrodes of Fig. 5.20 when immersed in a medium of infinite extent
is desired, then the electrolytic-tank analog can be expected to be satis-
factory only if the tank size is large compared with the over-all dimen-
sions of the electrode system.

The potential field may be determined with the aid of a voltmeter.
One lead is connected to an electrode (for example, 4), and the free lead
is used to probe the field in the electrolyte. The latter lead is insulated
except for the tip. The locus of points for which the voltmeter reading
is a constant establishes an equipotential surface. If the shapes of elec-
trodes 4 and B do not vary in the direction normal to the page, then the
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potential will not vary with depth in the tank and a simpler two-dimen-
sional problem exists. For such problems resistive coated paper may
also be used in place of the electrolytic tank. In this case, electrodes can
be painted on the paper with silver paint; the measurement procedure is
essentially the same otherwise.

The electrolytic tank actually represents, to some scale, a current flow
equivalent of the actual problem. If the original problem is, say, one
in electrostatics, then both appropriate scale factors and duality condi-
tions must be used to give the desired information. The actual problem
may, itself, be a current flow problem, of course.

The electrolytic-tank technique serves to establish equipotential sur-
faces directly. By constructing a family of orthogonal trajectories, the
flux paths may be found; i.e., these are the flux lines.

Double-sheet Electrolytic Tank

For a two-electrode problem current is confined to a finite region. As
a consequence, electrodes can usually be scaled down in proportion to the
size of the tank so that the medium appears infinite; that is, no serious
disturbance of the current flow is caused by the limited extent of the tank.

‘ Electrode Electrolyte
_——%/ /% Insulating disc
r— 7
%\ \ Insulating pillar
Probe electrode

represents point
at infinity

F1c. 5.21. A double-sheet electrolytic tank.

For those cases where a substantial current flow to infinity is involved,
a double-sheet tank can be used. This tank, however, is applicable only
to two-dimensional problems. The double-sheet tank is shown in Fig.
5.21. Let us consider the theory behind its construction, which will also
serve to describe its operation.

Let us suppose the existence of an electrolytic tank of infinite extent.
Electrodes could now be inserted in their proper geometric locations and
a current flow set up. As before, a potential field is set up that satisfies
Laplace’s equation. For an arbitrary boundary at r = R, we could write
the potential field for the region r < R and for r > R as follows:

& = &,(r,9) r<R (5.93a)
® = Oy(r,0) r>R (5.93b)
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A diagram of the coordinate system and of the location of these two
regions is given in Fig. 5.22. Since $ must be continuous, and because

r

o

Fia. 5.22
J, = —o 0%/9r is also continuous, it follows that
®1(R,9) = P2(R,4) (5.94a)
0B | _ o
e B = B (5.94b)

Assume now that all current sources lie in the region r < R, except pos-
sibly for a source or sink at infinity. Then

Vi, = 0 (5.95)

except possibly at infinity. Expanding (5.95) in cylindrical coordinates
yields

10 9%:(r,¢) 19,
2 = - — 2 —_—_— =
Vid: rar [r ar + r? d¢p? 0

Let us introduce a new variable p such that

2
,= B (5.96)
T
We desire to show that
R2
¥ = 0:( 2 o) (5.97)
is a solution of Laplace’s equation in the variable p; that is, we wish to
verify that
19 v 1 9*¥
2 _ _— —_—— =
&\ -9 <p ap) + a9 0 (5.98)

From the relation between p and r we get
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ticular, the point at infinity (r — «) goes into the origin in the lower
sheet (p — 0).

The double-sheet tank not only is useful for problems of field mapping,
but also can be adapted to the solution of network problems. What
follows is a very brief outline of this capability.

We shall agree that any impedance function can be defined, within an
arbitrary constant, by the location of its poles and zeros; that is, we can
write
AN = 2z1) © © © (N — Azn)

N P N Apm)
where Az; and A, are the coordinates of the zeros and poles, respectively,

in the complex plane. Taking the natural logarithm of (5.102) and writ-
ing the equation due to the real part of both sides gives

Z0\) = (5.102)

n m
In|zZl=YImNA=2rzul— YInA—2+In4 (5103

i=1 i=1
But this is equivalent in form to the potential set up by a system of line
sources located at Az; and A, the source at Az being positive, that at A,
negative. Such a problem can be simulated in the double-sheet tank
since it is capable of representing the entire complex plane. It is only
necessary to locate at Az a current input electrode adjusted to ‘“‘unit
amplitude,” while at A, an output electrode extracting unit current is
provided. The potential at some arbitrary point X is then a measure of
the magnitude of the impedance at the corresponding complex value.
A plot of the potential variation along the imaginary M\ axis, that is, o
axis, gives the frequency dependence of In |Z|. A full discussion of the
application of the double-sheet tank to network analysis, including the
technique for determination of the phase of Z()\), is given in a paper by

Boothroyd, Cherry, and Makar.{

t A. R. Boothroyd, E. C. Cherry, and R. Makar, An Electrolytic Tank for the

Measurement of Steady State Response, Transient Response and Other Allied Proper-
ties of Networks, J. IEE, vol. 96, pt. 1, pp. 163-177, 1949.
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Chapter 6

6.1. A potential difference V is maintained across two very large coaxial conducting
cylinders with radii r; and 72 (r: > r1).

(a) If the medium between the cylinders has a conductlwty o, calculate the leakage
conductance G per unit length.

(b) If the medium were nonconducting with a dielectric constant ¢, calculate the
capacitance C per unit length from basic definitions.

(¢) Show explicitly from (a) and (b) that RC = ¢/o.

(d) For (a) compute E and J in the conducting medium.

6.2. (a) For the accompanying half ring, which is composed
of material of conductivity ¢, compute the total resistance
between A and B by a rigorous treatment (the inner radiusis ——-1—-
R, and the outer radius is R + d).

(b) Find the total resistance by taking the accompanying
figure to be straight with total length equal to = times the mean 7
radius. For R > d show that (a) reduces to (b). B

-d
7

w
Fi6. P 5.2

6.3. A long, highly conducting cylindrical wire is placed at a distance d from an
infinite conducting plane and parallel to the plane. The wire diameter is a. The
given conductors lie in a uniform conducting medium of conductivity ¢, where ¢ K
conductivity of wire or plane. Show that the total resistance per unit length between
the wire and the plane is

~

R = L cosh‘lg
2wo a

6.4. Using the results of Prob. 5.3, calculate the total resistance per meter between
a copper wire of radius 2 millimeters and an infinite conducting plane where the
separation between the two is (a) 4, (b) 6, and (c¢) 10 millimeters. The conductivity is
10¢ mhos per meter.

6.6. Repeat Prob. 5.4, but determine the resistance per meter by means of flux
plotting.
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6.6. Map the flux lines and equipoten- 3
tials for the adjoining figure (shown in r
cross section) given that (a) b/d = 0.7,

() b/d = 0.5. Take the axial length and T
¢

width to be essentially infinite, and con-
tinue the plot away from the step only
to the point where the field becomes
essentially uniform.

e O >

Fi1c. P 5.6

6.7. For Prob. 5.6 obtain a measure of the total charge per unit width and length
at a sufficient distance from the step so that the field is essentially uniform. With
these values determine the excess charge that is associated with the discontinuity.
Evaluate the discontinuity capacitance per unit length.

6.8. The accompanying coaxial cable has a two-
layered concentric cylindrical insulation with dielec-
tric constants ¢ and e. The latter insulating
materials have a leakage conductance ¢, and o,
respectively. If the outer conductor is maintained
at a potential V relative to the inner, what is the
steady-state electric field in the dielectric and the
surface charge at the dielectric interface?

Fic. P 5.8

6.9. (a) Determine the transient time constant for the cable described in Prob. 5 8.

(b) How long would it take to reach steady state if the inner dielectric is mica
(e1 = 6.0ep, o1 = 10713) and the outer dielectric is oil (e; = 2.5¢y, o2 = 10714)? The
cable dimensions are @ = 1 centimeter, b = 1.3 centimeters, ¢ = 1.8 centimeters.

6.10. In order to obtain a good ground connection, a hemispherical conductor is
embedded in the earth so that its base lies in the earth’s surface. Assuming the
resistivity of the ground to be 2 X 105 ohm-meters, find the total resistance to ground.
(The radius of the hemisphere is 0.15 meter.)

6.11. The equation p(z,y,2,t) = po(z,y,2)e "¢ [Eq. (5.25)] required for its derivation
only that ¢ and e were uniform in the region under consideration. Suppose that at
t = 0 a quantity of charge is localized in a small sphere in an otherwise uncharged
medium. According to the above equation, at any ¢ > 0, the region immediately
surrounding the sphere of charge, and which was originally uncharged, remains
neutral, even though the charge in the sphere is disappearing, only to reappear at the
surface. A similar situation in heat flow would be quite different; the heat would flow
out into the surrounding medium, instead of fading away where it stands, like the elec-
tric charge. Explain the reason for this difference.

6.12. A large sphere with uniform conductivity ¢ and permittivity « has a radius R.
At t = 0, a charge Q is placed uniformly over a small concentric spherical surface of
radius a, where a < R. Calculate the Joule losses during the transient, and show that
it is equal to the decrease in stored electric energy.

6.18. A steady current is distributed in a resistive medium which is not homogeneous
(that is, o and e are functions of position). In this case a volume charge density will
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be set up in a similar way to that whereby a surface charge density accumulates at a
lossy dielectric interface. Show that

p=_71(che—eVd)°V<I>

where ® is the scalar potential for the electric field.

6.14. Show that for a problem involving N essentially perfectly conducting bodies
embedded in a poorly conducting medium, where the medium is homogeneous, the
current may be obtained from a scalar function &, and @ is unique provided that

(@ =& ¢=1,2 ..., M), where & is a constant specified potential on the
1th body.

W I, = — 9534 a(3®/9n) dS, where I; is a specified total current from the jth body

G=M+1,M+2 ...,N).

() ® « 1/R, 8%/9n « 1/R? for R — « (that is, ® is regular at infinity).

6.16. Consider a conducting region V in which a current is caused to flow as a
consequence of emf sources in an adjoining region V' (for example, V may encompass
an arbitrary circuit and V’ a battery). Prove that the current density in the con-
ductor occupying V distributes itself in such a way that the generation of heat is less
for the actual distribution than for any other provided the total current supplied by
the sources is constant. Note that, since there are no sources in V, the current J is
given by —o V®. This problem is similar to Thomson’s theorem, and the hints given
in Prob. 3.23 are applicable.

6.16. A total of N conducting bodies lie in a conducting medium. If each body is
at a constant potential ®;, ®;, . . . , &y and the total current from eachis I, I5, . . .,
Iy, show that the total Joule heat is

N
W,' = 2 &1
i=1

6.17. A steady current flows into a thin conducting spherical shell at one pole and
leaves at the other pole. Given the radius to be a, the conductivity o, and the total
current I, determine the potential and current density over the sphere.

6.18. A sphere of uniform conducting material of conductivity ¢ is placed in a
potential field which is capable of maintaining a potential of &, cos 6 over the spherical
surface. (This implies a source of emf, of course.) Determine the current density J
within the sphere.

6.19. Consider an infinite-plane conducting sheet, and let current enter at the origin
and leave over a body contour at infinity. If a circular hole is cut anywhere in the
sheet, not including the origin, show that the difference of potential between any two
diametrically opposite points on the circumference of the hole is twice what it is prior
to cutting the hole. '

Hint: Consider the properties of the inversion of the original potential within the
circle to the region outside the circle as discussed for the double-layer electrolytic tank.
Note that the required condition at the edge of the hole can be expressed by 8&/an = 0.

5.20. Show that, if the flux-plotting technique of Sec. 5.10 is followed, a correct and
unique solution is obtained (subject, of course, to the approximation due to finite-size
grids).

Hint: The graphical construction yields a family of equipotential curves ®(z,y) = A
and a family of flow curves ¥(z,y) = B;. The functions ® and ¥ are related in that
they intersect at right angles and form a square rather than a rectangle. From this
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it is possible to show that 0&/dz = C ¥ /dy and 8®/dy = —C 3¥/dz, so that & and
¥ satisfy Laplace’s equation.



