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CHAPTER 4

SOLUTION OF BOUNDARY-VALUE PROBLEMS

In the previous two chapters a number of elementary boundary-value
problems were solved by means of certain specialized techniques such as
the method of images, inversion in a sphere or cylinder, and the use of
Gauss’ law. These methods, when applicable, lead to the required solu-
tions for the scalar potential ® and the electric field in a very direct
manner. However, for many problems that occur in practice, these
special techniques are too restricted in their scope. In this chapter we
shall examine a much more general approach, that is, the method of
separation of variables. For this method it is necessary that the bound-
aries over which the potential or its normal derivative is specified coincide,
at least piecewise, with the constant coordinate surfaces in a suitable
orthogonal curvilinear coordinate system. Furthermore, it is necessary
that the partial differential equation in question be separable in the
appropriate system of coordinates so that the solution can be represented
as a product of three functions which individually are a function of one
coordinate variable only. When the solution can be represented in such
a product form, the partial differential equation is said to be separable.

In three dimensions Laplace’s equation is separable in 11 different
coordinate systems. Among these systems are rectangular, spherical,
and cylindrical coordinates, all of which will be examined in this chapter.
In two dimensions Laplace’s equation is separable in virtually an infinite
number of different two-dimensional coordinate systems. We shall show
that any coordinate system which is generated by an analytic function
W = F(Z), where Z is the complex variable z + jy, is a coordinate
system in which Laplace’s equation is separable.

Boundary-value problems are usually classified into three types. If
the value of the potential is specified everywhere on the whole boundary,
this boundary condition is referred to as a Dirichlet boundary condition.
If, on the other hand, the normal derivative of ® (this is proportional
to the charge density) is specified on the whole boundary, we refer
to this as Neumann boundary conditions. Finally, if the potential
is specified on part of the boundary and the normal derivative d®/dn on
the remainder, we have a mixed boundary-value problem. The method
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120 ELECTROMAGNETIC FIELDS [Cuap. 4

of solution in all three cases is essentially the same. It is not possible to
specify both & and its normal derivative in an arbitrary manner over a
common portion of the boundary since this overspecifies the problem.
For example, if & is specified on the whole boundary, then since the solu-
tion to Laplace’s equation is unique, d®/dn is completely determined.
Thus, in this case, there is no choice in the values that ¢/dn can have on
the boundary. Similar remarks also apply to the Neumann and mixed
boundary-value problems.

As was demonstrated in Sec. 2.9, if we can find a solution to Laplace’s
equation that satisfies all the required boundary conditions, then this
solution is unique. Similar uniqueness theorems are readily established
for other types of partial differential equations also. Likewise, the
method of separation of variables, as discussed in this chapter in connec-
tion with Laplace’s equation, is applicable to all partial differential
equations.

If the boundaries do not coincide with constant coordinate surfaces in
a coordinate system for which the partial differential equation is separa-
ble, then the method of separation of variables is of little use. In these
cases (which do occur very often in practice) approximate methods of
analysis or experimental techniques must be used.

4.1. Rectangular Coordinates

In rectangular coordinates Laplace’s equation for the scalar potential
& is
9*® | 9% | 9%
To determine if this equation is separable in rectangular coordinates, we
assume a product solution for & of the form

® = f(2)g(y)h(2) (4.2)

where f, g, and h are functions of z, y, and z, respectively, only. Substi-
tuting into (4.1) gives

ghfll +fhg// +fghll — O

where " = d*/dx? ¢'' = d’g/dy? and K’ = d*h/dz?. Dividing by fgh
gives ‘

fll gll hll

49 1% 9 4.3

7 + 7 + 5 (4.3)
Each term is a function of one variable only; for example, f'’/f depends on
z only. If we keep y and z constant and vary z only, the term f”//f can
possibly vary. However, the sum of the three terms must equal zero,
and therefore each term must be equal to a constant in order for (4.3) to
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hold for all arbitrary values of z, y, and z. Thus we must have

2

g;fz + k2 =0 (4.4a)
2

Z_y% + k=0 (4.4b)
2

Th 4 kb =0 (4.40)

where k., k,, and k, are constants (as yet arbitrary) called separation
constants. The only restriction on the separation constants so far is that
the sum be equal to zero, so that (4.3) will hold; i.e.,

k2 + k24 E2=0 (4.5)

By means of the above procedure we have reduced the solution of
the partial differential equation to that of solving three ordinary differ-
ential equations. It is this property that leads to the designation
“method of separation of variables” for the technique used. In prac-
tice, the separation constants are determined by the boundary conditions
which the potential or its normal derivative must satisfy. The details
will become clear from the examples to be discussed, but first we shall
consider some special cases.

Case 1

If k, = 0 but k, and %, are not zero, then from (4.5) it is seen that
k., = +jk,. When k. = 0, the solution to (4.4a)isf = A,z + A., where
A, and A, are arbitrary constants. The solution to (4.4b), with k,?
chosen to be positive, is then

g = Bysin kyy + Bz cos kyy

where B; and B; are arbitrary constants. This solution is readily verified
by substitution in (4.4b). Since k> = —k,?, (4.4c) becomes

d*h
k=0

with a general solution of the form
h = Cysinh k,z + C; cosh k2

where C; and C; are constants. In the above solutions we could equally
well choose the exponential forms

g = Blejkyll + Bze—jkﬂl
h = Cief 4 Coeve

According to the mathematical theory, any two independent solutions
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constitute a general solution for a second-order differential equation. In
the present case the solution for & is

® = fgh = (Awx + A,)(Bisin kyy + B; cos k,y)(Cy sinh k,z 4+ C, cosh k,2)
(4.6)

The constants in this solution would normally be determined by the
boundary conditions. If k,? had been chosen as a negative constant, the
hyperbolic and trigonometric functions in (4.6) would be interchanged.

Case 2

If k, = k, = 0, it is necessary that k. = 0 also in order for (4.5) to hold.
In this case the solution is of the form

® = (4w + A2)(By + B)(Crz + C) 4.7)

Case 3
If k. and k, are both positive real constants, then from (4.5) we have
k, = +5(k.2 + k,2)* (4.8)

In this case the general solution for & is

® = (A;sin k.z 4 A4, cos k,z) (B sin kyy + B, cos kyy)
(Cysinh |k,|2 + C:cosh |k,|z) (4.9)

where |k,| = (k.2 + k,2)%. Other variations of (4.9) can be derived by
cyclic permutation of the variables.

In many problems it is found that a combination of the various solu-
tions discussed above must be used in order to satisfy all the required
boundary conditions. Also, it is usually found that the separation con-
stants can take on an infinite sequence of values. The general solution
for @ is then given by a summation over all the possible individual solu-
tions. This particular property makes the general solution extremely
flexible in that it can be made to satisfy any arbitrary boundary condi-
tion. These points will be further elaborated in the course of solutions of
the following examples.

Example 4.1. A Rectangular Dirichlet Boundary-value Problem. We
wish to find a solution to Laplace’s equation in the interior of a rectangular
enclosure such that the potential ® reduces to zero on all sides except the
sideatz = ¢. Onthesurfacez = ¢,0 < z < a,0 < y < b, the potential
® is equal to the specified value V(z,y). With reference to Fig. 4.1, it
should be noted that the boundaries coincide with constant coordinate
surfaces.

The boundary condition & = 0 on the two faces z = 0, @ must be satis-
fied for all values of y and z on these faces. This condition is met if f(x)
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vanishes at z = 0, a. Since the solution for f is of the form

f=A1$+A2 k,=0
f= A;sink,xz + Ajscos k.x k. #0

we see that the first solution for k. = 0 is valid only if A, and A, are zero.

| 8=Viry) %70
| ¥
P 57
=0 - $-0
-7 -0l
P |
7 1
a \
-0

Fia. 4.1. A rectangular parallelepiped with specified boundary conditions.

This is a trivial solution; so the second form must be chosen. For f to
equal zero at x = 0, we must choose 4, = 0. Hence we have

f= Aisink,x

Now f must equal zero at = a also, and hence sin k.a = 0. From this
result we see that the separation constant k, is given by

ke =""  n=1,2,3,
a

The function sin (nrz/a) is called an eigenfunction (proper function) and
nw/a an eigenvalue. The most general solution for f is

f= E A, sin 7_‘11; (4.10a)

where the A, are as yet arbitrary constants.

What we have said about the function f(x) is applicable to the function
g(y) also. It is therefore not difficult to see that a general solution for
g(y) that vanishesat y = 0, b is

©

gy) = z B sinn% m=123, ... (4.100)

m=1

For the nmth solution for fg we have k.2 = (nr/a)? and k,2 = (mw/b)™
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The corresponding value of k., must be

ko= +j [("”) + (%1')2]% = +jTum

Of the two possible solutions sinh |k.|z and cosh |k.|z for h(2), the hyper-
bolic sine function must be chosen, since this is the only solution that
vanishes at z = 0. The general solution for & is thus of the form

© 0 R
= 2 EA B,, sin —ag sin mby sinh [(T) + (%) ] z (4.11)
n=1m=1

We note that the nature of the boundary conditions has led to a solution
such as was discussed under case 3.

In order to determine the coefficients A, and B, we must impose the
final boundary condition at z = ¢. From (4.11) we obtain

Ves) = ). ) Con sin "2 in "7 @12
n=1m=1

where for convenience we have defined

N 2 211
Cum = AnBpn sinh [(%’) + (1"b—") ] c
= A,B,sinh T,nc
The eigenfunctions sin (nwz/a) and sin (mwy/b) occurring in (4.12) have

an orthogonality property that enables C.. to be determined. This
orthogonality property is the vanishing of the following integrals:

Aasmy?smi?dx =0 n s (4.13a)
/;b sin _m_;rg sin by dy=0 m # s (4.13b)
When n = sorm = s we have
4[: sin? n%x dr = —g (4.14a)
A ’ sin? ﬁ;i-?’ dy = g (4.14b)

Orthogonality properties similar to these are found to apply to the eigen-
functions that occur in other coordinate systems as well.

The above orthogonality properties (4.13) are readily proved by direct
integration. However, since we shall be dealing with more complicated
functions later on, it will be instructive to prove these properties by a
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more general method. Let f. = sin (nrz/a) and f, = sin (srz/a).
Multiplying the equation satisfied by fa by f. and similarly the equation
for f, by fa gives
d?fn nr\? _
o+ () nhmo0
d?f, sm\? _
fn '(Ez + (E) fnfc = 0

Subtracting the two equations and integrating over 0 < z < a gives

[ = ()] e = [ (-0 )

If we integrate the right-hand side by parts once, we obtain

ol & BN g (8 I\ [0 (e A
ﬁ)("da:2 I dx?)dx_<f"dx &) T Jo \dzdz~ dzdx dz
Since both f. and f, vanish at z = 0, a and the integrand in the integral

on the right-hand side vanishes, it follows that the integral on the left-
hand side is equal to zero. Hence, since n # s, it follows that

foaf,.f,dx=0 n#s

In a similar way (4.13b) may be proved.
Returning to (4.12) and multiplying both sides by sin (srz/a) and
sin (try/b), where s and ¢ are integers, we obtain

a b
V(z,y) sin 512 in iy drdy = ab Cu (4.15)
o Jo a b 4

by virtue of (4.13) and (4.14). Equation (4.12) represents a double
Fourier series for V(z,y), and by virtue of the orthogonal properties of
the eigenfunctions an equation for Cy, that is, (4.15), is readily obtained.
If V(z,y) is known, (4.15) can be evaluated.

Let us choose for V(z,y) the form

V(x,y) = Vosin Ea:f sin 1-%?4
In this case all Cy = 0 except C1i, wWhich from (4.15) has the value Vo.

Thus the solution for ® is
T . TY sinh T2

&= Cu sin a S0 3 Sinh Tiic
Vo

. T . TY .
_ T o ™Y 41
S Toe sin sin == sinh T';12 (4.16)

a b
where T} = (15)2 + (%)2
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If V(z,y) was of the form

V(z,y) = Vosin W—g/

instead, then all Cy, for £ £ 1 are zero. From (4.15) the values of C,; are

ab e [P . STT . Ty
ZC,I—ﬁ /; Vo sin 5 Sin dedy

Ki} ¢ . smr

=5 sm-;dx
_ _Vea str|® Vb a
= 3 o S8 0= 2 s7r(1 oS sm) ﬁ
= Yba 135,
sT

Hence C,, = 4V,/sm, and the solution for ® becomes

©

_ 4V, . swx . wysinh T2
¢ = o SR sin gt 4.17)

§=13,5,...

If the potential ® is specified different from zero on some of the other
faces as well, the complete solution to the problem is readily constructed
by finding a solution for ® similar to the above that vanishes on all sides
but one. On the latter side, ® is made to satisfy the required boundary
condition. A superposition of these potential functions will then satisfy
all the boundary conditions. For example, if the side z = ¢ is kept at a
potential Vi(z,y), side z = a at a potential V.(y,z), and the side y = b
at a potential V;(z,z), we construct three potential functions ®,, ®,, and
®; with the following properties. All ®; (+ = 1, 2, 3) satisfy Laplace’s
equation. In addition, the &; are determined so that the following
boundary conditions are satisfied:

$ =0 on all sides except z = ¢
&, = Vi(a,y) atz =c¢
®, =0 on all sides except £ = a
&, = Vi(y,2) atz=a
&; =0 on all sides except y = b

&; = Vi(z,2) aty =0

The potential ® = &; + &; + ®; is then a solution of Laplace’s equation
and in addition satisfies all the required boundary conditions. The solu-
tion for each ®; is similar to that used to obtain the solutions (4.16) and
(4.17).

Example 4.2. A Two-dimensional Problem. As a second example
consider a two-dimensional region with boundaries at = 0, a, y = 0, b,
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asin Fig. 4.2. Let the boundary conditions be
ad

9 = 0 z=0 (4.18a)
=0 y=20,b (4.18b)
® = V(y) zT=a (4.18¢)

The potential ® is independent of z (the structure is of infinite extent in
the z direction), and hence is a solution of
the two-dimensional Laplace equation y

’d 9P
o T o T 0 (4.19)

Two-dimensional structures of the above

form usually do not occur in practice; i.e., 3—:1 =0 BV
we do not have structures of infinite extent.
However, we could in the present case be $-0 a .
dealing equally well with a current flow Fie. 42. A two-dimensional
problem where the current is confined to poundary-value problem.

flow in a very thin sheet of conducting

material. If we had a sheet of resistance paper and painted silver strips
along the three sides z = a, y = 0, b, as in Fig. 4.3, and kept the side at
z = a at a constant potential V,, we should have a two-dimensional
problem similar to that illustrated in Fig. 4.2. The current density J is
equal to the conductivity o of the resistance sheet times the electric field
and hence given by J = —o V®. The current flow lines would be similar
to those sketched in Fig. 4.3. Since the sheet terminates along x = 0, the

/ Painted silver strips

\ N 17
Resistance 7
card\ /——— v,

/ -7/

Fic. 4.3. A two-dimensional current flow problem.

current cannot flow normal to this edge and the boundary condition
d®/3x = 0 is satisfied.

To solve (4.19) subject to the boundary conditions (4.18), we assume a
product solution f(z)g(y). As before, we find that f and ¢ satisfy (4.4a)
and (4.4b), respectively. In addition, since k, = 0, we must have
k. = jk,, so that k.2 + k,2 = 0. In order to satisfy the boundary condi-
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tions at y = 0, b, each possible solution for g(y) must be chosen as
sin (nry/b), where n is an integer. The corresponding solution for f
must be either cosh (nxrz/b) or sinh (nrz/b). Only the cosh (nxz/b) solu-
tion satisfies the boundary condition (4.18a) and hence is the solution
chosen. The most general solution for ® that satisfies the boundary con-
ditions at z = 0, ¥y = 0, and y = b is thus

$ = z A, cosh 1’;—” siuﬁ;—)'l’ (4.20)
n=1
At £ = a we must have
=TV = 2 A, coshn—%rgsinn—b-w (4.21)

n=1

To determine the coefficients A, we use the orthogonality property
(4.13b) and also the result (4.14b) to expand V(y) into a Fourier series.
Multiplying both sides of (4.21) by sin (mwy/b) and integrating over y
gives
b A . mmwy

An 3 cosh - = /) V(y) sin 5 dy (4.22)
This equation determines 4,, and hence completely specifies the potential
function &.

If V(y) is equal to a constant Vy, we have

-2V b 4
An = b cosh (mwra/b) mn (1 = cos mm)
= 4V, _
= rcosh (mma/b) T 5,35 ... (4.23)
= f"_‘_/i’ 1 cosh (mrz/b) . mwy
Thus P = - m cosh (mwa/b) sin — (4.24)

m=1,3,

This is the solution for the potential in the current flow problem illus-
trated in Fig. 4.3. The current density J is given by —a V&.

If we modify the boundary conditions (4.18) and require that the side
y = b be kept at a constant potential V', we may satisfy this boundary
condition by means of a partial solution ®; = Vy/b corresponding to a
choice k. = k, = 0 for the separation constants. For & we now choose

® = VI% + 2 B, cosh ’% sin ’%’ﬂ (4.25)

n=1
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At z = 0, clearly, 9®/0z = 0, since V,y/b is not a function of z. Also
at y =0, ® =0, while at y =b, = V. At z = a we must have
® = V(y), and hence

V(y) = Vli)y' + z B, cosh n—Zq sin QZ—y (4.26)

n=1

In this case the coefficients B, are given by
By =2(cosh™\ " [ =v.¥ 4+ V) |sin "™ ay (427
"7 b b 0 'b p Y=

As a third modification consider the same rectangular region illustrated
in Fig. 4.2 but with the following boundary conditions:

ad
5‘5-—-0 rz=0
=0 y=0
d=V(y r=a
9o
3y~ P@ y="

The function p(z) is equal to p(z)/eo, where p is the charge density on the
side y = b. To solve this problem we construct two partial solutions @,
and &, with the following properties:

For &, %= xr =
¢1= y=
o0, _ _
9y vy=
¢1=V(y) r=a
FOer %%: r =
®, = y =
&y, = Tr =
9b, o
a—y—P(x) y=>

A superposition of ®; and ®, gives a potential ® = &; + Py, which satis-
fies all the boundary conditions. The reader may readily verify that
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appropriate solutions for ®; and &, are

-1 . (2n—=1
®, = z A, cosh( 5 wx) s1n< n2b wy) (4.28q)

n=1

b 2n — 1 b .
where A4, 3 cosh (—%— 1ra> = j; V(y) sm( 35

L3

and ®, = z B,, cos (2m2; 1 rx) sinh( % ry) (4.28b)

m=1

[
3
!
ot
5
<
N—"
!
<

)
3
|

where

2m -1 a -1 o 2m — 1
B,,.—2a—— sh( 54 1rb) = /(; p(x) cos( 53 -m:) dz

In (4.28) the functions

2n — 1 2m — 1
55— ™Y and cos

sin

are orthogonal over the respective ranges 0 < y < band 0 < z < @, and
hence the usual Fourier series analysis could be used to determine the
coeflicients 4. and B,

The above technique of superimposing partial solutions in order to
satisfy arbitrary boundary conditions on a number of sides is also applica-
ble to problems occurring in other coordinate systems as well.

4.2. Cylindrical Coordinates
In a cylindrical coordinate system r, ¢, 2, Laplace’s equation is

19 0% , 10% | 9%

ror o Trag T oa =0 (4.29)

This equation is separable; so solutions of the form & = f(r)g(¢)h(z)
exist. Substituting into (4.29) gives

1d_df | fhdg
e ar r2d¢2+f dzz—-

Dividing by fgh and multiplying by r2 gives

d d 1d? 1d2h :
Gard)+Ga)+-Ga) -0 oo

The second term is a function of ¢ only, and hence (4.30) can hold for all
values of 7, ¢, and 2 only if this term is constant. Thus we must have
g
de?

+

+g =0 (4.31)
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where »? is a separation constant. In many practical problems the whole
range 0 < ¢ < 2r is involved, and since $ must be single-valued, that is,
®(2r) = $(0), » must be equal to an integer n. The solutions to (4.31)
are clearly

¢ = Bisinn¢ + B;cos ne (4.32a)
or g = Be™$ + Bge—in¢ (4.32b)

when » = n.  Of course, (4.32) is still the appropriate solution even if n
is not an integer.

The second term in (4.30) may now be replaced by —»2. Making this
substitution and dividing by r? gives

1d df v\, 1d%h _

Each term in this equation is a function of one variable only and must
equal a constant if the equation is to hold for all values of r and z. Con-
sequently, we have

2
%‘ + k=0 (4.34)

1d df [»
;d—rrgf-—(:—2+k,2)f=o (4.35)

Equation (4.34) is of the type already considered and has solutions of the
form

h = Cysin k,z + Cy cos k.2 (4.36a)
orif k, = jT and T is real,
h = Cysinh Tz + C;cosh I'z (4.36b)

Equation (4.35) is Bessel’s equation, and the two independent solutions
are called Bessel’s functions of the first and second kinds and of order ».
In the special case when k, = 0, the solution reduces to a simple power of
r. We shall consider this special case first.

Solution When k, = 0

When the potential has no 'variation with 2, the separation constant
k. = 0 and (4.35) becomes
1d df »,
Let us see if a simple function such as f = r*will be a solution. Substi-
tuting into (4.37) gives
1d dr

S 2l - a2 = (g2 — p)pe—2 = ()
rdr dr ( )
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Hence r is a possible solution provided @ = +». A general solution for
® in this caseis for» =0 f= A,lnr)

® = ) [r"(A.sinng + B, cosng) + Aolnr
n=1
+ r(Casin n¢ + D, cosng)] (4.38)

where we have chosen » = n, and A., B,, C,, D, are amplitude constants.
Example 4.3. Dielectric Cylinder in a Uniform Applied Field. Con-
sider a dielectric cylinder of radius ro and permittivity e infinitely long
and hence E, may be considered as the

and parallel to the z axis and placed in a
uniform electrostatic field E, directed along
/
e
/)
/«4[1’/////" ¢ field arising from an applied potential &,
// given by
€0
$y = —E¢rcos ¢ (4.39)

the z axis, as in Fig. 4.4. We wish to de-
since —V®, = Eo. Let & be the induced

termine the induced potential and field for
all values of r and ¢.
In cylindrical coordinates, z = r cos ¢,

E, - potential. Since ®, varies with ¢ accord-
F1c. 4.4. A dielectric cylinderin  ing to cos ¢, the induced potential & will
& uniform applied field Es. also. This may be seen by noting that the

boundary conditions at r = r, must hold for
all values of ¢, and since cos ¢ is orthogonal to cos n¢ and sin n¢ for
n # 1, only the n = 1 term in the general solution (4.38) is coupled to the
applied potential. The potential  must be finite at r = 0 and vanish as
r approaches infinity. Hence a suitable form for & is

Ar cos ¢ r < ro

e = Br-1cos ¢ r> 7

At r = ry, the total potential must be continuous across the boundary,

so that
Arg cos ¢ + Bo(re) = Bro~! cos ¢ + By (ro)

or B = rg24

Also at r = r, the radial component of the displacement flux density,
that is, eE,, must be continuous. Thus

—ea% (Ar cos ¢ — Egr cos ¢) = —6056; (Br=! cos ¢ — Er cos ¢)

or G(A — Eo) = —¢€ (73;—2 + Eo)
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The solutions for A and B are now readily found and are

€ —
4="7 :: E, (4400)
B =124 (4.40b)
In the interior of the cylinder the total potential is
— 260
®+ § = T Eyrcos ¢ (4.41)

The field is still uniform but smaller in magnitude than the applied
field Eo. This reduction in the internal field is produced by the depolar-
izing field set up by the equivalent dipole polarization charge on the
surface of the cylinder. The total internal field is

_ 260
E; = te E, (4.42)
Outside the cylinder the induced field is E., where
€= € To 2 .
E, = P E, (—;) (a, cos ¢ + a, sin ¢) (4.43)

" This field is identical with that produced by a line dipole located at the
origin.
Solution When k, # 0

When k, # 0, the function f(r) is a solution of Bessel’s equation of
order n for v = n:

1irﬂ+<pz_f)f=o (4.44)

rdr dr r?

where we have chosen k, = jT. Substitution of a general power series in
r into this equation shows that the two independent solutions are

' (=1)n(Tr/2)eem

J.(Tr) = min + m)] (4.45a)
m=0
ruen = (3 + ) sen
n—1
1 z n—m— 1)!(2)”‘2’"
T m! Tr
m=0
RN C U0Vl CUNE D SRS |
T ml(n + m)! <1+§+3+ -'_m-i-1
m=0

) v = 0.5772 (4.45b)

1 1 1
+§+§+ o +n+m
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The first series (4.45a) defines the Bessel function of the first kind and
order n, while the second series defines the Bessel function of the second
kind and order n. These functions are tabulated in many places. As
seen from (4.45b), the function Yo(T'r) has a logarithmic singularity at
r = 0. For problems that include the origin, this function will not be

F1a. 4.5. A plot of a few of the lower-order Bessel functions.

part of the solution unless a line source is located at the origin. For
n > 0, Y, has a singularity of order »~». For large values of r, Bessel’s
functions reduce to damped sinusoids:

lim J,(I'r) = \/—F—i‘_ cos (I‘r - 77; - %) (4.46a)

lim ¥,(1r) = , /sz,r sin (Fr -7 ”—21’) (4.46b)

A plot of a few of the lower-order Bessel functions is given in Fig. 4.5.
If k. is real, then I is imaginary. In this case the two independent
solutions to Bessel’s equation are still given by the series (4.45a) and
(4.45b). However, for convenience, new symbols have been adopted to
represent Bessel functions of imaginary argument; that is, by definition,

I.(z) = jJ.(jz) = joJ(—jx) (4.47a)
K. (z) = gjnH[J,.(jx) + 7Ya(2)] (4.47b)

The functions I, and K, are defined so that they are real when z is real.
I, is called the modified Bessel function of the first kind, while K, is
called the modified Bessel function of the second kind. In the definition
of K,, a linear combination of J.(jz) and Y,.(jz) is chosen in order to
make K,(z) a decaying exponential function for large values of z. When
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z is very large, the asymptotic values of I, and K, are

;(f) \/21rx (4.48q)
K.(z) = \/% e (4.48b)

It should be noted that these functions do not ever equal zero and that
only K,(x) is finite (vanishes) at infinity.

Some useful properties of the Bessel functions J, and Y, are given
below. Although the formulas are written specifically for J., they apply
without change if J, is replaced by Y.

Differentiation Formulas

T
) = Gty = = (4:490)

2J(x) = nda(z) — 2Jnyi(x) (4.49b)
where z has been written for I'r.
Recurrence Formula

2 Ju(@) = Ta(®) + Jaa(2) (4.50)
If J._1 and J, are known, this formula permits J,,; to be found.
Integrals
/ 2 o (ax)J .(Bz) dx

=42 - gt [BJn(az)Jn1(B2) — afns(az)Ja(Br)]  a#B (451a)
/ 2] Haz) de = 2 [J,2(am) — Jors(am) aps(o)]
- 2”; [J:ﬁ(ax) + (1 - Z%) an(ax)] (4.510)

Bessel functions have a useful orthogonality property that permits an
arbitrary function f(r) defined over an interval 0 < r < a to be expanded
into a Fourier-type series. The function f(r) must be at least piecewise
continuous if the expansion is to be valid. Let Twm (m =1,2,3, .. .)
be the sequence of values of T that makes J,(T'a) = 0; that is, [',.a is the
mth root of J.(z) = 0. For any two roots of J,.(x) = 0, say T'.n. and
I, we have

1 m 2
T(Tuet) [ 2 allowr) 4 (rzm - %) Jn(rmm] -0

J(P,.,,.)[ljr ‘5‘—71‘;(1—1;—":’24-(1“3, )J (I‘,,,r)] =
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Subtracting the two equations, multiplying by r, and integrating with
respect to r over 0 < r < a gives

(T = 13 [ s i) dr = [ [ 1. (C0nr) 7 Hor)
d dJ 4J 3 (Crmt)
—Ja (I‘,..) g ] r
Integrating the right-hand side by parts once gives
Tz, — T2) f T o (Tam?) o (Toer) dr
_ (e dJa (I‘,..r) dJ, (I‘,.,,.r) dJ (I‘,.,,,r) AdJ 2 (Tsr)
0 dr dr dr dr

The integrand on the right-hand side vanishes. Likewise, the integrated
terms vanish since r = 0 at the lower limit while at the upper limit
Jn(Tuma) = Jo(Tnia) = 0. Hence we see that

[ T uTam)Ta(Tor) dr = 0 ms (4.52)

From the nature of the proof it is clear that (4.52) is also true if ' and
T'a, are chosen such that

@S 0(Tamr) _ dJn(Tritr)
dr T dr

or if I'y, makes J.(T'sma) = 0and Ty, satisfies J.(T'n,a) = 0. These ortho-
gonality properties are very similar to those for the sinusoidal functions
sin nz and cos mz over the range 0 < r < 2r. When I',,, = T, the
value of the integral is given by (4.51b). The example to be considered
now will illustrate the use of the above orthogonality properties.

Example 4.4. Potential in a Cylindrical Region. Consider a cylinder
of radius @ and length d, as in Fig. 4.6. The end face at z = diskeptata
constant potential Vo, while the remainder of the boundary is kept at
zero potential. We wish to determine the potential field  within the
cylinder.

The solution must be of the form & = f(r)g(¢)h(z). However, in the
present case, ® is independent of the angle ¢, and hence g(¢) is a constant.
Since $ is finite at r = 0, the solution for f is simply Jo(I'r). The unmodi-
fied Bessel function must be chosen here since we require a function of r
that goes to zero at r = a, a property that Io and K, do not possess. The
corresponding solution for h(z) is hyperbolic and must be chosen as
sinh T'z in order to satisfy the boundary condition & = 0 at z = 0.

=0 atr=a
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Since ® = 0 at r = a, the allowed values for the separation constant I' are
the roots I'on that make Jo(T'a) = 0. The general solution for ® is thus

d = E And o(Tomr) sinh Tonz (4.53)

m=1

The amplitude constants A, must be determined so that & = V, at

F16. 4.6. A cylindrical boundary-value problem.

z=4d,0 <r <a Puttingz=d, we have
Vo= Y AmJo(Tonr) sinh Tond
m=1

If we multiply both sides by rJo(To,r) dr and integrate over 0 < r < a, we
obtain

Vo / " rJo(Toar) dr = A, sinh Toud ﬁ ST (Tor) dr  (4.54)
0

by virtue of the orthogonality property (4.52). From (4.51b) we have

a? " a?
= 5 J{,Z(Pona) = ? J1’(I‘o,.a) (455)
by utilizing (4.49a). Employing the result
/ (Tx)»*+J,(T2) d(Tz) = (Tz)**tJ p1(Tx) (4.56)
gives
a VO a Vo
Vo TJu(Pon'I') dr = =S (I‘o,.T)Jl(I‘o,.T) = aJl(POna) (457)
0 It o Ton
Combining this result with (4.55) and (4.54) gives the solution for A,:

B 2V,
A” - I‘o,,aJl(Fo,.a) sinh Fo,.d (458)
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Finally, by substituting into (4.53), we obtain the solution for &:

©

= Jo(Toar) sinh Ty,2
= E T0:0.J1(Tona) sinh T'ord (4.59)

n=

Tables for evaluating this series, i.e., for the roots I'y, and the values of
the Bessel functions, may be found in ““Tables of Functions’ by Jahnke
and Emde. _

If we had specified that & be equal to zero at z = 0 and d, then we
should be forced to choose for our functions h(z) the form sin (mwz/d)
(m=1,2,...). In this case the Bessel function to use must be either
Iy(mmxr/d) or K¢(mnr/d). Only I, is finite at r = 0 and is therefore the
only allowed function. Our solution for & would now be of the form

mwxr\ . mmw2
P = EA Io(d)SlnT

m=1

At r = a we could specify that ® be a function of 2, say V(z), and by the
usual Fourier series analysis determine the coefficients 4,,. If datr = a
has a ¢ dependence also, then the solution for ® would be of the form

mmz

d = z z Cum(cos n¢ + B, sin ng) I, (7—'%?) sin E

n=0m=1

In this case a double Fourier series analysis has to be carried out in order
to find the coefficients C,, and B,.

4.3. Spherical Coordinates

Problems such as that of a dielectric sphere placed in a uniform exter-
nal field are best described in spherical coordinates r, 8§, ¢. With refer-
ence to Fig. 4.7, r is the radial coordinate, 6 the polar angle, and ¢ the
azimuth angle. In spherical coordinates the constant coordinate sur-
faces are spheres, cones, and planes.

In spherical coordinates Laplace’s equation becomes

19 (,0% 19 0% 1 %
2h — -_ -—_—— =
Vit =Gg (’ ar) t T sin 6 50 (S n o ao) tosmrae - 0 (60

As before, we assume a product solution of the form f(r)g(8)h(¢). Sub-
stituting into (4.60) and dividing by fgh/(r? sin? §) gives

sin?8 8 ( ,9f sin § 9 dg 10%h _
5 6r< )-I-—g 8_0<Sm000)+h6¢2—0 (4.61)
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For this equation to be equal to zero for all values of r, 6, and ¢ it is
necessary that

a%h
sg t =0 (4.62)

where n? is a separation constant. The argument is analogous to that
used previously; it is only necessary to note that the first two terms in

z
a,
)
|
~ 9 v |
l
|
|
|
N | y
qs,f\\ §
\\jli
ag

Fic. 4.7. Spherical coordinates.

(4.61) are functions of r and 6 only and the last term a function of ¢
alone. For problems involving the whole range 0 < ¢ < 2, the con-
stant n must be an integer, so that h will be single-valued, i.e., so that
h(2r) = h(0). The solution to (4.62) is then

h(¢) = Cy cos ngp + C; sin ne (4.63)

2
Replacing % g% by —n?in (4.61) and dividing through by sin? results in

1o ,of 1 af. ,dg\ _ n* _
far(r 6r)+gsin055(5m057) sin20—0 (4.64)

The first term is a function of r only, while the remaining terms are a
function of 6 only. For the sum to be equal to zero for all values of r
and 6, it is necessary that each term be equal to a constant. Hence we
may choose

a% <r2 gf-:) —mm 4+ 1)f =0 (4.65)

where m(m + 1) is the separation constant. The form m(m + 1) is
chosen for reasons that will be pointed out later. It is readily verified
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that the solutions to (4.65) are
f(r) = By™ + By—(mtD (4.66)

From (4.64) and (4.65) we determine that g(§) must satisfy the follow-
ing differential equation:

2
d% (sin 0%%) + [m(m + 1) sin 8 —s:x_o] g=0 (4.67)
This is Legendre’s equation. The standard form of this equation is

obtained by making the substitution cos 8 = u:

The equation then becomes

u?

G 0=t [mon+ 0 - 2 Tow =0 e

The solutions to this equation are the associated Legendre functions
which we shall study briefly.
For the particular case n = 0, the equation becomes

4 _ Y -

7 1 — u?) 7 + m(im + 1)g =0 (4.69)
Unless the separation constant is chosen in the form m(m + 1) with
m =0,1,2, ..., all the solutions to (4.68) and (4.69) become infinite
when either « = 1 or u = —1, that is, when § = 0, . These solutions

would not be suitable for physical problems that include the polar axis.
As a differential equation of second degree, (4.69) has two independent
solutions. These are called Legendre functions of the first and second
kinds and are designated as P.’(u) and Q,°(x), respectively. When
m is an integer, P, is a finite polynomial in u. However, Q. has a
singularity at the poles § = 0, =. In the following we shall assume that
the polar axis is part of the region of interest and that no singularity is
to be expected there, so that Legendre functions of the second kind may
be excluded.

When n 7 0, the solutions to (4.68) that remain finite at the poles
are associated Legendre polynomials that are designated by the symbol
Pn"(w), where m and n are positive integers. The polynomials P," are
readily obtained from the following generating function:

(1 —_ u2)n/2 dn+m(u2 — l)m

P (u) = 2mm | durtm

(4.70)
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Several of the Legendre and associated Legendre polynomials are given
below; these may be easily confirmed through the use of (4.70).

Po=1 (4.71a)
P, = %dd_u (u?— 1) = u = cos @ (4.71b)
P,® = 34 cos? 0 — ¥4 = 34 cos 20 + 14 (4.71¢)
P;* = 14(5 cos® § — 3 cos 6) (4.71d)
Pt =sin 6 (4.71e)
P, = 34 sin 26 (4.71f)

n* =0 n>m 4.719)

From the differential equation the following orthogonality properties
may be proved in a manner similar to that used for the Bessel functions:

/ Y poPpdu = / "PaPrsin0d0 =0 m#l (4.72a)
-1 0

1 du r de
n l — n l —_

/—1 PPl 700 ﬁ) i nl (4720)
When m = [ or n = | we obtain

x 1
/_ll (P2 du = /; [Pn"(cos 6)]% sin 6 d6 = 2m2+ i Ez i' :3, (4.73)

By means of these formulas an arbitrary piecewise-continuous function
g(6) may be expanded into a Fourier-type series in terms of the poly-
nomials P,".

The general solution to Laplace’s equation in spherical coordinates,
subject to the assumptions already noted, is now seen to be

L m

®(r,0,6) = Y Y (Ancosng + B, sin ng)
m=0 n=0
X (Cr™ 4 Dpr—m+0)P, n(cos 0) (4.74)

The sum over n terminates at n = m since P," is zero for n > m. The
coefficients A,, B,, Cs, and D,, are determined by the boundary condi-
tions that ® must satisfy.

Example 4.6. Potential Specified on the Surface of a Sphere. Let
the surface of a sphere of radius R be kept at a potential

$(R,0,¢) = Vosin ¢ sin 6 = VoP,!sin ¢ (4.75)

the latter since P! = sin 8. We require a solution for ® in the interior
of the sphere. Since ® musc remain finite at r = 0, the coefficent Dy
in the general solution (4.74) must be zero. Equating (4.74) for r = R
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to (4.75) gives

L]

E 2 (An cos n¢ + B, sin ng)CnRB™Pp = VoPy'sin ¢ (4.76)
m=0n=0

If we multiply both sides by cos s¢ d¢ and integrate over 0 < ¢ < 2,

we find that A, = 0 since we obtain

z AxCroR™P,* = VP! /02' sin ¢ cos s¢ dp = 0
m=0

by virtue of the orthogonal properties of the cos n¢ and sin n¢ functions.
If we multiply (4.76) by Py sin s¢ sin 6 df d¢, all terms on the left-hand
side except m = [, n = s integrate to zero between the limits 0 < ¢ < 2x
and 0 < 9 < w. At the same time the integral of the right-hand side
goes to zero unless [ = 1, s = 1. Hence all B, and C, are zero except
B,and C,. Forl = s = 1, we obtain

44B\C\Rr = V, /02’ [0’ (P1Y)? sin ¢ sin 6 d6 d¢
by using (4.73). Hence B,Cy = V/R, and the solution for & is

& = VOI%PII sin ¢ = Vol%sin f sin ¢ (4.77)

Example 4.6. Dielectric Sphere in a Uniform Applied Field. Con-
sider a dielectric sphere of permittivity e, radius R, placed in a uniform
1z external field E¢a., as in Fig. 4.8. The ap-

plied field may be derived from a potential

&)= —Eoz = —Egcosf = —EwrP,%(cos0).

IEO Since the applied potential is independ-
ent of the angle ¢, the induced potential ®

- will also be independent of ¢. Thus &

must be of the form

) Amr™P,(cos 6) r<R

0

= E bmr—m+D P, %(cos 6) r> R
Fic. 4.8. A dielectric sphere in a m=0 ’

uniform applied field. This potential is finite at r = 0 and vanishes
at infinity. At r = R the total potential must be continuous; hence

I
8 iMs

—E(RP%(cos 0) + E amR™P,°(cos 6)

m=0

= —ERP(cos 6) + ) bnR~™VPp’(cos 6) (4.78)

m=0
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Since the functions P,° are orthogonal over the range 0 < 6 < =, it is
seen from (4.78) that _
A = b, R~CmtD (4.79)

An additional condition at » = R is that the normal displacement D,
must be continuous. Hence

¢ [ —EoP:%(cos 0) + mgl manR™P,,(cos 6) |
— e [~EPO(cos 6) = 3 (m + baR-"+2P,0(cos 0)] (4.80)
m=0

Again since the functions P,° are a set of orthogonal functions, the coeffi-
cients of each term P,° must be equal. Thus we have

é("‘Eo + al) = eo(—Eo - 2b1R"3) (4810,)
emanB™! = —eo(m 4+ 1)b,, R—(mtD m>1 (4.81b)

Comparing (4.81b) with (4.79) shows that both of these equations can
hold only if @, and bn, equal zero for m > 1. For m = 1 we obtain, from
(4.79) and (4.81aq),
€ — €o
€ + 260
== 3
b, s 260 * EoR (4.82b)
In (4.80) the coefficient of P¢® on the left-hand side is zero, and hence
bo must equal zero. From (4.79) it is then seen that a, = 0 also.
The complete solution for the induced & is

a = E, (4.82a)

- 0o € €
d = . + % oEorP1 P Eg r<R (4.83a)

€ — € 3

R
P E cos 0 r> R (4.83b)

Inside the sphere the induced potential gives rise to a uniform field
— (e — €0)Eo/(e + 2¢) directed in the z direction. The total potential
within the sphere is consequently reduced from the free-space value.
Outside the sphere the induced field is a dipole field, which may be con-
sidered due to a z-directed dipole of moment p given by

¢ =

+2

and located at the origin. This result follows from the expression

p = 41I'R3€o Eo (4:84)

_ P cosf
41reo Tz

for the potential set up by a dipole of moment p.
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Example 4.7. Potential from a Charged Disk. Figure 4.9 illustrates

a circular disk of radius a, located in the zy plane and uniformly charged.

The potential field ® set up by the

charged disk will have no variation

r with the azimuth angle ¢ because of

the symmetry of the charge distribu-

-0 tion about the polar axis. Further-

more, symmetry conditions also require

that the potential field be symmet-

a y rical about the plane of the disk,

that is, symmetrical about 6 = 7/2,

g and hence ®(0) = &(r — 6). The po-

Fic. 4.9. A uniformly charged disk. tential @ is finite at the origin, van-

: ishes at infinity, and is independent of
¢ and can therefore be represented by the following expansions:

2z

P = z ™ P ,%(cos 6) r<a,d< g (4.85a)
m=0

d = z an(—1)m"r"P,%(cos 6) r < a,g <6<m (4.85b)
m=0

P = Dmr="+DP,%(cos 8) r>a, 8 < g (4.85¢)
m=0

©

d = E bn(—1)mr—mtDP _O(cos ) 1 > a,g <6 <rm (4.85d)

m=0

The polynomials P,° for even values of m are even functions of 8 about
the plane § = x/2, while P,° for odd values of m are odd funections of 8
about the plane 8 = »/2. In order to satisfy the requirement of even
symmetry of ® about the plane 8 = x/2, the coefficients a. and b, for
odd values of m must be replaced by —a,, and —b,, in the region n/2 <
6 <. For this reason the factor (—1)™ is included in (4.85b) and
(4.85d). We shall see later on that all the coefficients b,, for odd values
of m vanish. Along the positive z axis the above expansions reduce to
the following:

&= ) anpm z2<a (4.86a)
m=0

P = Z bz (mt1 z2>a (4.86b)
m=0

since this corresponds to cos § = 1 and P,°(1) = 1.
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In Example 2.4 the potential along the axis of a uniformly charged
disk was found by direct integration of the contribution from each ele-
ment of charge. This potential was determined to be

Q l@+2%—2 forz>0

2real

where Q is the total charge on the disk. We may use the binomial theorem
to expand ® into a power series in z and by comparing with (4.86) find
the expansion coeflicients @. and b,. In the region 0 < z < a we have

-9 |_ 22\¥
¢-21reoa2[ z+a<1+¢-z—2> ]
Q afz\! afz\* a [z\®
=zmaz["+“+§<a> "g(a) +I6(a) - ] (4.87a)
while for z > a a similar expansion gives
Q _ a_2 1%
¢ =g+ 2(145)

2 HORHOREIORRNIE

By comparing (4.87) with (4.86) we find, by equating coefficients of like
powers of z, that

aO = Q al = — ——Q
2meca 2meoa?
a=—Q as=a=ar= - =0
2 41!'60(13 8
a Q
¢ 16meca’

.........

_ Q _ _ Qa? _ Qa*
b= e by = 167eq by = 32meo

...............

As anticipated from symmetry conditions, all the coeflicients b, for m
odd are zero. In the region r > a the potential ® must be a continuous
function of 6 with even symmetry about the plane § = r/2. This means
that a®/96 is zero at 8 = #/2 (r > a). Only the polynomials P,’(cos 6)
with m even satisfy these requirements. In the region r < a the potential
& must again be an even function of § abouf the symmetry plane § = =/2.
At the same time d%/(r 98) cannot vanish at 8 = =/2 since the normal
derivative of ® must equal — p,/2¢o, where p, is the surface density of charge
on the disk, as we found in Example 2.4. Hence at least one odd poly-
nomial P,%(cos §) has to be present in the expansion of & for the region
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r < a. From the results obtained we see that this term is a,rP,°(cos 6)
for 6 < v/2 and —arP1%(cos 8) for v/2 < 6 < .

For the even polynomials dP,°/96 equals zero at § = »/2. Conse-
quently, for r < q,

199 _dcosb

r 96 |g=r/2 Y] 0=n/2 '

Ps
% (4.88)
The charge density p, is equal to Q/wa? and thus our previous result
a; = —Q/2meia? is verified.

It should be noted that the two expansions in (4.85) for r > a and
r < a must be equal at r = @, but since the disk separates the region
r < a into two parts and the functions P,° are not orthogonal over the
range 0 < 6 < 7/2, the coefficients a, cannot be found very readily in
terms of the b,,. :

For any axially symmetric charge distribution for which a power series
expansion in z can be found for the potential along the axis, the above
method may be used to determine the potential at all points outside the
charge region. Since an expansion like (4.85) is a solution to Laplace’s
equation and gives the right value of potential along the polar axis, it
gives a unique solution.

4.4. Solution of Two-dimensional Problems by Conformal Mapping

The theory of functions of a complex variable provides a powerful
method for the solution of Laplace’s equation in two dimensions. The
viewpoint adopted here is one that con-
» siders an analytic function of a complex
. variable Z = z + jy as generating a suit-
] R T Zi= x5ty able orthogonal curvilinear coordinate
system which is appropriate for the de-
scription of the problem being considered.
1 -« It is assumed that the student has some
Fre. 4.10. The complex number famili'arity with complex I}umbers and
21 + jy1 in the complex Z plane. functions of a complex variable. How-
ever, in order to provide continuity, a
brief review of the basic concepts that will be required is presented first.
The complex variable Z = z + jy is the sum of the real variable z and
the product of the imaginary number j = 4/ —1 and the real variable y.
The complex number Z; = z; + jy; is conveniently represented by the
point with coordinates x;, %, in the complex Z plane, as in Fig. 4.10. The
sum of two complex numbers is the complex number obtained by adding
the real parts and the imaginary parts; thus

(T2 + Jy1) + @2 4 jy2) = (@1 + 22) + 5y + y2)

R f———
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The product of two complex numbers is formed according to the usual
rules of algebra and replacing 72 by —1, 7 by —j, ¢ by 1, ete. As an
example,

(z: + jle) (z2 + Jyz) = 113,1252 + jxlyz
+ Jits + Jys = (2122 — y1y2) + j(T1ye + Tay1)

The complex conjugate of z; 4 jy: is obtained by replacing j by —j.
An asterisk is used to denote this operation of taking the complex conju-
gate; thus

(@1 + Jy)* = 21 — jnr

The quotient of two complex numbers is found by multiplying the
numerator and denominator by the conjugate of the denominator; e.g.,

z1 + Jya - (z1 + Jy1) (x2 — Jy2) — (122 + Y1y2) + J(@ayr — T1ys)
T+ gye (T2 + Jy2) (T2 — Jy2) zs? + ya?

A function of the complex variable Z, say W = F(Z), is called a com-
plex function. Anexampleis W = Z2 The function W will be complex,
with a real part « and an imaginary part jv, where u and v are obviously
functions of z and y. For the above example,

W=u+j=2"= (z+jy)*
= (2 = ¥°) + 2Zjzy

and u = x2 — y% v = 2zy. As the variable Z moves along some curve C
in the complex Z plane, the variable W = F(Z) will move along some

i v W pl
» Z plane / piane

Cl
c

x u

F1c. 4.11. Mapping of a curve C in Z plane into curve C’ in W plane.

curve (" in the complex W plane, as illustrated in Fig. 4.11. The curve
C’ is called the mapping of the curve C.

Of all the possible functions of the complex variable Z, only those func-
tions which have a unique derivative at almost all points in the Z plane
are of practical interest. Such functions are known as analytic (or
regular) functions. The derivative of W = F(Z) is defined as

dw AW W(Z + AZ) — W(AZ)

= lim — = lim

et 4.89
dZ az—0 AZ Az—0 AZ (4.89)
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If this limit exists and is independent of the direction along which AZ
approaches zero in the complex Z plane, the function W is said to be
analytic at that point. We may readily evaluate dW/dZ under the two
conditions where AZ = Az and AZ = j Ay. For the first case we have
AW _aW _ou &
dZ = dr "oz "oz
while in the second case we have
dw  dW _ du v .0u |, Ov
iz “jay i T Tty

If the derivative is to be unique, the two results must be equal, and hence

ou . oV .U v
a—a-:-l']a— —Ja—y+@
du av v u
or prie 5@ Pt 3& (4.90)

This condition is seen to be a necessary condition, at least, in order for
W = F(Z) to be an analytic function. Equations (4.90) are known as the
Cauchy-Riemann equations. It is possible to show that if u and v are
continuous functions of z and y, the Cauchy-Riemann equations are both
necessary and sufficient conditions for F(Z) to be an analytic function.
When the derivative exists it may be found by the same rules as are used
for functions of a real variable. As examples we have

dcos Z

T = —sin Z
2Z
dlnZ 1
iz~ Z

All the above functions are analytic, a result readily verified by showing
that the Cauchy-Riemann equations are satisfied. Consider

W = cos Z = cos (z + jy) = cos z cosh y — j sin z sinh y

for which u = cos z cosh y, and » = — sin z sinh y. From (4.90) we
obtain
u_ _ sin z cosh y = o
ar OShY = By
ou 0
d —_—= 1 = —_——
an 3y cos z sinh Fy

and hence cos Z is an analytic function.
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Coordinate Transformations

In order to appreciate the role piayed by complex functions in the solu-
tion of two-dimensional potential problems, we need to consider some
fundamental properties of two-dimensional orthogonal curvilinear coordi-
pates. As an example, if we require a solution for the potential between
two infinitely long elliptic cylinders, as illustrated in Fig. 4.12, we would
find it very difficult to obtain a suitable solution if we solved Laplace’s

Fic. 4.12. Two concentric elliptic cylin- Fra. 4.13. Coordinates wv for elliptic
ders. cylinders.

equation in rectangular coordinates. Obviously, we should use elliptic
coordinates, so that on each cylinder only one coordinate is variable.
In Fig. 4.13 the appropriate coordinates u, v are illustrated. The
v = constant curves are ellipses, and the v = constant curves are hyper-
bolas. Since the boundaries coincide with the v = constant coordinate
curves, it follows that on the boundary of a cylinder the potential
®(u,v) = ®(u,v1) is a function of u only. For conducting cylinders the
appropriate ® must be independent of w in order that & be a constant on
the cylinder.

In general, for the problem to be solved we should look for a suitable
coordinate system in which the boundaries coincided with constant
coordinate curves. Such a set of coordinates u, v are functions of z and
y, so that

u = u(z,y)
v = ()
Instead of specifying a point by the coordinates z;, ¥;, we may equally

well specify the point by the coordinates u; = wu(z;,y:) and vi(z1,y1)-
The curves u = constant and v = constant are called coordinate curves.
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Along the 4 = constant curve only v varies, and vice versa. Along the
coordinate curves we may construct two unit vectors a, and a, for the
purpose of specifying a vector such as

A=A4,a,+ 4,3,

The unit vector a, is tangent to the
u=1u, v = constant curves, and a, is tan-
gent to the u = constant curves.

When the coordinate curves inter-
sect at right angles, as in Fig. 4.14,
the wv coordinates are said to form
an orthogonal curvilinear coordinate
system. The function Vu is a vector
in the direction of the maximum rate
of change of u, and hence

u=u;

v=v,
Fi6. 4.14. An orthogonal curvilinear co- Vu = |Vula,
ordinate system. Similarly, Vv = |Vo|a,

If the coordinates form an orthogonal system, then a, and a, must be
orthogonal everywhere. Hence the necessary and sufficient condition
for u and » to form an orthogonal coordinate system is that

ou v du dv

VU'VU='6—£;9;+ =40 (491)

dy dy
The differentials du and dv are not in general measures of length along
the coordinate curves. Thus the differentials of length dl, and dl, are
given by
dl, = h, du (4.92a)
dl, = h, dv (4.92b)

where h, and h, are suitable scale factors. The directional derivative of
u along the u coordinate curve is

du
a. = Vu-a, = |Vul

since Vu and a, are in the same direction. Comparison with (4.92a)
shows that

du
dl, = Val = ho du
ou\? AN e
and hence h, = [<£> (@) ] (4.93a)

Similarly, h, = [(%)2

(%)2]‘” (4.93b)
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Let us now consider the type of coordinate system generated by a
function W = u 4 jv = F(Z) = F(z + jy). We shall restrict F to be
an analytic function, so that the Cauchy-Riemann equations (4.90) hold.
The function F gives us two coordinate variables  and ». Using the
Cauchy-Riemann equations we can verify that

Qudy  dudy _ _ dudu , dudu_ g (4.94)

9z 9z ' 3y dy dr dy ' 9y oz
From this and the result of (4.91) we see that u and v form an orthogonal
coordinate system. Thus the curves 4 = constant intersect the curves
v = constant at right angles. A further consequence of the Cauchy-
Riemann equations is that h, = h,. This follows since

o (N (0 (N (Y
ht = (8-":) +<6y) B (f*y) +(ax> = h

Thus an analytic function F(Z) generates an orthogonal curvilinear coor-
dinate system in which the two scale factors h, and h, are equal.

By using the Cauchy-Riemann equations it is easy to show that both
u and v satisfy the two-dimensional Laplace equation

ou o

T ap=0

and similarly for». For this reason » and v are called harmonic functions;
i.e.,, any solution to Laplace’s equation is called a harmonic function.
Bessel functions and Legendre functions are often referred to as cylindri-
cal and spherical harmonics, respectively, for the same reason.

In the wv coordinates Laplace’s equation becomes

2 2
0 h9® 0 ho® 0% 0% _ (4.95)

ouh,ou " duh, o dur " @
since h, = h,. We obtain the interesting result that ®(z,y), which satis-
fies Laplace’s equation

Fezy) | 9'(ry) _

dx? ay? 0

also satisfies this equation when & is transformed to the uv system, i.e.,

0% (up) |, 92®(uw) _

du? dv? 0

+

Thus in the uv coordinate system it is still only necessary to find a solu-
tion to Laplace’s equation; furthermore, this will be very much simpler,
assuming that an appropriate transformation has been found which
makes u = constant or » = constant a boundary surface
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The usefulness of the coordinate transformation is often expressed by
considering % and v as rectangular coordinates; that is, instead of plotting
the u and » coordinate curves on the zy plane, we may distort the uv
coordinates into a rectangular grid (W plane) along with the boundaries
of the given problem. This means that we transform the curves repre-
senting the boundaries in the Z plane into new curves in the W plane.
The representation in the W plane is called the conformal mapping of the
boundary from the Z plane. The term conformal signifies the property
that curves intersecting at right angles in the Z plane map into curves
intersecting at right angles in the W plane, a property resulting from the
orthogonality of the wv coordinate curves. In the W plane we may now
solve for the potential & as a function of u and v by treating » and v as
rectangular coordinates. The latter solution is possible because surfaces
in the Z plane on which ® = constant map into the W plane with the
same value of constant potential. Similarly, a boundary condition such
as d®/dn = 0 is invariant under a conformal transformation. Conse-
quently, the problem in the Z plane is replaced by one in the W plane
with identical boundary conditions and the equivalent requirement that
V2®(u,v) = 0. But if an appropriate transformation has been found, the
problem in the W plane is immeasurably simpler, since we make the
boundaries lie along the rectangular w = constant or v = constant lines.
Consequently, the solution ®(u,v) can be found, and by an inverse trans-
formation ®(z,y) is then determined.

The previous remarks will be explained more fully in the course of
solution of the following two problems. In the first we consider the case
where a constant potential is assigned over the boundary surfaces. In
the second the boundary condition V&« n = 9®/dn = p,/eo is given. In
this case the boundary value does not remain invariant under a conformal
mapping since the scale factor h enters into the expression for V& in the
uvy coordinate system. The correct technique to be applied is explained
in this problem.

Example 4.8. Potential between Two Elliptic Cylinders. We wish to
obtain a solution for the potential between two elliptic cylinders with the
inner cylinder kept at zero potential and the outer cylinder kept at a
potential V. The problem is illustrated in Fig. 4.13. In order to solve
this problem we must find a complex function W = F(Z) that will gen-
erate a wv coordinate system for which the elliptic-cylinder boundaries
coincide with constant coordinate curves. There is no direct way in
which the required function F may be found. We have to rely on our
familiarity with the properties of various analytic functions in order to
know which specific function is required. For the present problem the
function W = cos™! Z is a suitable one.
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For the above function we have u + jv = cos™! (z + jy) or

cos (u + jv) = cos u cosh v — jsin w sinh v = z + jy
and hence
z = cos % cosh » (4.96a)
y = — sin w sinh v (4.96b)

Squaring both sides and adding leads to the result

x2 2

=cos?u 4 sin2u =1 (4.97)

cosh? v + sinh? v

If v is held constant, (4.97) is the equation of an ellipse. The family of

3T
=g

8 ly

F16. 4.15. Coordinate curves for inverse cosine function.

curves v = constant are confocal ellipses with foci at +1. From (4.96)
we may obtain the following equation also by eliminating the variable v:
x2 2

o —mL’ﬁ = eosh? v — sinh?v =1 (4.98)

Thus the u = constant curves are a family of confocal hyperbolas which
intersect the » = constant curves orthogonally. These coordinates are
plotted in Fig. 4.15.

Let the boundaries coincide with the coordinate curves v = v/8 and
v = x/4. Laplace’s equation is

e e _
u? v
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A simple solution for & which is zero for v = x/8 and equals V, for
v = /4 and is independent of u is

$ = § (v - ’é) Vo (4.99)

This is the required solution for & since both the boundary conditions
and Laplace’s equation are satisfied, so that (4.99) is unique. In this

Jju
Q-VO vs%
12
b
% 2
=T 1
: $=0 v=3 :
| |
' :
1
u=- u=m u

Fia. 4.16. Conformal mapping of Fig. 4.15 into W plane.

particular case & is a function of v only. If we solve (4.97) for v, we obtain

v = sinh™! [yz tai-l + \/(yz ot - 1) + yz]%
2 4

and this result may be substituted into (4.99) to obtain & as a function

of z and y:

If we mapped the cylinders » = 7/8 and v = =/4 into the W plane,
our original problem becomes one of finding the potential between two
infinite parallel planes separated by a distance /8, as in Fig. 4.16. For
this problem (4.99) is clearly the solution. As we move around the
elliptic cylinder, the coordinate u varies from —= to =. The mapping
is a periodic one and repeats itself with a periodic 2r in . The region
between the two elliptic cylinders corresponds to the shaded area in
Fig. 4.16.

If we are interested in the capacitance C per unit length between the
two cylinders, this may be obtained from the equivalent problem in Fig.
4.16. For the latter case C is the capacitance of the finite portion of an
infinite-parallel-plane capacitor and is, consequently,

- 3_7“_0 = 16¢ (4.100)

Note that in view of the infinite geometry there is no fringing field.
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The capacitance C is invariant under a conformal mapping and is con-
sequently the desired solution. This result may be proved as follows.
The energy stored in the electric field between the two cylinders is given
by W. = 14CV? per unit length. Now

o e [ [(Lagy, (1a%):
W, = §L|V<I>|2dxdy = 2/&[(% 6u> +<hv av) ]huh, du dv

. ,/s' [(%’)2 + (%‘f)z] dudo (4.101)

since h, = h,. Hence we may evaluate W, in the uv plane by treating
u and v as rectangular coordinates, and we shall obtain the same result
as we get by evaluating the integral in the zy plane. The area S’ in the
W plane maps into the area S in the Z plane.

Example 4.9. Potential from a Charged Infinitely Long Ribbon. Fig-
ure 4.17 illustrates a ribbon extending from —1 to 1 along the = axis.
The ribbon may be thought of as a

very thin conductor which is charged y
with a surface charge density
z 8 __»r
P = P07y ik (4.102) on €0 n

==y == =14+ t+L -
on both the upper and lower surface. —1-- | ™ x
The potential & set up by these
sources may be determined by Fic. 4.17. A charged ribbon.

means of the inverse cosine func-

tion of Example 4.8. When v = 0, the elliptic cylinder degeneratesinto a
straight line extending from —1 to 1 along the z axis, and hence v = 0
coincides with the surface of the ribbon. When v = 0,

z = cos u coshv = cos u

and u therefore varies from 0 to —= on the upper surface of the ribbon
and from 0 to += on the lower surface. In wuv coordinates the charge
distribution p is given by

cos U

po fsin ] (4.103)

p =

If n is the outward normal to the ribbon surface, the boundary condi-
tion for ® on this surface may be specified as

En = —~Vd.n = __Q
€0
In the uv coordinate system n = a, and
a,0%  a, 0P
V=3t i
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where h = h, = h,. Hence the boundary condition on & becomes

(4.104)

on the upper surface.
The scale factor & is given by

L 6_1_42 %2_ 6_142 @2
o= )+ G - (3 + ()

since from the Cauchy-Riemann equations du/dy = —dv/dzx. If the
derivative of W = F(Z) with respect to Z is computed with dZ = dz,
we obtain

AW _ () ()
dZ | ~ \oz dx

Therefore the scale factor h is given by

and

aw |-t az
h—hu—h,—l%— _)W— (4.105)
For the present problem
h= d ZOVSVW = |sin W| = |sin u cosh v + j cosh u sin v|
= (sin? » cosh? v 4 cosh? u sin? v)* (4.106)

On the ribbon where v = 0, we have
h = |sin u|

Consequently, the boundary condition (4.104) becomes

0P Po
e AN 4,107
£ " cos u ( )
Our problem may now be stated as follows. Obtain a solution to
Laplace’s equation
3% |, 3%
T = 0 (4.108)
such that on the surface of the ribbon where » = 0 the boundary condition
(4.107) is satisfied and also such that as v — «, the potential & vanishes
(note that z and y become infinite only when v does).
Equation (4.107) suggests that & will be of the following form: f(v)
cos u, where f is a function of » only. If we substitute this into (4.108),
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we find that f is a solution of

d¥
@~ I=0

Hence f = Ae= + Be®, and
d = (Ae"” + Be®) cos u

Since ® must vanish as » becomes infinite, the amplitude coefficient B
must be zero. Imposing the boundary condition (4.107) now gives
A = po/eo; so the complete solution for & is

® = -’:—oe‘” cos u (4.109)
0
The above potential function happens to be the induced potential that
is set up if a conducting ribbon is placed in a uniform external field Ea..
The applied field may be considered due to an applied potential

&)= —Epx = —E, cos u cosh v (4.110)

The induced potential ®; must be such that it cancels the applied electric
field along the surface of the ribbon and vanishes at infinity. It works
out to be

&, = Eee? cos u (4.111)

At v = 0, the total field E, is

_19@+®) _ 1

E, = 5 o0 ﬁ(_Eo sinu + Eosinu) =0

and vanishes as required. The charge induced on the ribbon is

10® ey cos u

PE TR heo | [sin u]
which equals that given by (4.103) if ecEo = po.
The induced potential may be written as

&®; = E(cosh v — sinh v) cos u
= Ey(z — sinh v cos u)

by noting that cosh » — sinh v = ¢=*. Solving (4.97) for sinh v and
(4.98) for cos u gives for ®; the result

Q‘=Eo{x_[x2+22/2_1+\/(x2+€:—1)2+y2:|%

% [1 + x2’ + 9 _ \/(1 + x;+ ¥ _ xz]%} (4.112)

To obtain this solution by solving Laplace’s equation in zy coordinates
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would be an extremely difficult task. The power of the conformal-
mapping or complex-function technique is well illustrated by this
example.

4.5. The Schwarz-Christoffel Transformation

The Schwarz-Christoffel transformation is a conformal transformation
which will map the real axis in the Z plane into a general polygon in the

AJ jv w
y Z plane J plane
C,
9
To
to
x ' %

Fig. 4.18. Conformal mapping of C into C\.

W plane, with the upper half of the Z plane mapping into the region
interior to the polygon. To derive the basic transformation we consider
first a curve C in the Z plane and its conformal mapping C; in the W
plane, as illustrated in Fig. 4.18. Let the unit tangent to C in the Z
plane be ¢, and the unit tangent to C; in the W plane be 7o, where

to = hm AZ—
2z—0 |AZ|

o= lim A7
aw—o |AW|

If the mapping function is W = F(Z), we have

IV _ o = tim AV _ AW/ AW 1o
az =F'@ = lim %7 = lm S 2zl " n @)l
F'(2)
and hence = At 4.113
=T (L.113)
The angle that r, makes with the u axis is given by
Lro = Lty + LF'(Z) (4.114)

Consider next the following function:
F'(Z)=AZ — z))™(Z — z)* + - - (Z — an)™™
N
=A[] Z-z)* (4115)

i=1
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where 4 is an arbitrary constant, % is a real number, andz; < z, < -

< zy. If the z axis is chosen as the curve C in the Z plane, the angle of
the unit tangent to the mapping of C, that is, to Cy, in the W plane will
be

N
Lro=LF = LA — ) kil(Z — x) (4.116)
i=1

Forz < z;wehave £(z — z;) = 7, and forz > z; we have Z(z — ;) = 0.
Thus as each point z; is passed in the Z plane, the angle of 7, changes

j .
4 Z plane v

Xy X3 x; XN x u

F1c. 4.19. The Schwarz-Christoffel transformation.

discontinuously by an amount kx and a polygon such as illustrated in
Fig. 4.19 is traced out. The exterior angles to the polygon are k., and
these angles must add up to 2« if the polygon is to be closed, and hence

. .
Yh=2 (4.117)
i=1

The constant A serves to rotate and magnify the figure in the W plane.

The points z; map into the points W; = F(z;). The mapping function

is given by

N
W = fF'(Z) dZ+B =4 [ [ (Z—-2z)%dZ+ B (4118)
i=1

where B is an arbitrary constant which serves to translate the figure in
the W plane. The integration of (4.118) is usually not possible unless
|ki| = 0, 24, 1, 35, or 2. It should be noted that in this transformation
there is a factor for each vertex corresponding to a finite value of = but
no terms for the points £ = + .

In practice we normally wish to map a given polygon in the W plane
into the z axis. This requires the inverse mapping function giving Z as a
function of W. Generally, it is difficult to obtain this inverse transforma-
tion; so we usually proceed by trial and error to set up a transformation
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of the form (4.118) which will map the z axis into the given polygon.
In this procedure we are aided by the condition that three of the points

x; may be arbitrarily chosen.
Example 4.10. Fringing Capacitance in a Parallel-plate Capacitor.
As an example of the use of the Schwarz-Christoffel transformation, the

Ju

oo <— To

$=0 u

Fi1G. 4.20. A semi-infinite parallel-plate capacitor.

fringing capacitance Cy at the edge of a semi-infinite parallel-plate capaci-
tor will be determined. The problem is illustrated in Fig. 4.20. In the
complex W plane the capacitor boundaries are obtained by letting the
points W; and W; tend to — » in Fig. 4.21. The external angles at
Wi, Wy, W3, and W, in the limit become —=, —, 7, and —, respectively.

jo

We=jd

W, W,

W,=0 u

Fia. 4.21. Polygon corresponding to capacitor boundaries.

Let the points Wy, W, W;, W4 map into the points z1, Z», Zs, and z4in
the Z plane. Our required transformation is thus

2 .
W) = A1/ (Z —x)(Z — 22)(Z — x3)"(Z — z9)dZ + B
z Z
=4 / (1 - x—) (Z — 29)(Z — x3)"(Z — z0) dZ + B
1
where A = — Az, and A, B are complex constants.

To cover the complete z axis we now let z; tend to minus infinity and
hence obtain

Wiz) = A / G- =2 4y 1 g

T3
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Since we are free to choose three of the z.’s, let o = —1, z; = 0, and
zq = 1; thus

zZ —
W=A/ zzZ iz +B

which may be integrated to give
2
W = A(%—ln Z)+B (2.119)

When W =W, =jd,Z = —1,and when W = W, =0,Z = 1; s0
jd =A% —Ine™) + B

0=A4C%) + B
where ¢/* is written for —1. Solving for 4 and B gives A = —d/= and
Jy
.
*2 X3 0; %4
-1 1 x
=YV, $=0

Fic. 4.22. Conformal mapping of capacitor boundaries into Z plane.

B = d/2x. Our final transformation is

—_— 2
w=2 (1 2 i Z) (4.120)
™ 2
and is illustrated in Fig. 4.22.
In the zy plane the solution for & is clearly

o=Vl =Yoian1¥ (4.121)
™ ™ x

The charge density on the plane z < 0 is given by

ad 10®  eVo
Ps = —€ ;- T €

= =20 4.122
an °ra0  |zlr ( )

The charge density on the plane z > 0 is the negative of (4.122). The
total charge on each capacitor plate is, of course, infinite, since each
plate is infinite. Let us therefore find the charge Q(I) per unit length for
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a width [ of the lower plate. When W = —[ on the inside of the lower
plate, let z = X, where 0 < X; < 1, and when W = —/[on the outside
of the lower plate, let £ = X, where X, > 1. For Q() we have [Q(])
is taken to be the magnitude of the charge]

X2
eo;’o/ dr _ eVo (In X; — In X,)

X, Z T

QW =

The values of X; and X, may be found in terms of ! from the transforma-
tion (4.120). We have

-l=§<1‘X2+1nX>=‘il<1_X‘2+1nX1>
T T 2
=§(L‘Xf+mxg (4.123)

If we choose I > d, we can obtain a good approximate solution to these
transcendental equations. For X; we must have 0 < X; < 1, and in
particular for I > d, X, is very small. Hence (1 — X,2)/2 is negligible
compared withIn X,and In X; = —#l/d. For X, we must have X; > 1
when [ > d, and we may then neglect the term 14 4 In X, to get X2 =
2lr/d and In X, = 34 ln (2Ir/d). The total charge Q(l) is consequently
given by

_eVofly , 2m  wl
00 == (151m2r 4 7 (8.120)

If there were no fringing field, the charge density on each plate would
be constant and equal to ¢ Vo/d. For a width I, the total charge per
unit length on the bottom plate would be

Q) = ¢ (4125)

The additional charge Q — Q, gives rise to the fringing capacitance Cj.
We therefore find that

Q=Qm%=%m% (4.126)
for a width 7 of the capacitor plate, per unit length.

As a practical application of this result consider a parallel-plate capaci-
tor of width and length equal to b and with a spacing d << b. The parallel-
plate capacitance is eb?/d. A first-order correction to this may be
obtained by using (4.126) for the fringing capacitance per edge and choos-
ing I = b/2. For the corrected value of capacitance we then obtain

_ b Zbeo wb
= + - lnd (4.127)
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PROBLEMS

Chapter 4

4.1. (a) Consider a rectangular parallele-
piped bounded by the planes z = 0, a;
y =0,b;andz = 0, ¢c; asin Fig. P4.1. The
side at y = b is kept at a constant potential
Vo, while the other sides are kept at a zero
potential. Find the solution for the poten-
tial ® inside the enclosure.

() Let the sides at y = 0 and y = b be
held at a constant potential V, while the
other sides are at zero potential. Find the
solution for &.
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4.2. Figure P 4.2 illustrates two infinite planes with a very thin conducting septum
extending from y =d to y =b (—» <z < «). The upper plate and septum
are kept at a constant potential V,, while the lower plate is at zero potential. Find
a solution for the potential ® between the planes. Assume that in the plane of

y y
&=V, . y=b
' e =V, y=d
- -
$=0 z y=0 x
Fic. P 4.2

the septum the potential ®(y) varies linearly from 0 to V,, that is, ®(y, 2 = 0) =
Voy/d (y < d).

HinT: Note that there is no variation with z. Find a solution for @ in the two
regions z > 0 and z < 0. Note that ® must remain finite as |z| —» .

4.3. For Prob. 4.2 evaluate the total energy stored in the electric field contributed
by all the terms in the solution except the term Voy/b. This energy may be used to
define the fringing capacitance produced by the septum as follows:

2We
Cr=va
Obtain the solution for the fringing capacitance C;. Note that the total energy stored
in the electric field is infinite, a result consistent with the fact that the parallel-plate
capacitance for two infinite planes is infinite.

4.4. A rectangular conducting channel
has a small slit in the center of the end face

(at £ = a/2). The upper section is kept at siit $=Vo

a potential V, relative to the lower section, \J T

as in Fig. P 4.4. The structure is infinite —‘t_a‘ a

in the y direction. Obtain a solution for I 2 i

the potential ® in the region 0 <z < g, =0 z
2>0. Fie. P 4.4

4.6. A rectangular parallelepiped, as illustrated in Fig. P 4.1, has its boundary kept
at zero potential. The interior is filled with charge with a density given by

« WL . W2
p—sm;sm?y(y—b)

Find a solution for the potential distribution & in the interior.

Hint: Since @ is not required to satisfy Laplace’s equation (it satisfies Poisson’s
equation since p # 0), assume that & can be represented by a general three-dimen-
sional Fourier series

© © ©

. nwr . Mwy . Swz
P = z A,.,,..sm—a——smTysmT

n=1m=1gs=1
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Expand p into a similar three-dimensional Fourier series. Substitute these expansions
into Poisson’s equation V2® = —p/e, and use the orthogonality properties of the sine
functions to relate the coefficients A.m. to the corresponding coefficients in the expan-
sion of p. '

4.6. Consider the two-dimensional rectangular region illustrated in Fig. P 4.6. The
structure is infinite in extent along the z axis. A line
source of strength ¢ coulombs per meter is located at y
Zo, Yoand parallel to the z axis. The sides of the en- T
closure are kept at zero potential. Find a solution
for the potential ® in the interior. b

HinTt: See comments in Prob. 4.5. The line
source may be represented symbolically as the
product of two delta functions [analogous te unit %01 %o
impulse function &(t) used in circuit theory]
p = ¢b(x — 20)8(y — yo), where 3(z — z0) = 0, T 7 zo;

Tota Fi1g. P 4.6
/; 5(z — zo) dz = 1, and similarly for §(y — yo).

$ =0 on boundai
/ ry

Line source
[ ]

a x

o—a

For any function of z and y, say f(z,y), the following property also holds:

ZToTa

" / 1IH“’J’(z,y)oS(oc — 20)8(y — yo) dz dy = f(2o,y0)
zo—a Jyo—pB
This property may be used to obtain a double Fourier series expansion of the line-
charge source function p. The solution for ® may then be constructed as in Prob. 4.5.
Note that there is no z variation.

4.7. Consider an infinite dielectric medium with a permittivity e. An infinitely
long z-directed cylindrical cavity of radius a is cut out of the material. A uniform
electric field E, is applied along the z axis as in Fig. P 4.7. Obtain a solution for the-
total resultant electric field within and outside the cylindrical cavity.

Fia. P 4.7 Fi1c. P 4.8

4.8. An infinitely long z-directed conducting cylinder of radius a is placed in a uni-
form electric field Eoa., as in Fig. P 4.8. Obtain a solution for the induced electric
field E; in the region internal and external to the cylinder. What is the charge dis-
tribution on the surface of the cylinder?

4.9. Consider a very long slab of conducting material (length L, width W, thickness
t, conductivity o). A small cylindrical hole of radius a is cut in the center of the slab.
A potential V, is applied across the two ends as in Fig. P 4.9 and establishes an electric
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field in the medium. Find a solution for the current flow in the conductor, and sketch
the flow lines in the vicinity of the hole.

Hint: Assume that the electric field consists of a uniform field plus an induced field.
The current J = ¢E, where E is the total electric field.

1 t/
] s
: A 1 r
o 2N W
4 $=0
O
o e e - I N
7 L a
/ &= V;J _ - _ >
Vo
Fi1c. P 4.9 F16. P 4.10

4.10. Consider a semi-infinitely long cylinder of radius a. The side of the cylinder
is kept at zero potential, while the end face at z = 0 is kept at a constant potential V,
as in Fig. P 4.10. Find a solution for & within the cylinder.

\r
d
4.11. A cylinder of length b, radius a, 2-0 l‘_-I £-0
has a small centered ring section of width d e
kept at a potential V,. The remainder of R R
the cylinder and the end walls are kept at ) z
zero potential, as in Fig. P 4.11. Find a b
solution for & inside the enclosure. 3 '\
I 2 Ring at potential V,
Fic. P 4.11

4.12. A spherical cavity of radius a is cut in an infinite dielectric body of permit-
tivity e. A uniform field Ea, is applied. Find the induced field inside and outside
the spherical cavity.

4.13. A conducting sphere of radius a is surrounded by a dielectric with permittivity
e over the region a <r <b. The dielectric-coated sphere is placed in a uniform
applied field Esa.. Find the solution for the resultant total electric field for all values
of r.

4.14. A hollow conducting sphere of radius @ has a small air gap cut around the
equatorial plane. The upper hemisphere is kept at a constant potential V,, while the
lower hemisphere is kept at zero potential. Obtain the solution for the potential dis-
tribution within the sphere.

4.16. A thin circular ring of charge, radius a and charge density p; coulombs per
meter, is located in the zy plane with the center at the origin. By direct integration,
find the potential along the z axis. By expanding this potential in a power series in 2
and comparing with the Legendre function expansion of the potential, determine the
solution for the potential for all positions around the ring of charge.

4.16. A conducting sphere (uncharged) is placed in a potential field ®, = r?sin 26
cos ¢. Find the resultant total potential inside and outside the conducting sphere.

4.17. A line charge of density ¢; coulombs per meter is located at z = y = 1 inside a
90° conducting wedge, as illustrated. By a suitable conformal mapping, obtain the
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solution for the potential ®. Compare with the y
solution obtained by the method of images.

Hint: Note that a transformation of the form
W = Z<% or in polar form (with W = Rei® and
Z = rei®) Rei® = reeie? will map the boundary q,
of the wedge into an infinite flat plane for a suit- 1,1
able choice of the parameter «. In the W plane
the solution for &(u,v) may be found at once by
using image theory (a line source imaged in an
infinite plane). By transforming back to the Z 7r7777777777777777777 Y
plane, the potential inside the wedge region is
found. It is simpler to express the solution in
terms of the variables r, g after the solution in the
W plane has been expressed in terms of E and ¢.

4.18. For a line charge of density ¢ coulombs per meter located at an arbitrary
point (zo,7/0) in the inside of a conducting wedge of arbitrary angle 6, find the potential
distribution ® by means of a conformal mapping. Note that the conformal-mapping
method will work for any wedge angle while the direct method of images will work only
if v/6¢ is an integer.

HinT: See Prob. 4.17.

Fia. P 4.17

4.19. A line charge is located at z,, y, in
the vicinity of a semi-infinite plane extending
from z = 0 to «, along y = 0, as illustrated.
Find the solution for the potential ®. What
is the surface charge distribution on the
plane when y, = 0, o = —a? O

Hint: The half plane may be considered 27

as a wedge of internal angle 2.

Fi1c. P 4.19

4.20. Show that the transformation W = sin Z maps the semi-infinite strip of
width = in the Z plane into the upper half of the W plane, as illustrated. Use this
transformation to find the potential due to a unit-strength line source located at
z = 0, y = yoin the region indicated. The boundary is kept at zero potential.
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Fia. P 4.20
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4.21. Find a Schwarz-Christoffel transfor-
mation that will map the region illustrated
in the W plane into the z axis in the Z plane.
Note that the rectangle is obtained from a
triangle as the point u, tends to — . The
external angles of the polygon are those of
the triangle as u, tends to — «. Compare
this transformation with that in Prob. 4.20.
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