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CHAPTER 3

ELECTROSTATIC FIELDS IN MATERIAL BODIES,
ENERGY, AND FORCES

In the previous chapter the properties of conducting materials in elec-
trostatic fields were discussed. We turn now to a consideration of the
properties of insulators in an electric field. In order to accomplish this
aim, a short discussion of the microscopic (atomic) properties of insulators
will be required. For this purpose simplified physical models of the atom
will be used. Despite this simplicity it will be possible to satisfactorily
predict the macroscopic behavior of dielectrics.

After discussing the basic properties of dielectrics, a study is made of
capacitance and capacitors. This is followed by an evaluation of the
work required to assemble a charge configuration. The work done is
next related to the energy stored in the field. The latter part of the
chapter introduces the principle of virtual work to evaluate the force
acting on a body in an electrostatic field. The virtual-work principle of
evaluating forces is a very powerful technique which greatly simplifies the
solution of some otherwise difficult problems.

3.1. Polarizability

Electronic Polarizability

Let us begin by considering a monatomic gas in an electric field. This
choice takes advantage of the fact that the spacing between the molecules
of a gas is very much greater than the size of the molecule, so that, as we
shall confirm, interaction between molecules can be neglected. This
means that the effect of the field on any molecule is substantially the
same as if it were the only particle present. A further geometric simpli-
fication arises in the choice of a single atom molecule.

Figure 3.1a illustrates a simplified model of the atom consisting of a
positively charged nucleus surrounded by a spherically symmetric cloud
of electrons. Since the nucleus has a diameter of the order of 10~15 meter
while that of the electron cloud is of the order of 10—° meter, the nucleus
1s essentially a point source. If, now, an external E field is applied, then
a relative displacement of the nucleus from the center will occur. The
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80 ELECTROMAGNETIC FIELDS [CHuar. 3

relative displacement of the nucleus z can be computed by equating the
force exerted by the external field to the coulomb restoring force.

Let R be the radius of the electron cloud, asin Fig. 3.1. The electron
cloud is considered to be equivalent to a uniform sphere of charge with a
density —3¢/4wR3 The field due to this charge at a distance z from the

| ®)
F1a. 3.1. (@) Model of atom; (b) displacement of nucleus by external field E.

center may be found by applying Gauss’ law to the region bounded by a
sphere of radius z, as in Fig. 3.1b. We have

4mz3 3q
2y — xTe 99
Eo47r2 E, 3 41rR3
or E, 47 B3

Since the charge on the nucleus is ¢, the coulomb restoring force F acting
on the nucleus when displaced an amount z is

_ _ 2
F=Eg=— (3.1)

Note that the restoring force, given by (3.1), is proportional to the dis-
placement. This consequence is confirmed in atomic physics for small
displacements z. Equating the external force ¢E to —F gives

gz = p = 4w R*E (3.2a)
or in vector form,
p = 4reR°E (3.2b)

The dipole moment per atom, p, is proportional to E, according to (3.2).
If N is the number of atoms per cubic meter, then P = Np, where P is
the dipole moment per unit volume. In view of the proportionality
expressed in (3.2), we may relate p to E as p = aE, where o is called the
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polarizability. When the polarization arises in the way just described,
a is designated the electronic polarizability a.. In terms of the above

parameters,
a, = 4R’ (3.3)

The quantity a./eo is seen, from (3.3), to be of the order of magnitude of
the atomic volume. In Table 3.1 the ratio a./47R%;, is given for several
of the inert gases. Despite the crude model used, this ratio comes out in
the order of unity.

TaBLE 3.1. POLARIZABILITIES AND Rapit For SoME CoMMoN ELEMENTS

Gas
Parameter...................... He Ne A Kr Xe
ae X 104 cu m (measured) ....... 0.222 0.43 1.8 2.7 4.4
R, (Ang)....................... 0.95 1.15 1.4 1.6 1.75
a/4mR%0. . oo 0.28 0.29 0.66 0.67 0.83

In summary, we note that the effect of an applied electric field on the
molecules of matter may be to create electrostatic dipoles. These in
turn will set up a secondary (induced) field so that the net field in the
presence of matter is modified from its free-space value. Before proceed-
ing to a consideration of the fields, we mention several other polarization-
producing mechanisms.

Ionzc Polarizability

In a molecule characterized essentially by ionic bonds, we can think of
that molecule as composed of positively and negatively charged ions. It
is the coulomb forces between these ions which mainly account for the
binding force. The application of an electric field to any such molecule
will tend to displace the positive ions relative to the negative ones. This
process will induce a dipole moment in the molecule. Note that it is
quite distinet from electronic polarizability, where the displacement
between the nucleus and electron cloud accounts for the polarization.
In a polyatomic gas one can expect both processes to occur. We shall
designate ionic polarizability by a.

Orientational Polarizability

In certain polyatomic molecules where the atomic bond is at least
partially ionic, the individual atoms tend to be either positively or nega-
tively charged. A two-atom molecule will thus have a permanent dipole
moment, the magnitude of which depends on the time-average transfer of
charge between atoms and the internuclear distance. For polyatomic
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molecules several bonds may have a permanent dipole moment; the
dipole moment of the entire molecule is the vector sum of the component
moments. For certain kinds of symmetry the latter may come out zero.
The application of an electric field to molecules with a permanent
dipole moment would ordinarily cause all molecules to align themselves
with the applied field. This orienting tendency is opposed by the rahdom
thermal agitation of the molecule, and in solids and some liquids by
mutual interactions of the molecules. Assuming that the molecules are
free to move, we can calculate their

Esin 6 effgctivte. orientational or dipolar po-
AA larizability.
- E Consider a system of N molecules
'1/%""‘1 \T=¢1E—%sin0 per unit volume, each possessing a
1 —> permanent dipole moment of p. In
T\ —q<i the absence of an electric field, their
orientation is completely random, so

—E o that there is no net time-average
Fic. 3.2. Dipole in a field E. dipole moment. Now let an electric

field be applied in the z direction.
We represent in Fig. 3.2 a typical molecule, with moment p = ¢l, making
an angle 6 with the z direction.

For the potential energy of the dipole, let the zero reference be taken to
be when p- E = 0, that is, § = 90°. If the dipole is allowed to rotate
into alignment with the field, then the decrease in potential energy of g,
from the position shown in Fig. 3.2, would be

_glEcos @

[}
W, = / g sin 8 df = (3.4a)
2 2 2
and similarly for the negative charge,
W_ = — glE cos 6 (3.4b)

2

since the torque acting on each charge of the dipoleis T = (¢lE/2) sin 6.
Consequently, the potential energy of the dipole in any position can be
written as

W= —p-E= —pEcos¥ (3.5)

The contribution to the total dipole moment in the z direction from the
afore-mentioned molecule is p-a, = pcos . To find the total moment
it is necessary to know the relative number of molecules making different
angles 6 with 2. With an applied field, the distribution is no longer uni-
form, but it can be found from the Boltzmann distribution law. The
latter states that the probability that the direction of p lies between 6



Sec. 3.1] ELECTROSTATIC FIELDS IN MATERIAL BODIES 83

and 0 + df is proportional to e~7/*T dw, where dw is an element of solid
angle corresponding to df, k is Boltzmann’s constant and equals 1.38 X
10-2% joule per degree Kelvin, while T is
absolute temperature. From Fig. 3.3 we
note that

dw = 27w sin 6 d6

The number of dipoles, per unit volume,
whose moment lies between 6 and 6 4 dé,
is now given by

AN = Ae®wEsDkT gin §df  (3.6)

where A is a constant of proportionality.

N Fic. 3.3. Element of solid
The latter can be determined from the re- angle on a unit sphere.

quirement that the total number of molecules
per unit volume be given by the integral of (3.6) from 6 = 0 to =; that is,

N
A" e(PE cos OIKT gin 0 40

4= (3.7

The partial contribution to the polarization from dipoles lying between
6 and 6 + df is

dP = dN pcos 0
The total polarization P is given by

P

I

Ap /0" e(PE cos O)/ET giny § cos 6 df

v [0’ e(PE cos O/ET gin 9 cos 6 db
14

3.8
/0" (P cos /KT gin 9 dO (3.8)

Let £ = cos 6, a = pE/kT; then

P Nf__le“’xdx_N 1)
=7 I = Np(cotha a = NpL(a) (3.9)

/—1 e** dzx

where integration by parts was used to evaluate the numerator. The
function L(a) was first introduced in connection with a similar study of
magnetic dipoles by Langevin (1905), and it is called the Langevin func-
tion. A plot of L(a) is shown in Fig. 3.4. The curve depicts the satura-
tion property of the orientational polarization. At room temperatures
laboratory fields are too weak to approach saturation and pE < kT can
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be assumed. As a consequence,

L@) ~ 3= g7

and the polarization per unit volume is

NpE
3kT

The orientational polarizability per molecule, a,, is thus given by

P = (3.10)

P 3.11;

oy = 3k—T ( A1)

Typical values of p are around 10~3° coulomb-meter, so that at room
temperatures ao comes out around 10~%° cubic meter. This is the same
order of magnitude as the electronic

L@ " a/3 polarizability. Note, however, that
/ while both electronic and ionic polar-

1.00k A —— izability depend only on atomic con-
J/ figurations, and hence are essentially

’ independent of temperature, the ori-

0501 /5 entational polarizability is inversely
/ proportional to temperature. This

P B B . corresponds to the observation that

Y 2 4 6 e at elevated temperatures it becomes
Fic. 3.4. The Langevin function. more difficult to align the dipoles

against the thermal motion.
The total polarization of a polyatomic gas may arise as a result of elec-
tronic, ionic, and orientational polarizability. Therefore, in general, we
have

P=N (a, +oai+ P T) E (3.12)

where the vector notation, which is implicit in the previous work, has
been restored.

If the foregoing analysis is applied to solid dielectrics, then the field E in
(3.12) cannot be taken as that which exists prior to the introduction of
the dielectric. This is because adjacent dipoles become sufficiently
influential in modifying the field at a point within the dielectric. The
field E in (3.12) must be interpreted as being the molecular field in the
dielectric. In a later section we shall evaluate the first-order 1nteract10n
and hence relate the molecular field to the external field.

We turn now to a consideration of the macroscopic effects of the
polarizability of dielectric materials. It will be useful to lump together



Skc. 3.2] ELECTROSTATIC FIELDS IN MATERIAL BODIES 85
the various contributions to the polarization in the following expression:
P= EOXeE (313)

where x. is a dimensionless quantity called the electric susceptibility, and
E is the total field; that is, x. is assumed to absorb the factor relating the
molecular field to the total field. Equation (3.13) assumes that the
polarization is proportional to E, a relationship usually confirmed in
practice. Note that, in part, it is based on an assumption of being far
from saturation for dipolar molecules. Equation (3.13) fails to describe
the polarization of certain substances which exhibit spontaneous polariza-
tion. The latter class are known as ferroelectrics. A description of
their properties can be found in the references on solid-state physics.

3.2. Electric Flux Density D

In Chap. 2 we learned how to calculate the electric field from a given
distribution of charge. This can be accomplished by first determining
the scalar potential field that is set up. The electric field is then derived
from the negative gradient of the scalar potential. The pertinent
formulas follow (the reader is reminded that they apply under free-space
conditions):

1 pdV’
T dre Jv R
E=-Vvo (3.15)

(3.14)

where R = |r — r/|.

Let us consider what happens if a dielectric is introduced into the elec-
tric field set up by an arbitrary charge distribution, as described above.
As a consequence of its polarizability, the volume occupied by the dielec-
tric now contains a dipole moment distribution P. This distribution
constitutes a secondary source for the electric field. Thus, in addition to
the original charges that set up the field, the dipole moment P must also
be included as a source for the complete field, i.e., the field in the presence
of the dielectric.

The scalar potential due to P has already been determined and is given
by (2.97). The total potential, by superposition, must then be

- (/ P Pav + ¢, ——dS’)

_ ] p+p , Psp 5 qr
4m<ﬁ R"dv+9§ ”dS) (3.16)

In the last expression, p, = —V’ - P is the equivalent volume polarization
charge, p,, the surface polarization charge, while p is called the “true”
charge. Note that p in (3.16) is, in general, not exactly the same as in
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(3.14). This comes about because p, may react back on the original
distribution of charge, thus affecting that distribution. In many cases,
however, such effects will be small.

The polarization charge does not only arise as a physical interpretation
of the mathematical equivalence expressed in (2.97). If one could actu-
ally measure the excess charge in a small volume within a dielectric, one
would confirm that p, = —V-P. [See remarks following (2.97).]
Nevertheless, a distinction between true and polarization charge is made,
and this difference is related to the origin of the volume charge density.
True charge is essentially accessible for measurement; it is a free charge.
Polarization charge would also be accessible if one could make measure-
ments on an atomic scale within dielectric materials. However, we
ordinarily consider the polarization charge as arising from constituent
dipoles so that the “bound” nature of the charges (hence ‘““inaccessibil-
ity” of individual charges) is evident. We consequently distinguish the
polarization charge as a separate entity.

As a consequence of (3.16), the sources of electric field must be general-
ized to include the polarization charge. In the dielectric we must con-
sider p, as fully equivalent to the true charge p. Thus the divergence of
E must be related to the sum of p + p, as follows:

v.E=PTP (3.17)
€

This result is readily verified by taking the Laplacian of (3.16) and using
the singularity property of V2(1/R). Since (3.17) relates the divergence
of E to the charge density at a point, the surface charge term does not
enter as long as we are in the interior of the dielectric. Later on we
shall show that the surface polarization charge is readily taken into
account in practice by imposing a discontinuity condition on the normal
component of E at the surface of the dielectric body. If we express p, in
terms of P, we have '

V(e + P) = p (3.18)

In practice, it is inconvenient to take explicit account of the polarization
P. We can avoid this by introducing a new field vector D defined as

D=¢E+ P (3.19)

Equation (3.18) now becomes
V:-D=p (3.20)
The vector D has the dimensions of coulombs per square meter and is

called the electric displacement, or electric-flux-density vector. The
source for the vector D is the true charge density p.
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With materials for which (3.13) holds we have
D = &E + eox.E = (1l + x)E = ¢E (3.21)

The parameter ¢ = e(1 + x.) is called the permittivity of the dielectric.
The permittivity relative to that of free space is e¢/eg = 1 + x. and is
called the relative dielectric constant and will be designated by the
symbol «. If e is known, we can solve for the polarization P since

P = ¢x.E = (¢ — «)E (3.22)

Values of the relative dielectric constant of several typical materials are
given in Table 3.2.

TasLE 3.2. RELATIVE DIELECTRIC CONSTANT OF SEVERAL MATERIALS

Material Relative Dielectric strength,
dielectric constant kv/m
Air.................. 1.00 3,000
Oil.................. 2.3 15,000
Paper................ 1.5-4 15,000
Polystyrene........... 2.7 20,000
Glass................ 6.0 30,000
Paraffin.............. 2.1 30,000
Quartz............... 5.0 30,000
Mica.............. .. 6.0 200,000

Sometimes (3.21) is taken as a definition of D. It is clear that such a
relationship holds only for a class of dielectrics under certain conditions.
It depends primarily on the linear relation between the polarization and
the electric field as expressed in (3.13). In addition to this, it also
requires that the material be isotropie, that is, x. should be independent
of the direction of E. When this is not the case, the relation between
P and E, and hence between D and E, becomes a matrix, i.e., a tensor,
relation. For example, if the molecule is not symmetrical, its dipole
moment will in general not be collinear with the field E and each com-
ponent of P will be related to each component of E, so that

P: Ozz Olzy Qz; E:
Pyl =€ | ay: ay oy.||Ey
Pz Oz Ozy Ol Ez

It is clear that in this case x. and e are matrix (tensors of rank 2) quan-
tities. Materials characterized by a tensor permittivity are called
anisotropic materials. For our purposes in the remainder of this book
we shall assume that e is a scalar constant. Most materials fall into this
class,
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If (3.20) is integrated throughout a volume V and Gauss’ law is used,
then an integral relationship between D and the total true charge results;
ie.,

9SSD-dS = prdV =Q (3.23)

where Q is the total charge within V. Utilizing the flux concept, we see
that the number of flux lines originating within V is proportional to the
quantity of charge Q.

3.3. Boundary Conditions

In solving problems in electrostatics it is necessary to relate the inac-
cessible (polarization) charges to the accessible (true) charges, or to the

@«

AS Din

St
=

;
N .t

Il P

@« , Do

F16. 3.5. Illustration for derivation of boundary conditions on Da.

fields produced by the latter. Such relationships which link the inac-
cessible charge sources to the external fields which produce them are
called the constitutive equations. An example of such an equation is
(3.13), although sometimes the nomenclature is applied to (3.21) as well.
Such equations depend on the properties of the material to which they
apply. As was noted earlier, (3.21) is restricted to linear, isotropic
materials. However, the material need not be homogeneous; that is,
e may be a function of position.

One very common case of nonhomogeneity occurs when the dielectric
constant varies discontinuously as between two different homogeneous
media. The way in which D and E behave in crossing the boundary
between two dielectrics is of much interest and will be discussed now.

Figure 3.5 illustrates a very small element of the interface between
dielectrics 1 and 2 whose permittivities are e; and e, respectively. Since
the element of surface is of differential extent, it may be considered to be
plane. A coin-shaped surface is placed with its broad face parallel to the
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interface and so that one surface is in region 1 and the other in region 2.
The area of the broad face is AS, and the thickness is k. Let us apply
Gauss’ flux theorem to the volume of the coin. If we make use of (3.23),
then

(n-Dy)) AS — (n-Dy) AS = p, AS (3.24)

where p, is the true surface charge density on the interface. Equation
(3.24) does not include the outflow of flux of D through the sides, because
this flow can be made negligible by letting A — 0, while at the same time
the terms in (3.24) remain unaffected.

For the simple case of a surface charge p, in a free-space medium, we
can set D; = ¢E; and Dy = ¢E; in (3.24), with the result that

n:(E; —E) = ‘:—0 (3.250)

In other words, the normal component of electric field is discontinuous
through a charged surface, the magnitude of the discontinuity being
given by (3.25a). For a dielectric interface p, is ordinarily equal to zero
unless a surface charge is actually placed at the interface. Taking
0, = 0, (3.24) becomes

n-D;=n-D; : (3.25b)

That is, the normal component of D is continuous across a dielectric
boundary. The normal component of E, on the other hand, is discon-
tinuous. This is clear if (3.21) is substituted into (3.25b) to give

n- E1 €2

n-E, = a (326(1)

Using a somewhat simpler notation we have
el = el (3.26b)

The discontinuity in n « E is readily explained physically. The field E
arises from the total effective charge consisting of the true charge p, the
volume polarization charge p, = —V - P, and the surface polarization
charge p,,. At the surface of a dielectric the normal component of E is
discontinuous by an amount equal to p,,/€o, just as it would be if we con-
sidered a surface layer of true charge equal to p,,. Equation (3.26b) is
readily shown to verify this result. From (3.22) the normal component
of P at the surface is seen to be given by

Pin= (&1 — €)Erwn medium 1
P2 = (€2 — €0)Esn medium 2

The surface polarization charge is given by P,, — Pi, since this repre-
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sents the amount of charge on the positive ends of the dipoles in medium 2
that is not canceled by the opposite charge on the negative ends of the
dipoles in medium 1. From the above relations we see that

P2n - Pln = Psp = GO(Eln - E’Zn) + 52E2n - eIEYI» (327)

We can now see that a discontinuity of E, by the amount p,,/e; cor-
responds to the requirement that e;E», = €,E1,. In other words, satis-
faction of (3.26) is consistent with the necessity that E, be discontinuous
by an amount p,,/eo.

' ex
Aw
‘ 3 &'_. 11)
I -
¥ ] —
/-T- ¢ e
Ey
Al @ €2

Fi6. 3.6. Tllustration for derivation of boundary conditions on E..

In practice, we usually find a suitable solution for E and D in the two
dielectric regions. We then adjust the magnitudes of these solutions so
that (3.26) holds at the boundary. By this means we avoid the neces-
sity of taking the surface polarization charge into account explicitly.

Boundary conditions on the tangential components of the field can be
found in the following manner. Figure 3.6 is a cross section normal to
the interface separating two media of different permittivity. Consider-
ing the small rectangular path of length Al and width Aw, where opposite
sides of the long dimension lie in the separate media, we have

fabE‘dl+ﬁE.d1+[c"E-J1+/d°E.d1=o (3.28)

since the line integral of E around any closed path is zero. Without
affecting the remaining two integrals,

ﬁE-dl=[d“E-dl=o

by letting Aw — 0, while keeping Al fixed. If we symbolize the tangential
component of E in region 1 by E; and that in region 2 by E,, then, with
the choice of directions given in Fig. 3.6,

EuAl - Ezg Al = 0
or Eu = Ez; (3.290)
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This may be written in vector form
as E, €
nX E; =nXE; (3.29) 0,1
For the tangential components of D orrrmmrrmrrrrs N
we must now have )
e L)

Dy, €1 €2

P _a . E

D, o (3.30) A

Thus the tangential component of
electric field is continuous across a
boundary between two dielectrics,
while tangential D is discontinuous. Note that this result would not be
affected by the presence of a surface charge layer at the interface.

The total change in electric field in crossing an interface may be found
from the above equations. The net result is analogous to the refraction
of a light ray in passing from one medium to another. Thus in terms of
the geometry of Fig. 3.7 and using (3.26) and (3.29), we have

F1a. 3.7. Refraction of E lines of force
across a boundary.

Eysin §; = E,sin 0, (3.31a)
€1E1 cos 0; = ezEz cos 6, (331b)

Dividing (3.31a) by (3.31b) yields an electrostatic ‘“Snell’s law,” relating
the angle of incidence to the angle of refraction in terms of the properties
of the media; i.e.,

tan 01 _ S

tan 6 e (3:32)

Let us consider a problem that illustrates some of the concepts just
considered. Figure 3.8 depicts two very large (essentially infinite)
parallel conducting planes which are maintained at a potential difference
V by means of a battery. Because of the uniformity (the very large size
is chosen so that fringing of the field at the edges can be neglected), the

| AT T
vy oy Jl j\
1 | /

o &(;uard ri:a.g_-:/'%+ '

Fic. 3.8. Electric field between two parallel plates.
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electric field must be given by

= — (3.33)
The uniformity of the electric field is represented in the flux plot in
Fig. 3.8.1

Suppose we now insert a uniform slab of dielectric, of relative permit-
tivity , between the plates, as shown in Fig. 3.9. Let the thickness of

T 1T I r T 1111 “V’T
VvV / 7 / d

L] 1
++ 4+

Top view

Fic. 3.9. Dielectric slab between parallel plates.

the slab be slightly less than d, leaving a small air gap. Since V is
unchanged, E within the dielectric is still given by V/d; that is, /Od E.dl

must equal V as before. (We are neglecting the small error that the air
gap introduces in this argument.)

In passing from the dielectric into the air gap, the electric field increases
by virtue of (3.26). Thus, letting E, be the field in the air gap and E4
that in the dielectric and noting that both are normal to the interface and
the conducting plates, we have

E, = «E, (3.34)

where, of course, x > 1. In Fig. 3.9, x = 9, since the field strength is
proportional to the number of lines per unit area.
t Fringing of the field at the sides of the plates may be avoided by increasing the

size of the bottom plate and surrounding the upper plate by a guard ring, insulated
from the upper plate and kept at the same potential —V as in Fig. 3.8.



Skc. 3.4] ELECTROSTATIC FIELDS IN MATERIAL BODIES 93

The discontinuity in E is explained by the polarization charge which
terminates the flux lines. The polarization of the dielectric is repre-
sented in Fig. 3.9, and it should be clear that an equivalent surface charge
layer is available at the dielectric surface. If the charge density on the
conductor is p,, then E, = p,/eo. Now since « =9, x. =« — 1 =8,
and P = exx.Fs = 8p,/9. In view of (3.27),

=n-P = — 360, lower interface
Pev 86ps upper interface

where n is the outward normal to the dielectric surface. From Fig. 3.9
we see that this is precisely the charge density needed to terminate the
lines of flux of E, at the surface of the dielectric.

3.4. Dielectric Strength

As we have noted, the process of induced polarization involves the dis-
placement, from an equilibrium position, of the nucleus relative to the
surrounding electron cloud. In our discussion of this phenomenon we
tacitly assumed that an elastic process was involved. It might be
anticipated, though, that if the field strength is increased sufficiently, new
phenomena would be involved, including the possibility of a permanent
change in the dielectric. This does, indeed, happen. We say that
dielectric breakdown occurs, and the field strength at which this takes
place is called the dielectric strength of the material. Table 3.2 lists the
breakdown field strength for several common materials.

In general, breakdown begins as a result of the movement of electrons
within the insulator under the influence of the applied field. The source
of the electrons comes from impurities in the insulator, or crystal-lattice
defects, or by field emission due to the applied field itself. If the energy
gained by the electron from the accelerating field is greater than that lost
in collision with the lattice structure, the electron will accumulate suffi-
cient energy to create a hole-electron pair. The latter will then also be
accelerated, so that a continuous discharge through the material can
result.

If the solid dielectric contains gas bubbles or layers of gas, breakdown
may first occur in that region because the breakdown field strength in a
gas is lower than in the solid dielectric, while at the same time the field
strength in the gas will be larger than in the dielectric [e.g., see (3.34)].
As a consequence of the gas discharge so initiated, the solid dielectric
will be subjected to ionic bombardment, leading, finally, to complete
breakdown.

It is not the intention to provide here a detailed physical description
and analysis of dielectric breakdown. What is important is that it
serves as a motivation in the solution of potential problems where exces-
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sive field strengths that can cause breakdown must be avoided. In
problems involving composite dielectrics one is faced with a need to
reconcile the different dielectric constants and dielectric strengths. The
following is a simple example of this.

Example 3.1. Dielectric Breakdown. For the parallel conducting
planes as in Fig. 3.10, but with an air dielectric, the field is approximately

—

V — 0.01 meter

I |
Fig. 3.10. Partially filled parallel-plate capacitor.

uniform and of magnitude V/d. Consequently, for d = 0.01 meter, the
maximum potential is 30 kilovolts, as this results in a field of 3,000 kilo-
volts per meter, which is the breakdown stress for air.

If the region between the plates were filled with glass, then a Voltage of
150 kilovolts would be permitted, since the dielectric strength of glass is
approximately five times greater than that of air. Suppose, however,
that the glass is only half the thickness of the air gap. Then since
k = 6 for glass, the field in the air is six times that in the glass, so that
64V exists across the air gap. In this case

62V
7 max __
0005 — 3,000 kv/m

and Viaax = 17.5 kv

Thus breakdown in the air will occur at a lower voltage than it would in

the absence of the glass. Once breakdown occurred, the entire voltage

would appear across the glass, but since the field strength would be only
17.5/0.005 = 35,000 volts per meter, the
glass would not break down.

3.5. Capacitance

Consider two perfectly conducting

bodies of arbitrary shape, as illustrated in

Fig. 3.11, and let a quantity of charge be

transferred from one to the other, such

as would be accomplished by connecting

i} a battery between the two. The charge

v on one is @ and on the other — Q. Ac-

Fic. 3.11. Two charged bodies cording to the uniqueness theorem, the
forming a capacitor. difference in potential between the bodies
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is uniquely determined by the charge @ and the geometry of the conduct-
ing bodies. In view of the linear dependence of potential on charge, as
revealed for example in (2.32), the difference of potential between the
bodies, V, can be expressed as

1
V= I8} Q (3.35)
The parameter C depends only on the'geometry and for a given geometry

is a constant. It is called the capacitance and is measured in units of
farads or coulombs per volt.

Air gap /

Guard ring A

i/

F1c. 3.12. A parallel-plate capacitor with guard ring.

The parallel-plate capacitor shown in Fig. 3.12 presents a simple
geometry for illustrating the calculation of capacitance. If the smallest
linear dimension of the plates is large compared with the spacing, then
the field may be assumed to be uniform and the fringing at the edges
neglected. Alternatively, a guard ring may be used as suggested in
Fig. 3.12. 1In this case the relationship expressed by (3.33) applies, that
is, E = V/d, where V is an assumed potentidal difference between the
plates. For an air dielectric, D = ¢FE, and p, = D; consequently, the
total charge @ on each plate, of area 4, is

Q=pd =274 (3.36)
and C = -g - “TA (3.37)

Example 3.2. Capacitance between Concentric Spheres. It is
required to find the capacitance between the two conducting concentric
spherical shells illustrated in Fig. 3.13. If we assume a charge +@ on
the inner sphere and — @ on the outer, then the electric field between the
two shells is

E, =@ (3.38)

4rrear?
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This result can be verified by applying Gauss’ flux theorem to the con-
centric spherical surface of radius r, where @ < r < b. The potential
difference between the spheres, V, is given by

b Q /1 1
V= ﬁ E.dr = Er;(_) <5 - l-)) (339)
Consequently, the capacitance between the two spheres is
_Q ab
C = —V = 4:1I'€o m (340)

If b — o, the capacitance of an isolated sphere results; that is, we have a
uniformly charged sphere with lines of flux extending radially outward to

oY, ©

Earth

Fic. 3.13. A spherical capacitor. Fre. 3.14. A general arrangement of
conductors.

terminate at “infinity.” Such a condition is essentially obtained in the
case of a small charged sphere in a relatively large laboratory room, where
the flux tends to terminate on the distant walls. From (3.40) the capaci-
tance of the isolated sphere is seen to be

C = 4rmea (3.41)

Multicapacitor System

The concept of capacitance can be extended to a region containing
more than two conducting bodies. In Fig. 3.14 we show N arbitrary
conducting bodies and the earth. The latter may or may not figure in a
practical problem. We can simply consider it as just another conducting
body, chosen as the reference, in the following analysis.

" On the basis of the uniqueness theorem in Sec. 2.9, specification of the
charge on each body plus specification that the earth be a zero reference
potential uniquely determines the potential everywhere. Furthermore,
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because of the linear dependence of potential on charge, the following
equations result:

& = puqs + Pz + - -+ Pwvgw
Dy = pauqs + Paags + -+ Pavgy (3.42)
Oy = prviq1 + preqe + ¢ ¢ 0+ Davgy

In the above set of equations, the pi/'s are constants, called the coeffi-
cients of potential, and they depend only on the geometry. We note
that the potential on each body is properly a function of the total charge
on each and that the relationship is linear.

The N equations can be solved to give the charges as functions of the
potentials. The result will be in the form

@1 = cu®y + c1®2+ - - - 4 cwwdy
poemtantoien gy
gy = cn1®1 + eve®a + - - - 4 eanv®w
Since the c;;’s depend only on the p;’s of (3.42), they also depend only on
the geometry. The terms ciy, ca2, . . . , cyn are called coefficients of

capacitance, while the cis, c13, ete., are coefficients of induction. The
coefficient ¢; can be obtained by evaluating the ratio ¢;/®; of the ¢th
body, with all others grounded. Since a positive charge on 7 produces a
positive potential on 7, the ¢;i’s are all positive. The ¢;; can be measured
by grounding all but the sth body and evaluating the ratio ¢;/®;. Note
that if ¢; is positive, then ®; is positive, but the charge induced on j (g; for
J # ©) will be negative. Accordingly, c;; (+ # j) is negative.

The coefficients of induction must satisfy a condition of reciprocity;
that is, ¢;; = ¢;;. We can show this in the following way. Let all bodies
be grounded but the first and second, which we take to be initially
uncharged. If we begin charging body 1 to a final value of ¢; by adding
very small increments of charge, then at some intermediate point the
accumulated charge is ¢ and the potential [from (3.42)] is &, = pug.
The energy required to add a charge dq is then, by definition of potential,

dW = D119 dq
Accordingly, the total energy required to place a charge of gy on 1 is
Q1 2
W= [ pugdy = P (3.44)

If we proceed now to charge body 2 until g, is accumulated, then, cor-
responding to the presence of a charge ¢ (0 < ¢ < ¢2), the potential is
®; = P21 + P22q and the work done in adding an increment of charge dg
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to body 2 is
= (png1 + P229) dg

Altogether, the following amount of work is required to charge body 2
with ¢, coulombs:

q2 2
W = [) (p21q1 + p22q) dg = Pugqigz + Bz_zzq_z (3.45)
The total energy required to put ¢; on 1 and g, on 2 is
2 2
Wr = pugqigs + ?1—;(1‘1‘ + pzz% (3.46)

If, however, we had first charged body 2 with ¢, and then body 1 with
q1, the total energy required is expressed by [we have only to interchange
the subscripts 1 and 2 in (3.46)]

2 2
Wr = pi2geqi + 'mi2q2— + &%}l (3.47)

Since the final result is the same, the energies expressed by (3.46) and
(3.47) are equal; consequently,

P12z = P (3.48)

The above proof can be repeated between any two bodies, say the ith
and jth, so that

Pij = Pii (3.49)
From purely algebraic considerations it then follows that
i = i (3.50)

Equation (3.43) can now be rewritten in a way that is more informa-
tive. We let C;; = —c,j, noting that Ci; will be positive (¢ # j), and let

n = Czl + ci2 + cis + - i Y (351)

Then by adding and subtracting additional terms that will be clear upon
examination, we can write in place of (3.43) the following:

Q1 = Cu®; + Cra(®1 — ®2) + C13(®1 — &3) + - - - + Cin(P1 — @)
C2l(¢’2 - ‘I’l) + 022‘1’2 + Czs(‘l’z - <I>3) + + CzN(Qz - ‘I’N)

gy = Cy1(®n — &) + (YNz(‘I’N — &) + CN?.(‘I’N - ‘I’s) + - + C'NM‘PN
(3.52)

Of the total charge ¢; on body 1, a portion Cy2(®; — ®;) depends on the
difference of potential with body 2. Correspondingly, on body 2, we
note that since Cy2 = Cs, an equal but opposite charge is bound. But
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of lines N,; terminates on an amount of charge —qs = —@iN12/N; on
body 2, while Ni; corresponds to a total charge

- 1N11
-1 = QTI_ = —(Q1— qo)

residing on the ground plane. If the total charge on body 2 is @., then
since Ny, lines of flux from body 1 terminate in a charge —q; on body 2,
there must be N(Q. + ¢:) = Ny, lines of flux leaving body 2 and termi-
nating on the ground plane. If body 1 is at a potential ®; and body 2 is
at a potential ®,, then the capacitances C;; are given by

N g Na
N&, 2T N@ — 3y

N
Cu = Cy = r;;

and are just proportional to the fraction of the number of lines of flux
leaving the body and terminating on adjacent bodies, divided by the

potential difference. These results follow from (3.52) as follows. We have
QL= Cud + Cro(®1 — ®3) = 1 + ¢

and thU.S Q@ = Cu‘bl = Nu/N, q2 = C]z(q)g ol q’z) = Nn/N. Hence,
Ciu = N1/N®,, etc., as stated above.

Electrostatic Shielding

The electric field within a closed conducting surface must be zero if no
charge is placed within. For suppose that a field were present; then just
inside the conducting surface, which is an equipotential, we could define
another equipotential surface but at a different potential. Then over
this surface E is everywhere outward (or inward). However, by Gauss’
law, this requires the presence of an interior charge. But this contradicts
the original assumption.

This characteristic leads to the use of hollow shells for electrostatic
screening. If a body is placed within, it is uninfluenced by external
fields. If the internal body is charged, the interior electric field is inde-
pendent of external effects. The potential difference to the shell is also
independent of external sources, but the potential with respect to ground
depends on the potential of the shell with respect to ground. This
variability is eliminated by grounding the shell.

Some of these remarks are more rigorously formulated through the use
of (3.52). For example, based on Fig. 3.17 we have the following:

@1 = Cu®y + Cia®y + C13(®1 — )
g2 = —‘012‘15’1 — Cza@s (353)
gz = C1a(®3 — &1) + C23®; + C1®s

since ®; = 0 because body 2 is grounded. If we choose g, = 0, then the
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field inside body 2 is zero since there is no charge contained within.
Therefore the potential &, must equal ®,, that is, equal zero. From the
first equation in the set (3.53), we see

this requires that Cy; = 0. Thusin »
place of (3.53), we have
g1 = (Cu + C1)®1
q2 = —Cuq’l - 023<IJ3 (354)
(Cas + Cis)s

q3 = Veaeee 777 o4 ” 7
. . Fic. 3.17. Electrostatic shielding of
Since body 2 is grounded, we may bodies 1 and 3 by a grounded closed con-

consider it “as part of the ground ducting shell 2.

plane, and then Cy; 4 Cyp is the

capacitance of body 1 with respect to ground while Cy3 + C33is the capac-
itance of body 3 with respect to ground. Since the potentials of body 1
and 3 depend only on their own charges, there is no interaction between
them. Consequently, body 2 behaves as an electrostatic shield.

3.6. Electrostatic Energy
The absolute potential due to a single charge ¢ has been found to be

_ 9
?= Lok
where R is the distance between the field point and the position of g.
Consequently, the energy required to bring a charge ¢’ from infinity to a

distance R from q is
’

=
W, = el (3.55)

This energy is what is meant by the potential energy of the charges and
is a function of their final position only.

%, $, Let us evaluate the energy required to

v &, ¢ assemble an arbitrary distribution of

7 &, charges of arbitrary magnitudes, such as

. illustrated in Fig. 3.18. We can think

of bringing each charge in from infinity

in succession and evaluating the energy

required. Thus no energy is required to

introduce the first charge. The second

charge brought in requires an energy as

given by (3.55). For the third charge

® 8, we must consider the net energy arising

Fic. 3.18. An arbitrary agsembly ~170m interaction with the first and second
of charges. charges, and so on.

% B, % &
[ e ——
By
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The total energy to establish N charges can be formulated in a rela-
tively simple way. Consider that the kth charge is the last one to be
brought in from infinity. Since all others are present, then by super-
position the energy required would be

N
1\ g
W = g z B (3.56)
1=1

where Ry is the distance from the ith to kth charge, and the primed sum-
mation symbolizes that ¢ = k is not included. The total energy required
to assemble all N charges would not be correctly given if (3.56) were
summed from k£ = 1 to k = N since that equation is valid only for the
last charge brought in; that is, no matter what order the charges are
assembled in, the partial energy associated with any two charges, say,
kth and jth, equals giq;/4meoR;x, and this term occurs only once during the
assembly process. But if (3.56) is summed over k, each interaction
occurs twice; for example, a partial energy contribution due to charges
¢s and g5 is included not only when k = 3, ¢ = 5, but also when k = 5,
1 = 3. This means that a summation of (3.56) over k yields exactly
twice the desired value of energy. Then the energy W, to assemble the
charges is simply

N XN

_ 1 ! qrQi
We =5 z 2 ywoy (3.57)

k=1 i=1

If ®, designates the potential at the kth charge due to all other charges,
ie.,
N

1\
o, = Tres R (3.58)
1=1
then (3.57) can be written as
N
W, = % z G5 (3.59)
k=1

We may inquire where the energy associated with a charge distribution
is stored. An analogous question can be raised in mechanics if we are
given two masses that are attached to the opposite ends of a compressed
spring. The seat of the stored energy may be considered to be in the
masses. We say that initially they lie in a region of higher potential
energy; after expansion of the spring, potential energy is converted into
kinetic energy. But one could also consider that the stored energy
reposed in the stressed state of the spring. The first viewpoint coincides
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with the expression (3.57), where the stored energy is linked to the
charges and their positions. This view is the counterpart of the action-
at-a-distance concept, in that it ascribes physical reality to the charges
and their spatial distribution alone. On the other hand, the field concept
should be capable of expressing the stored energy without recourse to a
description of the charges causing the field, if the concept is to be fully
complete. The energy would then be described in terms of the “elastic”
quality of the electric field, in similarity with the viewpoint that the
spring stores the energy in the mechanical system considered. It turns
out that the energy associated with a charge distribution can be expressed
in terms of the fields alone, and we now proceed to show this.

For a continuous charge distribution, (3.59) can be generalized to read

W.=14% /V p® dV (3.60)

where ® is now a continuous function of position and is the potential dis-
tribution due to all charges. It is no longer necessary to exclude the con-
tribution due to p AV at the point where & is evaluated, since in the limit
AV — 0 the contribution is zero anyway. Since VD = p, we have

W,=52"/V(V.E)q>dv

Now V- (¢E) = V- E + E - V®, and hence

W,=‘—2°/v-(¢E)dV—i°/vq>-EdV
v 2 Jy

Using the divergence (Gauss’) theorem and noting that E = —V®,

W,=e—2°9§S<I>E'dS+e—2°/VE2dV (3.61)

If the original volume extends indefinitely, as it should to include all

possible charge, then the surface S in (3.61) extends to infinity. Con-

sidering S as the surface of a sphere of radius R, where B — «, we note

that ®«1/R, E«1/R? so that even though S« R?, the integral is of
order 1/R and vanishes in the limit B — «. We are then left with

W, =2 / E*dV (3.62)
2 Jy
We have consequently found a way of expressing the stored energy of a
charge distribution in terms of the field alone.
The previous analysis, which applies to charges in free space, can be
extended to regions involving dielectrics. In this derivation we shall
again consider the true charges as continucusly distributed. If an
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amount of charge Ap is introduced into an existing field &, then the energy
is increased by an amount AW,, where

AW, = [V & ApdV
This can also be written as
AW, = /V SA(V-D) dV = [V &(V - AD) dV (3.63)

Using the identity V+®AD = &V . AD + AD - V& and the divergence
theorem gives

AW, =/V[V~(<I>AD) — AD - V3] 4V = 958<1>AD-ds—-[VAD-V<I>dV

The surface integral term goes out for the same reasons as given in dis-
cussing (3.61); thus

AW,=/VAD-EdV

To obtain the total energy in the field, the above equation must be
integrated. This involves the unknown functional relationship between
D and E. For the case where D = ¢E and ¢ is a constant, we have

W. = /AW // ¢ AEdV = //edEz

or w. —-—/E’dV }//E Dadv (3.64)

The above expression reduces to the earlier one if free-space conditions
are supposed.

In (3.64), as in (3.62), we have shown that the potential energy of a
charge distribution can be calculated from the field produced by the
charges. In the expressions themselves, the quantity U, = E - D/2 has
the dimensions of energy density. It is often referred to as if it were
truly the energy density of the field. However, just as it was impossible
to localize the energy as being associated with the charge or the field, it is
impossible to relate the total energy of the field with any particular dis-

- tribution of component energy. Thus E - D/2 is an energy density only
to the extent that its volume integral over all space correctly evaluates
the total potential energy.

Example 3.3. Energy Storage in a Capacitor. The parallel-plate
capacitor provides a simple example for the application of the results of
this section. Conditions are as illustrated in Fig. 3.19, where the plates
have an area 4 and spacing d. For simplicity, one plate may be chosen
to have a potential zero; the other is then at potential V. By an exten-
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sion of (3.60) we may write
W.=1 /S ®p, dS (3.65)

This is zero over the lower surface, while for the upper surface we have
W, = 14VQ. Since C = Q/V, this may also be expressed as

W, = LCV? (3.66)

From the method of derivation it is clear that (3.66) is valid for any two-
body capacitor.
We may also calculate this result from the fields. We note that

F1c. 3.19. A parallel-plate capacitor.

D = Q/A and is uniform within the capacitor and zero outside, neglect-
ing fringing. Hence,

- _ 1 (QV 4, Qd
W.,-%/VD-EdV—z—eo(2> 4d = 5= (3.67)

But C = ¢ A/d; hence W, = Q?/2C = CV?/2 as before.

This same result can also be obtained in a more familiar way. The
total charge @ on the upper plate is considered as having been transferred
from the lower plate in differential increments. At an intermediate stage
the charge is g, and the potential is therefore & = ¢/C. The energy
required to add a charge dq is simply ® dg = ¢ dg/C. Then the work to
build up to a charge @ is

1 Q
W., = 6 ﬁ q dq = '2—0

thus confirming (3.66) once again.

Energy in a Multicapacitor System

The method used to derive (3.59) is also valid for a system of N con-
ducting bodies as illustrated in Fig. 3.14. The energy stored in a system
of N charged conducting bodies can be determined from (3.65). We note
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that over each separate conductor ® is a constant, and hence the surface
integral, if expressed as the sum of surface integrals over each body
separately, becomes

W.=1% [ p@dS = 350 [ p.dS + 358, [ p.dS
+o 38 [ adSH - (369)

But each integral is just the total charge on each conducting surface.
Thus, if we let

Q= [ pedS (3.69)
we have W, =14 Z ®,Q; (3.70)
i

If (3.43) is used to express Q; in terms of the potentials ®;, we can rewrite
(3.70) as
N N

W.=14 E z i P ®; \ (3.71)

1=1j =1

This expression gives the energy stored in a system of N conducting
bodies in terms of the potentials of the bodies.

For a two-body problem the capacitance C between the two bodies
may be defined in terms of the stored energy in the electric field surround-
ing the bodies. From (3.66) we have

2w,

¢ =5 (3.72)

This alternative definition of capacitance C is often easier to evaluate
than some of the other formulations.

3.7. Electrostatic Forces

Figure 3.20 shows a parallel-plate capacitor in a free-space medium
with a total charge + @ on one plate and — @ on the other. Because of
the presence of charge of opposite
sign, one would expect that a force of
attraction exists between the plates.
Such a force does, of course, exist;
our present purpose is to calculate
its magnitude. One of the simplest
ways of doing this makes use of the
F1e. 3.20. Virtual displacement of one principle of virtual work. ~ Asapplied
plate in a parallel-plate capacitor. to this problem one of the capacitor




Sec. 3.7] ELECTROSTATIC FIELDS IN MATERIAL BODIES 107

plates, say the upper one, is visualized as being displaced by an amount
Az away from the lower plate (x is the plate separation and is positive
from lower to upper plate, as in Fig. 3.20). As a consequence, work
must be performed, and the amount is simply —F, Az, where F, is the
electrostatic force that must be overcome by the external agent. From
conservation of energy, this mechanical work must reappear as energy
elsewhere, and in this case the stored energy of the field is the only other
energy term that could possibly be involved. It must have increased,
and the amount of increase is readily established from (3.67) to be

—_Qi. = S0
AW,—260AAJ:—2EAA:£

where A is the area of the plates, and fringing of the field near the edges
of the plates is neglected. Consequently,

—F.Av = S A Av (3.73a)
or in vector form,
. 2
% - % a, (3.73b)

A generalization of this technique can be used to determine the force
acting on any conducting body in the presence of an arbitrary distribution
of charged conductors in free space. The z component of electrostatic
force F; - a, on the ¢th body can be found by giving the 7th body a virtual
displacement Ar.a. and equating the work done, (—F; + a,) Az,, to the net
increase in the algebraic sum of all other energy changes that are pro-
duced. It is necessary that all energy terms that might be affected by
the virtual displacement be included in the energy balance. In general,
this includes a change in stored energy that results from the new position
of the displaced body. Furthermore, if the potential between two or more
bodies is held constant by the presence of a battery, then charge may be
transferred by the battery in the virtual process, hence requiring the
inclusion of a battery energy term also. If AW represents the work done
by the batteries, then

—(F). Az + AW = AW, (3.74)
AW AW,
or (F,'), = —A—x; - Az; (3.75)

The remaining force components are found by replacing z by y and z in
turn.

Certain constraints are evident in a system of conducting charged
bodies during the processes of displacing one or several of them. Those
charged bodies that are isolated are constrained by the requirement that
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the total charge be kept constant in the process; their potential may
vary, however. Those bodies linked together by batteries will be con-
strained to maintain a constant relative potential; in this case the total
charge on each body may change. If one or several bodies are actually
moved through a finite distance and it is desired to calculate the total
work done on the body by setting up an energy balance, then obviously
the true constraints of the system must be known and utilized. How-
ever, if it is only required that the force, for a particular configuration, be
evaluated, then the virtual work process is conceptual only. Conse-
quently, we may set up hypothetical constraints in the knowledge that so
long as the resulting energy balance is correctly described, the correct
value of force will be determined. The force that exists under a given set
of conditions has a definite value, and this value cannot be affected by
the constraints that are assumed under a purely hypothetical displace-
ment of one of the bodies. However, if a constraint is assumed, then the
correct consequences of that constraint must be included in the energy
calculations. We consider now two cases, that of constant charge and
that of constant potential.

Constant Charge

Since the constraint requires that each conducting body be isolated,
the poss_ibility that energy be supplied by a battery source does not
occur. In the limit Az; — 0, (3.75) may be written as

oW,
ox;

Fe = — (3.76)

constant charge

where z; is the z variable at the 7th body. Equation (3.70) can be used
to evaluate W,. When this equation is substituted into (3.76) and the
fact that Q; is constant is made use of, we find that

Fy. = —14 2 Qi%‘—i{ 377)

Constant Potential

In order to maintain each body at a constant potential when one body
suffers a virtual displacement, it may be necessary to transfer charge to
any or all of the conducting bodies in the system. This is performed by a
battery, and the work involved must be included in an energy balance.
If dQ; is added to the jth body as a consequence of the virtual displace-
ment, the energy supplied is ®; dQ;, and the total of such energy is

dW = Z ®; dQ; (3.78)
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Combining this equation with (3.70) and (3.75), we have in the limit

_ 99 _ 1 99,
(Fi)z - ZCPJ 6:1:; 2 z(p;' 62:;

J J

-1 q,.aQ"—%

—2 - ’ax,-_ 3.2,'
J

Note that the second summation makes use of the constant-potential con-
straint. Equation (3.79) expresses the very interesting fact that in a
virtual displacement under a constant-potential constraint the work done
by the field is equal to the increase in stored energy. The energy balance
is explained by the fact that the battery supplies an energy equal to the
sum of the mechanical and field terms.

The above results are applicable to the evaluation of torques also. It
is only necessary to interpret F; as a torque and dz; as a small rotation d#;.

Example 3.4. Force on a Capacitor Plate. The force between plates
‘of a parallel-plate capacitor is given by (3.73). The method used to
obtain this result involved the principle of virtual work together with a
constraint of constant charge. Note that the result can be obtained
immediately from (3.77). As pointed out above, the constraint can also
be chosen as that of constant potential. Such a constraint can be
interpreted physically as being due to the connection of a battery across
the capacitor. Let us calculate the force under such assumed conditions.
For our present purpose Fig. 3.19 correctly describes the problem. We
assume that the upper plate is pushed away from the lower plate by an
amount dz, where z is the plate separation. Since W, = 14CV?,

3.79)

constant potential

W, = 145V dC = }/Vzd(%) =~y @
1 y:C
=3 q &

Since V remains constant, @ must vary in view of the change in C. Thus

Q=ov
WQ=vdc=~"Ycd

The change in @ is accomplished by the transfer of the charge dQ by the
battery. The battery therefore does an amount of work V dQ. This
plus the work done by an external force acting against the field, —F, dz,
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must equal the increase in stored energy. Consequently,
—-V:C 17V2C

d dx—F,dx= —éde
_ 1V wAR:
or z = 27 d = P

The result confirms that given by (3.73). Note that it is obtained
almost at once by using (3.79).

The above results are easily generalized to the case of an arbitrary
two-body capacitor with capacitance C. For an arbitrary virtual dis-
placement dr, the electrostatic force acting in the direction of dr is readily
found if the rate of change dC/dr can be found. For a constant-charge
constraint we write W, = Q2/2C, and hence from (3.76),

oW, QreCt _ Q*aC
"= T T T % ar T aciar (3.80)
For a constant-potential constraint we may write W, = CV?/2 in place

of Q%/2C, and since V is constant, we have, from (3.79),

oW, Vo€ _ Q2 aC

b= =% “aciar

(3.81)

since V = Q/C. The force F, is, of course, the same in both cases, since
for a given charge on the capacitor a unique field exists around the con-
ductors, and hence the force acting on the conductors is also unique.
The existence of the force does not depend on the virtual displacement or
constraints that are assumed. The virtual displacement is conceptual
and, together with assumed constraints and an energy balance, permits
the force exerted by the field to be evaluated. Any change in the
assumed constraints cannot change the force acting; it only changes the
details of the energy-balance equation.

Forces in the Presence of Dielectrics

In the previous paragraphs we showed how the force on a charged body
in an electrostatic field could be found. The equations that were derived
assumed that the conducting bodies lie in a free-space medium. The
results obtained, however, would still apply in the presence of dielectrics;
that is, the process whereby a virtual displacement is given a particular
body, and the consequent mechanical work equated to the increase in
field energy less the work performed by the batteries, still applies. How-
ever, the change in energy stored in the field must now include energy
storage in the dielectrics.

If a dielectric body which lies in an electric field is given a virtual dis-
" placement, then the energy stored in the field may be expected to change



Skc. 3.7] ELECTROSTATIC FIELDS IN MATERIAL BODIES 111

in view of its dependence on the geometry. As a consequence it follows
that dielectric bodies in electrostatic fields will. experience a net force.
This force may be calculated from the principle of virtual work, just as in
the case for conducting bodies. The following example illustrates this
technique.

Example 3.6. Force on a Dielectric Slab. A parallel-plate capacitor
of width W, separation d, and length L is partially filled with a uniform

_>Fx

€ € l
T

; |
w ]

Fi1c. 3.21. Force on a dielectric slab in a parallel-plate capacitor.

dielectric slab, of permittivity e, as illustrated in Fig. 3.21. The force
acting on the dielectric slab is desired.
With the geometry as given, the total stored energy is calculated to be

1A% Vy?
W, = Ygeo (3) (W — 2)Ld + Jge (3) zLd + Wi

where W, is a correction term that takes account of the fringing of the
field at the sides. Let us postulate a virtual displacement Az of the
dielectric body in the positive z direction. We shall arbitrarily consider
this to occur under the condition of constant potential. The work done
by the field, F, Az, equals the increase in stored energy. We have

9 2
F.Az = AW, = %e(g> Ld Ax — Y4ep (g) Ld Ax + %Az

= 14E%(e — «)Ld Ax (3.82)

since the correction term W does not change if the ends of the dielectric
slab are not too close to the plate edges, i.e., if the fringing field remains
constant. The direction of the force is such as to draw the dielectric
slab farther into the air gap of the capacitor since ¢ > ¢ always. The
pressure P,, in the z direction, is

P, = 5—; = 15(c — e)E? (3.83)

and is the force per unit area exerted by the field on the plane end of the
slab.
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8.8. Electrostatic Forces (Maxwell Stress Tensor)

The total force acting on a volume distribution of charge p, which lies in an external
electric field E, is given by

= [rav (3.84)
where the volume density of force is
F, = pE (3.85)

As expressed by (3.84) and (3.85), the point of view that the force arises from an action
at a distance is still manifest, even though the sources of the E field do not enter the
calculation explicitly. The formulation is actually hybrid since it involves both fields
and charge. According to the Faraday-Maxwell field theory, it should be possible to
evaluate forces completely in terms of the field alone; that is, if the field is the means
whereby forces are transmitted, one should be able to determine these forces by con-
sidering only the field. One can think of the transmission of forces via the field in the
same way as one views that transmitted by a stretched rubber band. Indeed, one
may view the flux lines as being elastic, the force action being a consequence of their
state of stress. This implies that if a charge distribution in an external field is sur-
rounded by an arbitrary surface area, then the total force acting on the charges con-
“tained must, in a sense, cross this area. But then it should be possible to calculate the
total force by integrating over the arbitrary surface a “stress function’” that depends,
at each point, only on the field at that point and the direction of the surfacc area.
Put mathematically, it suggests the existence of a force T dS which acts on an ele-
ment of an arbitrary closed surface that contains charge and which satisfies the
relation

/ F.dV = f Tds (3.86)
14 S

The existence of a function T was asserted by Maxwell and forms an important part
of the field concept.

We proceed now to show that the surface force T does exist and to derive an expres-
sion for it. This will require some vector manipulation so that the volume integral
of (3.86) may be transformed into surface integrals. We begin by substituting for
F, the value given in (3.85) and note that vV + D = p; thus

f F,dV =[ oE dV =f Ev-DdV
vV 14 Vv
If E is now expanded into rectangular components, we obtain
]VF,dV - a,fVE,v-DdV +a, /VE,V-DdV +a,fVE.V'DdV
Using vector identity (1.118), each term may he written as
fVF,dV - a,jVV-E,DdV +a,,/VV-E,,DdV ¥ a,fVV-E.DdV
- a,[VD-VE,dV — 8 fVD-VE, v - a,/VD-VE.dV 3.87)

The first three right-hand terms of (3.87) can be integrated by Gauss’ theorem, and
then summed, whereupon the sum becomes equal to FE(n - D) dS. Concerning the
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remaining three terms, let us consider the coefficient of a, in some detail. Expanding
in rectangular coordinates we obtain

aEz aEz z
a,/VD VE, dV = / (D, +0,%% + .22 az)dV

But since VX E =0, it follows that 0E./dy = 0E,/dr and OE./dz = 9E./dz.

Accordingly,
a,/VD-vE,dV f (D +D,,"E"+D,"E)dv
60

=g [ a5 8 (B + ES + EX) dV (3.88)

A similar expression is obtained for the a, coefficient and the-a, coefficient, except
that 8/9z is replaced by d/dy and 3/dz, respectively. Equation (3.87) may now be
written as

/ F,dV = 95 Em-:-D)dS — 3 VV(E’) av (3.89)

The volume integral on the right-hand side can be converted to a surface integral using
vector identity (1.127) (also see Prob. 3.10). As a result,

E’2
/V F.dV = 955 « [(n ‘BE -2 n] ds (3.90)
We can now identify (3.86) with (3.90), and therefore
E2
T = [(n ‘E)E — 7;1] 3.91)

Some idea of the vector relationships involved between T, E, and n can be obtained
from Fig. 3.22. An element of surface is illustrated, and this determines the direction
of n, of course. The field E is illustrated as making an arbitrary angle § withn. The
surface force T is described by (3.91). From (3.91) we see that T has a component
in the direction of n which is either a compression or tension force, while that in the
direction E involves a shearing force, in general. Furthermore, T must lie in the plane
determined by E and n. If the components of T in the direction normal (7,) and
tangential (T') to the surface are computed, we find

Th = ¢ (E’ cos? 0 — —-) (2 cos? g — 1)

= 4'25 cos 20 (3.92a)

T, = ¢E? cos 0sin § = —QE sin 26 (3.92b) 9

This clearly requires that T have a magnitude ¢E?/2 and
make an angle 26 with n, as illustrated in Fig. 3.22.

To summarize, the force exerted on a charged region can T
be computed by integrating the surface force T over any
bounding surface. At each surface element, E bisects the
angle between T and the surface normal. Where E and n  Tyg. 3.22. Relation be-
are in the same direction, the force is pure tension. For tweenn, E, and T at a
6 = 45°, the stress transmitted is pure shearing stress. As plane surface.
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0 increases further, the shearing stress diminishes until at 6 = 90° it is pure pres-
sure. The magnitude of T remains equal to € E?/2 and is independent of the angle
between E and na.

It is also possible to write

/STdS‘= /se" s (3.93)

in which case < has the properties of a tensor. Maxwell actually expressed his results
in this form; eonsequently < is referred to as the Maxwell stress tensor.

The result expressed by (3.91) has been derived only for forces involving charges in
free space. If dielectric bodies are also present, then the volumetric force is no longer

]

> 1

Fig. 3.23. Closed surface for evaluating Fic. 3.24. Evaluation of force between
force on a capacitor plate. two point charges.

given by the simple expression (3.85) at every point. It turns out, however, that if
the surface of integration lies completely in free space, then (3.90) correctly evaluates
the net force exerted on enclosed dielectric bodies in addition to that exerted on
enclosed true charge. This result is not surprising since we know that the external
behavior of a dielectric body can be interpreted in terms of an equivalent true charge
distribution (polarization charge).

The full meaning of the surface force T may be more apparent if we consider some
examples. First let us note how it could have been used to determine the force
between the charged parallel plates illustrated in Fig. 3.20. To find the force on the
upper plate, a rectangular parallelepiped may be envisioned surrounding that plate,
as shown in Fig. 3.23. Since E lies only between the plates, a nonzero value of E
appears only at the lower surface of the parallelepiped. In view of the uniformity
of E,

[yTas = =72 [ as = =9% 4a,

and the result of (3.73) is given at once.

In Fig. 3.24 we have two equal and opposite charges separated by a distance 2h.
The force exerted on the negative charge will be found by integrating T dS over ap
infinite plane surface (closed at infinity). The line joining —¢ and +q is bisected by
the surface and is perpendicular to it. The geometry is then precisely that in Fig.
2.18; consequently, the electric field over the plane is given by (2.66). Since E is
always normal to the surface and in the negative z direction, the force exerted on —gq
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is in the positive z direction. Its magnitude is given by
F=9 q_2_fb_)2/°°/2" rdr df
T 2 \4reo) Jo Jo (2133
S SN N
T \4reo) 4T F 0% o

qz
= Tre(@h)? (.99

We note that the final result correctly corresponds to Coulomb’s law of force.

3.9. Molecular Fields

In Sec. 3.1 some of the details of the polarization of dielectric materials were dis-
cussed. Basically, we noted that under the influence of an applied electric field the
molecules of a dielectric would become polar-
ized. Further, the dipole polarization was z
noted to be, in general, proportional to the
applied field for field strengths well below the N\,
saturation level. v *I'

In order to actually calculate the polariza- | | E
tion of a given material, it is necessary to r—_‘__T I °
<
|

ki
|
Y
|
"

know the polarizability of the material and the Lo
field. The latter must be the field that actu- P
ally exists at the molecule. For gases, this ! 1z
is to a good approximation the applied field, | 4
i.e., the field that exists in the absence of the pf ———be .
gas. Actually, the field at a particular mole- d y
cule is the superposition of the applied field

and that due to its neighboring polarized

molecules. But for a gas, the separation of x

the moleculfes is sufﬁcxently great so that the F1. 3.25. An infinite cubical array of
effect of adjacent dipoles on one another can 40

be neglected.

For a solid dielectric, dipole-dipole interaction must be considered. In general,
this may be fairly difficult to express analytically. We shall consider in some detail
a specific, and common, configuration to illustrate the principle. We shall assume
that the dielectric consists of a cubical array of atoms (or molecules) with spacing d
between each atom along the z, y, z axis, as in Fig. 3.25. The medium is assumed
infinite in extent, and a field E, is applied in the z direction. Under the influence of
the field E,, each atom becomes polarized with a dipole moment p. Since there are
N = 1/d* atoms per unit volume, the dipole moment per unit volume is p/d® = P.
The field acting to polarize the atom at the origin (or any other atom) is the sum of
the applied field E, plus an interaction field E;. The interaction field is the field pro-
duced by all the neighboring dipoles. The polarizing field E, may be written as

E, = E, + E; (3.95)

N
——

and hence the induced dipole moment in each atom is
p = «E, (3.96)

where o is the polarizability of the atom. When the material behaves linearly, p, E;,
and E, are all proportional to the applied field E,, and hence we may take E; propor-
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tional to p. Thus
E;=Cp 3.97)

where C is called the field interaction constant. Equation (3.96) now becomes
P = a(Eo) + Ei) = a.Ey + a.Cp

or P= (3.98)

During the course of the analysis it will be shown that the average total electric field E

in the dielectric is equal to the applied field E,. Hence the displacement flux density

D is given by
Na.E,

D=gE +P=¢gE +——F =¢ (3.99)

1 —alC

where N = d~3 is the number of dipoles per unit volume. Solving for the permit-

tivity e gives

Na,
1 —eaC

€e=¢ + (3.100)
a result known as the Clausius-Mossotti equation. Assuming that e, is known and
that the interaction constant C can be found, we can compute ¢ from (3.100). The
interaction constant C is a function of the lattice geometry only.

Evaluation of Interaction Constant

The interaction constant C may be found by evaluating the field at the origin as
produced by all the neighboring dipoles in the lattice illustrated in Fig. 3.25. From
symmetry considerations it is readily seen that this field has a z component only. The
scalar potential due to a dipole of moment p and located at (z,3',2') is

®(z,9,2) =4—1r_e; R? ~  4weR?

since 2z —2' = R cos 6, and R2 = (x — z')2 4+ (y — y')? + (z — 2’)2. The z com-
ponent of electric field is
g =-2_2-P [i _ M]
: 9z 47rey | R3 R®
P 26— —(z—-2)—-(@y—y)
= o 101
tre (G =27 T W —y) F ¢ - 2) @100

Now the dipoles are located at 2’ = nd, y’ = md, 2’ = sd (n,m,s =0, £1, £2, . . .,
but » = m = s = 0 excluded). Summing (3.101) over all the dipoles and placing
z =y =z = 0, we obtain the following expression for the interaction field at the

origin:
© 0
=P
E‘ 41r€o z 2
n

’
=—® Mm=—o §=—

~ 2(sd)? — (nd)? — (md)?

[(sd)? + (nd)? + (md)?]% (3.102)

where the prime means omission of the term n = m = s = 0, which corresponds to
the dipole at the origin.

The above series may be transformed into a rapidly converging series by use of the
Poisson summation formula, and the sum may then be evaluated. For our purpose
we shall approximate the sum by a triple integral. Let us introduce the variables
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z =mn,y =m, z =sand the differentials dz = dn, dy = dm, dz = ds. The integra-
tion extends from |z|, |yl, |z| equal to unity out to infinity. Since all quantities are
squared, we may integrate over one octant only and multiply the result by 8. We

now have
_ I
B w7 ) G e

Since the integrand was originally obtained by differentiating with respect to z, we
may integrate with respect to z at once to get

= mdaf A e ALY

/‘ / _ dzdy
= reod’ 1 @ty + 0%

With the substitution y = (22 + 1)} tan 6 and the limits sin~! (2 + z2)~% to =/2 on
6, the integration over y is readily performed (the integrand becomes simply cos 6 d6)
to give

_2p 1 1

P | [~ wr ot o

The first term gives
© dx _ -1 ©
/ L Txz tan™! z 1

In the second term replace z2 + 1 by u? to get

du _
VZuut — D%

The final value for E; is thus

—14 sec™! u? e:/é

= ™y _P_
- 'Jreod3 4 4) 3eod? (3.103)
From (3.97) we find that the interaction constant C is
c=F__1 N (3.104)

p 361;|d3 3—60

If the series (3.102) is summed, it is found that the interaction constant C is equal to
0.34/d%,, and hence we can conclude that the triple integral is a good approximation
to the triple sum.

If we use the above value of C in (3.100), we find that the permittivity is given by

Na,
c=a+t 1 — Nea./3e¢
e—¢ _ Na,
or T2 " 34 (3.105)

For a gas, ¢ is only slightly greater than ¢, so that (3.105) becomes

€ — € Na.

360 360
or €e=¢ + Na. (3.106)
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which, upon comparison with (3.100), is seen to be equivalent to neglecting the inter-
action field. By combining (3.104) and (3.95) we find that the polarizing field is
given by

E, = Eo + Cp = Eo + 3% 3.107)

As a final step we shall show that the average electric field in the dielectric is equal
to the applied field E,. To show this we must evaluate the average field produced by
all the dipoles. The average is to be taken over the volume of a unit cell. We have
already found a value for the interaction field, which is the field set up by all the
dipoles except one. If we add to this the average field set up by the individual dipole,
we shall obtain the average field produced by all the dipoles in the lattice. At this
point it should be noted that replacing the triple sum in (3.102) by a triple integral
is equivalent to determining an average value E: for the interaction field.

The z component of the field produced by a single dipole, say the dipole at the
origin, is given by (3.101) with 2/, ¢/, and 2’ equal to zero. The average value of this
field is E1q, where

a/2 fd/2 [d/2 222 — g2 — y
B 41reod3 / f f [CESTET Al (3.108)

In (3.108) the integration is taken over one octant of the unit cell, which has a volume
of d*/8. This is equivalent to averaging over the unit cell because of the symmetry
of the integrand. The above may be integrated in the same manner as the integral
for E; was performed. The reader may readily verify by carrying out the details
that the end result is simply

- __P
Eu=-355 (3.109)

This result is interesting in that it shows that the average field produced by a single
dipole in its own unit cell is the negative of the average field produced by all the
neighboring dipoles. Consequently, the average field produced by all the dipoles in
the lattice is (E4)av and vanishes since

= . = —p —_— ——— =
(Ed)av = E; + Elu 3€0d3 3€od3 0

This completes the proof that the average field in the dielectric is just equal to the
applied field E,.

The above analysis clearly shows that the effective field acting to polarize a given
molecule is not equal to E,, for this is the average field in the dielectric and includes
the contribution from the molecule itself. The field acting to polarize the molecule
is equal to E, minus the contribution to the total average field from the molecule
itself. This gives By — (—p/3eid®) = E, + p/3eod? for the polarizing field, a result
in agreement with (3.107).
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Chapter 3

3.1. (a) If an arbitrarily shaped dielectric of volume V is placed in an electric field,
a dielectric polarization P results which is also equivalent to a charge density —V - P
and a surface charge density P-n. Since the dielectric is electrically neutral, the
total induced charge must equal zero. Show this by making use of the divergence
theorem.

(b) Consider a specific example where the body is a rectangular parallelepiped
whose axis extends from z = —I/2 to z = I/2 and with a cross-sectional area A.
Given that P = (422 4+ B)a,, determine the volume and surface charge density and
show explicitly that the total charge is zero.

3.2. Consider a parallel-plate capacitor with sides a, b, and spacing d. The capaci-
tor is half-filled with dielectric (0 to a/2, 0 to b) of relative dielectric constant «. A
potential V exists between the plates. Calculate the charge density on the plates and
also the equivalent surface polarization charge on the dielectric surfaces. Neglect
fringing effects.
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8.3. A solid dielectric cylinder of length L and radius a is uniformly polarized with
polarization P, where P is directed axially. Determine the electric field along the
cylinder axis both within and outside the cylinder. )

8.4. For a field strength of 3 X 10°® volts per meter determine the relative displace-
ment and nucleus and electron cloud for He and Ne. Compare with the radius of
the atom.

3.6. An infinite dielectric slab of thickness ¢ is placed in a uniform external field E,.
The slab is inclined at an angle 6, to the field E,. Find the angle 6, such that the
electric lines of flux in the slab make an angle §; = »/4 with the sides of the slab, i.e.,
so that 8; = /4. The dielectric constant is x = 4. Find the density of surface
polarization charge on the two faces of the slab.

Fi1c. P 3.5

8.6. (a) Consider two coaxial cylinders of inner radius a and outer radius b, as illus-
trated. The space between cylinders is filled with a dielectric with permittivity
e = xeo. Find the capacitance per meter length of cylinders.

() For a given difference of potential between the inner and outer conductors
determine the magnitude of b/a that causes the greatest value of E to be a minimum
under the restriction that the radius b is fixed.

8.7. Consider two coaxial cylinders, the inner having a radius ¢ and the outer a
radius ¢c. The space a < r < b, where b < ¢, is filled with a dielectric with a dielectric
constant . Find the capacitance per unit length. Show that the capacitance C is
equal to the series capacitance of C; and C,, where C\ is given in Prob. 3.6 and C. is
the capacitance of an air-filled coaxial cylinder capacitor with inner radius b and outer
radius c.

Fia. P 3.7 Fia. P 3.8

. 8.8. Consider two coaxial cylinders with the intervening space 0 < 6 < 6, filled
with a dielectric with a dielectric constant <. Find the capacitance per unit length,
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and show that this capacitance is equal to the parallel combination of the capacitances
of the air-filled section and the dielectrie-filled section.

HinT: Note that the field E, is independent of 6 and depends only on the potential
difference between the cylinders.

8.9. A coaxial cable consists of a copper inner conductor of 0.5 centimeter radius,
a solid dielectric of permittivity 4.8 to a radius r,, and a layer of oil (k = 2.4) from r, to
a radius of 2.0 centimeters. The dielectric strength of the solid dielectric is Eq =
40 X 103 kilovolts per meter, while that for the oil is E, = 30 X 103 kilovolts per
meter. Find the value of r, and the value of potential that will result in maximum
stress in both media.

3.10. Show that

[ VE? dv =56 En dS
14 S

Hint: Consider / VV * (¥A) dv, where A is a constant vector and ¥ = E?, and

utilize the divergence theorem.
3.11. Prove that the following relationship exists between the polarization P and
equivalent volume and surface charge densities p, and p.p for an arbitrary volume V:

/VPdv - /Vpprdv +/Sp.,,r ds

In the above, r is the position vector from an arbitrary origin, and r = a,z + a,y +
a:2.
Hint: Note that /V zV-Pdy = [V V:Pzdv — /V P+ vz dv, and similarly for y
and z.

3.12. Consider an arbitrary distribution of point charges ¢;: ¢ =1,2, . .., n),
and let the potential at the ith charge due to all others be given by &;; that is,

j=n
= i
i 2 4regri;
i=1
7
where r;; is the separation of the ith and jth charge. Consider another system of

charges located at the same points but with magnitudes¢; ¢ = 1,2,3 . . . ,n) and
corresponding to which the potential at the sth point is ®;, where

i=n
ql
, f
P = !
4meorij
i=
7

Show that

n N
2 0:®, = 2 9i%;
i=1 i=1

This result is known as Green’s reciprocation theorem.
3.13. (a) Given N conducting bodies where under one set of conditions the charge
on the ith body is @; and for another it is Q;. Corresponding to each charge system
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the potential of the ith body is ®; and &,, respectively. Show that

N N
Y Q= ) Qi
i=1 i=1

Hint: Subdivide each body into infinitesimal elements, and apply Green’s recipro-
cation theorem developed in Prob. 3.12.

(b) Using the result in (a) and with Q; =1, Q; =0 (i # j), confirm the formula-
tion of (3.42). What physical significance can be attached to the coefficients of
potential?

3.14. A spherical charge distribution of radius R is uniform and has a charge
density p,. Calculate the self-energy from (3.60) and from (3.64).

3.15. A dielectric spherical shell has an inner radius r;, an outer radius r;, and a
permittivity e. What net energy is required to move it from infinity to a point where
it is concentric with a point charge Q7

3.16. A variable capacitor is constructed from two coaxial cylinders as illustrated.
The inner cylinder is solid and free to slide in an insulating bushing. Find the magni-
tude and direction of the force acting to displace the center cylinder when a potential

2 2a sul
¢ v

1 [~—Bushing

Fic. P 3.16

difference V is maintained between the cylinders. What is the magnitude of the force
when b = 2a = 1 centimeter and V = 1,000 volts?

Hint: Find the rate of change of the energy stored in the capacitor when [ is varied.

8.17. In Prob. 3.16 let the variable capacitor be charged so that the total charge on
the inner conductor is Q. The battery is now disconnected. What are the magni-
tude and direction of the force in this case?

3.18. The capacitance of an air capacitor changes linearly from 25 to 350 micro-
microfarads during a rotation from 0 to 180°. When set at 8 (0 < § < =), whatis the
electrostatic torque if a voltage of 400 volts is applied between the plates?

3.19. A homogeneous field E exists within an infinite dielectric medium of permit-
tivity e. Find E and D in a hollow cavity within the dielectric if the cavity shape is

(a) A long thin cylinder parallel to E.

(b) A thin flat plate whose broad dimension is perpendicular to E.

(c) A sphere.

3.20. The dielectric constant of hydrogen gas at 0°C and atmospheric pressure is
1.000264.

(a) Compute the polarizability of the hydrogen molecule.

(b) Assuming ideal-gas laws apply, compute the dielectric constant for a pressure of
15 atmospheres and —150°C. (Neglect interaction effects.)

3.21. A dielectric sphere of radius a is placed in a uniform electric field. Find the
resultant field inside and outside of the sphere.
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Hint: The scheme outlined for the conducting sphere given for Prob. 2.15 may be
utilized here. Continuity of ® and normal D across the boundary will serve to deter-
mine the coefficients. . )

3.22. Consider two conducting bodies with an initial charge Q,, difference of poten-
tial V, and capacitance C;. If the two bodies are displaced so that the new capaci-
tance is C,, compute the work done on the bodies by the field if

(a) V is kept constant (i.e., consider a battery connected between the two bodies).

(b) Q. is kept constant (bodies isolated, no battery).

In each case account for the change in energy stored in the field. Note that the
above process is not a virtual one, but involves finite displacements and finite-energy

interchange.
3.23. Consider N conducting bodies at potential &;, with total charge Q: on the
ithbody, 7 =1,2, ..., N. Prove that the charge distributes itself in such a way

that the energy stored in the electrostatic field is a minimum (Thomson’s theorem).

HinT: Let ® be the potential for the correct charge distribution and let A® be the
change in potential when the charge distribution is perturbed by a small amount on
each body, and consider the integral

W, = %"fV V(@ + A®)J2 dV
Show that
/V (VD) + (VA®) dV

vanishes since each body is an equipotential surface and the total charge is kept con-
stant. Thus W, is a minimum if the positive term

/V [V(a®)]2dV

is zero, i.e., if A® = 0.

3.24. A uniform line charge of strength ¢ coulombs per meter is placed a distance h
above the plane surface of a semi-infinite dielectric of permittivity e. Compute the
field everywhere in space.

Hinr: Confirm and utilize the following image technique. For field points in the
free-space region the source is ¢, plus a line charge (image) ¢, at the image point,
both taken as lying in an infinite free-space medium. For points within the dielec-
tric we have ¢, plus ¢;’ superposed, both taken as existing in an infinite medium of
permittivity e. The relation between ¢; and ¢;" can be found from the boundary con-
ditions at the interface.



