CHAPTER 2

ELECTROSTATICS

This chapter develops the basic properties of the electrostatic field in
vacuum. The law of Coulomb for the force between two point charges is
the experimental basis for the work of this chapter. The electric field is
defined as the force exerted on a unit positive charge and leads to its
establishment as a fundamental entity. From Coulomb’s law the elec-
tric field due to a point charge is readily evaluated. The principle of
superposition is next used to establish the law for the field produced by a
volume or surface distribution of charge. The total flux of the electro-
static field is then related to the charge by means of Gauss’ law.

From an investigation of the electrostatic field its nature is discovered,
which permits the field to be derived from the negative gradient of a
scalar potential function. The scalar potential is related to the work
done against the field in moving a unit charge to an arbitrary field point
from a given reference. The differential form of Gauss’ law is used to
show that the potential function is a solution of Poisson’s equation, the
charge density being the source function.

With the concept of a potential established, the treatment leads
naturally into a discussion of conductors, the behavior of the electric field
at conductor surfaces, and the constant potential nature of conducting
bodies. Several elementary boundary-value problems involving con-
ductors are solved by application of Gauss’ law and image techniques.

The last section introduces the electric dipole, the dipole potential,
and the dipole field. The field from a volume distribution of dipoles is
shown to be the same as that from an equivalent volume and surface
charge distribution. This sets the stage for the theory of the behavior of
insulating materials in electric fields, which is presented in Chap. 3.

2.1. Introduction to Electrostatics

The phenomenon that underlies the study of electrostatics was known
to man since very early times. Thales of Miletus is credited with first
observing that amber when rubbed attracted light objects to itself, a
discovery that dates back to 600 B.c. Subsequent experimenters found
that most substances when rubbed possessed this property to some
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40 ELECTROMAGNETIC FIELDS [CHaP. 2

extent. In particular, if a glass rod is rubbed with a silk cloth, both rod
and cloth will attract small bits of paper. We say that they are electrified
(a word derived from élektron, the Greek name for amber).

If an electrified glass rod is brought into contact with a gilded pith ball
suspended by a silk string, the ball becomes electrified. Substances, such
as the gold covering of the ball, which have the property of removing
electrification from electrified objects are called conductors. Other sub-
stances, such as the silk thread, which remove the electrification very
slowly are insulators. If two balls are electrified by the glass rod, they
will be found to repel each other. But if one is electrified by the rod and
the other by the silk cloth, they attract each other. A hypothesis to
explain this assumed the existence of two kinds of electricity. Arbi-
trarily, that on the glass rod is taken as positive and that on the silk
negative.

The connection between the static electricity noted above and electric
currents such as are caused to flow by means of a battery was established
by Faraday (1833) and Rowland (1876). They showed that electric cur-
rent was the flow of electric charge, of the same nature as the charges of
electrostatics. Developments in the field of atomic and nuclear physics
have deepened our knowledge concerning the nature of positive and
negative charged particles. We shall assume that the student is familiar
with at least a qualitative picture of atomic structure.

2.2. Coulomb’s Law

By means of a torsion balance which he developed, Coulomb, in 1785,
investigated the nature of the force between charged bodies. The
following conclusions were drawn from the results of his experiments as
they relate to the force between two charged bodies which are very small
compared with their separation, i.e., point charges:

1. The magnitude of the force is proportional to the product of the
charge magnitudes.

2. The magnitude of the force is inversely proportional to the square of
the distance between the charges.

3. The direction of the force is along the line connecting the charges.

4. The force is attractive if charges are unlike, repulsive if they are
alike.

5. The force depends on the medium in which the charges are placed.

Coulomb’s experiments have subsequently been repeated with much

/'greater precision; the inverse-square-law behavior is known to be true
'to at least 1 part in 10°. It should be noted that the nature of Coulomb’s
and subsequent experiments is such as to provide a basis for a macro-
scopic theory. The above conclusions can be expected to hold only so



Sec. 2.3] ELECTROSTATICS

long as the charged bodies are small compared with the distance separat-
ing them.

The information obtained by Coulomb can be formulated mathemat-
ically in what is known as Coulomb’s law. Using vector notation, we
have

k
Fip = :h(lz ar 2.1)

In this equation Fy; is the vector force acting on charge ¢; due to charge
q1. Its direction is governed by ag, a unit radius vector in the direction
from ¢; to g2 The symbols ¢; and ¢, specify both the magnitude and
sign of the charges involved. The parameter ¢ is a property of the
medium called the electric permittivity, R is the distance between the
charges, and k is a constant of proportionality.

2.3. Units

In order to measure physical quantities, a standard of reference, or
unit, must be defined so that the quantity can be expressed numerically.
Because we deal with many physically related quantities, we seek a self-
consistent system of units where every quantity can be defined in terms
of a minimum number of basic, independent units consistent with a need
for convenience and precision.f Many competing systems have been
employed in the past for use in the area of electric and magnetic fields.
A discussion of their development and conversion from one to another can
be found elsewhere.}

The system of units that has been almost universally adopted for use in
applied electromagnetic theory is the meter-kilogram-second (mks, for
short) system introduced by Giorgi in 1901. In this system length is
measured in meters, mass in kilograms, time in seconds. For electric and
magnetic quantities, a further basic unit must be defined, and this is
usually chosen to be the coulomb for unit of charge or ampere for unit of
current. Any electric or magnetic quantity can be expressed in terms of
these fundamental units. The mks system has the advantage over
systems used earlier in that primary electrical quantities are in the prac-
tical system; that is, potential is measured in volts, resistance in ohms,
power in watts, etc.

We may illustrate how the unit of force is derived from the fundamental
units by recalling that force equals mass times acceleration. Conse-
quently, the unit of force in the mks system is kilogram-meters per

t For a discussion of optimization of the fundamental units, see A. G. McNish, The
Basis of Our Measuring System, Proc. IRE, vol. 47, pp. 636-643, May, 1959.

1J. A. Stratton, ‘“Electromagnetic Theory,”” sec. 1.8, Appendix I, McGraw-Hill
Book Company, Inc., New York, 1941,
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second squared and is called a newton. We may write

1 kilogram-meter

1 newton = 2
second

(2.2)
The unit of energy is called the joule, and since it is given by the -

product of force times distance,
1 joule = 1 newton-meter 2.3)

It is possible to determine the units of ¢ by inspection of the force equa-
tion (2.1). We easily verify that

coulombs? _ coulombs?
newton-square meter  joule-meter

Units of e = (2.4)
We shall show in a later chapter that for a charged capacitor the energy in
joules can be expressed in terms of the charge in coulombs and capaci-
tance in farads as

14 coulombs?

Energy in joules = farad (2.5)
Consequently, (2.4) becomes
Units of ¢ = [2r2ds 2.6)
meter

The dimensionless constant & in (2.1) is chosen as either 1/4r or unity,
depending on whether a ‘“rational” or “irrational’” system of units is
desired. The choice that is usually made is the rational system, and such
a system will be used in this text. Thus the force equation may be
written in rationalized mks units as

Fp2 = 4115%2 agr (2.7)

The value of e depends on the medium. For the balance of this chapter

we assume the charges to lie in a free-space medium (vacuum). We

adopt the notation ¢, as the electric permittivity of free space. This has

been measured to be 8.854 X 10~12 farad per meter, or very closely

(1/367) X 10~° farad per meter. In (2.7) we may now remark that F, is
measured in newtons, ¢; and ¢ in coulombs, and R in meters.

2.4. Electric Field

The force on a charge ¢, due to a system of point charges qi, g2, g3, 88
illustrated in Fig. 2.1, can be found by successive application of Coulomb’s
law and the principle of superposition; that is, the force due to each charge
is found as if it alone were present; then the vector sum of these forces is
calculated to give the resultant force. A graphical solution is shown in
Fig. 2.1.
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Before giving the expression for the force caused by several charges we
digress briefly to explain the notation that will be adopted. In field
theory we must often consider simultaneously two sets of points, the
source point (z’,5’,2"), which specifies the location of the source, and the
field point (z,y,2), which specifies the point at which the field is measured.
The primes are used to clearly distinguish the source coordinates from
the unprimed field coordinates. We shall find this distinction to be very

Fi1a. 2.1. Graphical solution for force on a single charge gy due to other charges.

helpful on many occasions. We shall follow the convention outlined in
Sec. 1.17 and let r be a vector from the origin to the field point and let r’
be a vector from the same origin to the source point. The vector r — r’
is then the vector distance from the source point to the field point. For
brevity we denote the magnitude of r — r’ by the capital letter R and a
unit vector in the direction of r — 1’ by ag; thus

B=lr—v|=[@—a)+ @ —y)+ =)
r—r
=]

If we have several source points, we denote the vector distance from the
origin to the sth source point (z},y},2)) by r} and let R, = |[r — r}| and
ag, = (r —1)/|r — 1i|.

For the force acting on a charge ¢o at (r,y,2) due to point charges

g1, 9% -+ - ,qnat (x;.:y,hz,l)y ce e (x:ny:nz:;)) we can now write
i r—r; — Qo g:ar,
47reo z r=1Pr =11 ~ 4re z R:2 (2.8)

In applying Coulomb’s law, as in the above example, we have con-
ceptually implied that the charge ¢; acts through the intervening medium,
in some way, on charge qi. The formulation of Coulomb is thus an
“action-at-a-distance law.” In other words, ¢ acts through the inter-
vening space directly on charge go, causing the observable force, and
vice versa, of course.
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The same final result can be obtained on the basis of another principle,
known as the field concept. Here the view is taken that the charge g
sets up a field which pervades all space and in particular the point at
which go lies. In this view the force exerted by ¢; on ¢o is communicated
by means of this field. In other words, ¢; sets up a field; the field in turn
has the property of causing a force to be exerted on a charge in the field.
The force depends only on the strength of the field and not on the origin of
the field; that is, the field has an independent existence; consequently, it
does not even depend on whether a charge ¢, is present to detect it.

When a number of charges are present, each sets up a partial field and
the total field is obtained by superposition. The net force on g, is the
vector sum of the partial forces due to each component field or, equiva-
lently, is the force due to the total field. The symbol E is used to repre-
sent the electric field.

The electrostatic field E that fulfills the property discussed above must
consequently be defined by the force that is exerted on a unit charge in
the field. It is a vector quantity in the same direction as the force. As
we shall see, this definition is not quite satisfactory operationally, and so
we modify it to read

F
E = lim — 2.
A;_H.lo Aq ( 9)

The formulation of (2.9) arises from an awareness that in making a
measurement of E there is always the possibility that the measuring
process itself may seriously disturb the conditions existing prior to meas-
urement. The limiting process is introduced in (2.9) for the purpose of
ensuring that the introduction of the exploratory charge Aq into the field
will not perturb the value of that field, i.e., will not affect the sources of
that field. By letting Aq go to zero, the value calculated by (2.9) should
approach, as a limit, the field strength prior to measurement.

A fundamental difficulty arises in carrying out the limiting process
Aq — 0, because charge cannot be subdivided indefinitely. The smailest
unit of charge, an electron or positron, is 1.60 X 10~ coulomb. In
practice, so long as Aq is very small compared with the sources producing
the field, its introduction into the field may be presumed to have little
influence on the behavior of the sources. In this case the ratio of force
to charge Aq will satisfactorily evaluate E. The definition embodied in
(2.9) must thus be qualified by the afore-mentioned restriction.

Although the presence of an electrostatic field is revealed only if a force
is exerted on a test charge, the field concept postulates the existence of
the field anyway. In the study of electrostatics the field approach and
the action-at-a-distance concept are indistinguishable. With time-vary-
ing sources, one is forced to ascribe a physical reality to the field because
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of the finite velocity of propagation of the interaction. Consequently,
we shall emphasize the field concept under static conditions as well.

On the basis of the definition of E and by using Coulomb’s law, we can
calculate the electric field set up by a point charge ¢. In free space the
electric field at the point (x,y,2) caused by a point charge ¢ located at
(«'y',2') is given by
F q r—r1 Ag _ qar
Aq  dmer — ]2t — [ Aq  4meoR?

E(z,y,2) = (2.10)
For a series of point charges qi1, g2, . . . , qa, the total electric field is
found by superposing the field from each individual charge; thus

n

_ 1 ¢
E-pl ) 2.11)
i=1
where R? = (x — z))? + (y — y})? + (2 — 2))%. The sum indicated in
(2.11) must be performed vectorially. The simplest way to proceed is to
evaluate R; and ag, = (r — r})/R; from their defining relations and com-
bine the z, y, and z components for all values of the summation index 1.
When we encounter a large number of point charges in a finite volume,
it is convenient to describe the source in terms of a charge density p. By
conventional concepts we define the charge density as

p = lim 24 (2.12)

where Aq is the algebraic sum of the charge in the volume AV. The
result of the limiting process is the charge density at the point in question.
We have already noted that such a limiting process cannot be completely
carried out because the charge cannot be subdivided indefinitely. How-
ever, so long as AV is small enough so that further decrease in AV does
not substantially affect the value computed for p, yet Aq is large compared
with 1.60 X 10~ coulomb, there is no difficulty in defining p. We shall
assume that as a result of this process the charge density p can be repre-
sented by a continuous function of position. Clearly, the total charge
@ in a volume V is given by

Q = [V pdV (2.13)

The electric field set up by an arbitrary volume charge density can be
found by superposition since each element p dV behaves like a point
source. Consequently, (2.11) generalizes to

! ’ A
E(r,yz) = Il— /V @Y 2 o ay 2.14)

Teo R?
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where the integration is taken over the source coordinates (z’,y’,2). In
this equation R is the distance from the source point dV” to the field point
and ag is a unit vector in that direction. i

Similar remarks can be made concerning the mathematically conven-
ient concept of a surface charge density p, coulombs per square meter and
a line charge density p; coulombs per meter as is presented above for a
volume charge density. The calculation of electric field from a surface
charge distribution p,, for example, would be given by

=L |2
E = EOLRZ ag dS (215)

with R and ag defined as in (2.14).
Example 2.1. Field from an Infinite Charged Plane. Through appli-
cation of Coulomb’s law and the principle of superposition, we wish to
evaluate the field above a uniformly
" charged infinite plane surface. The
charge density is p, coulombs per
square meter. Let the point P be
an arbitrary field point at a fixed
distance h from the plane of charge.
We first consider the contribution to
the total field from an annular ring of
charge centered about the foot of the
perpendicular from P, as in Fig. 2.2.
This ring contributes to the field in
a direction normal to the plane (z
direction) only. This becomes clear
if we divide the ring into a sum of
pairs of charge elements on diamet-
] rically opposite sides of the ring, as
f;gﬁigézéhg;:éu;&ﬁ. of field from an 4 trated. The partial field from
each pair isin the z direction. Con-
sequently, the net contribution from the ring of area dS = 2xr dr is

_ pslwrdr
- 4:7l'€oR2

dE, 0s 0 (2.16)

In this equation we made use of the obvious fact that each element of the
ring is the same distance R from P and produces a partial field, making

the same angle § with the 2z axis. From Fig. 2.2 it is possible to verify
that r = Bsin @ = htan 6 and dr = hsec?8df. Thus

/2
E, = 2L sin 8do = -2”— (2.17)

€ Jo (]
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Written vectorially, with n a unit vector normal to the charge surface and
directed away from the surface,

Note that the magnitude of E is independent of the position of the point
P. The field is uniform everywhere above the plane. Below the plane
the field is also uniform but pointing in the negative 2z direction.

2.6. Gauss’ Flux Theorem

The electric field defined in (2.9) is an example of a vector field as dis-
cussed in Sec. 1.8. In particular, the field may be represented by means
of the flux concept. The total flux of E from a point source ¢ may be
readily calculated by integrating E - dS over a surface enclosing q.

Thus consider an element of surface dS as shown in Fig. 2.3 at a vector
distance ra, from a charge ¢, taken as
the origin-of a spherical coordinate
system. The flux through an ele-
ment of surface dS is

1
E.dS = m%a,-ds (2.19)
But the solid angle d@ subtended by
dS at ¢ is

a. - dS
2

and consequently,

.S = q‘i‘: (2.20)

Fic. 2.3. Illustration of Gauss’ law.

Let us integrate both sides of (2.20)
over any closed surface S containing g. In this case, since the total solid
angle is 4,

95 E-ds=2 2.21)

If the charge q lies outside the surface S, then the surface integral vanishes
since the total solid angle subtended at ¢ by the surface is zero. The
physical interpretation of this result is that flux lines originating from an
external charge ¢ and entering the surface S must also leave this surface.
If the enclosed volume contains a number of point charges g1, g2, - .« -,
gn, then (2.21) holds for the partial fields due to each charge separately.
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By superposition,

$ E.dS=zl‘=Q ' 2.22)
’ 8 €0 €0
1=1

where E is now the total field, and @ is the algebraic sum of all charges
contained in S. Equation (2.22) is a statement of Gauss’ flux theorem.
In words we say that the net outflow of flux of E through a closed surface

\ 4 r———r—-— T
i [ s
| |
| |
! ]
! !

Line charge

’ \ [—————- 1
R —
Fra. 2.4. Field from a line charge.

S equals 1/¢, times the total charge (i.e., the algebraic sum of the sources)
contained within S. Flux lines must therefore originate -on positive
charge and terminate on negative charge, the relative number of lines
depending on the source strength. This theorem is particularly useful in
simplifying the calculation of the electric field from symmetrical distribu-
tions of charge. We illustrate this point with the following examples.

Example 2.2. Field from an Infinite Line Charge. An infinite line
charge has a strength of p; coulombs per meter. It is desired to find the
electric field which it sets up. We note that because of symmetry, the
electric field must be a function of r only and, furthermore, can be in the
r direction only. Here r is the distance from the line charge to any field
point; i.e., it is the radial variable in cylindrical coordinates.

Let us surround the wire by a concentric cylindrical surface of axial
length % and radius r, as illustrated in Fig. 2.4. Application of Gauss’
flux theorem to this surface leads to

56E-dS=/E-ds+/E-ds=Q (2.23)
8 81 S2 €0

where S, is the end surfaces and S; the cylindrical surface. Since E has
no component normal to the end surfaces, there is no contribution from
that integral. Furthermore, because E is normal to the cylindrical sur-
face and uniform over the fixed radius, we can integrate (2.23), giving

2rrhE, = E I
€0

and hence E P (2.24)

T Omeor
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In the flux concept, lines of flow of E are directed radially outward.
Their divergent nature implies a continual reduction in the strength of
the field. Indeed, this is borne out by the 1/r variation in (2.24).

For contrast, let us calculate the field by direct application of Coulomb’s
law. Let the line charge lie along the z axis, and take the origin at the
foot of the perpendicular from the field point. Consider the field due to

Line charge

Fic. 2.5 Fi1a. 2.6. Field from a charged sphere.

two differential charge elements of magnitude p; dz, with one at x and the
other at —z. Using the geometry in Fig. 2.5, it is clear that the resultant
is in the radial direction and of magnitude

pdz

B = Trertfsmr 2 0 0
Hence E, =" sin® 6 dz (2.25)
27!'607'2 0
Since z = r cot 6, and dz = —r csec? 6 df, the previous integral becomes
/2
P s P
= = 2.2
E e /; sin 6 df rer (2.26)

The result is the same as that obtained by the simpler Gauss-theorem
technique.

Example 2.3. Field from a Charged Sphere. A spherical surface of
radius a carries a total charge @ which is uniformly distributed over the
surface. It is required to calculate the field from the charge.

From the symmetry of the charge distribution it is clear that the field
depends only on the spherical coordinate r, where the origin is at the
center of the spherical charge distribution. Furthermore, the electric
field can have only a radial component; any other possibility violates
either the symmetry or Gauss’ flux theorem.

We choose the Gaussian surface to be that of a concentric sphere of
radius r, as in Fig. 2.6. Applying Gauss’ theorem and noting that E, is
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everywhere normal to the spherical surface and uniform thereon leads to

: Q
P E-dS = 4rrE, = { r>a
0 r<a
and hence E, = | 4mer? (2.27)
0 r<a

The field of a uniformly charged spherical surface is thus identical with
that due to a point charge located at the center of the spherical surface
and with the same total charge, provided the field point is external to
the sphere. No field exists within the spherical surface. Note how
much more difficult it would be to calculate the field by direct application
of Coulomb’s law.

2.6. Electrostatic Potential

In this section we shall show that the electrostatic field may be derived
from the negative gradient of a scalar potential function. The scalar
potential will be found to be equal to the work done against the field in
moving a point charge from infinity up to its final position. The work
done in moving a charge around a closed path turns out to be zero. This
property classifies the electrostatic field as a conservative field (a field
with zero rotation or curl).

Consider the electric field set up by a number of point charges ¢i, ¢.,

., gn, as illustrated in Fig. 2.7. We desire to evaluate the integral I:

- /C E-dl (2.28)

This is a contour integral between the points P; and P, along some arbi-
trary path C, and dl is a displacement along this contour. Since E repre-
sents the force on a unit charge, the integral expressed by (2.28) evaluates
the total external work (against the field, hence absorbing the minus
sign) required to move a unit charge from P, to P;along C. The integral
can be evaluated by using the principle of superposition. Let us first
determine the result due to the single charge ¢;. If the origin of coordi-
nates is chosen at ¢;, then the partial contribution becomes

L= — /C g, - dl (2.29)

4.1!'607'2

An element of the path C is illustrated in Fig. 2.8. From the geometry
we note that a,+dl = dlsin § = dr. Thus

o qi dr _ % -l_ _ —1—
Iz - /;47[’60’]‘2 - 41['50 (Rii Rli) (2.30)
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where Ry is the magnitude of the distance from point P, to the position
of the 7th charge, and Ry, is the magnitude of the distance from P, to the
position of the sth charge. If the effect of all charges is now considered,
the result is a summation over ¢ as follows:

1 1 '
I=— . &
L E-dl = - (Rz, Ru) (2.31)

A very important conclusion follows from the result expressed by (2.31):
the work done in moving a test charge between any two points in an

/

ed,

[ ]
P, %

Fig. 2.7. Contour C along which a Fic. 2.8
unit charge is moved.

electrostatic field depends only on the position of the end points and not
on the path. It follows, for example, that the energy required to move a
unit charge from some arbitrary reference point to some other point in the
field is unique. Consequently, a relative potential may be assigned to
that point, hence to every point, in the field. The “potential” at a point
is nothing more than a scalar quantity which designates the energy
required to move a unit charge from the reference point to the given point.
The aggregate of potentials is a scalar field. Note the close analogy to
potential energy in mechanics.

The difference in potential ®;, = ®(P:) — ®(P1) between the points
P, and P; may be defined as the work required to move a unit positive
charge from P, to P, and is given by (2.31). The difference of potential
is independent of the reference potential, of course. When the reference
point is chosen as the point at infinity, then the relative potential of all
other points under these conditions is known as the absolute potential.
From (2.31) it is seen that the absolute potential ®(Ps) at the point P2 is
given by

B(Py) = —— ) & 2.32)
47eo 4 R

1=
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From what has been said so far it is clear that the line integral of elec-~
tric field around any closed path must be zero. For if (see Fig. 2.9)

®(P2) — ®(P1) = — fcl E-dl and &Py — @(Py) = — /CaE dl
then ¢01+Cn E. dl = 0

In this discussion C; and C; are completely arbitrary, as is the location of
P;and P,. But this means that the electric field is irrotational and con-
sequently can be derived from a scalar potential. This fact has, how-
ever, already been noted. Actually, we could have proceeded along more

analytic lines, as was done in Sec.
P, 1.17. Specifically, (2.10) can be re-

C.

> written by inspection as

- —v_2_
E= V%GOR (2.33)
, This means that in general we can

P, write

c, E=-Vo (2.34)
Fic. 2.9 The negative sign can be understood

physically from the fact that E isin
the direction that a positive charge moves, hence in the direction of
decreasing potential. The scalar potential, by integration, is

_q
$=plptC (2.35)

for a single point source q. Furthermore, for a volume source density, by

superposition,
av’
& = /V pims B (2.36)

where R is the distance from the source to the field point. The value of
E is unaffected by the choice of the integration constant C, which is
determined arbitrarily by assigning a potential to some reference point,
as already noted. Since the curl of a gradient is zero, it follows immedi-
ately from (2.34) that

VXE=0 (2.37)

which is further confirmation of the irrotational (conservative) nature of
the electrostatic field.

The unit of potential is the volt. A difference of potential &(P,) —
®(P,) of 1 volt means that 1 joule of work is required to move a coulomb
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of charge from P, to P;. From (2.34) we note Az
that the electric field E may be expressed in
units of volts per meter, as well as joules per
coulomb.

We have shown that, corresponding to any 2
electrostatic field E, there exists a scalar po-
tential field ® such that the electric field is
equal to the negative gradient of the potential

field. As a consequence, E will be normal to dr

the equipotential surface ® = constant; it r
points in the direction of the maximum rate

of decrease of potential. If a charge is a

moved around any closed path, no net energy
is required since the electrostatic field is Fiec. 2.10. A unpiformly
conservative. charged disk.

Example 2.4. Potential on Axis of Charged
Disk. We wish to find the potential along the axis of a uniformly
charged disk of radius a, as illustrated in Fig. 2.10. The surface charge
density is p, coulombs per square meter. The polar axis is designated z,
and the origin is its intersection with the disk.

For an annular ring of radius r and width dr, the contribution to the
potential at a point 2z along the polar axis, using (2.35), is

0% = po2mr dr
4reo \/ 22 + r?
If we now integrate over all the charge distribution, we obtain
e dr
ania = —&' "_r——
% Jo N/ T8 +C
=g l(@ + 2% — ]l +C (2.38)

The sign of (22)* has been chosen so that ®(z) = &(—2) and & decreases
as |2| becomes very large. This is necessitated by the symmetry in z and
the requirement that at great distances from the disk the potential
behaves like that due to a point source. If the point z recedes to infinity,
then the potential can be made equal to zero by taking C = 0. Conse-
quently, the absolute potential is

Bugis = 2%0 [(a? + 22)% — |e] (2.39)

Because of axial symmetry, the electric field on the axis will be in the 2
direction. As a consequence, the electric field on the axis is related only



. 54 ELECTROMAGNETIC FIELDS [Crar. 2

to the variation in potential along the axis in accordance with (2.34).
Note that for a calculation of the E field in general it is necessary to
know ® as a function of r, ¢, z. It is only because of the symmetry here
that one can say, a priori, that 0&/9r = 0%/3¢ = 0 along the axis. Thus

(Buw = = 92 = P21 — o(a + 2% forz >0
o (2.40)
(Ez)axia = - ﬁ%’) [1 + 2(02 + z‘l)—}é] forz <0

We note that E.(2) = —E.(—2), as is clear on physical grounds. The
result for z = 0 is independent of a, hence corresponds to the earlier solu-
tion (2.18) for an infinite sheet nf charge. The electric field is discontinu-
ous by an amount p,/e in crossing
the charged surface, a result which

P will be shown (Sec. 2.12) to be in-
dependent of the geometry of the

P, i b surface.
a Example 2.5. Potential from a
| Line Charge. We wish to evaluate

Line charge  the difference in potential between

F16. 2.11. An infinite line charge. the points P; and P, in the field of a

line charge of infinite extent and of

strength p; coulombs per meter. The point P is at a radius @, and P is

at a radius b along the same radial line from the line charge, asin Fig. 2.11.
From (2.24) the electric field is E, = pi/2meor; consequently,

b pydr a
— = — por P, @
&(b) — ®(a) ﬁ rer = Dmeq In 5 (2.41)
Since the field is in the radial direction only, equipotential surfaces are
concentric cylinders. Consequently, the result in (2.41) is true even if
P, and P, are not on the same radial line. That is, for any P’(a,$,2)
then ®(P;) — ®(P') = ®(Py) — ®(P1) + [®#(Py) — ®(P")]. But

&P) —®P) =0

since P; and P’ lie on an equipotential surface r = a.

If b — oo, then the potential relative to infinity as a reference results.
Unfortunately, the expression given by (2.41) becomes infinite. The
difficulty arises because in this case the infinite line charge itself extends
Yo infinity. Consequently, we cannot express an absolute potential for
this problem.

2.7. Conducting Boundaries

So far we have considered the problem of evaluating the electric field
from given charge sources. To facilitate this process the electrostatic
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scalar potential was defined and related to the sources. This relationship
is a scalar one and hence much simpler than the vector relationship. The
electric field is readily found once the potential function is known.

Usually, however, the distribution of charge is not known. What is
given are configurations of metallic bodies which are connected to primary
sources such as a battery. The charge distribution will then be a con-
sequence of these conditions, and in a sense, the problem will be to deter-
mine the resultant source distribution. We first need to know a little
more about the characteristics of metal substances.

A property of metal bodies that has already been noted is that they are
good ‘““conductors of electricity”’; that is, they readily permit a current
flow or motion of charge. As a consequence, if charges are placed on or
in conductors, they will move about as long as there is the slightest elec-
tric field producing a force on them. The charges move until they reach
an equilibrium configuration. This is obviously characterized by the
necessity that no field exists within or tangent to the surface of the con-
ductor. This can happen only when all the charges reside on the surface
of the conductor, for if any charge remained in the body, then by Gauss’
flux theorem a nonzero field in the vicinity of such charges would have to
exist. The surface charge at equilibrium must be so distributed that the
total electric field inside the conductor and tangential to its surface is zero.

A finite time is required for equilibrium to be essentially achieved if
some charge is suddenly placed in a body. This time is designated as the
relaxation time and is the basis for distinguishing conductors from
insulators. For a good conductor, such as copper, the relaxation time is
of the order of 107! second, while for a good insulator, such as fused
quartz, it is 10 seconds. For all purposes we may assume the electro-
static field within a conductor to be identically zero.

The above discussion holds also in the case where a conductor is placed
in an external electric field. In this case, current, consisting of free
charge in the conductor, flows until a surface charge distribution is built
up so that the field it produces within the conductor and tangent to its
surface just cancels the external field. The body must remain elec-
trically neutral, and hence the algebraic sum of the surface charge is zero
in this case. Since the tangential component of electric field is zero on
the surface of a conductor, this surface must be an equipotential one.
Furthermore, the region within the body has no field; so it too is at the
same electrostatic potential. The electrostatic field at the surface of a
conductor has a direction normal to the surface.

By applying Gauss’ flux theorem it is possible to determine a relation-
ship between the surface charge density on a conductor at equilibrium
and the electrostatic field at the surface. Consider a very small portion
of any charged conducting surface, as illustrated in Fig. 2.12. An
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infinitesimal coin-shaped surface is visualized with one broad face parallel
to and just outside the conducting surface and the opposite face inside.
No flux crosses the lower surface
which is within the conductor since
E is zero in this region. No flux
leaves through the sides since this
would require that E have a com-
ponent tangential to the surface.
Fie. 2.12. Application of Gauss’ law to Furthermore, we can let d — 0, so
relate normal E to surface charge on &  that the area of the sides is of lower
conductor. order compared with that of the
broad faces. Above the surface, however, a normal component of E exists.
Thus the net outflow of flux of E from the closed coin surface is given by
E - dS, and this must equal the net charge within. If we let p, be the
surface charge density and denote by E, the electric field which is in the
direction of the outward normal at the surface, we have

E,dS =243
€0

or E,=n-E = ‘:—; ' (2.42)
If Fig. 2.12 represents a portion of an infinite plane conductor, then
(2.42) seems, superficially, to contradict the result E, = p,/2¢, obtained
for a plane charge layer [Eq. (2.18)]. The reason for the difference is
that (2.42) is a relationship that applies at a conducting surface where the
total field on one side of the charge layer is zero. Thus all the lines of
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Fi16. 2.13. Nature of field at a conductor surface.

flux are directed away from the surface in one direction only. Actually,
the field at the surface arises from two systems of charges, the local sur-
face charge p, and the charges that are remote from the conductor and
which we could think of as lying uniformly on a distant parallel plane
surface. The remote charges are of opposite sign and are physically
required in order that the total charge be zero. (They may not be ignored
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on the basis of their remoteness since the magnitude of the charge is
infinite. This is also clear when we note that the field of an infinite
surface charge is independent of the distance from the surface.) We
realize now that the problem solved in Example 2.1 resulted only in the
partial field caused by the sources under consideration and that the total
field can be found only if the opposite polarity sources are included. For

Ez»

E,=E,+ Eza
Eln
s
1 1 €0
Ps Ps.
2:0 2;0
4 x x 3
Ps
260
N N

Fi1a. 2.14. Plot of normal fields as a function of distance z away from conductor surface.

the conducting plane the induced surface charge can be maintained only
if these other sources are present. The local surface charge will give a
field p,/2¢o directed in both directions normal to the surface, as explained
in Example 2.1. Let this field be denoted by E,, as in Fig. 2.13. The
remote charges contribute a field E,,, which is continuous across the
surface charge layer. The combination of the fields E,, and E,, results
in a zero field in the conductor and a field E, = p,/eo on the air side of the
surface. In the case of both the single plane of charge and a surface
charge layer on a conductor, the normal electric field changes discontinu-
ously by an amount p,/e¢ as the charge layer is crossed. A sketch of the
fields E1,, Es, and E, is given in Fig. 2.14.

Example 2.6. Field between Coaxial Cyl-
inders. A typical example of a problem in-
volving conducting boundaries and known
potentials, where the charge and field distri-
bution is to be determined, will now be con-
sidered. Figure 2.15 illustrates the cross
section of a coaxial cable with air dielectric.
The inner cylinder has a radius a; the outer
cylindrical conductor has a radiusb. By con-
necting a battery between inner and outer $=0
conductors a potential difference ¥V can be Fie. 2.15. Cross section of
established. For definiteness, let the inner coaxial cylinders.
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conductor be at a potential V (the entire cylinder is at this potential
since conducting surfaces are equipotential surfaces) and the outer con-
ductor at zero potential. We wish to know the electric field every-
where. This is of practical importance since excessive values will cause
dielectric breakdown, as will be explained in Chap. 3.

If we can determine the surface charge, then the field can be found.
Let us assume p; coulombs per meter on the inner conductor and —p
coulombs per meter on the outer. From symmetry considerations the
field between the inner and outer conductor is in the radial direction and
by an application of Gauss’ law is found to be

E =5 ::or (2.43)

From the information given,

8(a) — ®(b) = / E.dr = / dr

- 2weo
or V= é;r:o In E (2.44)
Consequently, o= % ' (2.45)
and E, = flnl(fm a<r<b (2.46)

Application of Gauss’ flux theorem to a concentric cylindrical surface
whose radius is less than a or greater than b reveals that E, = 0 for
r<aandr >b.

A flux plot of the electric field in this problem would show radial flux
lines originating on the inner conductor and terminating at the outer -
conductor. Since the charge density on the inner conductor is p;/2wa, the
electric field, from (2.42), should be of magnitude V/[a In (b/a)] = pi/27aco.
This is confirmed by .(2.46) with r = a.

If the electric field were uniform in the region a < r < b, instead of
varying with r, then it would be directly related to the dlﬁerence of
potential and the spacing b — a and given by

v

Ezb—a

(2.47)

We should expect this approximation to be very good if the spacing
b — a is very small compared with b or a. Thus, if we let b = a + ¢,
where ¢ < a, then (2.46) can be approximated by

14 v |4 14

E'=rln 1 + ¢/a) ~ae/a,-:: “b—a (2.48)

which is equivalent to (2.47).
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2.8. Poisson’s Equation

For a volume charge distribution Gauss’ flux theorem as expressed in
(2.21) can be written

1
9SSE.ds = ;ﬁpdv (2.49)

In this equation the surface S encloses the volume V. If, now, Gauss’
theorem is used, (2.49) transforms to

9SSE.ds=/v.EdV=l/pdV (2.50)
vV € JV

By letting V become very small, it is seen that the integrands in (2.50)
must be equal, and a differential relationship between the field and source
at the same point results. Thus, at any point,

v.-E=£ (2.51)
€
As was noted in Sec. 1.10, the divergence of a vector field at a point Pisa
measure of the strength of the source at P. In (2.51) we note the phys-
ically satisfying interpretation of p/eo as being the source of the electro-
static field.
If E is expressed as the negative of the gradient of a scalar potential &,
the following partial differential equation results:

vip = — 2 (2.52)
)
This is known as Poisson’s equation. For a source-free region of space,
Laplace’s equation results; i.e.,

Ve =0 (2.53)

If the E field is known everywhere in a space in which conducting
bodies are present, then by (2.42) the charges on the surfaces of the con-
ductors are known. Conversely, given the surface charge on the con-
ductors, the E field can be calculated by using (2.15). As we noted
earlier, neither kind of information is likely to be available in the typical
problem of electrostatics. The fundamental problem in a space free of
charge (except for the charged conductors) is to solve for an electrostatic
potential that satisfies Laplace’s equation and also the boundary condi-
tions on the conducting bodies, namely, ®; = constant, on the surface S..
In addition, the interior of the conductors must have the same potential
as the surface. The data that are available are the geometry of the con-
ducting bodies and either the potential or the total charge on each. We
shall show, in Sec. 2.9, that the electrostatic field is uniquely determined
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from such information, while the scalar potential is determined to within
some arbitrary constant.

The fundamental problem of electrostatics can be solved in only s rela-
tively few cases. For simple symmetrical geometry the technique using
Gauss’ law as in Example 2.6 can be employed. This works for parallel-
plane and concentric spherical boundaries as well as concentric cylinders.
Somewhat more elaborate boundary-value problems can be handled by -
methods of mathematical physics as exemplified by use of cylindrical and
spherical harmonics. This approach will be considered in detail in Chap.
4. For the moment we shall content ourselves with the following
example, which illustrates the method of direct solution of Laplace’s
equation. Its simplicity in the present case
arises from the choice of boundaries such that
® is a function of a single variable only.

Example 2.7. Solution of Laplace’s Equa-
tion. Let us consider here the problem pre-
sented in Example 2.6, which was solved by
means of Gauss’ flux theorem. The geometry
is repeated, for convenience, in Fig. 2.16. We
wish to determine the field within the coaxial
cable subject to the boundary conditions that

®=0 3@ =V &) =0
F1c. 2.16. Cross section of . . . .
coaxial cable. Our purpose is to do this by direct solution of

Laplace’s equation, thereby illustrating that
technique. The cylindrical nature of the boundaries suggests that
Laplace’s equation be written in cylindrical coordinates (Sec. 1.19).

19 od 10% 0%
2P — - — = — = - =
vie T or (r 6r> + r? 9¢? + 9z* 0 2.54)
If the cable is extremely long, then except near the ends, no variation with
z is to be expected. Furthermore, because of cylindrical symmetry, the
potential cannot be a function of ¢. Accordingly, (2.54) becomes

1d /[ do
It is possible to solve this differential equation by integrating twice; thus
P = Cllnr-l—C'g (256)

The integration constants may now be determined from the boundary
conditions specified earlier. We have

V=Clna+ C; (2.57a)
0=Cylnb+ C, (2.57b)
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From this pair of equations it is easy to determine that

v Vinbd
Ci= i (a/'b) R )
so that ® = i (a 75 (Inr ~Inb)
vV r
YO (2.58)

The electric field is obtained by taking the negative of the gradient of .
In cylindrical coordinates, and because ® is a function of r only,

0%

T ar

rln (b/a)

4 (2.59)

This result checks with that found in Example 2.6 and given by (2.46).

2.9. Uniqueness Theorem

Consider an arbitrary distribution of conducting bodies in a space free

of charge, as in Fig. 2.17. According
to the uniqueness theorem, the field

————

is uniquely specified everywhere by \\\
giving the potential at the surface of R
each conductor, or by giving the total 7 \ \
surface charge on each, or by giving i /'S, \\
the potential of some of the conduc- == |
tors and the total charge on the N, I,
remainder. We proceed, now, to de- VP
velop this theorem. { - //
Let ¥ represent any scalar function S; /
which is a solution of Laplace’s equa- _
tion V*¥ = 0. Expanding V. ¥ V¥ S~ — ———Spherical
gives s

V- UVY = VE-V¥ + ¥ V20 = |7¥]?

since V?¥ is assumed equal to zero.
If we integrate both sides through-

F1e. 2.17. Illustration of volume V
enclosed by the surface S (dashed
lines).

out a volume ¥V and use Gauss’ law (divergence theorem), we obtain, as in
Sec. 1.14,
= .dS = O 15 = 2
/Vv VYAV = 55s‘”‘1’ ds = 953‘1’ S = /V|v\1/[ av  (2.60)
where n is the unit outward normal to the closed surface S surrounding V.

This result may be used to prove the uniqueness theorem. In (2.60) the
surface S must enclose the volume V. This requirement may be met if
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we surround our conductors by the surface of a sphere of infinite radius,
The total closed surface so obtained is illustrated by the dashed lines in
Fig. 2.17.  On the surface of the infinite sphere of radius r the potential
¥ decreases at least as fast as 1/r, V¥ decreases as 1/72 or faster, and the
surface area increases as 72 only so that

lim gjsphm ¥V -dS — 0

With a closed surface constructed in the above manner we can apply
(2.60) to obtain
N

v
¢sphere dS + E ¢S- v ‘—‘dS z 8 )4 -a~n s = ﬁ IV‘I’Ide

i=1
(2.61)
since the integral over the surface at infinity vanishes.
The requirement of the boundary-value problem is to find a potential
function ¥ which is a solution of Laplace’s equation and which reduces to
a specified constant value

¥ = &; on conductor S; t1=1,23 ..., K—-1
where K — 1 is less than N. On the remaining conductors S; (j = K,
K + 1, ..., N) the potential ¥ is to be compatible with the condition
that on these conductors a total charge Q; (j = K, . . . , N) exists. Let

us suppose that you have found a solution ¥; which satisfies the above
requirements and your classmate has found a solution ¥, that also satis-
fies the above requirements. The two solutions appear to be mathemat-
ically different since yours is in a closed form while your classmate’s solu-
tion is in the form of a series. The question to be settled is whether the
two solutions are identical or whether, perhaps, only one of the solutions
is correct.

Let ¥ in (2.61) be the difference between your solution and your class-
mate’s solution; that is, ¥ = ¥; — ¥,. In view of the fact that ¥, and
¥, are known to be solutions of Laplace’s equation, then by superposition
¥ = ¥; — ¥, is also a solution, so that

295 (W — ) X0 ‘I’Z)ds+29§ (2, — vy 20D

i=K

- ﬁ |v(~1r1—\1/2)|2dV (2.62)

Nowon 8; (1 =1,2, ..., K — 1), both ¥, and ¥, reduce to the con-
stant values ®;, Hence the first set of terms on the left-hand side of
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(2.62) vanish. On the remaining conductors ¥, and ¥, are, of course,
constant (conductors always have constant potential surfaces) and
9¥,/0n = p,1/es, 9¥2/0n = p,a/e0, Where p,1 and p,, are the surface
density of charge for the two solutions; that is, 9% /dn gives the normal
electric field at the surface, noting that the outward normal to S; is the
negative of the outward normal at the conducting surface. We may now
replace (2.62) by

N
_ Ps1 — Ps2 - _
2 (¥ — ¥,) 953, P =Pt gy ﬁ V(¥ — ¥)[2dV  (2.63)

i=K

But 56.94 p1d8 = 953. ps2 dS = @, since both solutions are compatible

with the condition that the total charge on S;is Q;. Hence the left-hand
side of (2.63) vanishes, and we must have

fV V(¥ — ¥,)[2dV = 0

The integrand is always positive, and therefore the volume integral
vanishes only if
V¥, — %) =0
which integrates to
V) =¥, +C (2.64)

where C is a constant. However, ¥; = ¥, on the surfaces S; (7 = 1,

., K — 1); so C must equal zero. Thus the answer to the question
posed earlier is that the two solutions are identical. In other words, if a
solution can be found that satisfies all the conditions of the problem, then
this solution is unique.

In the special case where the total charge on each conducting body is
specified, we cannot say that the constant C in (2.64) is zero. For this
situation the potential is unique to within an arbitrary constant since no
point has been chosen as a reference potential point. The electric field is;
however, unique since its value does not depend on the constant C. The
previous theorem obviously also includes the case where the potential on
all conducting bodies is specified.

2.10. Method of Images

A certain class of boundary-value problems involving infinite conduct-
ing planes and wedges, conducting spheres, and conducting cylinders may
be solved by a special technique known as the ‘“method of images.”
When applicable, the technique is very powerful and leads to the solution
in a direct manner. However, the technique is not a general one and
applies only to a narrow class of problems. On the other hand, some of
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the concepts involved in:the image technique are of a very fundamental
nature and applicable to both static and time-varying fields.

Consider the boundary-value problem which consists of a point source ¢
placed a distance h in front of an infinite conducting plane of negligible
thickness, as in Fig. 2.18. Now in view of the uniqueness proof of the
preceding section, if a potential field can be found such that it is an equi-
potential over the plane surface and such that its behavior in the immedi-
ate vicinity of g is that appropriate to a point source of strength ¢, and

P

P(x' yl 0) Rz (x' y' Z)
R R

2 ! R R,
/ R
i 13 (0,0, —h) (0,0,h)
-9 ? -q 7 2
Conducting
plane
F16. 2.18. Solution of the problem Fre. 2.19

of a point charge and a conduct-
ing plane by the image technique.

also satisfies Laplace’s equation, then it is unique.t This point is being
emphasized because sometimes it is possible by intuition, inspection,
and/or experience to construct a potential field which meets the neces-
sary requirements. That we know the solution so obtained is unique is,
of course, vital.

In the problem at hand all requirements can be met by a scalar poten-
tial field which arises from the charge ¢ and a charge —gq located at the
mirror image of . The potential at any point P (see Fig. 2.18) is given by

_.¢ (1 _1

= Ira (E Rz) (2.65)
This function clearly satisfies Laplace’s equation, since it arises from the
superposition of the potentials due to point sources which, individually,
are solutions. Furthermore, the behavior of the field in the neighborhood
of g corresponds to the field of a point source of strength ¢. Finally, the
potential of points located on the conducting plane, for which B, = R, is
constant (arbitrarily zero). Accordingly, (2.65) is the solution to the
problem. The charge —g¢ is known as the image charge, and the tech-
pique involved is known as the method of images.

} This problem corresponds to the case where both charge and potential are speci-
fied. The point charge is a limiting form.
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The electric field at the conducting plane can be calculated since the
potential field is known. Consequently, we are in a position to deter-
mine the charge on the plane. It will be helpful to consider Fig. 2.19
where coordinate axes are set up. The field at P(z,y,0) is desired. At
any point (z,y,2) the field in the z direction is given by

—qgadf1 1
E (x’y’Z) 41!’60 62 (Rl Rz)

where Ry =[r24 3>+ (z— k)% and R, = [z?+ y* + (z + h)2*.
After differentiating, we obtain

h—z + h+ 2
e [ A A e e
The normal field E, at the surface of the conducting plane is E,(z,y,0) and
is given by

E (z,y,2) =

E,= -1 __P . (2.66)

where R® = (22 + y? + h?)*. The surface charge density is, conse-
quently, inversely proportional to the cube of the distance from the point
charge. The total charge on the plane is evaluated by the following

integral:
__g[1
/gp. s = 21r/:sR3 s (2.67)
Using polar coordinates r, 6, then R? = h? + r2and dS = rdrdf. Thus
rdr df = rdr
/ ps dS = / (CETOE —gh /; e + ro%
(h’ + ,,.2)% —q (2.68)

It is apparent that all lines of electric flux emanating from the point
charge ¢ terminate on the plane conductor. An illustration of a portion
of these flux lines is given in Fig. 2.20. For interest, equipotential lines
are drawn in as well.

Although the combination of the image charge —q and the point
charge ¢ gives the correct field in the half space containing ¢, the image
charge is, of course, fictitious. The component of field evaluated as due
to the image charge is actually caused by the surface distribution p, given
in (2.66). The fields due to either —gq or p, are fully equivalent in the
half space containing ¢. For field points in the region z < 0, the sources
continue to be p, on the plane and ¢ at (0,0,). Now if, for the points in
the region z > 0, p, on the plane is equivalent to the point charge —g¢ at
(0,0,—h), then by symmetry the field due to p, in the region z < 0 is
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equivalent to —¢ but at (0,0,). This means that the total field is due
to +q and —g, which are both at (0,0,h), and hence the field in the space
z < 0is zero. The conducting sheet may be thought of as shielding the
region z < 0 from electrostatic field sources in the region z > 0.

— —— — Equipotential lines

—— Lines of force

F1c. 2.20. Flux lines from a point charge in front of a conducting plane.

The problem considered here shows how charges may be induced in
conducting bodies in the presence of other charges. This illustrates the
reason why in measuring the electric field by taking the ratio F/Aq the
test charge Aq must be made very small if it is not to disturb a priori con-
ditions. Thus suppose ¢ in Fig. 2.19 is actually introduced at (0,0,h) to
measure the field that exists prior to making the measurement (in this
case zero, of course). Note that a nonzero force of strength ¢2/[4meo(2h)?]
is measured and an erroneous field of ¢/16weh? is presumed to have
existed. The error in the measurement depends on the size of g.

A simple extension of the image technique involving a point source and
a conducting plane is the case where a point source is located within two
intersecting planes, such as g in the right angle AOB of Fig. 2.21. The
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image of ¢ in 04 is —g at P,, while A
the image of ¢ in OB is —gq at P..
But the combination of all three
charges makes neither 0A nor OB an

equipotential surface. What hasbeen -q,rl-’l— I R T ?
‘neglected is imaging the images, a ____?____ y

process that must be continued re- ! ol : B
peatedly. In this example, ¢ at P3 gt Py ___:_(__pz 3| —q

satisfies both the requirement of —g¢ l
at P, and —q at P, for proper im- |

aging, and the group of four charges :

satisfies the boundary conditions and .

gives the correct solution for the field ?;53362;2;& ﬁ,r}fg’;_‘“ charge located
in AOB. The boundary requirements

can be satisfied with a finite number of images only if AOB is an exact
submultiple of 180°, as in the 90° case illustrated. For the purpose of
evaluating the position of the image charges it should be noted that they
all lie on a circle.

Example 2.8. Inversion in a Sphere. Another type of boundary-
value problem that can be solved by the method of images is considered
in this example. The charge ¢ is given as being located at a point Py, a
distance R; from the center of a conducting sphere of radius a, where
R: > a. The field external to the sphere is desired.

Fic. 2.22. Imaging of point charge ¢; in a sphere.

Let us consider an image charge — g, located at P, which is a distance
R, from the center of the sphere along the line OP}, as in Fig. 2.22. Ttis
necessary that the combination of ¢; and — ¢, make the spherical surface
a zero potential surface (the sphere is grounded). If we take any arbi-
trary point P on the sphere, then it is required that

G _
41!'507'1 41l'607'2 0 (269)
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This will always be satisfied if we take

@ _n
q2 T2

(2.70)

provided that an R, can be found so that r,/r, is a constant, independent
of the position P. Since any arbitrary point P and the line OP, determine
a plane, points in Fig. 2.22 can be thought of as located in that plane. If
OP; = R, is chosen so that

oP 2 a

then the triangle OP,P is similar to triangle OP,P, and consequently »

n__o
7. = OP, (2.72)
will be a constant, as is necessary. To summarize, the field due to a
charge ¢, a distance R, from the center of a grounded sphere of radius q,
is found from the charge ¢; and an image charge —¢; whose magnitude is

_ Rz _ a
©2="rn=pa (2.73)
and which is located on the line joining the center of the sphere and ¢,
and at a distance

a2

from the center. Because of this relation the image technique in connec-
tion with a sphere is referred to as inversion in a sphere.

If the sphere were not grounded, then to maintain electrical neutrality
an additional charge +g¢. must be placed inside the sphere.f (For the
grounded sphere, 4 ¢- is essentially removed to infinity.) The location of
+¢2 must be such as not to destroy the surface of the sphere as an equi-
potential. This is achieved by locating it at the center. Then the
potential of the combination at any external field point is given as

-l fn_ ¢ ¢
d = o (rl . + m) (2.75)

t The total charge induced on the grounded sphere must be —g¢» because the combi-
nation —gq: and ¢, correctly describes the electric field at the surface of the sphere
according to the image theory just developed. Thus it would surely show the lines
of flux as if they would terminate on —gs. The location of a +¢, within the sphere
would lead to no net flux terminating on the sphere, as is necessary in the nongrounded
case.
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and the geometry is as given in Fig. 2.23. Actually, the charge +¢; at
the center is only an image charge that produces the same external effect
as the uniform charge distribution p, = ¢»/4wa? residing on the outer
~surface of the sphere. The total surface charge on the sphere is zero

Fie. 2.23. Image charges +g; and —g; inside an ungrounded sphere.

since it equals the sum of the uniform distribution g,/4wa? and a non-
uniform distribution of total amount — g, which sets up the same external
field as the —g;image charge. The total surface charge density could, of
course, be found from (2.75) in the manner illustrated in connection with
the infinite plane conductor.

Example 2.9. Inversion in a Cylinder. The problem of a line charge
parallel with and outside a conducting cylinder of radius a may be solved
in a manner similar to the sphere problem considered in the previous

P

Fic. 2.24. Image line charge —g: inside a conducting cylinder of infinite length.

example. Consider a line charge of density g¢: coulombs per meter
located a distance R, from the center of the cylinder and also an image
line charge of density — g, at a distance R, from the center, asin Fig. 2.24.
The potential at any point P is, from (2.41),
®P) =L nr,+ L Inr,+C
2meo

2meo



70 ELECTROMAGNETIC FIELDS [CHap. 2

where C is an arbitrary constant, depending on the reference potential
point. If we choose ¢; = ¢1, we obtain

_ _ .4 (Y Y
®(P) = Tre, In (T2) +C (2.76)
The constant potential surfaces are given by the condition

:71 = constant (2.77)

2

The geometry here is the same as in the sphere problem, and condition

y

uy

)

F1a. 2.25. Circle with center at z = —z,, y = 0.

(2.77) is also the same; hence if we choose

a?
R, = & (2.78)

~ condition (2.77) will hold.

It will be of interest to derive equations for the entire family of equi-
potential surfaces specified by (2.77) and (2.78). From the law of
cosines we get

ra? = r2 4+ Ry? — 2rR, cos 9
=124+ R — 2rR,cos §

To satisfy (2.77), let r> = krs?, and then
7'12 bl k?‘zz =0= (1 —_ k)T2 + R12 —_ ICR22 - 21’(R1 - kRz) cos 6 (279)

A circle with center at £ = —xo, y = 0 and radius d, as in Fig. 2.25, has
the equation
24 2rzgcos 0 + 22 — d2 =0 (2.80)
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Comparing with (2.79) shows that

R, — kR
To=~p—7 (2.81a)
2 2
d* — z¢? = —Ril’?—_—kllﬁ (2.81b)

In the example we are considering, the radius of the cylinder is a, and
hence d = a. Also the center of the cylinder is located at the origin of
coordinates so that zo = 0. Thus from (2.81a) we find that

_ B

=%, (2.82)
and from (2.81b) we confirm the relationship given in (2.78). The family
of equipotential surfaces depends on the parameter k, and when & is given

Fi1c. 2.26. Two-conductor transmission line.

by (2.82), the equipotential surface that coincides with the conducting
“cylinder is specified. The potential of the cylindrical conducting surface
is

¢(a)=—4fr—;’1nk+c=—4f—%ﬂ)ln%+c (2.83)

If the cylinder is grounded, then (2.83) determines C, since ®(a) will be
zero. The potential at any other point is then given by

- @ (Y L e B o iRy
®(P) = i In (Tz) + Ire, In R~ dre In 7R, (2.84)
The above results may be used to solve the two-wire transmission-line
problem. Consider two infinitely long parallel cylinders of radius a and
center-to-center separation D, as in Fig. 2.26. If we choose the constant
C to be zero in (2.83) and hypothesize that the distributed surface charge
on the cylinders is equivalent to the line charges —q and +g¢, as illus-
trated in Fig. 2.26, then the potential of the left-side cylindrical surface
will be, as for Fig. 2.24,
V,="21 E,

e R, (2.85a)
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By symmetry, a similar constant potential surface surrounds the positivé
line charge and the potential of the right-side cylinder is

- 4B
V2 = 47“0 ln Rz V1 (285b)
The fact that the cylindrical surfaces can be made equipotential ones is
the basis of the original hypothesis. We must still determine B; and Rs.
From the geometry of Fig. 2.26 it is seen that D = R; + R,. Also

R,R; = a?, and hence

. . "

Ry = §D (I?T - az) (2.86a)
%

R, = g - (—Ii—z - a2) (2.86b)

Since R, and R, are uniquely specified, satisfaction of (2.86) will always
lead to a valid solution of the boundary-value problem. The potential
difference between the cylinders is

4 D + (D? — 4a?)*
2reg D — (D? — 4a?%)%

and may be adjusted to any given value by a proper choice of the line
charge density g.

The equipotential surfaces are circles with centers located a distance x
from the cylinder center and away from the other cylinder and having a
radius d. Equations (2.81) and (2.83) relate the parameters z, and d to
the particular constant potential surface (value of k) being considered.
The magnitude of the total charge on each cylinder is g coulombs per meter
and could be determined from (2.87) if the difference in potential between
the conductors were given.

Vz - Vl = (287)

2.11. Dipoles and Volume Discontinuities

The field due to two point charges of equal magnitude but opposite

sign at distances which are large compared with the separation of the

charges is called a dipole field. The

z product of the charge times the sep-

aration is the dipole moment. The

P(r,6,¢) dipole field is of particular importance,

as we shall see, in the discussion of
dielectrics.

Consider Fig. 2.27, where a dipole of
charge magnitude ¢ and separation [
is illustrated. The origin has been
chosen at the charge —g¢, and the
Fic. 2.27. The electric dipole. polar axis is defined by the line join-
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ing —g and ¢. An obvious and correct way of finding the field at an
arbitrary point P is to superpose the field due to each point charge sep-
arately. We are interested in the potential field as well as the electric
field and will determine the former first.

Referring to Fig. 2.27, the potential at P due to —gq alone is

®(P)_ = (2.88)

41rer

Since the charge +¢ is displaced a distance [ along the positive z axis, its
contribution to the potential at P is the same as what would be found by
displacing P a distance ! in the negative z direction with +g¢ located at
the origin. By Taylor’s theorem, the latter comes out to be

®(P)+ = q -+, <4,,.eor> (=0 +3; 2' 92? (47re r)

The total dipole potential at P, by superposition, is then

- _9(_a 19°( ¢
®(P) = 0z (41reor) P * 35 21 922 <41reor) P
Since r=+1"+ 4+ 2*

9 (1 _ =2

az\r) 1

9% (1 1 322
@(:)“F(l"?) ete.

For | < r, as originally specified, all terms except the first can be neglected
and the dipole potential reduces to

(=0*+

(2.89)

B4 - (290)

1
*(P) = ;L5 2.91)

where z and r correspond to the point P. Now

cos § = 4
r
_qlcos @
and hence ®(P) = pve> (2.92)

The product ¢l is the dipole moment p. It can be written as a vector,
with a direction defined as from —gq to 4+g¢. In this case (2.92) has the
simple form

ca,
&(P) = 4mr2 (2.93)

The electric field of the dipole can be readily found by taking the nega-
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- tive gradient of (2.93), using spherical coordinates. We get

47re

A sketch of the lines of force in a dipole field is given in Fig. 2.28. The
three-dimensional picture of the lines of force is obtained by revolving
the pattern in Fig. 2.28 about the dipole axis. In theé r, 8 plane the differ-

ential equation for the lines of force is

dr rdf dr
- &, or —r-—2cot0d0

after substituting from (2.94). This
equation is readily integrated to give

Inr =2Insin6+InC
or r = (Csin?6

E = —qlor—g (a,2 cos 8 + ag sin 6) ' (2.94)

For each value of the integration con-
stant C, a particular line of force is
obtained. The constant potential
contours are orthogonal to the lines
of force and hence have a slope which is the negative reciprocal of the
slope of the lines of force. The differential equation is therefore

dr

r—d-é= —Vztano

Fra. 2.28. Lines of force in an electric
dipole field.

This may be integrated to give

Inr=1%Incosd+ 4InC
or r? = (C cos

That this equation is the equation for a constant potential contour is
readily seen from (2.92) by equating ® to a constant. Each value of the
constant C' determines a particular constant potential surface.

For a volume distribution of charge it was convenient to specify a
charge density p as a mathematically well-defined function. Its defini-
tion and the restrictions required were discussed in Sec. 2.4. In the same
way a volume distribution of dipoles can be represented by a vector func-
tion P, which gives the dipole moment per unit volume at a point.
Specifically,

- 1im 2P
P = lim 75 (2.95)

where Zp; is the vector sum of the dipole moments in the volume AV. It
is again necessary that AV be sufficiently large so that individual dipole
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characteristics do not affect the result but small enough to get a true
limit. We shall assume that the P that results is a continuous function.

The potential set up by an arbitrary volume distribution of dipoles will
now be computed by using the above definition of P. Let P(z’,y’,2’) be
the dipole density at the point (z',y’,2’), and let dV’ be an element of
volume. Since the distance to a field point is inherently large compared
with the extent of the differential volume element dV’, (2.93) applies at
any field point. Consequently, by superposition,

4meoR?

where R:= (z — )+ (y — ¥)?+ (¢ — 2')? and is the distance
between the volume element dV”’ and the field point (z,y,2). This result
can be transformed into one that has an interesting physical interpreta-

tion. Noting that
(L) _ 2
" (r) - %

B(z,y,2) = ﬁ P@'y'2) - ar yp (2.96)

P-ag_p o(l\_y.P_V-P
we have T—P V(R>—V 7 7
'Thus (2.96) becomes
1 [ . By VP oy
&(z,y,2) = 44reo/VV RdV / dV

¢S 41re R + / 4rre oR dV (2'97)

after using Gauss’ theorem on the first volume integral. From a com-
parison of (2.97) with (2.36) we deduce that the field due to a volume
dipole distribution P is the same as that from an equivalent volume and
surface charge distribution such that

pp = —V P inV (2.98a)
and psp =Pen on S (2.98b)

Actually, if the volume be taken to include the surface, then the surface
charge distribution is included in the expression for p,; that is, just as we
can let p contain p, as a limiting case, we let —V’ - P include P-n as a

limiting case and
_ -v.P _,

The results expressed by (2.98) can be understood on a purely physical
basis. Where V' - P 5 0, this means a net creation of dipole moment per
unit volume, hence an incomplete cancellation of charge density from
adjacent dipoles. Similarly, the surface charge density occurs because
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the dipoles ending on the surface cannot be neutralized for want of an
adjacent dipole layer, as illustrated in Fig. 2.29.

F1g. 2.29. Illustration of creation of volume and surface polarization charge because
of incomplete cancellation of charge between adjacent dipoles.

2.12. Field Behavior at a Charged Surface

A general shaped open surface on which an arbitrary surface charge density
0s(z’,y’;2") exists is illustrated in Fig. 2.30. In solving certain types of problems in
electrostatics it is necessary to know the behavior of the scalar potential and the elec-
tric field in crossing such a surface. This can be determined from the fundamental
relationships. Thus the scalar potential & due to the surface charge distribution is
given by

=1 [ p4e
~Tre)se® (2.100)

@
where R is the distance between the charge element p, dS’ and the field point; that is,
R = |r — r’|. Consider the variation in ® as the field point moves along a path I'
that crosses the charged surface. In the vicinity of the surface the path followed may
be considered linear and a small element of surface (AS,) surrounding the intersection
of the path with the surface may be considered plane. Figure 2.30 illustrates the
over-all geometry, and Fig. 2.31 is an enlargement of the region near the surface.
We can resolve (2.100) into the following components:

_ 1 ps dS’ 1 ps dS’
e = 4rey /] S—a8, R +47reo /ASo R (2.101)

In the first integral of (2.101), R is always finite and the contribution to & that is
produced is clearly continuous as the field point crosses the surface. It will be easier
to evaluate the second integral if we consider AS, to be a very small circular area of
radius ro centered about the point of crossing the surface, that is, O of Fig. 2.31. If
the field point is within a very small distance Ad of the surface, and recognizing that
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over ASy, p is essentially constant, we have

1 Ps de _ P [T v dr’ _ P :
m ASe R T 26 /0 N (Ad-)_’ " 26 [V7et + (Ad)? — IAd” (2.102)

For a point passing through the surface, Ad decreases to zero and then increases nega-
tively. But under these conditions the contribution to the total potential from (2.102)
will also be continuous in crossing the surface; consequently, the total electrostatic
potential is continuous across an arbitrary charged surface.

Ad

N

Fi1c. 2.30. An arbitrary surface charge dis- Fi16. 2.31. Geometry of surface charge
tribution. layer close to the surface.

A somewhat different situation arises if we consider the behavior of the electric field.
In this case the normal component of E suffers a discontinuity equal to ps/e; in cross-
ing a charged surface. This can be established very easily by application of Gauss’
flux theorem, and this will be presented in Sec. 3.3. This same result can also be
verified in a direct way as follows. We have

-1 1 ,
Bo= —veon == [ o9 ([r—:‘ﬂ) nds (2.103)

The total surface can be broken up into two parts as before. Then

-1 1 1 1 "
P . ). (A . —_ ) 2.104
4mrey S—ASoP v (|I‘ - r’() nds§ 4rey /Asop v (lr - r'l) nd§' (2.104)

The field contributed by the first integral in (2.104) must be continuous along a path
passing through the charge surface since the only variable, |[r — r'|, is finite and well-
behaved. In this case, however, a discontinuity is introduced by the second integral
of (2.104). Again, for simplicity, AS, is chosen sufficiently small so that it may be
considered plane and so that p, may be taken out as a constant. If we let the origin
be located at the field point, then with reference to Fig. 2.32,

AL ! Nonas
41r€o/ASop'V([r —r’I) ndS§

- P (LY. q s = P g1 o
47r€0/ASoV (R) nd§ 41reo/ASo R? a8

- = Pl 2.105
4rey ASon 4meq (2.105)

En
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where Qo is the solid angle subtended at the field point by AS,. As the field point
moves across ASy, as illustrated in Fig. 2.32, Q, increases to a value of 2r, and then in

Fic. 2.32

crossing the surface it suddenly changes to —2r. Consequently, the normal com-
ponent of E suffers a discontinuity, in crossing a charged surface, which we have
found to be
En — Enx = £e (2.106)
€

where p, is the surface charge density at the point of discontinuity. This result
corresponds to what was found in Example 2.4, except that we have now assured it
for any surface geometry.

We show later, in Sec. 3.3, that the tangential component of E is continuous across
a charge surface.
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Chapter 2

2.1. Find the electric field at the point z = 4, y = 2 = 0, due to point charges
Q. = 8 coulombs, @; = —4 coulombs, and located at z = 4 on the zaxisandy = 4 on
the y axis, respectively.

2.2. Positive point charges of magnitude 4, 2, and 2 coulombs are located in the
yzplaneat y =0,2=0;y =1,2z=1;and y = —1, 2z = —1; respectively. Find
the force acting on a unit negative point charge located at £ = 6 on the z axis.

Hint: Evaluate the vector force from each charge first, and then add up the partial
forces vectorially.

2.3. Find the potential at an arbitrary point (z,y,2) from the three positive charges
specified in Prob. 2.2. From the potential function find the electric field and the force
exerted on a unit negative charge at z = 6 on the z axis. This problem is an example
of evaluating the force on a charge by means of the field concept.

2.4. Consider two infinite positive line charges of density ¢ coulombs per meter
and located at y = +1, 2 =0, — o <z < «, together with two similar negative
line charges located at z = +1, y = 0. Derive an analytical expression for the con-
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stant potential curves in the zy plane. Sketch the constant potential curves and
the electric-field flux lines.

2.5. Find the force per meter exerted on the positive line charges by the negative
line charges of Prob. 2.4. Use both the field approach and Coulomb’s law. Note
that the use of the field approach is much simpler.

Hint: When Coulomb’s law is used, it is necessary to integrate over the total length
of the negative line charges. Begin by considering the force exerted on a length dl
of the positive line charge centered on z = 0 by charge elements —q; dzat +z,z = 1.
By symmetry this force is in the y direction only.

2.6. Consider two infinite line charges of density ¢; coulombs per meter, parallel to
the z axis, and located at z = +zo, y = 0. Consider two particular lines of flux, with
an angle 6 between them, leaving one line charge, and show that at infinity the angle
between these same two flux lines is 6/2.

Fi1c. P 2.6

Hint: Note that very near the line source the flux lines are radial and equally spaced
around the-line source. (The equal spacing represents the uniformity of the field
with azimuth, a condition that must hold very close to the line source.) The number
of lines is equal to the charge contained within a cylinder surrounding the line source.
At infinity the lines of flux from the two line charges must appear to arise from the
sum of the line charges as if concentrated along a line which is their center of gravity.
Consequently, they are radial and equispaced. The total lines of flux at infinity is
equal to the total charge contained within a cylinder surrounding both line charges.
By noting that the total flux in any given flux tube does not change, the relation called
for above can be established by setting up a proportionality between the angular
spacing of the flux lines near the line charge and at infinity and the charge contained
within cylinders surrounding one line source and both line sources, respectively.

2.7. What relation must be satisfied, analogous to that developed in Prob. 2.6, if
the line charges are replaced by two positive point charges located at z = tux,,
y=2z=0?

Hint: Note that the flux tubes have rotational symmetry about the z axis.

2.8. A positive line charge Ng; coulombs per meter and a negative line charge —q
coulombs per meter, parallel to the z axis, are located at z = +zo, y = 0. With refer-
ence to Fig. P 2.8, determine the maximum angle 6. for which the lines of flux from the
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positive line charge will extend out to infinity and not terminate on the negative line

charge.
Hint: Apply arguments similar to those needed for Prob. 2.6.

Fic. P 2.8

2.9. Consider two infinitely long concentric coaxial cylinders of radius a and b, as
illustrated. The inner cylinder carries a uniform surface charge of density o; coulombs
per square meter, while the outer cylinder carries a uniform charge of density o2 cou-
lombs per square meter. Use Gauss’ law to find the electric field in the three regions
r<a, a<r<b and r >b. What is the potential difference between the two
cylinders?

60°

®Y

Fi1c. P 2.9 Fra. P 2.10

2.10. A point charge of @ coulombs is located at z = 1, y = 1 in the space between
an infinite 60° conducting wedge. Find the location and sign of all the image charges.
What is the potential at the point z =2, y = 1?

2.11. A small body of mass m carries a charge Q. The body is placed h meters
below an infinite conducting plane. Use image theory to find the required charge @
in order that the electrostatic force may be just sufficient to overcome the force of
gravity. Assume m = 1 gram, h = 2 centimeters.

2.12. The electric field produced by a sphere of charge with a density p(r) is given by

B = {T3+Ar’ r<a
i (a® + Aa*)r—2 r>a

Find the charge distribution p(r).
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2.13. A charge distribution p(r) is placed inside a conducting sphere of radius a.
The electric field is given by
' _ [ Ar r<a
E, = { Ar? r>a

Find the charge distribution p(r) within the sphere and the surface charge p, on the
surface of the sphere.

2.14. Two concentric spheres of radii @ and b (¢ < b) are uniformly charged with
charge densities p,1 and ps2 per square meter. Use Gauss’ law to find the electric field
for all values of . If p1 = —ps2, find the potential difference between the spheres.

2.15. (a) A conducting sphere of radius a is placed in a uniform field E, directed
along the z axis. Positive and negative charges are induced on the sphere, which in
turn sets up an induced field E; such that the total field E, 4 E: vanishes in the
interior of the sphere and has a zero tangential component along the surface of the
sphere. Find the induced field E; inside and outside the sphere. Show that outside
the sphere the induced field is the same as that produced by an electric dipole of
moment P = 4ra’FE, located at the origin.

Hint: The field E, may be found from the function —V&®,, where &, = —zE, =
—Eorcos 6. Let the induced potential be &, for » < a and ®; for r > a. Both &,
and &, are solutions of Laplace’s equation and must vary with 6 according to cos 8
since &, does. From Prob. 1.15 appropriate solutions for the induced potentials are
found to be ®; = Arcos 8 (r < a), &2 = Br2cos 8 (r > a), since ®, must remain
finite at » = 0 and ®; must vanish at r = . To find the coefficients A and B,
impose the boundary conditions that at r = a the total potential is continuous across
the surface r = a and inside the sphere the total field vanishes.

(b) Find the charge distribution on the surface of the sphere.

2.16. A point charge @ is located a distance @ < b from the center of a conducting
sphere of radius b. Find the charge distribution on the inner surface of the sphere.
Obtain an expression for the force exerted on Q. The sphere is initially uncharged.
Does the force depend on whether the sphere is grounded or not?

2.17. A point charge @ is located at a distance R from the center of an insulated con-
ducting sphere of radius b < R. The sphere is ungrounded and initially uncharged.
Show that the force attracting @ to the sphere is

QW 2R — b
= ZreoRd (RE — B2

If the sphere is grounded, what is the force on Q?

2.18. A conducting sphere carries a total charge @,. A point charge ¢ is brought
into the vicinity of the ungrounded charged sphere. Obtain an expression for the
distance from the center of the sphere for which the force on g is zero.

2.19. The entire zz plane is charged with a charge distribution p,(z,z). There is no
charge in the region |y| > 0. Which of the following potential functions are a valid
solution, in the half space y > 0, for the problem, and what is the corresponding charge
distribution p,(z,2z) on the zz plane?

P, = e ¥coshz
®;, =eYcoszc
P; = e~V cos rsin 2
&, = sin z sin y sin 2z
2.20. (a) A small electric dipole of moment P is placed in a uniform electric field E,.
Show that the torque acting on the dipole is given by

T=PXE,
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() If the field E, varies throughout space, show that the dipole is also subjected to a

force given by
= (P * V)Eo

and that the torque about an arbitrary origin is then r X (P - V)E, + P X E,.
Hint: Let dl be the dipole vector length, and expand E, in a Taylor series about the
negative charge to find the first-order change in E, at the positive charge, i.e., to obtain

an,, an, dl = an dl

dl +a

. aEOz
AEo = az 3l dl +

Next note that the expression = * V gives the derivative in the direction of =. The net
force is the sum of the forces acting on the positive and negative charges.

2.21. For the four point charges located in the zz plane, as in Fig. P 2.21, show that
for r > d the potential ® is given by

—3Qdzz _ —3Qd?

= sin 6 cos 6 cos
41!'607'5 41!’601’3 ¢

P =

The four charges constitute an electric quadrupole (double dipole).

HinT: Superpose the potential from each charge, and expand the radial distance
from each point charge to the field point in a binomial series, retaining the first three
terms in the expansion; e.g.,

oty + -t (1= e 2 3 ()
2 LNz
|
|
r |
oy :
d// é |
7 |
_Q{ |
I
FIyal) : Y
| N
N
Q 4
x
Fi1c. P 2.21 Fia. P 2.22

2.22. Consider a charge distribution p(z’,,2") located within a volume V near the
origin of an zyz coordinate system, as in Fig. P 2.22. Expand R~!in a Taylor series
with respect to z’, y’, 2’ about the origin to show that the first three terms of the
multipole expansion for the potential ® is given by

- | eE&YE) o
®(z,y,2) = L dreR av P, + P + B3+ - - -

1
where $, = e / p(z' )y ,2") AV’ coulomb potential
14
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P, = —4_—1 (7'1:"1 / oz’ av’ + 1‘1/-‘/ Py, av’ + Tz-l/ pz’ dV’)
TEY v \4 vV

-1 _1.> . / 'pdV’ dipole potential
v

41reo T

1
& =— | rzs z'% dV' + 1y, Y dV’ + 17} 2% dV’ + 27 | 'y'edV’
8meo v 14 - v v
+ 2r;; / z'2'p dV’ + 2ry} / y'2'p dV’) quadrupole potential
14 14
and r,~! = 8r~1/dz, ;5 = 8%~1/dz 3y, etc.

Use this expansion to verify the results of Prob. 2.21.
Hint: Taylor’s expansion may be written symbolically as

Lali[(v vy +o2) 43+ g o2+ R
where all derivatives are evaluated at the origin. Note that dR~!/dz’ = —ar~1/oz,
92R-1/dz' 9y’ = 9%r~1/dz dy, ete., for 2’ =y’ = 2/ = 0, that is, at the origin.

2 %,5,2
r
2.23. Consider a ring of charge of radius 6

a, center at the origin, and lying in the zy
plane. The charge distribution around the
ring is given by

@i = q1c08 ¢ + g2 8in 2¢ coulombs
per meter

Use the multipole expansion of Prob. 2.22
to obtain the first three terms in the expres- ¢
sion for ® for r > a.

Fic. P 2.23



