CHAPTER 11

RADIATION AND ANTENNAS

We have noted that under time-varying conditions Maxwell’s equa-
tions predict the radiation of electromagnetic energy from current
sources. While such a phenomenon takes place at all frequencies, its
relative magnitude is insignificant until the size of the source regicn
is comparable to wavelength. In constructing circuits to operate at
higher and higher frequencies, this means that a point is reached where
radiation from the circuit will interfere with the desired circuit character-
istics and the use of other fechniques and devices, such as waveguides
and resonators, is necessary. In this chapter, however, radiation is the
desired end product. We shall, consequently, be interested in some of
the characteristics of radiators, such as their efficiency and the resultant
radiation patterns. We shall examine the transmitting properties of the
dipole antenna and the array of dipoles and conclude with a discussion of
the receiving antenna and reciprocity.

11.1. Radiation from a Linear Current Element

The simplest radiating structure is that of an infinitesimal current ele-
ment. An understanding of the properties of such an antenna is of great
use since, in principle at least, all radi-
ating structures can be considered
as a sum of small radiating elements.
Furthermore, many practical an-
tennas at low frequencies are very
short compared with wavelength,
and the results we obtain here will
be sufficiently accurate to describe
their behavior.

Thus, consider a linear current ele-
ment I = I,e™tof length Az, oriented
in the z direction and located at the
origin, as in Fig. 11.1. For con-
venience, we assume that I, is a real amplitude factor. The charge
associated with this current element may be obtained by noting that the
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Fic. 11.1. An infinitesimal linear-cur-
rent radiator.
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current flowing into the upper end must equal the time rate of increase of
charge at the upper end. Thus jwQ = I, or Q = —jI/w at the upper
end and — Q = j/,/w at the lower end of the current element. The small
linear current element may be viewed as two charges Q and — @ oscil-
lating back and forth.

From Sec. 9.9, the vector and scalar potentials from general volume
distributions of current and charge are

=5 /V%e—f"w av’ (11.1a)
1 P kR gV
P = 476_:) Vﬁe kB gV (11.1d)

In the present case we are dealing with a differential current element only,

so that
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The oscillating charge is equivalent to a small electric dipole of moment
Q Az = —jI,Az/w. (This accounts for
the antenna being also referred to as an
elementary dipole, or doublet.) The
scalar potential ® is readily seen to be

A=

az e-jkor

(a, cos @ — a4 sin §)e ko (11.2)

Az given by
Q e—7koRy g~ 7koR,
®= 41r—eo< R TR
-Q- == cos @ .
2 where R; and R, are the distances spe-

Fre. 11.2. Evaluation of scalar cified in Fig. 11.2. From this figure
potential. it is seen that R; =~ r — (Az/2) cos @
and R; =~ r + (Az/2) cos 6, since the paths from the ends of the dipole to
the field point are essentially parallel. The expression for ® becomes

® — Qe—kor [ejk,%‘coso (1 n Az ccﬁ) _ e‘”‘"%“” (1 _ Azcos 0)]

4meor 2r

after replacing B,~! by
—1
i (1 _ Azcos e) - (1 L Az cos 0)

2r 2r
and analogously for R,~1. Using the expansion e¢* =~ 1 4 z for z small,
we obtain ‘
® = Q Az (cos +ﬂ€o €S O\, jeer (11.3)
4meg r? T

since ko (Az/2) cos 6 is small.
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The electric and magnetic fields are given by (see Sec. 9.9)

H= 4 VXA . (11.4a)

E = —juA — V& (11.4b)

E= —jul + A (11.4¢)
Jwhoeo

From (11.4b) we get, for E,

Jwpolo Az

E=- 4mr

(a, cos § — ag sin §)e—kor

+ 7lo Az v <COS 0 + Jko cos 0) —&o (11.5)

4rweg r

after replacing @ by —jlo/w in (11.3). We may readily show that the
Lorentz condition (jwuees) ! VV+A = —V& is satisfied by A and & of
(11.2) and (11.3). We have

_ p.oIo Az[1 9 2 ekt 1 3 9 e Tkor
v-A= 4r [20 cos 8 r ) rsin6ad sin® ¢ r

after expressing the divergence in spherical coordinates. Carrying out
the differentiation gives

VA= — wolo Az (Jko cos 8 n cos2 0) g—ter (11.6)

47 r T

We see from this expression that (jwueeo)™! VV « A is equal to —V®, and
hence we may compute the fields from the vector potential A alone, as in
(11.4¢). Again we point out that this possibility arises for time-varying
fields since current and charge are not independent; i.e., they satisfy the
continuity equation. In this specific case the choice of jw@Q = I, (the
continuity condition) is the necessary relationship for ® and A to satisfy
the Lorentz condition.
After carrying out the operations indicated in (11.4) we find that

H = Iflﬁz 6 (Jko + r2> et (11.7a)
E=-— 102:'2'7]%’ cos 6 (‘7—:-62—0 + e,
- Iifz ‘ZIEZ;O sin <_k° ‘7—:%9 + %,) e~ray  (11.7D)

The radial component of the complex Poynting vector is

2 3 y
EXH*.a, = EH} = (I"Azsina) é(k_" - _J_)
41!' ko

r2 rd

rhe integral of one-half of the real part of this expression over a sphere of
radius r gives the total average power radiated into space by the current
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element. From the above we see that this radiated power is given by

_ (koloA2\*Z, (2~ [~ . _ (kolyAz)?

The only part of the fields entering into this expression for the radiated
power is the part consisting of the terms varying as r—!, that is, the part

_ jko[o Az
T 4ar

_ jkolo Az Z,
Bo = 4nr

H, sin @ e 7k (11.9a)

sin 6 e~k (11.9%)

This part of the field is therefore called the far-zone, or radiation, field.
For large values of r it is the only part of the total field which has a sig-
nificant amplitude. Note in particular that E, vanishes as r—2 for large r.
The far-zone, or radiation, field is a spherical TEM wave since the con-
stant-phase surfaces are spheres and E, H, lie in a surface perpendicular
to the direction of propagation (radial direction). From (11.9) it is seen
that Ey = ZH,, which is the same relation that holds for plane TEM
waves.

The part of the field varying as r—2 and 3 is called the near-zone, or
induection, field. It is similar in nature to the static fields surrounding
a small linear-current element and an electric dipole. This induction
field predominates in the region r << Ao, where A is the wavelength. The
induction field does not represent an outward flow of power, but instead
gives rise to a storage of reactive energy in the vicinity of the radiating
current element. This energy oscillates back and forth between the
source and the region of space surrounding the source. The complex
Poynting vector involving the near-zone-field components is a pure
imaginary quantity.

The total power radiated by an antenna is conveniently expressed in
terms of the power absorbed in an equivalent resistance called the radia-
tion resistance. For the current element the radiation resistance R, is
defined by the relation

WK RoI2? = P, (11.10)
From (11.8) we find that
2 2
Ry = k082" 7 g (ﬁ‘i‘> (11.11)
6m Xo

after replacing ko by 27/ and Z, by 1207 ohms. As an example, if
Az = \¢/100, we find that By = 0.079 ohm. This example shows that
for a current element which is 1 per cent of a wavelength long, the radia-
tion resistance is very small. Appreciable power would be radiated only
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if the current amplitude I, were very large. A large current, on the other
hand, would lead to large amounts of power dissipation in the conductor,
and hence a very low efficiency. We can conclude from this analysis of
the radiating properties of a short linear current element that current-
carrying systems that have linear dimensions small compared with the
wavelength radiate negligible power. An efficient radiator or antenna
must have dimensions comparable to or greater than the wavelength.

A further property of the linear current radiator that is worthy of con-
sideration is the directional property or relative amount of power radi-
ated in different directions. The power density radiated in the direction
specified by the polar angle 6 and azimuth angle ¢ is

dP = 142 Re (E X H*- a,)

2

= g%’ﬂﬁ—z) Z,y sin® 0 watts/unit solid angle  (11.12)
The radiated power per unit solid angle is independent of the azimuth
angle, as expected, because of the symmetry involved. Asa function of 6,
the power radiated per unit solid angle varies as sin? §, and hence the
radiation is most intense in the § = x/2 direction and zero in the direction
6 = 0, 7. The directivity function D(6,¢) in the direction 6, ¢ is defined
as the ratio of the power radiated per unit solid angle in the direction 6,
¢ divided by the total average power radiated per unit solid angle. From
(11.8) the total power radiated is P,. Since there are 4r steradians in a
sphere, the average power radiated per unit solid angle is

& - (Ioko A2)2Zo

i e (11.13)

A fictitious isotropic radiator radiating a total power P, uniformly in all
directions would radiate an amount of power, per unit solid angle, given
by (11.13). For the linear current element the directivity D is a function
of § only. Combining (11.12) and (11.13) shows that

D(9) = 4849 sin? g = 1.5sin% 0 (11.14)

The maximum value of D(8) is D(x/2) = 1.5, and this is commonly
called the directivity of the radiator. The directivity is a measure of
how effective the antenna is in concentrating the radiated power in a given
direction.

The directivity function D(,¢) defines a three-dimensional surface
called the polar radiation pattern of the antenna. Figure 11.3 illustrates
the polar radiation pattern for the short linear current radiator. In a
plane ¢ = constant, the beamwidth between the half-power points is 90°
[determined by solving the equation D(8) = 0.5D(r/2) or sin?§ = 0.5].
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z The directivity function has been
defined as the ratio of the power den-

075 sity in a given direction compared with

the power density of a fictitious iso-

/ tropic radiator with the same total
15 radiated power. The antenna effi-

\ ciency can be included if a function
0.75 is defined as the ratio of power density

in a given direction to the power den-
sity of an isotropic radiator with the
same input power. The latter func-
Fi1a. 11.3. Cross section of polar radia- tion i pll dpth i f ion @
tion pattern for infinitesimal current 1on l.s (fa‘ e € gain unct*on (6,9),
radiator (complete pattern is obtained and it includes the losses in the an-
by revqlving cross section around tepna. The maximum value of @ is
polar axis). often referred to as the “gain’’ of the
antenna. The distinction between directivity and gain is not always
carefully adhered to, in practice.

11.2. The Half-wave Antenna

The short linear current element considered above constitutes a mathe-
matical ideal radiator. The results of the analysis, together with the
principle of superposition, may be used to find the fields radiated by an
antenna structure on which the current distribution is known. An
antenna which is often used in practice is the half-wave dipole antenna
illustrated in Fig. 11.4. This antenna consists of two thin linear con-

/
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/
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F1a. 11.4. Half-wave dipole antenna.

Jductors each of length \o/4 and connected to a two-wire transmission line
at the center. The radiation resistance of this antenna will be shown to
be 73.13 ohms. This is a practical value of radiation resistance for which
it is possible to obtain a good efficiency, i.e., a large amount of radiated
power compared with the power loss in the conductors.
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On a thin half-wave antenna it is found experimentally that the current
along the antenna has a sinusoidal variation of the form

Iet = g cos koz et

where I, is the current amplitude at the feeding point, assumed real for
convenience. Each current element 7 dz may be considered as a short
linear current radiator and the total field obtained by summing up the
fields radiated by each element. If we confine our attention to the far-
zone or radiation field only, then, by using (11.9), we see that the current
element I, cos koz dz at z radiates a partial field

dEy = ‘%‘};IM cos koz e dz

dHy = Y.dE,

From the law of cosines

R = (r* 4 22 — 2rzcos §)% = r[l - (22>cosﬂ+§;]

r

¥

The latter expression can be expanded in powers of z/r by the binomial
theorem. Since r 3> A is assumed, we may retain the leading term only
and get B = r — zcos 0. This result may be interpreted geometrically
as equivalent to the assumption that the paths from each differential
element to the distant field point are parallel. In the denominator of
dEs we may replace R by r, but in the exponential we must use the more
accurate expression r — z cos §. The total radiated electric field is thus

y i No/4
E0 — M e—ikor ° cos k()z eikoz cos @ dz
4y —No/4

- jkoIoZo sin 6 ¢

X No/4
—jkor / €08 koz cos (koz cos 6) dz
2xr 0

after replacing the exponential by cos (ke cos 6) + j sin (ko2 cos 6) and
noting that the term involving the sine is an odd function and integrates
to zero. The integration is readily performed by using the identity

cos koz cos (kez cos 8) = 14{cos [koz(1 + cos 8)] + cos [kez(1 — cos 6)]}
The final result is

{sin T (1 4+ cosf) sin T (1 — cos 9)
—Jgkor 2 2

_onZoSino
B, = ¢ 1+ cos @ +

4rr 1 —cosé

GTZs cos <;—r cos 0)
—_ —7kor 1
2nr e’ sin 0 (11.15)
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The total power radiated is obtained by integrating one-half of the real
part of the complex Poynting vector EHj = Y|Es|* over a sphere of

radius r. We have
cos? cos 6
I 02Z 0 )
/ / " sing do d¢
122 cos? <2 cos 0)
=020 do (11.16)
0

47 sin @

By an appropriate change of variables the integral is transformed tot

127, f“”' 1 — cosu
0

8r u

P, = du

The latter integral is
[)2’ L= C08% gy = 1n 1781 ~ Ci (2) + In 20
where Ci z is the cosine integral
Ciz=— /, 95
: U

and is tabulated. In particular, Ci (2r) = —0.0226. Thus we have
I o 2Zo

P, = [ln 2r(1.781) — Ci (2r)]

I ° Z °(2.4151 + 0.0226) = 36.571 (11.17)

The current at the feeding point is I, and hence from the relation
1412Ry = P,, the radiation resistance is found to be 73.13 ohms.

© The near-zone field for the half-wave dipole does not contribute to the
radiated power. In actual fact, the near-zone field represents a storage
of reactive energy in the immediate space surrounding the antenna.
This reactive energy gives rise to a reactive term in the input impedance
presented by the antenna to the transmission-line feeder. By choosing a
proper antenna length, the average electric and magnetic energy stored
in the near-zone field can be made equal and the input reactive term will
vanish. This is equivalent to adjusting a tuned circuit to a resonant con-
dition. For a thin half-wave dipole antenna this resonant length is
found to be a few per cent shorter than a half wavelength.

t J. Stratton, ““Electromagnetic Theory,” sec. 8.7, McGraw-Hill Book Company.
Inc., New York, 1941.
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The directivity of the half-wave dipole is given by

. <7r 0 R
60 | cos\gcos
36.57 sin 6

The maximum value of D is 1.64, which is only slightly larger than that
for the short linear current radiator. A plot of the radiation pattern is
given in Fig. 11.5. This pattern is
similar to that of the short current

radiator except that the half-power

beamwidth is 78° instead of 90°. /
0.82

11.3. Introduction to Arrays

In examining the radiation pattern
of an elementary dipole, we note that
very little directivity is achieved. 0.82
Maximum radiation takes place at \
right angles to the axis; however, this
falls off relatively slowly as the polar
angle decreases toward zero, and fur- F1e. 11.5. Radiation pattern of a half-
thermore the pattern is uniform with “*'° dipole antenna.
respect to azimuth. Although the half-wave dipole achieves a some-
what greater concentration of energy in the direction normal to the axis,
its pattern does not differ substantially from that of the elementary
dipole. We should find that other-length resonant-wire antennas, while
producing more complicated patterns, do not result in highly directive
patterns. One way in which greater control of the radiation pattern
may be achieved is by the use of an array of dipole (or other) antennas.
Such arrays are capable of producing directional patterns or special char-
acteristics of other sorts.

If we visualize the total primary current source as made up of differ-
ential radiators, then the resultant pattern is the superposition of the
field contributions from each elementary source. This means that a
highly directive antenna will result if the amplitude and phase of each
element can be suitably chosen so that cancellation of the fields in all but
the desired direction is essentially achieved. The resonant-wire antenna
does not permit sufficient flexibility of assignment of phase and amplitude
since all elements are in the same phase while the amplitude variation is
sinusoidal. The desired freedom can be achieved by arranging together
a number of separately driven antennas whose spacing and excitation are
at our disposal. In general, it is found that desired results can be
achieved through the use of identical elements equally spaced, and this
case only will be considered. As a consequence of using identical array

Do) =

(11.18)

78° 1.64
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elements, it turns out that the total pattern can be formulated as the
product of the pattern of the element times the pattern of the array, as if
each element were an isotropic radiator. In this way the characteristics
of an array can be discussed independently of the characteristics of its
Az elements.
: As a very simple example we consider
| two identical infinitesimal linear current
__Z_t elements which are collinear and along
| the z axis with a spacing d. The geo-
metric arrangement is illustrated in Fig.
11.6. Antenna 1ischosen at the origin,
and it produces an electric field at a far-
zone point P that, according to (11.9b),
equals

F1a. 11.6. Array of two collinear in- Ey = -M__I°_M
finitesimal current elements. 47

sin 0 e~ (11.19)

The field due to antenna 2 is similar except that the distance to P is R
instead of r. Using the law of cosines we have

R = (r* 4 d? — 2rd cos §)* = r(l - 2dc_r0s.6 £>%
The latter may be expanded by means of the binomial theorem in
powers of d/r. The statement that P is in the far zone of the array
requires that r be sufficiently greater than d so that for phase calculations
we can take the two leading terms R = r — d cos 6, with little error.f
This procedure is completely equivalent to that followed in the analysis
of the half-wave dipole and similarly permits the geometrical interpreta-
tion that the paths from each array element to the field point may be
considered to be parallel. It is sufficient to take R = r when only mag-
nitudes are concerned. With these ““far-zone approximations,” the field
due to antenna 2 is
En - jkoZoIo Az

o sin @ —skor—dcos 0) (11.20)
and the total field is

_ jkoZoIo Az . e~ kot kod cos 6
0= = sin 6 " 1+ ¢ ) (11.21)

E

t The criterion is usually specified as

2d?
r> v

although the numerical coefficient is sometimes taken as unity or 4.
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If instead of infinitesimal current elements we had assumed arbitrary
antennas 1 and 2, which were identical geometrically and were excited by
identical currents but were displaced from each other a distance d along
the polar axis, then the field of antenna 1 could be written

e—jkor

E, =1(0,9) ; (11.22q)
while that of antenna 2 would be
—3jkor
E, = £(6,4) % gitod oon 0 (11.22b)

Equation (11.22a) expresses the fact that any antenna, including arrays,
may be considered as made up of a large number of elementary sources,
where, provided the field point is in the far zone, the resultant field due to
each element contains a common factor e~ /r just as in the previous
example. Apart from this factor we have a complex-phasor-vector sum-
mation, f(6,¢), which in general is a function of the direction (6,4) to the
field point. Antenna 2 being identical with antenna 1 results in a super-
position of partial fields from elements that correspond to those of
antenna 1, except for a displacement d along the z axis, hence resulting in
an additional common phase factor e#ee¢ for the current elements of
antenna 2. The total field due to the two-element array may be written

—3jkor
E = £(6,9) e—r— (1 4 eitodoon0) (11.23)

Note that the specific example leading to (11.21) conforms to this general
result. ’

For N radiators spaced a distance d apart along the z axis and equally
excited, the previous result can be readily generalized to give

N-1
—ikor
E = £(8,8) i-;-— [1 + 2 eiko»dw-o] (11.24)
n=1

and it is now necessary that r >> Nd for the far-zone approximation to
hold. The form of (11.24) displays the total field as the product of the
pattern of the element antenna and what we call the array factor. The

latter, in this case, is
N-1

1 + 2 ejkondnoso
n=1

and may also be thought of as the pattern of an array of isotropic radiators
excited in the same way as the actual antennas. More generally, if the
nth antenna has a relative amplitude C, and phase e, then the array
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factor A becomes
N-1

A=14 Y Cuoitmimsrar (11.25)

n=1

Normally, only the absolute value of the field is required. The array
factor in (11.23), for example, becomes

cos kod cos 6

5 (11.26)

IA] — ll _I_ ejkodcoaol =

Example 11.1. A Two-element Array. Let us calculate the pattern
due to two infinitesimal dipoles whose axes are ‘“horizontal”” but which
are spaced ‘“vertically,” as shown in Fig. 11.7. They are identical, and

the magnitude of their excitation is the

4= same, but a relative phase shift of e«

2 . E, is imposed on antenna 2, as noted in

I P Fig.11.7. Since thisgeometry nolonger

T has the axial symmetry of earlier cases,
r

a pattern that is a function of ¢ in addi-
tion to @ must be expected.

The electric field of antenna 1 at
+—=  point P is found from (11.9b) to be
_ ]koZ oI 0 Az

=L T T g —jkor
Ey, o Y e (11.27q)

Kyl
]
D
a3
LA U,

/

where ¢ is measured from the axis of
the current element and is the polar
angle relative to the dipole axis. The
direction of Ey is normal to r in the OP-QY plane, as illustrated in Fig.
117. For the field of element 2 we get

F1c. 11.7. Vertical array of two hori-
zontal elementary dipoles.

_ jkoZoIo Az
g = t—— 7

Ey 47r

Sin  ekod cos bg—skod g—skor (11.27b)
where the factor e~ is due to the relative phase of excitation of the
second element. The total field E; is then

- JkoZoIo Az e

E.p - —iker gin 'p [1 + e7kod (cos 0—1)] (1128)

and the quantity in the bracket is readily identified as the array factor.
The absolute value of this array factor is found to be

[A] = |1 4 ekodtcort-D| = 2 COSM%B_—_I_) (11.29)
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Equation (11.28) can be put into a more useful form by expressing ¢ in
terms of ¢ and 6. From the geometry of Fig. 11.7 the unit vector in the
r direction, a,, is

a, = a,sin  cos ¢ + a, sin 0 sin ¢ + a, cos 6
so that siny = |a, X a,] = (1 — sin? ¢ sin? §)¥%
Furthermore, Ey = Esaq + E,a,
where E, = — By °o8 6 su.) d

4/1 — sin? ¢ sin? @
B, = —Ey cos ¢
§ = e
v/1 — sin? ¢ sin? @
since ay = —a,cscy + a, cot ¢

= —(agcos 0sin ¢ + a4 cos ¢) csc ¥ + a,(cot ¥ + sin 6 sin ¢)

We may now write the total field E as

E = —jkoZ oI o Az g7 cos kod(cos 8 — 1) ofbodoon 0-1)/2
2nr 2

X (ag cos 6 sin ¢ + a, cos ¢) (11.30)

The full three-dimensional pattern of the antenna is given by (11.30).
However, instead of treating the pattern as a whole, it is (usually) suffi-
cient to describe the antenna pattern in the principal coordinate planes.
We obtain, then, the following:

yz-plane pattern (¢ = 7/2)

koZoIo Az
27r

cos Fed(cos 6 — 1) l (11.31)

lE!=E0= 5

|cos 6|

zz-plane pattern (¢ = 0)
koZ oI 0 Az

o kod(cos 6 — 1)
|E| = E4 = Sy cos 5 ‘ (11.32)
zy-plane pattern (0 = 7/2)
koZolo Az kod
|E| = E4 = ——2~°1r—£— |cos ¢| | cos 5 (11.33)

For the case where d = \o/4, hence kod = /2, the pattern in the zz
plane is proportional to cos [(w/4)(cos § — 1)], while the pattern in the yz
plane is obtained by multiplying the former pattern by cos 6. The results
are plotted in Fig. 11.8. For the case where d = 3\o/4, the results are
plotted in Fig. 11.9. Note that the pattern in the zy plane isindependent
of d and is simply a sinusoid in ¢.
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The patterns of Figs. 11.8 and 11.9 show a maximum of radiation in
the direction of the positive z axis. This could have been foreseen from
the nature of the excitation. We note that antenna 2 is excited with a
lagging phase that corresponds precisely to the phase delay of a wave

z Y3

W x y

cos [%(COS 60— 1)] |cos 6] cos [%"(cos 6~ 1)]

Fre. 11.8. Normalized patterns in zz and yz planes for vertically stacked horizontal
dipoles separated by A\/4.

2 AZ

cos [3Z (cos §~1) cos 6||cos [3Z(cos 6 —1)
[4 ] l 4

Fic. 11.9. Normalized patterns in zz and yz planes for vertically stacked horizontal
dipoles separated by 3A./4.

leaving antenna 1 and propagating in the positive z direction. Conse-
quently, the partial fields contributed by antennas 1 and 2 arrive in phase
and therefore add together in the -2z direction. For other directions
there will usually be only partial addition. If the number of elements is
increased and a progressive phase delay given each successive element,
then the partial fields of each element can be made to add in the 4z direc-
tion. However, when a large number of elements are involved, then
usually, in other than the ‘“forward’’ direction, the phase of each con-
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tribution will tend to cause cancellation of the field from each element,
with a net result that the field strength in these directions is relatively
small. An array of the type just described is called an end-fire array
since the maximum occurs along the line of the array. Let us consider
long arrays of this type analytically.

11.4. Linear Arrays

We consider now a linear array of N elements equally spaced a distance
d apart. If we choose the line of the array to be the polar axis, then the
geometry is as illustrated in Fig. 11.10 and
the array factor is given by (11.25). The
latter can be easily rederived if the array of
Fig. 11.10 is considered to be composed of
isotropic elements where the amplitude and
phase of the nth element, relative to the ref-
erence element at the origin, are Cre’.

A case of considerable interest will be con-
sidered where the amplitude of excitation of
each element is the same and where the rela-
tive phase shift of the excitation is of the form

an = —nkedcos o (11.34) .

2

Q| || e |||

where 6, is a constant. In this form, by
choosing 8, = 0, the end-fire case previously #*
discussed results. If 8, = x/2, then all a,’s F16. 11.10. Linear array of
are zero and each element is excited in phase. ™™ elements along z axis.
In this case we see by inspection that the maximum radiation occurs in
a direction normal to the line of the array, since in this direction the
partial contribution from each element adds directly. An array for which
this condition holds is designated a broadside array. By considering the
excitation phase according to (11.34), we see that the special cases of end-
fire and broadside arrays are included.

Putting (11.34) into (11.25) and setting C, = 1, we obtain

IAI = l]_ + ejkod(cos 6—cos ;) + ej2kgd(cos 6—cos 65) + « .. + ej(N—l)kod(coa f—cos oo)l
(11.35)

for an array of N elements. Since (11.35) is a geometric progression with
a ratio efd(ees b—c0s 80} the sum can be expressed as

. Nkod(cos 8 — cos 6)

4 iV kod(cos b—co0s 80) — | s 2

[ I - —E;’k“d(cos 0—cosfe) — 1 | . kod(COS 9 — cos 00)
sin 5

(11.36)
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This pattern, considered as a function of = ked(cos 8 — cos 6o), is of the

form
sin Nz
2
.
sin §
A typical curve of f(z) for large N is shown in Fig. 11.11. Note that for

z = 0, f(z) approaches the value N. Furthermore, the nulls will occur

4] = f(z) = z = kod(cos @ — cos 6)  (11.37)

N_

b _Ax 2 0 2n Ar 67 o

N N N N N N

F1c. 11.11. Universal pattern for a linear array with uniform amplitude and progres-

sive phase shift.

for Nx/2 = =, 2m, 37, . . . , (N — 1)r (larger values correspond to pat-

tern repetition). Also if N is large, the subsidiary maxima correspond

approximately to maxima of the numerator; that is, z = 3r/N, 57/N,
At these points the magnitude of f(z) is given by

3 2N 5 2N T 2N
a result that depends on N being sufficiently large so that sin (3r/N) =~
3r/N, etc. Under these conditions we see that the sidelobe level, i.e.,
the ratio of the peak amplitude of the main lobe to the subsidiary-lobe
peak amplitude, is independent of N, for large N. Its value is 3x/2, or
about 13.5 decibels.

Since the maximum value of f(z) occurs for z = 0, then in the actual
pattern the main beam is in the direction § = §,. We note, then, that
the direction of the main beam can be shifted by altering the progressive
phase shift. The position of the first nulls of the main beam is important
since it characterizes the beam width. We shall designate the “upper”’
null by the value of 6 = 6, + 6+ and the “lower’” null by § = 6, — 6~
Then 6+ satisfies the equation

kod[cos (80 + 6%) — cos 8o] = 2

L
F (11.39a)
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while 6- is given by

kod[cos (8o — 6~) — cos o] = — %’7‘- - (11.39b)
If N is very large, it seems likely (we shall confirm this later) that 6+ and
6~ will be very small. In this case we can approximate cos 6 by (1 — 6%/2)
and sin 6 by 6, hence obtaining

. (0+)2
cos (6o + 6+) — cos 6y =~ — 0 sin @ — 5~ cos 6o (11.40a)
_ o (6)?
cos (fp — 6~) — cos 6y = 6~ sin 6y — 5 cos fo (11.40b)

Provided that 6, is sufficiently greater than 6+, the quadratic term in
(11.40) can be dropped. With the resultant expression, (11.39) can be
solved for 6+ and ¢-, yielding

2 1 _ Ao
N kdsin 6 Ndsin 6,

The assumption that 6+ and 6~ are small is seen to be justified provided
Nd/\ is large and 8, not too close to zero, as we have already required.
The beamwidth A may be defined by the total angle between nulls, a
quantity which is simply 26+. Assuming that N is large, then the total
array length L = (N — 1)d = Nd, and

_ 2Xo
L sin 6,

ot = 6~ = (11.41)

A (11.42)
For a given array length in wavelengths, the minimum beamwidth occurs
for the broadside array, where 6o = /2, in which case

_ 2)o
Do = - (11.43)
For the end-fire case 8, = 0, and (11.41) does not hold. However, we
can return to (11.40) and utilize the quadratic term (the linear terms go

out) to establish 6+ = 6~ = v/2A¢/Nd. Consequently,

by = 2.4/ (11.44)

for large N.

11.6. Two-dimensional Arrays

The linear arrays discussed above produce patterns which are axially
symmetric. If, for example, a highly directive pencil beam is desired,
then the linear array by itself cannot be used to produce such a pattern;
that is, we can construct an array that is long compared with wavelength



410 ELECTROMAGNETIC FIELDS [CrAPr. 11

and thereby achieve a narrow beam but the array pattern will be the same
in each longitudinal plane. Further shaping is required in this case.
We recall, however, that the array pattern must be multiplied by the
directivity of the element of the array to obtain the over-all pattern.
The element can itself be an array with its elements spaced at right angles
to the original array, as suggested in Fig. 11.12a. In this case the array
element can produce a narrow beam symmetric about its own axis. The
product of the two patterns, in this case, yields a maximum only over a
r4
Each vertical array

element is a
horizontal array

/ ’
x (@)

®

F1c. 11.12. (a) A vertical array of horizontal arrays; (b) three-dimensional pattern
of vertical array, horizontal array, and resultant pattern obtained by multiplication
(sidelobes neglected).

small range of 6 and ¢ for which the component patterns are maximum.
The over-all result is an array factor that corresponds to two pencil beams
back to back. This is illustrated in Fig. 11.12b. It is easy to eliminate
one of the pencil beams by choosing the individual elements of the array
to have a null in the direction of one of the two beams.

We note in the example discussed above that the final physical arrange-
ment is that of a two-dimensional array. The pattern capabilities of
such an array are much more versatile than those of the linear array.
For a class of problems the pattern of a two-dimensional array, such as
the one discussed above, can be reduced to that of determining the pattern
of two linear arrays. Let us formulate this more specifically.

Figure 11.13 illustrates a two-dimensional array with uniform hori-
zontal and vertical spacing h and v, where h and v are not necessarily
equal. The total number of horizontal rows is N, and the total number
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of vertical columns is M. We designate by the double subscript mn the
element in the mth column and nth row. Then if the excitation of the
mnth element can be written in the form ,

gi(matnf)

where o and 8 are constants, we have a uniform (progressive) phase shift
from one element to the next along either the horizontal or vertical direc-
tion. Furthermore, we are considering
the case where the amplitude of excita-
tion is constant, the so-called uniform
array. Under these conditions it is pos-
sible to think of the array as a linear
array of vertical elements, the latter
being linear arrays of horizontal ele-
ments, or vice versa. In either case the
array factor A is the product of the array
factor of the horizontal array 4, and the
vertical array 4,. This result can be P
substantiated analytically, and we turn Fic. 11.13. Two-dimensional array.
now to this task.

Let the direction to the field point P(8,¢) be given by the unit vector
a,, where

a, = a, sin 6 cos ¢ + a, sin  sin ¢ + a, cos 6

The mnth element can be described by a vector g, from the origin to its
location; that is, '
Omn = mha, + nva,

In accordance with the far-zone assumptions, the contribution from the
mnth element arrives at P with a phase, relative to that from the reference
element at the origin, which arises owing to the difference in the respective
path lengths, where the latter is simply the projection of gm, on a,. The
total pattern or array factor is thus

N M
A= E E eIk o0mn-8rgi(matnB) (11.45)
n=0m=0

Expanding the dot product and combining terms allow us to write

M N
A= E g—Fm(koh sin 0 sin ¢—a) z g—n(kov cos 6—B) (11.46)
m=0 n=0

and it is clear that the total array factor is the product of the separate
linear array factors; that is,

A = 4,4, (11.47)
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M
where A, = g—imkoh sin 6 sin ¢—a) (11.48q)
m=0
N
A, = E g~ (kv cos 6—f) (11.48b)
n=0

If the electric field of an array element is f(6,¢)e~7*/r, then the over-all
field produced by the array is

e"jkar
E = A44.£(0,4) (11.49)

One of the conclusions reached concerning the linear array was that the
sidelobe level, for a large number of elements, is a constant. For the
two-dimensional array of the type considered, this same conclusion must
hold, since the total array factor is simply the product of the individual
linear array factors. In some cases it is of importance to adjust the side-
lobe level below the values achieved by the class of arrays described here.
In this instance the restriction to uniform amplitude excitation, such as
has been assumed, must be removed. Even greater generality may be
desired where both amplitude and phase of each element are independ-
ently specified. A fairly elaborate theory for optimizing array patterns
with respect to certain desired parameters exists, and a means for syn-

thesizing such arrays is available. A

Az I \ number of references are given at the
e oo end of the chapter for the reader who
h TT ishes to pursue this topic further
L olhe }v <@ wishes to p p .
o * I w 11.6. Continuous Distributions
L L] L] [ ] L]
. — ) l Figure 11.14 again illustrates a two-

Y  dimensional array where the over-
all length is L and the widthis W. In
. : terms of numbers of elements and
e o b psionel 8T8y ocing, L ~ hM and W ~oN. If
all elements are excited in phase,
then a pencil beam in the directions (6 = 7/2, ¢ = 0, 7) is produced.
Considered in the zz plane (¢ = 0), we see from (11.47) and (11.48)
that the pattern is that of the vertical array (the horizontal array factor
is a constant in this case), and hence the beam width is simply 2\o/W.
In the zy plane (8 = /2), Egs. (11.48) reveal that the pattern is due to
the horizontal array factor alone, so that the beam width is 2\o/L. This
result does not depend on the actual spacing of the elements so long as
the total number is large. One can increase the number of elements and
decrease their spacing, until in the limiting case a continuous distribution
is obtained.

x
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A broad class of radiating antennas, particularly useful in the micro-
wave region, are horn-type radiators, paraboloidal reflectors, and lenses,
some of which are illustrated in Fig. 11.15. In each case the energy must
pass through a physically distinct aperture. It is possible to show that
the field in the aperture behaves like an equivalent source. This fact is
related to Huygens’ principle, which states that each element of a wave-
front may be considered as a secondary source. One may therefore use
the results just obtained for the uniform array to predict the beam width

=~ =

(a) Sectoral H-plane horn

(b) Sectoral E-plane horn (c) Pyramidal horn

Wave guide
feed at focus

(d) Conical horn
(e) Paraboloid

Fic. 11.15. Aperture-type antennas.

due to an aperture-type antenna for the case of uniform-aperture field
intensity. ‘

In Table 11.1 the theoretical results for several types of radiators are
given. In addition to the case of uniform “illumination,” tapered inten-
sities and waveguide distributions are also shown. For the TE,, aperture
distribution, the equivalent vertical array is uniform but the horizontal
array is tapered sinusoidally. Results are also given for circular aper-
tures, and although the numerical factor cannot be checked from the
array theory, the behavior as a function of size follows the expected form.
The results in Table 11.1 assume that the aperture dimensions are at least
several wavelengths.

11.7. Network Formulation for Transmitting-Receiving System

So far we have discussed the antenna under transmitting conditions
only. In this and the following section we shall show that the behavior
of the receiving antenna can be determined from its characteristics when
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TasLE 11.1. BEaM WIpTH FOR SEVERAL APERTURE-TYPE ANTENNAS
Dimensions large compared with wavelength

Width of major lobe
Type Field distribution between nulls
across aperture
zy plane zz plane
. . 115° 115°
Rectangular paraboloid.............. Uniform I/ W/
. . . 172° 172°
Rectangular paraboloid.............. Sinusoidal I/ W /ne
. . . . 140° 140°
Circular paraboloid (diameter D)..... Uniform D/ D/
172° 115°
Pyramidal hornt.................... TEso /% W/
. . 194° 140°
Conical hornt (diameter D).......... TEn D/ne D/r

t Assumes small flare angle.

transmitting. To assist in this analysis we first derive the Lorentz
reciprocity theorem.

Let E,, H, and E,, H, represent solutions to Maxwell’s equations, in a
source-free region of space, which arise from different sources outside the
region under consideration. Then we may form

V'(Eabe)=Hb'Van'-Eu'Vbe

and if we utilize the fact that the fields satisfy the homogeneous Maxwell
equations, this may be written

V. (Ea x Hb) = —jw/.lH,, . Hb - jweE., . Eb
By interchanging the subscripts a and b, we also have

V.E X H) = —jwuH, - Hy — jweE, + E,
Consequently, V. (E.XH;) —V-(E, XH,) =0 (11.50)

If (11.50) is integrated throughout the given source-free region and use is
made of the divergence theorem, we have

b (Ba X H, — Ey X Hy) -dS = 0 (11.51)

which is the desired form of the reciprocity theorem.
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Figure 11.16 illustrates two antennas and their associated equipment,
and it is understood that either antenna may be transmitting with the
other receiving. For simplicity in the analysis, the feed line to each
antenna is assumed to be a coaxial line, and it is further assumed that the
electromagnetic sources (the vacuum tubes) may be entirely enclosed by a
conducting surface that forms an extension to the outer conductor of the
coaxial line. The dipole antenna shown represents any of the wide
variety of actual practical antennas that might be used. Also, of course,

Receiver
or
transmitter

Transmitter
or
receiver

==

Fia. 11.16. Transmitting and receiving antennas (arbitrarily located).

the relative locations of the transmitter and receiver are completely
arbitrary.

At antenna 1 we specify input conditions at an arbitrary transverse
reference surface S, in the coaxial transmission line. The only restriction
on the location of S;is that it must be sufficiently far from the antenna or
other discontinuity so that only the dominant TEM mode exists. Similar
considerations apply to the specification of reference surface S.. At each
of these surfaces both voltage and current are defined in terms of conven-
tional transmission-line concepts. If we consider the current I, that
flows at Sy, then because of the linearity of Maxwell’s equations, it must
be linearly related to the voltage at S; and at S,. (In terms of the fields,
the magnetic field at S;, which is proportional to the current, is linearly
related to the electric field at S; and S;.) We may thus write

I,
Similarly, I,

YuVi+ Y.V, (11.52q)
YuVi+ YV, (11.52b)

Equations (11.52) are in the same form as that for a standard four-
terminal network composed of linear bilateral lumped elements. The
similarity should not be surprising since in both cases the linearity of
Maxwell’s equations leads to the formulation. The fact that coupling in
the antenna problem involves radiation fields whereas in circuit analysis
only induction fields are involved is only a matter of detail. That I, is
uniquely related to V; and V. has not been shown, but is a consequence
of the general uniqueness theorem in electromagnetic theory. Equations
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(11.52) can be solved simultaneously for V' and V,, leading to an alterna-
tive form
Vi=I1,Zu+ 12 : (11.53a)
Vo= 11Zg + I:Z5 (11.53b)

Just as in network theory, we can show that Y, = Y3, that is, reci-
procity. For this proof we choose a volume of space bounded by a fairly
complicated surface which consists of the surface at infinity and the
doubly connected surfaces of the two antenna installations, as illustrated
by dashed lines in Fig. 11.16, that is, S; 4+ Sioand S; 4+ Sz. The surface
S10 (and also Sy) is taken along the antenna surface and runs along the
outer conductor of the coaxial line and includes the conducting surface
that excludes the energy sources, used to generate the high-frequency
currents, from the volume being considered. This surface then connects
with S; (S,) along the inner surface of the outer conductor and the outer
surface of the inner conductor of the coaxial line. Surfaces S, and S, are
the transverse planar surfaces in the coaxial line that has already been
described. Let E,, H, be the fields set up by a source inside the surface
S1 + 810, while E;, H; are the fields set up by a source inside the surface
Sz 4+ Sz. If we apply (11.51) to the region bounded by the afore-
mentioned surfaces, then since E X dS is zero along the conducting
surfaces Syo and Sy, these integrals vanish. Furthermore, the contribu-
tion f om the surface at infinity can be set equal to zero if we assume a
vanishingly small amount of dissipation in the medium, so that E and H
decrease slightly faster than 1/R.T As a result the following relationship
is arrived at, namely,

[;, (Ba X Hy — By X H,) - dS
+ [, (Ba X Hy = E, X Ho)-dS = 0 (11.54)
since S; 4+ S, is the only portion of the total surface for which the

integral does not vanish. Now on either S; or S, we have, for a coaxial
line, that

I

H= a¢H¢ = 2—7rra¢ (1155a)

E = a,B, (11.55b)

and V= ["Edr (11.55¢)

t Actually, if the nature of the radiation fields from finite sources is considered,
then in absence of dissipation,

Su E,,)(H:,-dS=¢Sm E, X H,-dS

and the result of (11.54) is also obtained.
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This means, for example, that
[ Ea X B dS = 2n [ " EoHar dr = I [ Brodr = TuVie (1156)

The double subscripts identify the reference plane and the source condi-
tion, that is, Iy, is the current at S; caused by the field radiated by the
source inside Sy + Sz, while Vy, is the voltage at S; as produced by the
field from the source inside S; + Si. Carrying out the integration of
(11.54) as in the example above leads to

Vil + Vel — Vislia — Vaploa = 0 (11.57)
When only the field E,, H, is present, (11.52) gives

Ila = YIIVla + Y12V2n
Io = YuVie+ YeaVaa

while if E;, H, is the only field present,
Ip=YuVu+ YVa

and Ip = YuVu 4+ YuVay
Using these results in (11.57) yields
(ViaVas — VeaVi) (Y12 — Yo) =0 (11.58)

Since the a and b conditions are completely arbitrary, (11.58) can be
satisfied, in general, only if

Yo=Yy (11.59)
as we wished to show.

The formulation of (11.56) and the reciprocity of (11.59) were facili-
tated by choosing the transmission lines to be coaxial and the reference
planes at a point such that only TEM waves need be considered. How-
ever, these results will also apply to waveguide feed systems for each
mode separately, provided appropriate definitions of voltage and current
are made. A detailed discussion of this situation may be found in Collin
and other references, given at the end of the chapter.

11.8. Antenna Equivalent Circuits

Ordinarily, the separation of transmitting and receiving antennas is
very great, so that if antenna 1 is transmitting, (11.53¢) may be written
as

Vi= 12, (11.60)

and Z,; is the internal impedance of the antenna at the chosen reference
plane S;; that is, for large separation, the coupling, represented by Zis,
can be neglected, reflecting the fact that the transmitting antenna will



418 . ELECTROMAGNETIC FIELDS [Crap. 11

hardly be affected by a very distant receiving antenna. The equivalent
circuit of antenna 1 is shown in Fig. 11.17, where &, is the effective emf
of the source and Z;, its internal impedance. Under matched conditions
Zi], = Zu = Ru and Vl = 81/2.

When antenna 1 is operating under receiving conditions, the equivalent
circuit that follows from (11.53a) is represented as shown in Fig. 11.18.

—O
<

— —_—
'

Il
Zil
\ §Zn Vi §Zm
8, Zy,

o
O

IZZl2

Fia. 11.17. Equivalent circuit for trans- Fia. 11.18. Equivalent circuit for receiv-
mitting antenna. ing antenna.

Here Zy, is the impedance of the load. In this case we may no longer
ignore Z;, even though it is very small, since it represents the equivalent
source of energy, and in its absence no current flows in the receiving cir-
cuit. We can interpret — I,Z;, as the effective emf due to transmitter 2,
and Z,; as the internal impedance of this equivalent source. In general,
I;is a function of Zy,, but since it is assumed that the antennas are weakly
coupled, we can consider I.Z;; as a true voltage source independent of
load conditions at the receiver. Note that the impedance of an antenna
as measured when transmitting is the same as its effective internal
impedance when acting as a receiver and equals Z;; when the antennas
are sufficiently separated to justify the circuit of Fig. 11.17. The
received voltage V; can be readily calculated from the circuit of Fig.
11.18:

1,71,

= 11.61
Vi Zut Zu Z11 ( )

Under matched conditions Z1; = Z1; = Ry, and then
v, =1 22Z“ (11.62)

In (11.62) the received signal depends on the current I, and on the
parameter Z;;, which in turn is a function of the type of antennas and
their location. But the actual mechanism of reception involves, usually,
a plane wave incident on antenna 1 from a particular direction and with a
certain polarization. We should be able to develop a formula that yields
the received signal, given only the properties of antenna 1 and the incident
wave, thereby removing specific reference to the source of the wave, i.e.,
antenna 2. The following discussion is devoted to this objective.
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11.9. Receiving Antennas

In the last section the operation of a receiving antenna was described in
terms of direct coupling to a transmitting source. A description of this
interaction was formulated in terms of a four-terminal network which is
capable of transforming the voltage and current at the input to the trans-
mitting antenna into voltage and current conditions in the receiving-
antenna feed line. Another point of view is possible where we consider
the antenna as an element that transforms the incident electromagnetic
wave into voltage and current in its transmission line. In place of the
direct interaction of transmitting and receiving antennas we now view
the transmitting antenna as setting up a field which the receiving antenna
in turn transforms into the received signal. Since the latter method of
analysis requires only a description of the incident wave on a receiving
antenna, the source of that wave is unimportant.

In this section we shall determine how the voltage at the receiving-
antenna reference plane S; is related to an incident field E; whose magni-
tude, direction, and polarization are known. In the following discussion
we shall assume that the transmitter is sufficiently far from the receiver
so that the incident field may be considered to be a plane wave. Such
conditions usually are obtained in practice. Since the actual source of
E,is irrelevant, we may suppose it to arise from an equivalent elementary
current source; that is, we can always define a dipole of length Al and
current I, such that if properly oriented and located, a field E; is pro-
duced at the receiving antenna. In order to determine the desired rela-
tion between E; and the received voltage, we first need to develop a
slightly modified form of the reciprocity theorem.

Let us begin with Maxwell’s equations, which we apply to a given
region containing fixed material bodies and impressed source J; or Ja.
Then

VXE; = —jwuH, (11.63a)
V x H1 = jweE1 + Jl (1163b)
VXE; = —jouH, (11.64a)
VX H; = jueE; + ] (11.64b)

If we dot-multiply (11.63a) by Hsand (11.64b) by E; and subtract (11.64b)
from (11.63a), we obtain

H2'V XEl - E1°V XHz = —jw,qu-Hg —jwéEl’Ez
— E;-J, (11.65)

Similarly, by dot-multiplying (11.63b) by E, and (11.64a) by H; and then
subtracting, we obtain

Ez'VXHl—H;'VXEo= ‘fweEl'E2+jpr1'H2+E2'Jl (11.66)
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The left side of (11.65) can be identified as V + (E; X H,), while the left
side of (11.66) is V- (H; X E;). If (11.65) and (11.66) are integrated
over a given volume V and the divergence theorem applied to the left-
hand sides and the results added, we obtain

[y ®Ti—Ei-J)aV = §_ (i X Hy — E; X Hy) -dS  (1167)

If we now let the volume under consideration be all of space, then S is

L |
== /

Sy \ AN

F1a. 11.19. Current source J, on surface S;.

the surface at infinity. In this case the surface integral vanishes, as
noted earlier. Consequently

/V E:-J,dV = /V E;-J.dV (11.68)

Note that (11.68) involves impressed currents only since induced currents
are included by making ¢ complex.

Figure 11.19 illustrates the problem at hand where the antenna repre-
sents an arbitrary receiving antenna whose output voltage and current
are referred to plane S; in the (assumed) coaxial feed line. The incident
field E; is taken as arising from the equivalent current element 7, Al. The
current element represents the source J; in utilizing (11.68). For the
source Join (11.68) we take a radial current source over the interconductor
space on S;. We choose the surface current density of this source to be
J., where

This choice is a completely arbitrary one and has been made only to
facilitate the use of (11.68) to arrive at an expression for the received
signal.
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The current source will cause a discontinuity in H,, but because of the
chosen functional form, this boundary condition can be satisfied by a
TEM mode alone. Consequently, the current source may be thought of
as launching TEM waves propagating toward the antenna and toward
the receiving load. We shall assume matched conditions so that there
are no reflected waves and, further, assume that the load impedance and
the radiation resistance R;; are both equal to the characteristic imped-
ance of the coaxial line. Note that the terminating impedance desig-
nated as the receiving load impedance above may also be considered as
the internal impedance of the current generator that maintains the
source Jo. The field radiated by J, will be designated E,, With this
notation the left side of (11.68) becomes

E\I, Al cos a (11.69)

since J; is zero at all points in the volume except over the differential
current element where J:dV = I,Al. The angle « in -(11.69) is the
angle between the direction of E, and the polar axis of the dipole. In
terms of the geometry given in Fig. 11.20 we have cos a« = cos ¢ sin 6,

E;

Al |

0
1

~
~
~

|

|

|

|

|

b,
\\&
Fr1c. 11.20. Dipole geometry.

where ¢ is the angle between the plane of polarization (that formed by
E, and the direction of the wave normal) and the plane of the dipole, and
6 is the polar angle referred to the dipole axis. The entire expression
(11.68) reduces to

E.J, Al cos ¢ sin § = / E.Ly dS = I, /‘” E.dr = I,V, (11.70)

S 27r 1

where E, is the TEM received field at S; due to the incident field E;
while V, is the received signal voltage.

Equation (11.70) can be put into a more useful form if the following
energy relationships are incorporated. When the source is Ji (the ele-
mentary current radiator), then the radiated power is

2
P, = 141.°R,ea = }41.%80r? <f—l> (11.71)
Q
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from (11.11). But if E; is the field set up at the receiving antenna, then

E: _ PG,
2Z0 - 4mrr?

(11.72)

where G, is the gain of the current element radiator in the direction of the
receiving antenna, that is, G, = 1.5 sin? 4, and r is the separation between
antennas. Consequently,

_ 60rI, Alsin 9

Ei Ao

(11.73)

When J, is active as the source (condition 2), then it equals the dis-
continuity in Hy across S;. From the assumption that the antenna and
load are matched to the transmission line, symmetry requires that
the input current to the antenna be Io/2. Consequently, the radiated
power is

- 1 2
P, = 3 (%) B1u (11.74)

The field set up by the antenna at the location of the current element is
then such that
1E? PG

37, = Gt (11.75)

where G = G(¢,0) is the gain of the antenna in the direction of the current
element. Solving for E, from (11.74) and (11.75) gives

%
E = @sz_u) Io (11.76)

Finally, by substituting (11.76) and (11.73) into (11.70), we obtain the
desired result:
V. = E.I, Al

Io

cos ¢y sin § = Ao <R”G

%
o m) E; cos ¥ (11.77)

When the receiving antenna is oriented for maximum reception, t cos ¢ = 1.

In this case,
. 1%
v, ; NoE; (RnG) (11.78)

T 120

This result is perfectly general, except for the assumptions of matched
conditions, linear polarization, and orientation for maximum signal recep-
tion. It relates the received voltage to the incident wave. The fact that

t This supposes that the antenna on transmission produces a linearly polarized
wave, as has been tacitly assumed. If this is not the case, the problem must be
reformulated in terms of the sum of two linearly polarized waves of appropriate
relative magnitude and phase.
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we chose to think of the incident wave as arising from a dipole source is
completely irrelevant to the relationship described by (11.78). Note
also that (11.78) is independent of the choice of the assumed source J,.
In fact, (11.78) can be derived without introducing the source J,. This
alternative approach is left as a problem.

From the above result we see that for an incident wave of a given mag-
nitude the maximum received signal depends only on the direction from
which the wave comes. This functional dependence is described by the
gain G(¢,0) of the receiving antenna in the direction of the incident wave.
We may now understand why receiving antennas are not treated as such
in the general literature. This is because the characteristics of the trans-
mitting antenna, namely, Ri; and G(¢,0), are precisely those needed to
analyze the same antenna on reception. The transmitting pattern is, as
noted, identical with the receiving pattern.

For the matched system the total power absorbed in the load is given by

2 .
Pae = 5pn = 877 120 9(®0
The absorption cross section of an antenna is the effective area of inter-
ception of an incident plane wave; that is,

E?
=1 —
Pay, = 1A 190

where A is the absorption cross section. For any matched antenna we
have

A(0,9) = ﬂe’ﬁl"z (11.79)

In the treatment of antennas in this chapter we tacitly assumed that
both the transmitting and receiving antennas were in free space. In a
practical communications system additional (parasitic) sources must be
considered. For example, the effect of the ground must be considered if
substantial energy is directed earthward. This may often be disposed of
by assuming perfect conductivity and using the method of images.
Greater accuracy can be obtained if the earth is considered flat and
homogeneous but a complex dielectric constant used to describe its prop-
erties. The formula of Chap. 10 for reflection from a dielectric interface
may then be used.

For certain ranges of frequency, propagation effects such as those due
to the ionosphere or the atmosphere must be considered. Furthermore,
diffraction effects due to the earth itself or to features on the earth may
have to be taken into account. For a consideration of these problems
the student is referred to the suggested references below.
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Chapter 11

11.1. Calculate the far-zone field of a linear antenna whose length is one wavelength
under the following two conditions:
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(a) The antenna is parasitically excited, and the current distribution may be
assumed to be I = I;sin koz. (The center of the antenna is at z = 0.)

(b) The antenna is driven at the center so that the current distribution is given by
I = Isin kez|. )

11.2. The current distribution on & particular half-wave linear antenna is found to
be more accurately given by I = I,cos?kez. Write an expression for the far-zone
field, and compute the radiation resistance.

11.3. A two-wire transmission line of length ! and separation d is terminated in its
characteristic impedance and carries a traveling TEM wave. Calculate the far-zone
field, and plot as a function of polar angle, taking the direction of the transmission
line along the polar axis with conductors at z = +d/2. (Neglect radiation from the
load itself.)

11.4. (a) Show that a linear current radiator normal to and above a perfectly con-
ducting ground plane radiates a field which can

be calculated by removing the ground and re- 1 .

placing its effect by a mirror-image current Ground
element directed in the same direction (as plane
illustrated).

() Repeat (a) but with a horizontal current

element. The image in this case is oppositely ? ‘e

directed (see illustration). ‘\ /
HinT: It is sufficient to show that the total Image

field due to antenna and image satisfies Fie. P 11.4

Maxwell’s equations and that tangential E is
zero over the surface of the conductor. That this is sufficient follows from a unique-
ness proof analogous to the one developed for Laplace’s equation.t
11.56. Find the field radiated from a small current loop of radius a assumed to carry
a current I = I, The loop is located at the origin and in the zy plane. Show
that the radiation resistance of the loop is B = 320x*(ra?/X\o?)2. See Prob. 9.17 for
fields set up by a magnetic dipole; i.e., consider the loop as a small magnetic dipole.
11.6. At high frequencies the magnetic flux linking a circular current loop C assumed
to carry a current [.ei“* is given by

95 A~d1=9§ 56 To T gy qr
c cJc4mpy T

where dl and dl’ are two elements of arc length along C separated by a distance r.
Expand e~i% in the form 1 — jkor — 34kor? + jko¥r3/6 + - - -, and show that the
term involving ko3 gives rise to an induced voltage in the loop which is 180° out of
phase with the current. The applied voltage must overcome this induced voltage
and in so doing does work on the current. Thus this term gives rise to an input resist-
ance to the loop. Show that the applied voltage required to overcome the induced
voltage due to this part of the flux linkage is 24Zokq*ra*l, and that the input resistance
computed by this method is equal to the radiation resistance of the loop, as found in
Prob. 11.5.

11.7. In general, the directivity of an array of elements does not equal the array
directivity times the element directivity. Prove this. Under what conditions is the
directivity of the array approximately that of the antenna?

11.8. A three-dimensional array of isotropic radiators has sources of equal amplitude

t See J. A. Stratton, ‘“Electromagnetic Theory,” p. 486, McGraw-Hill Book Com-
pany, Inc., New York, 1941.
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and phase located at ry = naa. + mba, + lca,, where

n=012...,N
m=012...,M
1=0,1,2 ...,L

Find the resultant radiation pattern, and show that it is the product of three array
factors and the factor e~/%"/4xr. How many main beams are produced if a and b are
equal to N\o/2 and ¢ = \?

11.9. An interferometer consists of two identical antennas, 4, and 4., spaced by an
amount L = N\,. (See Fig. P 11.9.)

(a) Show that the resultant radiation pattern is a
multilobed pattern. How many lobes are there?

(b) If the relative phase angle of the signals received
by antennas A and A, can be measured to within an
accuracy of 1° what is the resultant angular accuracy
that is obtained in measuring the position of the source
that emits the signal? Assume that it is always pos-
sible to know which lobe the source is located in and
that the source is located in the zy plane.

(¢) For N = 1,000 and the source making a true
angle of 8 = 0°, 30°, 60°, 90° with the z axis, compute
the angular error, under conditions of (b).

Interferometers of this type are widely used in radio :
astronomy and in missile tracking systems. Usually Fic. P 119
several closer-spaced antennas are also used in order
to determine which lobe the source of the received signal is located in. An additional
interferometer with base line along the y axis would also be required in order to obtain
the direction to an arbitrarily located source.

11.10. An N-element, uniformly spaced, arbitrarily excited linear array has an array
factor given by

N
A= E a"ei¢,,eikond cos §

n=1

where the line of the array is along the polar axis, 8 is the polar angle, and d the element
separation. The nth element has an excitation magnitude a, and relative phase yu.

(a) Show that by letting the complex variable Z = ef¥? s f and the complex number
A, = a.e’¥» such an array can be represented by a polynomial, and vice versa.

(b) What is the locus of the complex variable Z in part a, and what is the range of
variation of Z that corresponds to a real pattern (i.e., that corresponds to 0 < 6 < x)?

(c) By factoring the polynomial in (a), the array factor can be given by the product
of line segments from each root to the value of Z corresponding to a given §. Confirm
and describe this in greater detail. Where must at least one polynomial root lie if the
pattern is to have a null?

(d) The pattern of a two-element array spaced \o/4 apart and with a 90° relative
phase is given by |1 4 eiT(°s6~1/2|_  This pattern is a cardioid, and note that it has
no sidelobes, although its main lobe is extremely broad.

If we form the pattern |1 -+ ei%(cos &~D/2|¥ for large N, then the resulting beamwidth
should be relatively narrow, as might be visualized by the process of successive multi-
plication of a cardioid pattern. Interestingly, this pattern remains without any side-
lobes. Making use of the polynomial representation, determine the array size and
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excitation that produce a pattern corresponding to N = 5. Plot the pattern. This
array is known as the binomial array. (Why?)

11.11. Making use of Prob. 9.22 and Green’s second theorem (1.68) with & a solution
of V& 4 k*® = —g(z,y,2), and ¢ = (1/4xR)e~*E, show that the field at any point
due to the sources g(z,y,2) may be written

1 e~ kR 3P e—ikR
q,_zr/V g(a:,y,z) R dV+ S[ an an( ]

where n is the outward normal to S. (The surface integrals take into account the
presence of sources which lie outside the chosen finite region V. If V — «, then all
sources are included in the volume integral and the surface integral contribution can
be shown to vanish.)

11.12. If the vector wave equation for the electric field in a finite charge-free region
is written out, we have

VE + kE =0

Note that each component satisfies an equation of the form denoted by the scalar & in
Prob. 11.11. Show that by summing the components, a vector relationship is obtained

of the form
1 e~ ikR 9E 9 [e kR
E=-4 s[R %_E%(R ]dS

11.13. The equation developed in Prob. 11.12 shows how the field in a source-free
region of space is obtainable from given values on a bounding surface. This is an
electromagnetic formulation of Huygens’ principle.

' d

I ]

4 S '
/ ) —_

\Z ) ’
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®

F1c. P 11.13

ny

The equation in Prob. 11.12 can be used to determine the field radiated from a plane
aperture since the region beyond the aperture is source-free, and the fields in the
aperture may be thought of as a secondary source. Using this as a starting point,
Silvert shows that the radiated field may be approximated by the scalar relationship

Up = 7‘74% e~ikok (1 + cos 0) aperture w~ikor-ag 48’

18S. Silver, “Microwave Antenna Theory and Design,” sec. 5.14, McGraw-Hlll
Book Company, Inc., New York, 1949.
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the relative magnitude of the two signals depends on their relative phase of arrival
and on the ground-reflection coefficient; that is, assuming h; < r, ks < r, let the direct
distance be 7, and the ground-reflected path be r.. The received signal is

E,.. = Eo|1 + teikolrs—r)|

and ¢ is the ground-reflection coefficient, while E, is the free-space field magnitude.
(Note that the assumed conditions allow for the approximation that the electric field
from the direct and the reflected paths is in the same direction.)

(a) Calculate ¢ for earth constants ¢ = 1075 « = 6, by utilizing (10.42a) and
replacing ¢ by complex ¢ = xep — jo/w. Plot ¢ as a function of 6 for 0 < 6 < 90°.
The frequency is 1.0 megacycle per second.

(b) For the geometry of Prob. 11.15, repeat, using the more accurate representation
in terms of earth conditions and with the specific { in (a).

11.18. Repeat Prob. 11.17, but assume parallel polarization. For part b the
antenna may be visualized as being a vertical dipole. The reflection coefficient may
be obtained from (10.44).

11.19. Calculate the absorption cross section of an elementary dipole of length I
and a half-wave antenna, both under conditions for maximum absorption of power.

11.20. A half-wave receiving antenna provides the input to a receiver at a frequency
of 500 kilocycles and with a receiver bandwidth of 10 kilocycles. The receiver has
adequate gain; the limitation on its ability to detect a usable signal arises mainly from
the presence of noise in the input. The input noise power is given by P, = kTB, and
it accompanies the input signal power under matched conditions. In this formula k is
Boltzmann’s constant (1.38 X 10~23), T is the “antenna temperature” and may be
taken as ambient (290°K), and B is the bandwidth in cycles per second.

It is desired that the output signal-to-noise power ratio equal 20 decibels, and in
view of the additional noise introduced within the receiver itself (noise figure of
6 decibels), an input signal-to-noise power ratio of 26 decibels is required. Assuming
antenna orientation for maximum signal, what maximum field strength is required?
If the transmitter is 200 miles away and the transmitting antenna has a gain of 5 in
the direction of the receiver, what transmitting power is required? (Assume free-
space conditions. Neglect the effect of the ground, and neglect antenna losses.)

11.21. A communication system is to be designed which will allow for reception of
signals from a satellite. A description of its parameters follows:

Satellite transmitter
1. Power radiated, 100 watts effective
2. Antenna pattern omnidirectional (this is necessitated by probable inability to
ensure proper orientation of satellite such as would be necessary with a high-
gain antenna)
Receiving system
1. Paraboloidal antenna of diameter, 80 feet (the receiving cross section may be
approximated as 0.5 times the aperture area)
. Output signal-to-noise ratio, 10 decibels
. Noise figure of receiver, 2 decibels (this means that an input signal-to-noise ratio
of 12 decibels is required)
. Losses from antenna to receiver (polarization, transmission lines, ete.), 6 decibels
. Bandwidth, 10 cycles per second
. Noise temperature, 200°K [under an assumed matched condition the input noise
power P, is given by P, = kTB = 4 X 10721B (see Prob. 11.20)]
7. Frequency, 400 megacycles per second

W N

@ O
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() What is the range of the above system?

(b) How does the range depend on the receiving-antenna diameter? What is the
range if the diameter is 600 feet? ’

(c) How does range depend on frequency? What is the range for f = 1,000 mega-
cycles per second. (Note that at higher frequencies satisfactory operation of equip-
ment becomes more difficult.)

11.22. The relation (11.78) may be derived in an alternative way to that used in
the text. In (11.67) let the surface S be the sphere at infinity, and a surface enclosing
the receiving antenna similar to that in Fig. 11.16. Now note that (11.67) becomes

[ Ez'JldV=/ (B: X Hy — E; X Hy) - dS
1’4 S1

since the source J. is not present in the volume under consideration. When the
antenna is used as a transmitting antenna (source J. inside S; + Sio), then the field
E;, H; in the coaxial line is a TEM wave, Hy = I,/2rr, E, = ZHy. The current
element I, Al also sets up a TEM wave (E;, H,) in the coaxial line, given by Hy =
—1I./2xr, E, = —ZHy = ZoI,/2xr, where I, is the received current. The change in
sign for H, arises because of the difference in the direction of propagation of the two
TEM waves. Show that (11.67) gives

E I, Alcosa = 2Z. 1,1, = 2I,V,

in place of (11.70). In place of (11.74) show that the appropriate relation to use now is
P, = VoI, = 341*Z, = ¥41,2Ry; for Z. = Ri. Using these relations together
with (11.71) to (11.73) and (11.75), show that (11.78) follows.



