CHAPTER 10

PLANE WAVES, WAVEGUIDES, AND RESONATORS

We have now reached a point in the development of electromagnetic
field theory where it is possible to consider a wide variety of important
applications. It is, however, outside the scope of the present book to do
much more than examine a small number of these. The topics to be con-
sidered in this chapter are those of plane waves in free space, reflection of
plane waves from a dielectric interface and a conducting plane, the trans-
mission line, rectangular and circular waveguides, and the cavity reso-
nator. These particular topics are chosen because of their great impor-
tance at microwave frequencies (frequencies from about 1,000 megacycles
up to and beyond 100,000 megacycles) in practical communication sys-
tems and also because the solutions are quite readily obtained and provide
an elegant demonstration of the validity of Maxwell’s field equations.

We shall be dealing entirely with steady-state sinusoidal fields with
angular frequency w. Thus all field vectors are represented by complex
phasor vector quantities. Also, we shall assume that e and u for material
bodies are real and constant, unless otherwise stated.

10.1. Classification of Wave Solutions

For most of the topics in this chapter, as well as for a large number of
other problems of practical importance, it is possible to separate the solu-
tions of Maxwell’s equations in a source-free region into three basic types
of fields. These three classifications are:

1. Transverse electromagnetic waves (TEM waves). The transverse
electromagnetic wave is characterized by the condition that both the
electric and magnetic field vectors lie in a plane perpendicular to the axis
of propagation, i.e., have no components in the direction of propagation.
The electric field for TEM waves may be derived from the transverse
gradient (gradient in the plane transverse to the axis of propagation) of a
scalar potential which satisfies the two-dimensional Laplace equation.

2. Transverse electric waves (TE, or H, waves). Transverse electric
waves are characterized by having an electric field which is entirely in a
plane transverse to the (assumed) direction of propagation. Only the
magnetic field H has a component in the direction of propagation, and
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hence this wave type is also known as an H wave. For TE waves it is
possible to express all field components in terms of the axial-magnetic-
field component. ,

3. Transverse magnetic waves (TM, or E, waves). Transverse mag-
netic waves are waves whose magnetic field vector is entirely in a plane
transverse to the (assumed) axis of propagation. Only the electric field
E has a component in the direction of propagation. For TM waves all
field components may be expressed in terms of the axial electric field.

The above three types of solutions are sufficiently general so that any
arbitrary field solution can be built up by superposing appropriate
amounts of each wave type. The only basis for the above classification
or division is that the solutions of many practical wave problems fall
naturally into one or another of the above types. It is at times more con-
venient to choose other forms of solutions, but these are just suitable
linear combinations of TE and TM wave types and so will not be con-
sidered here.

We shall apply the afore-mentioned classification of waves to a broad
class of problems characterized by the fact that the geometry is uniform
along a given direction; that is, if any material bodies are involved, they
are assumed to be cylindrical, and we take the axis to be the z axis.
Under these conditions the field solutions can vary axially only by a phase
factor ez, The nature of the field variation in z depends on the propa-
gation constant; if this is real, then unattenuated wave propagation
exists. With this type of z dependence all derivatives with respect to 2
may be replaced by the factor —j3. The vector operator V becomes

2 a . .
V= a:v'a—x + ay 5& - ]Baz =V, — J.Baz (101)
where V, signifies the transverse part (z and y part) of the V operator.

It is convenient to separate out the z dependence and decompose all
the fields into transverse and axial components. Thus we shall write

E(Z’y)z) = Et(x:yyz) + EZ(x;y’z)

= e(z,y)e " + e.(z,y)e (10.20)
H(%l/ﬁ) = Ht(xyy;z) + H,(x,y,z)

= h(z,y)e 7 + h.(z,y)e 7 (10.2b)

where e, h are transverse vector (z and y components only) functions of
the transverse coordinates; e, h, are z-directed vector functions of x and
y; and E,, H, represent the transverse fields including the z dependence
while E,, H, represent the axial fields. -

Maxwell’s equations in a source-free region may now be written in the
following form:
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V. X e = —jwuh, (10.3a)

a. X Vtez +j6az x e = jw,u'h (1031))
Ve X h = jwee, : (10.4a)

a, X Vih, + jBa, X h = —jwee (10.4b)
Ve = jBe, (10.5a)

V.+h = jBh, (10.5b)

For example, we shall derive (10.3). The curl equation for E is
(Ve — jBa.) X (e + e)e# = —jwu(h + h,)e
Deleting the factor ¢~ and expanding give
V. X e+ V. Xe —jfa Xe—jba Xe = —juuth +h,) (10.6)

Now a, X e, =0, V. Xe, =V, Xae = —a, X Ve, and furthermore
V., X e is a z-directed vector function while a, X V., and a, X e are
transverse vectors. Equating the transverse and axial parts of both
sides of (10.6) now gives (10.3a) and (10.3b). In a similar way (10.4)
follows from the curl equation for H. Equations (10.5a) and (10.5b) are
the divergence equations V- éE = 0, V- uH = 0, with ¢, u considered as
constant and with d/dz replaced by —jB8 and the z dependence deleted.

The remainder of this section is devoted to a derivation of the basic
equations relating the field components for the three wave types. The
following sections will make use of these results for constructing solutions
to a variety of practical problems. A fuller appreciation of the properties
of the various wave types will be obtained from a study of these examples.

TEM Waves
For TEM waves e, = h, = 0, and (10.3) reduces to the following:
n=Pa xe (10:7b)
wp
Equation (10.7a) is just the condition that e may be derived from the
transverse gradient of a scalar potential ®(z,y); thus

P ad

e(zy) = —VA@Y) = ~a. 50 — a5, (10.8)
Since e, = 0, the divergence equation (10.5a) gives V,- e = 0, and hence
9% 92®
o — 2 = o _ .
Ve 3 T oy 0 (10.9)

The relation (10.8) is physically understandable since, with h, = 0, the
line integral of e around any closed contour C in the zy plane is zero,



SEc. 10.1] PLANE WAVES, WAVEGUIDES, AND RESONATORS 345

because there is no magnetic flux linking this contour. Thus there is
associated with the electric field of a TEM wave a unique scalar potential
(apart from a constant). Furthermore, since ® is a solution of Laplace’s
equation in the transverse plane, the field e(z,y) has the same properties
as a static electric field. This is a very interesting result in that, even
though the fields may vary with time at a rate of thousands of megacycles
per second, the field distribution in the transverse plane is a static field
distribution.
The field e(z,y)e~7 is also a solution of the Helmholtz equation:

V2(ee=782) + klee—#: = ()
or Ve 4+ (k* — 8%e =0 (10.10)
Expanding the relation vV, X (V. X e) gives
Ve X (sz e) =VVi-e —V2e=90

since V; X e = 0. The divergence of e, that is, V, - e, is also zero, and
hence V,%¢ = 0. Therefore (10.10) can be satisfied only if

B =1k = £ w(ue (10.11)
From (10.7b) the magnetic field h is found to be given by

=._k_az)(e =Ya, Xe (10.12)
wp

where ¥ = (¢/p)* is the intrinsic admittance of the medium.

The solution for TEM waves may be summarized as follows. First
find a scalar potential ® which satisfies the two-dimensional Laplace equa-~
tion and any imposed boundary conditions. The electric and magnetic
fields are then given by

E, = ee % = —V,pe ik (10.13a)
H, Ya, X ee—7*= (10.13b)

For a wave propagating in the —z direction, replace k by —k and Y by
-7Y.

TE Waves

For transverse electric (TE) waves, e, = 0 but h, £ 0. For these
waves all field components may be expressed in terms of the axial mag-
netic field h,, as we shall presently establish.

The magnetic field H = (h + h,)e=% must be a solution of the Helm-
holtz equation V2 H + k*H = 0, and hence

Vieh, + k2h, = 0 (10.14a)
Vih + kh =0 (10.14b)
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where k.2 = k* — 8% From (10.4a) V, X h = 0 since e, = 0, and hence
Vgx(Vgxh)=VgV¢'h—V¢2h=O

Replacing V,*h from (10.14d) and using (10.5) to replace V. - h by jgh,,
we obtain

ViV.-h = jgVh, = Vh = —kh
or h=- i—ﬂz Vi, (10.15)

This relation expresses the transverse-magnetic-field vector function.in
terms of k,. The function h,(z,y) is seen to play the role of a scalar poten-
tial function from which h may be derived.

In order to express e in terms of h, we take the vector product of
(10.3b) by a, to obtain

jBa. X (a. X €) = jpl(a. - e)a, — (a,-a.)e] = —jBe = jwua, X h
sincea,- e = 0and e, = 0. Replacing wu by kZ, where Z = (u/€)*, now
gives '

e = — gZa, Xh (10.16)
The factor kZ/8 has the dimensions of an impedance and is called the
wave impedance for TE or H waves. It will be designated by the
symbol Z;; that is,

Zy = 3 VA (10.17)
In component form (10.16) gives
= _ _ %
T, h Zy (10.18)

Thus the ratio of the transverse electric field to the mutually perpendic-
ular transverse magnetic field is equal to the wave impedance (apart from
a minus sign in one case).

The solution for TE waves may be summarized as follows. First find &
solution for h,; that is, obtain a solution of

Vih, 4+ kl2h, = 0

The parameter k. is usually determined by boundary conditions that the
field must satisfy. This will be elaborated on when specific examples are
considered. Once k. is determined, 8 may be obtained from the relation
B* = k* — k.2 The vector function h is obtained from h, by means of
(10.15), and e is found from h by means of (10.16). The electric and
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magnetic fields are then given by

E = e¢ -
H = (h + h,)e

For a wave propagating in the —z direction, 8 is replaced by —8 in
(10.15) and (10.16). The sign of h changes, but not the sign of e. A
reversal of the sign of either h or e is required in order to obtain a reversal
in the direction of power flow (Poynting vector).

TM Waves

For TM waves h, = 0 but e, % 0. For this wave type all field com-
ponents may be expressed in terms of ¢,. The required equations may
be derived in a manner similar to that used for TE waves but with the
role of electric and magnetic fields interchanged. This possibility is a
direct consequence of the symmetry of Maxwell’s equations for E and H
in a source-free region. In actual fact this symmetry forms the basis of
the “principle of duality” for electromagnetic fields.

The duality principle states that if E;, H, are solutions of the equations

VXEl = —jwal VXHl =jweE1
V‘E1 0 V‘H1=0

then a second field E,, H,, where

E, = +7ZH, (10.19a)

is also a solution. Substitution into Maxwell’s equations verifies the
result at once. For example,

V x Ez = iV x ZH1 = ijweZE;
But Ze = Yu and YE, = FH,, and hence
VX E; = tjou(FH,) = —jouH,

In a similar way it is readily verified that V X H; = jweE,, and hence
E,, H; as given by (10.19) is a solution if E;, H, is a solution. This
principle is very useful in practice for constructing solutions for TE waves
from those for TM waves, and vice versa.

For TM waves we have, analogous to (10.14),

Vi, + ke, = 0 (10.20a)
Ve + ke =0 (10.200)

The equations analogous to (10.15) and (10.16) are obtained by using the
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duality principle, i.e., replacing h, k., and e in these equations by Ve, Ye,,
and — Zh, respectively. Thus (10.15) becomes

Ye = — ic]—fz VtYe.
or e = — chg V.. (10.21)
and (10.16) becomes
h = IBC Ya, X e (10.22)

Equations (10.20), (10.21), and (10.22) are the required relations express-
ing the field components for TM waves in terms of the axial-electric-field
function e,. The relation (10.22) may be written in component form as
, h: _hy, Kk .
—— = — == — = 3 1 .2

e o B Y=Y, =2 (10.23)
where Z, = ZB/k is the wave impedance for TM waves. The combina-
tion of (10.23) with (10.17) shows that

ZnZ, = 72 (10.24)

a result which expresses the dual relationship between TE and TM waves.
The complete solution for TM waves is

E = (e 4+ e,)e % (10.25a)
H = he# (10.25b)

For a wave propagating in the — z direction the sign of e, and 3 is reversed.
This changes the sign of h but leaves the sign of e unchanged (the sign of
e, is changed only to keep the sign of e unchanged).

10.2. Plane Waves

In Chap. 9 we considered the solution for a plane wave with components
E., H, and propagating in the z direction according to e~ We should
now like to reformulate the properties of a plane wave for an arbitrary
direction of propagation, n. We note that if r = za, 4+ ya, + za, is the
radius vector from the origin, then

n+r = constant (10.26)

is the equation of a plane which is perpendicular to the unit vector n, as
in Fig. 10.1. Consequently, if we want to consider a wave propagating

in a direction given by n, then the appropriate propagation factor to use
1§ e=ikoner,
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The mathematical formulation for the electric field E of a uniform plane
wave propagating in a direction n can be written

E = Eeikor (027

where E, is a constant vector. The restrictions on E, can be found from
the requirement that (10.27) be a solution of Maxwell’s field equationsin a

n'r=C,

x n'r=C

F1ac. 10.1. Illustration of planes specified by n * r = constant.

source-free region of free space. The charge density is assumed to be
zero; consequently, the divergence of E must be zero, and hence

V:E =0 = V:Ee 70t = Eg« Veskor (10.28)

since E, is a constant vector. Now n-:r = n,x + n,y + n.2, where
Nz, Ny, N, are the components of n, and so

0 . .
s o ekt = — jkon,ae T ete.
so that Ve ikt = — jkone ks

Therefore (10.28) gives
—]ko(Eo . n)e‘fk"“" =0
or n-E;,=0 (10.29)

Thus (10.27) is a possible solution only if E, lies in a plane that is per-
pendicular to the direction of propagation specified by the unit vector n.

The magnetic field may be found from the curl equation for E as
follows:

—jwuoH =V XE =V X Ege ot = —E; X Ve ks
or = (Bo X ) o ’ 0 gkt = Yo(n X Eo)e—*=t  (10.30)

The magnetic field associated with the electric field given by (10.27) also
lies in a plane transverse to the direction of propagation and furthermore
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is also perpendicular to E,, as in Fig. 10.2. Equations (10.27), (10:29),
and (10.30) define a general plane transverse electromagnetic wave
propagating in the direction n. The wave is called a plane wave since
the constant phase surfaces given by ke - r = constant are planes.

If, for example, we wish to call the z axis the axis of propagation, then

E = (Eoe-iko(znz+yn,))e—ikon,z (10_31)

and Bo = kon.. Since Eo does not lie in the zy plane (excluding
nz = n, = 0), the wave would not be classified as a TEM wave with
respect to the z axis. Depending on the direction of E,, it could be a TE,

Plane n-r =constant

Fic. 10.2. Space relation between the field components and direction of propagation
for a plane TEM wave.

TM, or a combination of a TE and a TM wave. In this respect the
classification of a wave solution as a TEM, TE, or TM wave does depend
on our choice of a preferred direction to be considered as the direction of
propagation. In actual fact, the wave specified by (10.31) propagates
in the direction n, and not in the z direction.

The classification into TE or TM categories is more meaningful for a
wave of the type to be discussed now. Let us superpose on the solution
(10.31) a similar wave solution with the direction of propagation given by

n, = —aymn, — a,n, + amn,
Then

E = Eo(e—jko(xnz"'?ﬂ"y) + efko(xnz‘H/ﬂ,,))e—J'Boz = 2E0 coS [ko(xnz + ynﬂ)]e“'iﬂo‘
(10.32)

where 8y = kqn,. This solution represents a wave propagating in the 2
direction only. In the transverse plane the solution is that of a standing
wave. If n, = 0, then n is a vector in the zz plane and it is not incon-
sistent to choose an E, that lies in the y direction ; that is, Eq = Ea,.
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The corresponding solution for the magnetic field is

—joucH = VX E = —a, X VE ,
= 2E¢(jBa cos kon,x — kon.a. sin kon,z)e—#=  (10.33)

and is seen to have z and z components. This solution is clearly a TE
wave, and under no circumstances could it be considered as a TEM wave
since H, # 0. In general, then, we are able to state that the combination
of TEM waves propagating in different directions gives wave solutions of
the TE and TM types. Nevertheless, it is convenient at times to
classify obliquely propagating TEM waves as TE or TM waves also.

Reflection from a Dielectric Interface, Perpendicular Polarization

In this discussion we shall examine the problem of the reflection of an
obliquely incident plane wave from a dielectric interface. With reference

AX
Az
‘.\'\.‘ €0 Ko € Yo
A;
~~
) 9,
A z

L1
E out of
outof Nk

Fig. 10.3. Plane wave incident on a dielectric interface.

77

to Fig. 10.3, let the half space z > 0 be filled with a homogeneous, iso-
tropic, lossless dielectric with a permittivity e. The dielectric constant
is k = €/eo, and the index of refraction is = «*.

Without loss in generality we may choose the plane of incidence as the
zz plane, and then

n = a,sin §; + a, cos 6;

where 6; is the angle of incidence measured relative to the interface
normal. Rather than consider an arbitrary polarized incident wave (i.e.,
we have yet to specify the orientation of the electric field), it is more con-
venient to treat two special cases separately. For one we choose a wave
with the electric field in the y direction. This wave is called perpendicu-
lar-polarized since the electric field is perpendicular to the plane of
incidence, where the latter is defined by the interface normal and the
unit vector n, that is, the zz plane. The corresponding magnetic field
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has both z and z components, and consequently the wave is a TE wave
with respect to the z axis. In the other case the roles of the electric and
magnetic fields are interchanged; i.e., the electric field lies in the zz plane
while the magnetic field is directed along the y axis. This wave is a TM
wave and is referred to as a parallel-polarized wave since the electric field
is parallel to the plane of incidence. A superposition of these two cases
gives the solution for an arbitrary-polarized incident wave. The two
cases are treated separately because of the existence of certain basic
differences, as we shall discover.

For the perpendicular-polarized incident wave let the electric field be

E; = a, A g0 (10.34)

where ly = n,ko = kosin 6; and 8o = ko cos 8;. The corresponding mag-
netic field may be found from the curl of E; and is, from (10.30),

H; = Ai(—Yocos 6:a; + Yysin 6;a,)e %z (10.35)

In order to satisfy the boundary conditions at the interface z = 0 when a
plane wave is incident, it is necessary to assume that a part of it is reflected
from the dielectric and a part of it is transmitted into the dielectric. At
the interface the total tangential electric and magnetic fields must be
equal on adjacent sides of the interface. This is possible only if all field
components have the same variation with z on either side of the interface.
Consequently, the form of the reflected and transmitted electric fields
must be

E, = a, A e it (10.36)

E, = a,Ad;e =i (10.37)

where [ = ksin 6,, 8 = k cos 0., and 6, is the angle of refraction, i.e.,
specifies the direction of propagation in the dielectric, as illustrated in
Fig. 10.3. As noted above, ! must equal I, in order to satisfy the bound-
ary conditions for all values of z, and hence

kosin 6; = k sin 6,
or sin §; = «* sin 0, = % sin 6, (10.38)

Equation (10.38) is the well-known Snell’s law of refraction.
The magnetic fields for the reflected and transmitted waves are found
from the corresponding electric fields using (10.30) and are

H, = A,(Y,cos f:a; + Y, sin 6.a,)e =+ (10.39)
H; = A;(—Y cos 6,a, + Y sin 6,a,)e ==z (10.40)

I

where Y = (e/uo)** = 9Y,. For the reflected wave the z component of
magnetic field is reversed in sign corresponding to the use of the expo-
nential function e, :



SEc. 10.2] PLANE WAVES, WAVEGUIDES, AND RESONATORS 353

The amplitude coefficients 4, and A; are determined by making the
total tangential electric and magnetic field components continuous
across the interface. The following two equations result from these two
conditions:

Al + Az = As
(4y — As)Ygcos 6; = A;Y cos 6,

As noted in Sec. 9.8, matching the tangential fields at the boundary auto-
matically ensures the proper behavior of the normal field components.
The reflection coeflicient {; is defined as the ratio of the reflected electric
field amplitude A4, to the incident electric field amplitude A;. Similarly,
the transmission coefficient T'; is defined as the ratio of the transmitted
electric field amplitude to the incident wave amplitude. We have

A, = 514, A; = TA,
and the boundary conditions become

1+6="T (10.41a)
(1 —=¢1)Yocos 8, = T1Y cos 8, = T1nY,cos 6, (10.41d)

Solving these equations for {; and T, gives

__cos 0; — ncos b,
fr= cos 6; + 5 cos 8, (10.420)

14§y = — 20080 (10.420)

T, cos 0; + 5 cos 6,

These latter equations are called the Fresnel reflection and transmission
equations for a perpendicular-polarized incident wave.

The student familiar with transmission-line circuit theoryt will recog-
nize the close analogy between the present problem and that of a junction
of two transmission lines of different characteristic impedance. The
transverse electric field is analogous to the voltage wave, while the trans-
verse magnetic field is analogous to the current wave on a transmission
line. The wave impedance is the counterpart of the characteristic
impedance of a transmission line. The basis for the analogy is that the
continuity at an interface of the total tangential fields E, and H, in the
field analysis corresponds to the continuity at the transmission-line junc-
tion of the total V and I in the equivalent transmission-line analysis.
Thus for the TE wave on the air side of the interface the wave impedance
is
ko

- _E _ g ko
Z}.o— Hz—-Zosec 0,—Zoﬂo

t A discussion of the transmission line will be given in Sec. 10.4.

(10.43q)
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while for-the dielectric region

k

Zy=—Z = Zsech = ZE : (10.43b)

%% 4
where Zy = ('—‘—0) "~ and Z = (“—0)}

€0 €

|

The transmission-line circuit illustrated in Fig. 10.4 is formally equiv-
alent to the problem being considered here. According to transmission-

p *
Zc=Zh0 1 Zc=Zh
I

|

|

B, ! 8

Fie 10.4. Transmission-line equivalent circuit for Fig. 10.3, perpendicular polarization.
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Fi16. 10.5. Modulus of reflection coefficient for « = 3.

line theory the reflection coefficient of the junction is

¢ _Zwn—Zn _ Zsech, — Zosecb; _ cosB; — ncos b,
Y Zo+ Zn ZsecO, + ZosecO; cos 6; + ncos 6,

which is the same as (10.42a). Using Snell’s law, we have

ncos 8, = (k — sin? §,)%
and hence
__ (x — sin®6,)"* — cos 6;
fr= (x — sin? 6;,)% + cos 6; (10.44)

A plot of |4 as a function of 6; for k = 3 is given in Fig. 10.5. It is seen
that |{1] continually increases with increasing values of the angle 6.
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Minimum reflection occurs at normal incidence, and the value of [{i] for
this condition depends on «.

Reflection from a Dielectric Interface, Parallel Polarization

The solution for the case of a parallel-polarized incident wave is similar
but with the role of electric and magnetic fields interchanged. The
details are left as a problem. The reflection and transmission coefficients
¢2, Ty may be readily found from the equivalent transmission-line circuit

Z=Z, Z.=2

c e

QIR

By B

Fic. 10.6. Equivalent transmission-line circuit of dielectric interface, parallel
polarization.

illustrated in Fig. 10.6. From (10.23) the wave impedances in the free-
space and dielectric regions are

_E._ B, _ A
Zey = H,, = %o Zy = Zycos b; (1045(1)
Z, = gz - -Zn—" cos 0, (10.45b)

Snell’s law again holds; so xZ. = Zo(x — sin® §;)’. Thus the reflection
and transmission coefficients for the tangential electric field are

_Z,— Zun _ (x — sin® )% — k cos b;
2= Z,+ Z, (k — sin? 6:;)" + « cos 6;

_ ~ 2(k — sin? 6,)"
To=1+4¢= (x — sin® 6;)" + « cos 6;

(10.46a)

(10.46b)

An interesting property of {; is that for some particular value of 6; it
vanishes. From (10.46a), ¢» = 0 when

k — sin? §; = k®cos? §; = «k? — «k*sin? §;

Denoting the solution for 6; by 65, we have

sin 0p = (}%)” (1047)

This particular angle is called the Brewster angle. For a parallel-polar-
ized wave incident at the angle 65, no reflection takes place and all the
incident power is transmitted into the dielectric. A similar phenomenon
does not occur for a perpendicular-polarized wave unless the dielectric
medium has a permeability greater than unity. A plot of [{o] is given in
Fig. 10.5 for x = 3. Up to an angle 6, = 05 the reflection coeflicient
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continually decreases. Beyond the angle 8z the reflection coeflicient
increases rapidly up to a value of unity at grazing incidence when §; = 90°.

The concept of a wave impedance is of great practical importance since
it provides a formal analogy between wave problems and transmission-
line problems. In transmission-line circuit problems the total line voltage
and current are made continuous at the load termination. Similar
boundary conditions are imposed on the tangential electric and magnetic
fields at a discontinuity interface. For this reason the same formulas for
reflection and transmission coefficients are applicable to wave problems.
It is important to note, however, that the analogy holds only if the axis of
propagation is chosen normal to the discontinuity interface. For
obliquely incident TEM waves the use of a transmission-line equivalent
circuit leads naturally to a classification of the incident wave as a TE or
TM wave.

10.3. Reflection from a Conducting Plane

From an analysis of the problem of reflection of a plane wave from a
conducting plane, the behavior of the electromagnetic field at the surface
of a conductor may be deduced. We shall be able to show that the total

current per unit width flowing in the

* E conducting plane is essentially inde-
pendent of the conductivity. As the
. R conductivity is made to approach in-
ot Fo 9 € o . . .
finity, the current is squeezed into a
narrower and narrower layer, until in
Ay R AT the limit a true surface current is ob-
~ —~> tained. The conductor will be shown
e > to be characterized as a boundary sur-
AN face exhibiting a surface impedance
Zm = Rpn + jXn
where R, = X,, = (¢6)~! and 4 is the
skindepth. The powerlossinthe con-
2-0 ductor is then readily shown to be
Fic. 10.7. Plane wave incident on a & ' o0 by
conducting plane. P, = %R,].- J* per unit area

where J, is the surface current density. Since J, is also equal ton X H,
we have a very convenient method of evaluating the power loss in a con-
ductor from a knowledge of the tangential magnetic field at the surface.

Let a plane TEM wave be incident on a conducting interface located at
z = 0; that is, the half space z > 0 is filled with a conducting medium, as
in Fig. 10.7. The incident field is chosen as follows:
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E; = Aqa.,e %= (10.48a)
H; = A,Ya,e % (10.48b)
At the interface there will be a reflected wave '
E, = Ajaee (10.49q)
H, = —A,Y " (10.49b)
and a transmitted wave of the form
E, = A;a.e T (10.50a)
H, = A;Y,a,e ™ (10.500)

where T and Y, are yet to be determined. In a conducting medium the
curl equation for H is V X H = jweE + oE = ¢E, since the conduction
current is much greater than the displacement current. If we rewrite
this equation as V X H = jw(s/jw)E, we see that ¢/jw may be considered
as the permittivity in Maxwell’s equations. Using this analogy, we may
construct the solution for the plane wave in the conductor from the solu-
tion for the incident wave. Thus by analogy we have

J
Z = Y 1 jw#o & = E
. . . wo\
since Jko = jw(uoeo)*® and Zy = (:;)
The square root of j equals (1 + 7)/4/2, and hence
r-1+s (10.51)
Z, = 1;:] = Ry + jXn (10.52)

where & is the skin depth and is given by
%
5= (-2—) (10.53)

whoo

It is seen that the conductor exhibits an impedance with equal resistive
and inductive parts. Furthermore, the resistive part is just the d-c
resistance of a sheet of metal 1 meter square and of thickness . (Actu-
ally, the resistance is independent of the area of the square plate.) Thus
with reference to Fig. 10.8, the d-c resistance between the two faces 1 and
2 is given by
L _1

B T Léc

ohms/square
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Since the resistance is independent of the linear dimension L, it is called a
surface resistance and is measured in ohms per square. The impedance
Zn is called the intrinsic impedance of the conductor. For the present
case of normal incidence the ratio of the tangential electric and magnetic
fields at the interface, called the surface impedance, equals the intrinsic
impedance.

At the interface the tangential fields must be continuous; hence

A1 + Az = Aa
(Ax - A2)Yo = A3Ym

If we let A, = ¢A,, A; = TA, where ¢ and T are the reflection and
transmission coefficients, we have

14+¢=T (10.54a)
1—¢= Zo T (10.54b)
/.
Solving for ¢ and T gives
' Zm — Zy
27,
T = 7.+ 7, (10.55b)

For any reasonably good conductor, Z,, is very small compared with
Zo. For example, for copper (¢ = 5.8 X 107 mhos per meter) at a fre-
quency of 1,000 megacycles, § = 2 X 10-¢
1 meter, R,, = 0.0086 ohm, while Z, = 377 ohms.
For all practical purposes the field in front of
the conductor (z < 0) is the same as would
exist if ¢ were infinite, since ¢ differs from —1
by a negligible amount. For the same reason
the amount of power transmitted into the con-
ductor is very small; that is, T is very small.
We cannot, however, neglect the power trans-
mitted into conducting surfaces in the case of
transmission lines and waveguides since any
loss that is present is important in determin-
ing the attenuation constant of a wave. While
Fia. 108, Equivalent low-fre- the attenuation due to'cc‘)nduf:tor losses could
quency resistance problem. D€ expected to be negligible for short labora-
tory counnections, it would enter significantly
in long transmission lines. A method for calculating the attenuation
constant will be developed in the following discussion.
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The current flowing in the conductor is J, = ¢E, = ¢TAe-T2. The
total current per unit width of conductor is

oTA,
T

J, =0TA, /: eTode = amp/m
Replacing T by (1 + 7)/é and noting that at the conductor surface
H, = TA Y, we get

602

Jg = mH,, = H,, (1056)

since Z, = (1 + j)/08. This result also can be obtained by applying
960 H.dl = /s J - dS (displacement current being neglected) to a rectan-

gular contour C whose long dimension runs from z = 0 to z = + » and
whose short dimension is a unit length parallel to the x axis. The details
are left to the student.

If we now let o tend to infinity, we find that 6 >0, { » —1, and
H,— 2H;. The total current J, does not vanish since, from (10.56), it
clearly approaches the value 2H;. However, it is squeezed into a nar-
rower and narrower layer and in the limit becomes a true surface current
measured in amperes per meter. .

The power loss per unit area in the zy plane may be evaluated from the
complex Poynting vector at the surface. We have

P, = 15 Re (E.H*) = Y44, AYTT* Re Y* = 1{|TA,|%56 (10.57)

We may also evaluate P; by means of the following volume integral whose
integrand expresses the joule heating loss per unit volume. We have

1 1 © ®
P, = %[ / / cE.E} dxdyde = i IAITIZ/ =215
o Jo Jo 2 0
= 14|A:T|%5 (10.58)
The two methods, of course, give the same results. This result can be

put into another useful form if we replace |A.T| by |J.T'/s|. We then
obtain

Pi= 3402 = 1417 R,

In practice, the following approximate method is generally used to
evaluate the power loss per unit area. The tangential magnetic field is
first found using the assumption that ¢ is infinite. The surface current
density is then determined from the boundary condition

Jo=nXH
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where n is the outward normal to the conductor surface. Next it is
recalled that the surface of a conductor exhibits a surface impedance Z,,
and hence the power loss per unit area is .

Py = 14|H/|*Rn (10.59)

where H, is the tangential magnetic field at the surface, evaluated for
infinite 0. For the present problem H, = H, = 24,Y,, and hence

P, = 2|4,|*Y*R.
To compare this result with (10.57), note that

7~ s _ 20 +))
Zo U&Zo

and hence (10.57) gives approximately
4 .
WA s |1 sl = 2|44 R,

»which is the result (10.59).

The approximation involved in (10.59) is that we take for H, its value
when o is infinite. This is, however, a very good approximation, since
|Zm| < Zo. Therefore in practice we are justified in determining the
surface current density J, by using the boundary condition n X H = J,
and computing H as though the conductivity were infinite.

In the case of infinite conductivity the tangential electric field at the
conductor surface is zero. For finite conductivity there has to be a finite
value of tangential electric field in order to obtain a component of the
Poynting vector directed into the conductor. The tangential electric
field at the surface is given by E, = J/o, where J is the current density
at the surface. The student may verify that E, is also given by

E: = J.Zn (10.60)

The above results were derived for a plane wave incident along the
surface normal. For an obliquely incident wave the previous work can
be utilized provided that (10.48) to (10.50) are interpreted as applying to
the transverse fields and that the intrinsic admittances are replaced by
the appropriate wave admittances. The wave impedance in the free-
space region is, from (10.43b) and (10.45a),

Zno = Zysec b; perpendicular polarization
Zeo = Zycos b; parallel polarization
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The corresponding wave impedances in the conductor are

Zy, = Zmsecb,
Ze = Zmcos b,

Since Snell’s law must hold, we have

14

5 sin 6,

jko sin 0; =T sin 0, =

Now 6 is very small compared with k¢!, and therefore sin 6, is very small
and also complex. If sin 6, is very small, it follows that

cos 6, = (1 — sin? @,)%

is very nearly equal to unity. This shows that even for oblique incidence
the conductor may be assumed to exhibit a surface impedance Z,, because
Z. and Z, differ from Z, by a negligible amount. Thus the procedure
outlined earlier for the evaluation of the power loss in a conductor is valid
for oblique incidence as well. The method breaks down only when the
conductor is curved and has a radius of curvature not much greater than
the skin depth. Conductors with such small radii of curvature are
rarely encountered, except perhaps as small-diameter wires at the lower
frequencies. In the majority of cases the use of the surface impedance
Z,. and (10.59) is entirely valid for computing power loss at arbitrary
conducting surfaces with arbitrary electromagnetic fields.

10.4. Transmission Lines

A transmission line consists of two or more uniform and parallel con-
ductors. It is used to transmit high-frequency electromagnetic energy
from a given source (generator) to a load, e.g., antenna. The cross sec-
tions of several typical transmission lines are illustrated in Fig. 10.9.

OO

(@) ®) ©

F16. 10.9. Cross sections of typical transmission lines. (a) Two-wire line; (b) shielded
two-wire line; (c) coaxial line.

The principal type of wave that may propagate along an ideal (¢ = «)
transmission line is a TEM wave. Thus the field surrounding the con-
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ductors of a transmission line is governed by the equations for TEM
waves given in Sec. 10.1. With reference to Fig. 10.10, which illustrates
a general two-conductor line, we can write :

E =E, = e¢= (10.61a)
H = H, = he # = Ya, X ee % (10.61b)

where it is assumed that the medium surrounding the conductors has elec-
trical parameters e and po. The field e is equal to the negative transverse

l
I

1——:
1l
III

I
IL

R ——E
~——— —_————H Side view
End view

Fic. 10.10. A general two-conductor transmission line.

gradient of a scalar potential ®, and & is a solution of the two-dimensional
Laplace equation; that is,

e=—Vd (10.62q)
9% *®
2 = — —_— =
V2 e + ay? 0 (10.62b)

A nontrivial solution for & exists only if there is a potential difference V'
between the conductors. Thus associated with the electric field (10.61a)
there is a unique voltage wave Ve=#%2  The line integral

S S2
— [ ed=[Tde=V
is independent of the path by virtue of (10.62a), where the integration is
taken from an arbitrary point on S; to an arbitrary point on S..

The boundary conditions on ®, namely, that it equal a constant, say
zero, on one conductor and V on the other, are independent of frequency.
Since ® must be a solution of Laplace’s equation as well, then the unique-
ness theorem requires that & be independent of frequency. In other
words, the transverse field distribution of a transmission line is independ-
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ent of frequency and, as a matter of fact, is precisely the distribution
under static conditions. This is, of course, a general property of TEM
waves, as was noted earlier. ‘

From (10.61b) it is seen that the magnetic lines of flux are perpendicular
to the electric lines of flux and hence must coincide with the constant-
potential contours in the zy plane. The line integral of h around the
conductor S, in Fig. 10.10 gives

Ghed=1 (10.63)

where I is the total z-directed current on S,. The result follows from
Ampére’s circuital law since there is no z-directed displacement current
but only a z-directed conduction current density J; = n X h on each con-
ductor. On the conductor S; the total current flowing is —I. Thus
associated with the magnetic field (10.61b) there is a unique current
wave le 7%z, '

From the fact that the potential plot is independent of frequency, the
direction and relative magnitude of the magnetic lines of flux must then
be the same at all frequencies. Furthermore, since (10.63) holds at all
frequencies, then if I remains the same, the absolute magnitude of h does
not depend on the frequency as well. Thus the field distribution of h is
nothing more than that under time-stationary conditions.

In view of the unique relationship between e and ¥ on one hand and h
and I on the other, it follows that the properties of a transmission line
may be described in terms of the fields existing around the conductors or
in terms of the associated voltage and current waves. In a field descrip-
tion the parameters of interest are the propagation constant k and the
intrinsic impedance Z of the medium surrounding the conductors. In a
voltage-current description the ratio V/I defines the characteristic
impedance Z, of the line. The characteristic impedance is the counter-
part of the intrinsic impedance Z and in actual fact differs from Z by a
factor which is a function of the line geometry only. The circuit param-
eters of a transmission line are discussed in the next section along with
their method of derivation and will shed further light on the interrelation-
ship between the field and circuit descriptions.

10.5. Transmission-line Parameters

In a circuit analysis of a transmission line it is postulated that the line
can be characterized by the following distributed circuit parameters:

R = series resistance per meter

L = series inductance per meter
G = shunt conductance per meter
C = shunt capacitance per meter
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By considering a differential section dz of line, as in Fig. 10.11, an equiv-
alent circuit involving the above-mentioned parameters may be con-
structed as shown. The following circuit equations then arise from con-
ventional circuit theory:

V() — ['U(z) + % dz] =~ Pds = (oL + B dzg (10.64)
() — [g(z) +% dz] =~ Y g = ot + G dzv (1065)

Equation (10.64) states that the decrease in voltage along a length dz of
the line is equal to the voltage drop in the series impedance (jwL + R) dz,
while (10.65) gives the decrease in current because of the shunt current

a9
P 8+ dz
—_— B — Rdz Ldz
= =3
'suT _ T’u;+% a0 TCdz
z‘_— _—2 o ; °
' 'd I
[ z i

Fie. 10.11. A differential section of transmission line and its equivalent circuit.

flowing through the shunt admittance (jwC 4 @) dz. Differentiating
(10.64) with respect to z and substituting into (10.65) give

e ,
77— (oL + B)(juC + @)V =0 (10.66a)

Similarly, we may obtain

2
372‘ — (oL + E)(joC + G)9 = 0 (10.66b)
A solution to (10.66a) is
V= Vel (10.67)

where V is an amplitude constant and
I = [(joL + R)(joC + @)]* (10.68)

For any good line «L > R and wC > @, so that (10.68) gives

T=j8+a zjw\/L—C+%(R\/g+G\/g) (10.69)
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From (10.64) the solution for 4 is

JoC + G \*
jwL + R

_ T
T joL+ R

for a line with small losses. The ratio U/9 defines the characteristic

impedance Z,; thus
L
Z, = \E‘ (10.71)

In this section we shall establish the validity of the above approach as
well as obtaining methods for the evaluation of L, C, R, and G. We con-
sider a lossless line first with e real and the conductivity ¢ of the con-
ductors infinite. With reference to Fig. 10.10 and using the boundary
condition en - € = p,, where p, is the surface charge density per meter on
the conductor S., we have

Q=cf n-ed (10.72)

g Ve Tz = V( =~ V\/C —-Fz  (10.70)

Lossless Line

for the total charge per meter on S,. Since the potential of S, is V, the
capacitance per meter between S; and S; may be defined, as under static
conditions, to be

_9Q

=7 (10.73)

At the surface S; the electric field has a normal component only while

the magnetic field has only a tangential component. Furthermore, from
(10.61b) we find that |h| = Y|e| = Yn - e on the surface of S.. Hence
the current flowing on S, is given by

1-95 h-dl = 95 Yn-edl = Q (10.74)

Thus the characteristic impedance of the line is given by

Vv _ vV eZ
Z, = 710 eZ = el (10.75)
Since C/¢is a function of the line geometry only, Z, differs from Z only by
a factor which is a function of the line geometry.

An alternative expression for Z, may be derived from an energy defini-
tion of C and L, such as was introduced in electrostatics and magneto-
statics. Thus the energy stored in the electric field per unit length of
line is

=%e//eoed:cdy
z,y
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and we define C by the following:
W, = 14CV? ' (10.76)

The energy stored in the magnetic field per unit length of line is
W = %uo//h-hdxdy
z,y

= Yino?* [[ (@ X €) - (2, X €) dz dy
But e

(a. Xe)-(a, Xe)=a,-[e X (a. X e)]
=a,-[(e-e)a, — (e-a)e] =e-e

because e - a, = 0. Hence, since Y2 = ¢/u,,

W = %e//e-ed:c dy = W, (10.77)
Y

The inductance L per meter may be defined from the energy relation
Wan = Y4 LI? and we see that

LI? = (CV?
14 L
Consequently, we must have
eZ L
T = \/g, = Z, (10.79)

by equating (10.75) and (10.78). From (10.79) we obtain the relation
VLC = ¢Z = \/eup. Thus for a line with no losses, @ = 0 and
B=wANLC = wA\euo = k. For the ideal line we can therefore con-
clude that the circuit approach is consistent with the rigorous analysis
based on Maxwell’s equations if L and C are defined as above. Since
these definitions are in terms of time-stationary energy formulas and
since we know that the electric and magnetic field distributions are pre-
cisely those under static conditions, then the static values of L and C are
appropriate and correct at any frequency.

Line with Lossy Dielectric

Let us now consider the case where the dielectric surrounding the con-
ductors is lossy. The dielectric loss may be due to a finite conductivity
or polarization damping forces, or both. In all cases the effect of losses
may be accounted for by a complex permittivity ¢ = ¢ — j¢’. The
imaginary part ¢’ is directly responsible for the loss. Substitution of a
complex e into the equations for TEM waves does not modify the form of
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these equations, so that a TEM wave solution is still possible. With e
complex, a shunt current of density J = we’’e will flow from conductor
S to S: (note in the curl equation for H that we’’.is the equivalent con-
ductivity). The total shunt conduction current I, per meter is given by

143
= we Sﬁs,n cedl = “’Z,Q (10.80)

since this is the total current flowing away from S,;. A shunt conductance
@G may be defined through the relation

I, = V@ (10.81)
From (10.80) and the relation C = @/V, we now have

g=L_eQ oy (10.82)

Thus the shunt conductance, since it is directly related to the capacitance
C, depends on the geometry in precisely the same way as C, a result
already established in Chap. 5. An alternative definition of G is in terms
of the power loss in the dielectric per unit length of line. This definition

is Pzd = %V2G = % 2y plane

alent to that in (10.82) by a technique similar to that used in Sec. 5.8.
From the circuit equation for T, we have

I' = [juL(juC + G)]* (10.83a)

we’’|e|? dS and is readily shown to be equiv-

while from the field equations
k= w(ue)” = wfus(e — j&'')]* (10.83b)
Since LC = uoe’ and G/wC = ¢’/¢, (10.83a) becomes

A\ 34 I\ 1
T = ju(LC)*% (1 - ﬁ) = jw(,uoe')"*’< - Jf,—) =jk (10.84)
wC €
Therefore again we find that the circuit analysis and field analysis are
equivalent.

The General Lossy Line

When the conductors have a finite conductivity o, a TEM wave solu-
tion is no longer possible. With a z-directed current along the con-
ductors, there must be a z component of electric field e, = Z,J. The
TEM wave is perturbed into a wave having at least a z component of
electric field. However, for any good conductor, Z, is so small that the
solution is still essentially a TEM wave. We may find the power loss in
the conductors by using the approximate technique outlined in Sec. 10.3.
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The surface current density in the case where ¢ = « is given by
Js=nXh

The power loss in the conductors per meter for finite conductivity is thus
approximated by

Pi=YBRa(p, InXhj*dl
and this may be written as

m=%m¢

since at the conductor surface h has a tangential component only. The
series resistance R per meter may be defined by the relation

VBRI = Py

ses, BI7dL (10.85)

and hence
R, g Inlzdl
E=3 9551”’ lhj2dl = R, ————968 +5 i (10.86)

(s, i@

To compute the attenuation constant «, we note first that the power
flow along the line will be of the form

P = Pye2es

where « is the attenuation constant for the electric and magnetic field
waves and P, is the power flow at z = 0. The rate of decrease of P with
z must equal the power loss per unit length arising from the dielectric and
the conductors. Expressed mathematically,

-5 = 2aP = P, + Py (10.87)

Since we define WI*R = P;, and X4VG@ = P,;, then (10.87) can be
expressed in terms of these line constants as well. This gives us
2aP = 14V?@ + W I°R

For a low-loss line P = VI = 14V?Y, = 4127, where

L\ %
= V1= (Z
Z.=7; (C)
Therefore (10.87) gives

o= [R(9) +o(2)] aoss

which is the same result as given by (10.69) for the voltage and current
wave of a low-loss line, provided R and G are defined from the above
energy relations. '
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As long as the losses are small, we can again justify the circuit approach
to transmission lines by an analysis based on Maxwell’s equations and the
approximate method of evaluating power loss in a conductor. In the
preceding analysis we neglected the small increase in the inductance of
the line when o is finite. This increase arises from a penetration of the
magnetic field into the conductor. Since the effective depth of penetra-
tion is the skin depth, the internal inductance is very small compared with
the external inductance and may usually be neglected.

Terminated Transmission Line

Ta complete the picture of the transmission line we shall consider a
lossless line terminated in a load impedance Zy, at z = 0, as in Fig. 10.12.

I
#
|

Zc ZL VL

ik
Lt

VO <N

|
L |
| ] |

F4

0

F1c. 10.12. A transmission line terminated in a load impedance.

Let a voltage wave Ve 7% be incident from the left. In general, a
reflected wave ¢ Ve will be produced by the load, where ¢ is the reflec-
tion coefficient. The current waves associated with the incident and
reflected veltage waves are Y .Ve=* and —¢Y Ve, where Y, is the
characteristic admittance of the line. At z = 0 the total voltage across
the load impedance Zy, is Vi, and the current flowing through the load is
I, where

Vi=(0+ )V
I,=Y.(1 -V
Since V./I; = Z;1, we obtain
1+¢_Zys
i—¢-7Z (10.89)
Solving for { gives
Zy, — Z,
¢ = ‘zsz‘ (10.90)

In general, ¢ is complex since Z; may be complex. Only when Z; = Z,
will the reflection coefficient be zero. The maximum voltage amplitude
on the line will be (1 + |¢|)V, while the minimum voltage amplitude will
be (1 — |¢])V. The ratio of the two is called the voltage standing-wave
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be derivable as the transverse gradient of a scalar potential ® that satis-
fies Laplace’s equation. However, since & must also be constant on the
trace of the conductors in the cross-sectional plane, the theory of har-
monic functions demands that ® be a constant when the conductor
boundary is simply connected, as would arise with hollow cylindrical
waveguides. In this event, a null E and H field results. The two basic
types of waves that may propagate in a waveguide are the TE and TM
waves (or modes).

It turns out that for a given wave or mode solution there exists a lower
frequency, called the cutoff frequency, below which the mode will not
propagate. Above the cutoff frequency the mode propagates and both
the phase velocity v, and the guide wavelength are greater than the cor-
responding quantities for plane waves in free space. If A, is the cutoff
wavelength, corresponding to the cutoff frequency f., the guide wave-
length A, is found to be given by

Ao

Ao = 0= (o) T" (10.95)
and the phase velocity v, is given by
vy = %c  (10.96)

where Ao is the free-space wavelength and c is the velocity of light in free
space. The velocity of energy propagation and the velocity with which a
signal propagates (group velocity) are equal and given by
vy = Ao c
g xa
or v Up = c? : (10.97)

Thus the group velocity is always less than ¢, as it must be since, according
to the theory of relativity, energy or a signal cannot be propagated with a
velocity exceeding c.

Equations (10.95) to (10.97) hold for any empty cylindrical waveguide.
The only difference from one guide to the next is the specific value of the
cutoff wavelength \;, which depends on the geometry of the guide cross
section. We proceed now to a detailed derivation of the above results
for both the rectangular and circular guides. For a more general treat-
ment the reader is referred to one of the specialized texts in this field.

TE Waves

Figure 10.13 illustrates a rectangular waveguide of cross-sectional
dimensions @ and b. The conductivity of the walls will be assumed to be
infinite, and the interior of the guide, free space. For the TE waves the
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equations derived in Sec. 10.1 are applicable. The fields are given by

= [h(z,y) + hz(x)y)]e—jp‘ . (10.98a)
E = e(z,y)e (10.98b)
h = kﬁ Vih, (10.98¢)
e=—Za,Xh (10.984)
and h, is a solution of
Vh, + k2h, =0 (10.98¢)

where k.2 = ko? — 8% and the wave impedance Z, = k¢Zo/8. The first
step is to find a solution for h,(z,y).

y

T

b

e B

Fic. 10.13. The rectangular waveguide.

The standard method of solving a partial differential equation such as
(10.98¢) is the method of separation of variables. We assume that
h.(z,y) can be expressed as a product of a function of z alone and a func-
tion of y alone; that is, h.(z,y) = f(z)g(y). Substitution of this type of
solution into (10.986) gives

P15+ ki =0

6:::2
Dividing by fg gives
1d  1dyg .
7 da? + = 7 & +k2=0 (10.99)

a’f .
f dz?
are not functions of z. However, since (10.99) must hold for all values
of z and y, it is necessary that the term involving f and also the term
involving g be constant. Hence we can write

1 d*f
fdzr ™

jx{ + ki =0 (10.100)

and %% + k2 =0 (10.101)

If we vary z, only the term in (10.99) can vary since the other terms

— k2

or
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where k.2 and k,? are called separation constants. In order for (10.99) to
hold, we must have ‘

~k2—-k2+EkE2=0 '
or k. = (k2 + kD% (10.102)

The separation-of-variables technique reduces a partial differential equa-
tion into two or more separate ordinary differential equations.

The solutions to (10.100) and (10.101) are (apart from an additional
arbitrary amplitude constant)

f(z) = cosk,x + A sin k.z
g(y) = cosk,y + Bsin kyy
and hence

h.(z,y) = (cos k.z + A sin k.z)(cos kyy + B sin ky)

The constants A, B, k., k, will be determined by the boundary conditions
that h, must satisfy on the guide walls. Since the normal component of
h is zero at a perfect conducting surface and h is proportional to V.., it
follows that

oh, _ _
ax—-O z=0,a
oh, _ B

a—y—O y—O,b

Atz = y = 0, these conditions are satisfiedif A = B =0. Atz = awe
must have sin k,a = 0, while at y = b, sin k,b = 0. Therefore the
possible solutions for k. and k, are

k.

It

n=20,12 ... (10.103a)

nr

a
k, @b-’f m=012, ... (10.103b)
Both n and m cannot be zero or the gradient of h, will be zero. Thereisa
double infinity of possible solutions. Each particular solution is called
a mode and designated as a TE,, or H,, mode for the nmth solution.
Thus for the nmth solution

Bonm = COS 7——»—:? cos ﬁ;l/ (10.104)

From this solution for h, all the other field components may be found by
means of (10.98).

For the nmth solution the corresponding values of k. and g will be
written as k. nm and B.m. Similar subscripts will be used on the field
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components. From (10.102) and (10.103) we have
9 _ M 2 m 2
kc.nm - <a) + < b ) : (10.105@)
= g2 — (Y _ (Y ]

For propagation in the z direction, 8,» must be real. This is possible only
2r nmr\? mmr\? |
w=w>[(5) + (5]

e < 2 _ 2ab

" (/0 F /BT G T miat

The particular value of Ao for which the left-hand side of (10.106) equals
the right-hand side, i.e.,

or

(10.106)

2ab
(n2b2 + m2a2) %

is called the cutoff wavelength for the nmth mode. For all values of
Mo < Nenm, Bam is real, while for Ao > A...m, the propagation constant B,
is imaginary. For the latter case the corresponding fields are exponen-
tially damped in the z direction since e=#snz = ¢~l8snlz,  Such solutions are
known as evanescent waves.

In practice, the waveguide dimensions a and b are chosen so that for
the frequency band of interest only a single mode can propagate. Usu-
ally a is chosen as approximately equal to 2b. If a = 2b, (10.107) gives

N 2a
“mm T (n? 4 4m?)¥

The largest cutoff wavelength occurs for the TE;p mode, that is, n = 1,
m = 0. For this mode ;10 = 2a. The next modes to propagate are
the TEy and TEo modes with A; 2 = Ae,01 = a, followed by the TEy,
mode with \.,11 = 2a/4/5. Provided we restrict the frequency to be in
the range where a < N\o < 2a, only the TE;, mode will be able to propa-
gate. This is the dominant mode of propagation in a rectangular guide
(the first TM mode to propagate has A\, = A, 11).

Multimode propagation is avoided in practice because each mode that
could propagate has a different phase and group velocity and a different
field configuration. The first difference means that the phase relation
between the portions of the signal power carried by each mode continually
varies along the guide and makes it difficult to extract all the energy from
the guide at the receiving end. The second difference means that a
different arrangement of coupling probes or loops must be used to excite
each mode in the guide as well as to couple the energy out of the guide.

Ao = Aeyom = (10.107)

(10.108)
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The TE 1y Mode

For the dominant TE;, mode,

r
h,,lo = A cos 7

where A is an amplitude constant. From (10.98) the fields are found to be

T . y
= —= g—ibrez
H. = A cos~~ e7w E field in
xy plane

Q. . T
H. = jB10— A sin —= ¢=#us
T a

- _k
B = Bro ZoH.

E.,=E,=H,=0
where k.10 = 27/Ac10 = w/a, and
Bro = [(27/Xo)? — (x/a)?}**. The guide
wavelength A, is defined as the distance

the wave must propagate in order to (—4—\
undergo a phase change of 2r radians.

Thus B1\, = 27, or 321 @
A, = .2_1"_ = _—M__._
¢ ﬁlO [1 - ()\0/2@) 2]% L——.—) H field in

For this mode E, is analogous to the N #2 plane
voltage and — H, is analogous to the
current on a transmission line. The Z2£ @
wave impedance Zn = koZo/B1 is
the counterpart of the characteristic \ )
impedance. A sketch of the field con-
figuration is given in Fig. 10.14. The Fic. 10.14. Field configuration for
density of lines is a measure of the rela- TEiw mode at a particular instant
tive amplitude or strength of the field. of time.

The time-average power flow in the z direction is given by one-half of
the real part of the integral of the complex Poynting vector over the
guide cross section. We have

b a
P=%Re/ﬁEXH*-a,dxdy
0
b a
=%Reﬂ/—E,,Hfdxdy
0
a? b fe . wx
=§‘1r—2k0610Z0AA*/; A sm27dxdy

a* * 10.109
= mkoﬂmZoAA (10.109)

A
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The losses in the waveguide walls due to good but not perfect con-
ductors may be found by the scheme previously used in discussing the
transmission line. In this case the currents that flow in each of the four
walls must be considered separately. Thus

J' =n x Hza, = —Ae-fﬂlofay
z=0 z=0
J' = —Ae“iﬁn'au
z=a
J' =nX (Hzaz + Hzaz) (az Ccos '—2 - a,]ﬁm —sin ——-) AeBios
y=0 y=0 a
J. = ( az cos — + a.jB10 e sin —) Ae—7Bz
y=>b ™ a

The losses per unit length are found by integrating (R./2) £, J* dl
around the waveguide walls. In detail, we obtain

b a 2 ~2
Py, = R, [/ AA*dy + [ AA* (cos”—rf + ﬂ‘Lg sin? E) dx]
0 0 a T a

2
— AA*R, (b +o+ fg;‘f)

The attenuation « may be found from the relation noted in (10.87); that

is,
l_ - Rn(b + B},a*/27% + a/2)
“=32P (2a% /470 koB10Z0
_ Ruko [2b
= bZoﬂm[ ( ) + 1] (10.110)

The time-average electric energy stored in a unit length of guide is

€0 b a 1
=—///E,,E’*dxdydz

€
———k2Z02AA*///sm2—dxdydz

- D kot Z2 A A (10.111a)

The time-average magnetic energy stored in a unit length of guide is

///(HH*+HH*)dxdydz

= Zb/ ( Z,BIOAA*sm’T + AA*cos”m>d:v
0

2
= o iy AA*( + Z;) —W. (10.111b)
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since 8} + w?/a? = ko®and po = Zy%,. Since power flow is a rate of flow

of energy, the velocity of energy transport v, may be found by multiplying

W, + W, by v, and equating the result to (10.109) for power flow. Thus
P B1o B 1 o

T AW, T koeZo | Ko (moi)® N, © (10.112)

Vg
For the TE,, mode we have for the z and ¢ dependence
exp (—jBioz + juwt) = exp jw [t - (%:—") z]

Thus the phase velocity v, is given by w/810 = koc/B10, and hence v,, = ¢?,
as stated earlier in (10.97).

We shall now show that the velocity with which a signal is propagated
is equal to the velocity v,. An amplitude-modulated signal

S = (1 4+ M cos wnt) cos wt
may be expressed as
S = Re (]_ —|— % eiomt + _M_ e"iw,.t) elut
2 2
. M, . .
= Re [ewt + _2_ (ei(w-l—w,..)t ..I_, e](a) m,,)t)] (10.113)

The term M cos wat is the signal being transmitted.

The modulation frequency w, is assumed to be very small compared
with the carrier frequency w. From (10.113) we see that we must con-
sider the propagation of three components with frequencies W, 0 + wm,
and @ — wn along the guide. Since By is a function of frequency, each
component will propagate with a different phase velocity. We may
expand By in a Taylor series about the point w to get

Buo(w + Aw) = Bio(w) + B Aw + - - -

where 8], = dBio/dw at w. Provided w, is small enough, we have

Bro(w £ wm) = Bro(w) T wmblo

Thus as the signal S propagates along the guide, its z and ¢ dependence
will be

= jwt—iB10(w)z _Il{ 7 (w+0m)t g—i (Bro+wmBro’) 2 5 (0—wm)t g—3 (Bro—wmB10") 2
ele - 5 e e + e e

= Re ef‘ﬂl—fﬁlo(w)z [1 + % (eiﬂm(t—ﬁxo't) + e—-]"-'m(t"ﬁu'l)):l
= [1 + M cos wn(t — B}2)][cos (wt — B102)] (10.114)
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Thus the signal appears at z in an undistorted form but delayed in time
by an amount r = Bj,2. The distance z traveled divided by the time
delay 7 defines the group velocity or signal velocity and is

po= L do _  dko

¢ 3’10 dﬂlo dﬂlo
since cko = w. Now g%, + (r/a)? = ke?; so 2kodko = 2810 dB1s, and
hence

v ="e (10.115)

which is the same velocity as derived for the energy transport.

The above analysis is based on the assumption that w,, is small enough
so that only the first two terms in the Taylor series expansion are required.
If more terms are required, it is then found that signal distortion takes
place because of the phase dispersion between the various frequency
components.

TE 1 Mode as a Superposition of Plane Waves

A physical understanding of why the guide wavelength and phase
velocity are greater than the corresponding quantities for plane waves
may be obtained by decomposing the TE;, solution into two obliquely
propagating plane waves. For the electric field E, we may write

N
E, = —2jA,sin - g Pz

= A(e7ele — givsla)g—ibros

where 2j4, = jkoZoAa/m. If we now write r/a = ko sin 6;, 810 = ko cos 6;,
the relation 8}, + (r/a)? = ko? is satisfied. The solution for E, becomes

Ey p— A l(e—-'jko(z sin 0;+2z 008 0;) __ e—]'ko(—z sin 0;+2 cos 0.~))

which represents two plane waves propagating at angles 8; and — 4; rela-
tive to the z axis. One of these component waves is illustrated in Fig.
10.15. From this figure it is clear that when the plane wave has pro- .
gressed a distance ¢ in 1 second, the intersection of the phase front with
the z axis has progressed a distance ¢/cos 8; = koc/B10 = v,. Similarly,
it is clear that the spacing between adjacent wave crests in the z direction
is greater by a factor sec 6; than the spacing in a direction normal to the
phase front. Hence A, is greater than \,. Energy in a plane wave
propagates in a direction normal to the phase front with a velocity c.
The projection or component of this velocity along the z direction is
ccos 6; = v,. It is because of the zigzag path the TEM waves follow as
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they reflect back and forth between the side walls of the guide, while
progressing along the guide, that the properties of the guide as noted
above arise. The cutoff condition, for example, corresponds to the case
where 8; — /2. Under these conditions we obtain a picture of the wave

F1c. 10.15. Obliquely propagating plane wave.

propagating back and forth in the transverse plane with no component in
the axial direction.

TM Waves

For TM waves all the field components may be expressed in terms of
the axial electric field function e,(z,y). The solution for e, is similar to
that for k., with the exception that e, must be of the form

. nwr . mwy

e, = sin — sin ——~
a b

in order that it will vanish on the guide walls. A notable feature of this
solution is that neither n nor m can be zero or e, will vanish. As a result,
the lowest-order TM mode is the TM;; mode. For a = 2b, this mode, as
well as all the other TM,., modes, will not propagate when a < Ao < 2a,
hence confirming that the TE;, mode is dominant under those conditions.
Apart from this difference the TM,,, modes are the duals of the TE,.
modes. The field components for TE,, and TM,. modes are listed in
Table 10.1 along with other important information.

The attenuation constant «, measured in nepers per meter, for the TE
and TM modes is given below. For the TE modes,

2R, b\ k2 e
a = bZo(1 — k2, JhkoD)% [(1 + E) Too?

o bfem kZ,n\n%ab+ mia’
+2(% Ko ) Sy mw] (10.116a)
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TasLE 10.1. PROPERTIES OF MODES IN A RECTANGULAR WAVEGUIDE
TE modes TM modes
H, cos m cos "_ly e~ iBam 0
a b
E, 0 sin 2% gin 7Y p-iBums
a b
B T 08 Y o iBums _ B
H‘ ak:,nm o0 b ¢ Zcmm
JBrmmw nrr . mwy . E,
—_ —_— —2 e=iBnm?
H, bk, cos sin b e~ 7
Ez Zh.mnHy —_ ]Bn:‘nr S T—% sin ."_"Ly e-iﬂnmt
ak; m a b
jﬁnmmﬂ' . nwrx mrxy _. .
E, —ZhamH - bkE sin — cos > e~ iPums
k cnm 2 _%
Zh.nm Zoi = Zo [1 - <f—j‘."> ]
1%
B’lﬂl conm 2]
Zomm  |eveeeoe i e Zy— =Zo|1 —
* ko o[ < f )
2 2% 2 2 1%
nmw mmr nm mn
e [(‘) * ( b) ] [(*) * (?) ]
2 27| 2 2 | %
o (Y _ (e o (Y _ (7 ]
ﬁnm [ko ( a b kO a b
) ___ 2ab 2
o [(nb)? + (ma)?)¥ [(nb)? + (ma)?)*t
Sernm ()\cmm)_"(ﬂ'oéo)mM ()\c.nm)—l(ﬂoﬁo)_%

while for the TM modes,

_ 2R, n2b® 4 m2a®
T bZo(1 = k2, ko®)% nibla + mia®

(10.116b)

where R, = (wuo/20)* and €, = 1 for m = 0 and e = 2 for m > 0.

10.7. Circular Waveguides

The propagation of waves through a hollow waveguide of circular cross
section can be readily considered on the basis of the general theory devel-
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oped in Sec. 10.1. Following the scheme outlined in that section, we con-
sider separately TEM, TM, and TE modes. "In this case no TEM wave
propagation is possible because the conducting-boundary contour in the
transverse plane is simply connected. Let us then start with a considera-
tion of TM waves.

For TM waves in cylindrical waveguides, all field components may be
derived from the axial electric field e,. This field, furthermore, satisfies
the reduced Helmholtz equation

Vg2€, + k¢2€; = 0
where k.2 = ko — 2

and e—##* variation with z is assumed. In view of the circular cross-sec-
tional geometry, as illustrated in Fig. 10.16, it is appropriate to expand

Ny

Fi16. 10.16. The circular cylindrical waveguide.

the Laplacian in the above equation in circular cylindrical coordinates, so
that we get

9%, , 1 de, 19%, _ ,,
ai T Yrgg = ke (10.117)

We seek a solution of (10.117) by the method of separation of variables
and therefore assume that we may express

e.(r,¢) = f(r)g(¢) (10.118)

Substituting (10.118) into (10.117) and then dividing by fg results in the
following equation:
/! /!

£f_+lf_+1_9_ = —k? (10.119)
where the primes represent derivatives with respect to the argument. If
we multiply (10.119) by r? and rearrange, we can get

,rgf// Tf’ g//

— 4 =+ k= - 10.120

7 + 7 + kr " ( )

The left-hand side of (10.120) is a function only of r, while the right-hana
side is a function only of ¢. Since (10.120) must be identically correct
for all r and ¢, this could be true only if both sides were equal to the same
constant »?%. Consequently, we have been able to reduce the solution
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of (10.117) to the solution of the following two ordinary differential
equations:

df , 1d 2 '
d_r{ +2 E£ + (kcz - %)f =0 (10.121a)
d%g .

In the problem at hand the field must be periodic in ¢ with periodicity
2r. Consequently, it is necessary to choose » = n, an integer, and the
solution to (10.121b) will be of the form

g(¢) = A cosné + Bsinné (10.122a)

The differential equation given in (10.121a) may be recognized as
Bessel’s equation, the solution for which may be written

f(r) = CJTa(ker) + DYu(ker) (10.122b)

The Bessel function of the second kind, Y,(r), has a singularity at the
origin. Since such a singularity is inconsistent with the physical fields
that are expected in the waveguide, we must choose D = 0. We finally

get for e,:
e, = J.(kr)(A cos ng + B sin ng) (10.123)

Let us now consider the requirement that e, = 0 when r = a; that is,
the tangential electric field along the conducting boundary must vanish.
A nontrivial solution is obtained only if certain values of k., the eigen-
values, are chosen. These values must be such that J.(k.a) = 0; that is,
k.a must be a root of the nth-order Bessel function. An infinite number
of roots exist, and we shall designate the mth root of the nth-order Bessel
function as p.m. This means that

Jn(Prm) = 0

Values of p.n for the first few modes are given in Table 10.2. We may

TaBLE 10.2. VALUES OF pnm FOR TM MobES

n Pn1 Pn2 Dn3

0 2.405 5.520 8.654
1 3.832 7.016 10.174
2 5.135 8.417 11.620

now specify by the double-subscript notation k. .. the doubly infinite set
of eigenvalues for the TM modes of the circular cylindrical waveguide.
Thus

_ Pon
kc,nm _' a (10. 124)
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Each choice of m and n specifies an eigenfunction solution or mode of the
problem, which we designate TM,.. The quantity = is related to the
number of circumferential field variations, while m describes the number
of radial variations of the field. The complete problem requires matching
prescribed boundary conditiohs at some plane z = z; and 2 = z,. In
order to do this, a summation of different modes (including the TE type
yet to be discussed) will be necessary, in general. The boundary condi-
tions serve to specify the constants 4 and B for each mode.

The propagation constant for the nmth mode is given by

Bum = [k& - (”if’—")z]’é (10.125)

a

and we note the same cutoff property that was found for the rectangular
guide. Thus the eigenvalue k. .. given by (10.124) is also the cutoff wave

number for that mode. The cutoff wavelength is simply
Neum = 27 (10.126)

pnm

The remaining field components for the TM,,, wave are given in Table
10.3. They were derived from (10.123), with kcnm = Dam/a, using the
formulas developed in Sec. 10.1. The expression for the wave impedance

is Wl‘itten in the fOI‘m
e f

which is similar to that given for the rectangular guide. Actually, we
could show that this form is correct for any cylindrical waveguide; varia-
tions in cross-sectional shape affect the value of Z, through the value of f..
The lowest value of p.n is the first root of the zero-order Bessel function
for which pe; = 2.405. The cutoff wavelength, from (10.126), is then
2.61a.

To explore the TE modes that exist in the circular cylindrical guide
we must consider h, as our potential function. It satisfies an analogous
equation to (10.117); so we may write, immediately,

h, = Ja(ko)(A’ cos n¢ + B’ sin no) (10.127)

The boundary conditions in this case require that dh,/0r = 0 when
r = a; ie., the normal component of magnetic field at a conducting
boundary vanishes. Let us designate by p,,, the mth root of the follow-
ing equation:

dJ.(z) _

dz 0

(@) =
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TaBLE 10.3. PROPERTIES OF MODES IN A CIRCULAR CYLINDRICAL WAVEGUIDE
TE modes TM modes
17
Paml\ _.5 , ] cOSNG
He | Jw (T) 6™ ifn { sin né 0
Pam\ s ] cosne
E |0 In (T) ¢ Fun { sin n¢
jBnmp,’.m ’ ,I.mr s ' cos ne¢ E¢
H. | — a_k‘f: Ja (—a—-) e~ iBum { sin ng | — 7
JNBrm Dot 5, —sinng| E.
H¢ - rk:"m J,, < e >/e 1Bnm { cos n¢ Z‘_"m
jﬂnmpnm ] Pam? - . CcOS T
E, |ZyumHy - m Ja <T> e~ 7Pum ‘ sin n¢
JnBam Pamr ) . A R sin n¢
Ey | —ZhnmH, TR Ja (T) € i { coS no
1\ 2% 27| %%
Bam I:koz_.(&'l> } l:koz_(?l’_"_) ]
a a
cinm —}é k
el - () [ = 22
14
fc.nm)z] Bﬂm
/7 Zy|1 —{—= =—12
’ [ ( f ko
’
Keunm | E2m Prm
a a
2ra 2ra
)\c.nm s -
Pnm Prm
fc.nm ()\c.ﬂ,m)_1<Il'050)_5'é ('\0-7"71)_1(l‘(!fu)—.;ﬁ
Then the eigenvalues for the problem are
pl
kem = =22 (10.128)
a .
Values for p,,, for the first few modes are given in Table 10.4. In other

ways the results for the TE case follow analogously to the TM case
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already discussed. Table 10.3 summarizes the fields that exist for the
TE.» modes. The latter are obtained from (10.127), with kc am = Dam/ @,
using the general equations developed in Sec. 10.1.

TaBLE 10.4. VaLUES oF p., ForR TE MobpEs

’ ’ ’
n Pn1 Pa2 Pns

0 3.832 7.016 10.174
1 1.841 5.331 8.536
2 3.054 6.706 9.970

The lowest value of p., is pi;, which equals 1.84 and for which the
cutoff wavelength is 3.4la. Conse-
quently, the TE;; mode is the dominant
mode in the circular cylindrical wave-
guide. A sketch of the field lines for
this mode is given in Fig. 10.17. For
2.6la < Ao < 3.41a, only the TE;; mode
can propagate in a circular cylindrical
waveguide.

The attenuation produced by imper-
fectly conducting walls may be calculated ~F16. 10.17. TEy, field distribution
by means of the same technique that transverse plane.
was used in the case of the transmission line and the rectangular wave-
guide. The results are, for TM modes,

Rm c.um2_M
“=a‘z;[1”(f)]

while for TE modes

&[T () el

where « is measured in nepers per meter, and R, = (wpo/20)% = 1/06
and is the surface resistivity of the metallic walls. The attenuation con-
stant for the TM waves as a function of increasing frequency decreases
to a minimum at f = V/3 f..nm and then increases indefinitely. The same
general behavior occurs for the TE modes with the exception of the
TEom waves. The latter are of very great interest because the corre-
sponding attenuation constant decreases indefinitely with frequency and
hence gives rise to the possibility of long-distance communication links.

o

10.8. Electromagnetic Cavities

At high frequencies the electromagnetic-cavity resonator replaces the
lumped-parameter LC resonant circuit. Virtually any metallic enclosure,
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when properly excited, will function as an electromagnetic resonator;
that is, for certain specific frequencies, electromagnetic field oscillations
can be sustained within the enclosure with a very small expenditure of
power. The only power that needs to be supplied is just that needed to
compensate for the power loss in the cavity walls. Electromagnetic
cavities are used as the resonant circuit in high-frequency tubes such as
the klystron, for bandpass filters, and for wave meters to measure fre-
quency, as well as for a number of other applications.

In this section we shall examine the basic properties of a rectangular
cavity of the type illustrated in Fig. 10.18. Again, as was the case for

\I\h. y -

It

l

F1c. 10.18. A rectangular cavity resonator.

the rectangular guide, an understanding of the behavior of the rectangular
cavity provides an understanding of other shapes of cavities also. The
only essential difference between cavities of different shapes is the detailed
structure of the interior fields, since this depends on the geometry or
shape of the cavity.

The field solutions in a rectangular cavity are readily constructed from
the corresponding solutions for the waveguide modes. For example, we
may consider the cavity in Fig. 10.18 as being a part of a rectangular
waveguide. Let a TE;, mode propagate in the positive z direction, and
let a short-circuiting conducting plate be placed at z = d. Complete
reflection will take place, and the electric field will be of the form

E, = A\(e- — ¢—Buol2d-2) sin%v
= AP sin TL (g~ Bule—d) — gibrle—d)
a
. . . T .
= —2jA 7% gin — Sin B1(z — d)

A sin "Tf sin Buo(z — d)

]

where 4 = —2jA4,e~#w At any plane where sin 810(z — d) vanishes,
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we can place another conducting plate and thus obtain a rectangular
enclosure. On the other hand, if the dimension d is given and the ends of
the cavity are at z = 0 and z = d, we must have

sinﬁmd=0
or ,310=%’5 §s=1,23, ...

With Bi, k2, and k, all fixed by the cavity dimensions, it follows that
only certain discrete values of ko will yield a possible solution. Since
B? = ko* — k,* — k,%, we have

w2 G+ T

in general, or for the TE;, mode with a single sinusoidal variation along 2,

f=c(-L +-LY (10.130)
i T iz :

The mode of oscillation, whose frequency of oscillation is given by
(10.130), is designated as the TEip mode, since there is only a single
standing-wave-pattern loop in the z and z directions and none in the
y direction. For the higher-order TE,,, modes there will be n loops along
the z direction and s loops along the z direction. The corresponding
resonant frequencies are given by (10.129) with m = 0.

In addition to the TE,, modes there are the TE,,, modes and their
duals, the TM,,,, modes. The TE and TM modes may be derived from
the z component of the magnetic and electric field, respectively, by equa-
tions similar to those given in Sec. 10.1 (replace —j8 by 8/z). The solu-
tions for the z components of the fields are readily found to be

nrr  mmy . swz

H, = cos — cos — sin —- TE modes
a b d
E, = sin nT:x sin ln%r_q cos s_;_z TM modes

and from these the remaining components may be found. Although
there are an infinite number of discrete modes of oscillations in a rectan-
gular cavity, we shall study only the TEo; mode in detail.

Since the TEjo; mode is a TE;, waveguide standing-wave field, the
only field components present are E,, H,, and H,. For the electric field
we have

E T k4

= A sin - sin ri (10.131a)
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The magnetic field is readily determined from the curl equation

VX E = —jupH

. =—j0E,,__]1rA.E Tz
and is H, o 02 = amed sin — cos — (10.131b)
H =1 0k, _ jrd cos =2 sin ™ (10.131c)
wito 9T Wiod a d

The resonant frequency of the cavity for this mode of oscillation is, from
(10.130),

5 =f= % (e + d-7% (10.132)

The electric and magnetic fields in a cavity are in phase quadrature, as is
readily seen from (10.131), since a factor j multiplies the expressions for
H,and H,.

The total time-average electric energy stored within the cavity is

a b d
—69[ / / AA*sinZLxsinzlzdzdydz
o Jo a d

= “lbg wAA* (10.133)

w.

The total time-average magnetic energy stored in the cavity is

///dAA*( sxn2ﬂc0s21ﬁ
a d

™

- 2_ 2
+a cos? — sin d)dxdydz

AA* abd ?
- ( T d2) - W, (10.134)

since ko? = wluoeo = (r/d)? + (r/a)?. Thus at the resonant frequency,
W, = W., a property similar to that for a resonant LC circuit at low
frequencies.

The expressions given by (10.131) are the complex-phasor representa-
tions for the real physical field. The real-physical-field components,
denoted by a prime, are obtained by multiplying by ¢** and taking the
real part; thus

E, = Asin WT: sin ldf cos wt (10.135a)

H, = T4 in ™ cos ™2 sin ot (10.135b)
wpod a d

H = — 74 05 ™ sin ™ sin wt (10.135¢)

Wil a d
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where w is given by (10.132) and the amplitude constant A is assumed
real.

In any practical cavity the walls have finite conductivity, and hence
any mode of oscillation that has been excited, say by an impulse, must
decay exponentially. Thus the time behavior of the oscillations must be
of the form et cos wt and e~ sin wt, rather than the form given in
(10.135), which is the steady-state solution for the ideal cavity. To
determine the damping constant @, we must evaluate the power loss in
the cavity walls. This may be done by assuming that the current flowing
on the walls is the same as for the ideal cavity. We then have, from
Sec. 10.3,

Pi.=Y%R.§_ H,-HfdS (10.136)

where H, is the tangential magnetic field at the cavity wall, and
R, = 1/¢8. The total time-average energy in the cavity is

W=W.+ Wh
and must decay with time as follows:
W = Woe 2t

where W, is the time-average energy in the cavity at ¢ = 0. The nega-
tive rate of change of W with time must equal the power loss in the walls,
and hence

- = 2aWie—2t = 2aW = P,
— Plc
or a = Q"W (10.137)

This relation permits the damping constant « to be determined.
The quality factor, or @, of a resonant circuit may be defined as

time-average energy stored
energy loss per cycle of oscillation

Q=2r (10.138)
Since P;. is the energy dissipated in the cavity walls per second, the
energy loss in one cycle, or a time interval r = 1/f, is P, /f. From
(10.137) and (10.138), we now see that

_Pu/f _fPu/f_f2r _ w (10.139)

t This type of behavior is characteristic of any low-loss oscillatory physical system
where the power loss is directly proportional to the energy present at any instant of
time. In this case dW/dt = —kW, so that W = Wie™*, where W, is the energy
present at ¢ = 0.
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In order to determine the Q of the cav1’cy for the TE;o; mode, we must
evaluate (10.136) for the power loss in the walls. On the end walls at
z = 0, d, we have, from (10.131), :

[Hy| = |H,| = ~7ril—sin’—r—:-v
wi

and the power loss in these two walls is

= 2
Py, (w#o d> / / sin d:c dy
v ab TA
L= g Bn (wmd)
where A is again assumed to be real. On the upper and lower walls at
y = 0, b, we have

[H|* = |H.|* + [H,|? = (W—4> (d2 sin? %E cosz% + al— cos? s1n2 1:;)

and the power loss is

1 ™ 27I'Z
th_—(w_po) //( sin? acos 4

On the remaining two walls at z = 0, q,

B = 18] = T2 sin T2

with a corresponding power loss

The total power loss is

A
Plc=Plcl+Plc2+Plc3=(:—”o) (2d2+ + + )

= Rm< A >2 (2a%b + ad?® + a’d + 2bd%) (10.140)

The total time-average energy stored in the cavity is, from (10.133)
and (10.134),

W= oW, = ‘1”—‘1 d?
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Hence the @ of the cavity, for the TE ;o mode, is given by

Q= @ _ _Ii’ __ wabdeg (Ruuoad)?
T2  “P,  8R, 2a% + a’d + ad® + 2bd°
(’Coad)sto

= %R, 2a% + 24% + a'd ¥ dia) (10141
where ko = (v/a)? + (x/d)>2

As a typical example, consider a copper cavity (¢ = 5.8 X 107 mhos per
meter) with dimensions @ = b = ¢ = 3 centimeters. The resonant fre-
quency is found from (10.132) to be 7,070 megacycles per second. The
surface resistance R, is 0.022 ohm. The @ of the cavity is found to be
12,700, and « equals 1.74 X 10° nepers per second. A rather %tartling
property of a cavity is its extremely high @ as compared with the Q of
LC circuits at low frequencies, which is usually of the order of a few
hundred only.
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Fia. 10.19. Methods of exciting the TE,;; mode from a coaxial line. (a) Probe
coupling with E,; (b) loop coupling with H; (¢) loop coupling with H..

The oscillations in a cavity may be excited from a coaxial line by means
of a small probe or loop antenna, as illustrated in Fig. 10.19. The probe
couples to the electric field of the mode and is hence located in the center
of the broad wall where E, is a maximum. The loop antenna must be



392 ELECTROMAGNETIC FIELDS [CuaPp. 10

located at a point where the magnetic flux of the mode, through the loop,
will be large. Similar probe and loop antennas may be used to excite the
fields in & waveguide. The field configuration for the TEo; cavity mode
is also illustrated in Fig. 10.19. Of course, the frequency of the incident
wave in the coaxial line must be equal to the resonant frequency of the
cavity if the mode is to be excited.
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Chapter 10

10.1. A parallel-polarized TEM wave is incident on a dielectric interface at an
angle 6;. Find the total reflected and transmitted fields and verify Eqs. (10.46).
With reference to Fig. 10.3, let the incident electric field be

E = Ai(a; cos 6; — a,sin 0;)e %= sin ;+z cos 8)
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10.2. The region z > 0 is occupied by a x
dielectric medium with dielectric constant «a.
In front of this medium a slab of material of
thickness d and dielectric constant « is placed. Ky Ky
For a TEM wave incident normally on this
structure from the left show that no reflection
oceurs if k3 = «x2¥¢ and d = Y{\o;~%, where A

is the free-space wavelength. The interme- >

diate dielectric slab forms a quarter-wave L
transformer which matches the dielectric me- z
dium for z > 0 to free space. This technique <~—d —

is used in optics to reduce reflections from

lenses and is known as lens blooming. o

Fic. P 10.2

10.3. When a perpendicular-polarized TEM wave is incident on the structure of
Fig. P 10.2, at an angle 8; with respect to the interface normal, show that the param-
eters of the quarter-wave matching layer are given by

x; — 8in? §; = (x2 — sin? 6;)% cos 6;

- -}" (k1 — sin? 8;)~%

Note that the requirement for a match (no reflection) is that the wave impedance of
the intermediate layer be the geometric mean of the wave impedances of free space
and the medium to be matched and that the thickness be equal to one-fourth of the
effective wavelength in the z direction in the matching layer.
For a parallel-polarized wave show that the equation for d is the same as for per-
pendicular polarization but that «; is given by
ky — g8in2 6; _ (k2 — sin® 6;)% cos 6;

K2 K2

Can both polarizations be matched simultaneously ?

10.4. A perpendicular-polarized wave is incident on a magnetic material at an
angle 6;, as in Fig. 10.3. The electrical parameters of the medium for z > 0 are
€ = €, p = kmpo. Show that a Brewster angle exists such that no reflection takes
place. Show also that in the present case a similar phenomenon does not occur for
the parallel-polarized wave.

10.5. A perpendicular-polarized wave is incident on a dielectric-air interface at an
angle 6 (relative to the interface normal) from the dielectric side. Show that a critical
angle 6. exists such that the emerging ray on the air side just grazes the surface. For
angles of incidence greater than 6. show that the angle of propagation on the air side
must be complex and that the field is exponentially damped in a direction normal and
away from the interface on the air side. Note that no energy is transmitted past the
interface since the modulus of the reflection coefficient is unity. However, the fields
on the air side are not zero. Contrast this rigorous solution with that based on ray
optics.

10.6. An infinite dielectric slab of thickness d is placed above a perfectly conducting
plane, as illustrated. Along such a structure a field known as a “‘surface wave’’ may
propagate. This wave consists essentially of a TEM wave propagating along a zigzag
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10.10. A 50-ohm transmission line is terminated in a load Z; = 20 + j10. Find
the reflection coefficient and the standing-wave ratio. At what distance ! from the
load is the input impedance equal to Zi, = 50 + jX? At this point a reactance —jX
may be added in series with the line in order to match the load to the line.

10.11. For a rectangular guide with inner dimensions a = 0.9 inch, b = 0.4 inch,
evaluate the parameters Ao, Ay, p, ¥5, @ When the frequency is 10!° cycles per second.
Assume & copper guide with o = 5.8 X 107 mhos per meter.

10.12. A rectangular guide of dimensions @, b is filled with a dielectric material with
¢ = keo. Obtain the solution for a TE;; mode. Show that the guide wavelength is
given by

A, = . N
k= (ho/20)9%

10.13. A rectangular guide is filled with a dielectric medium (e = «ep) for z > 0.
A TE,, mode is incident from the region z < 0. Find the reflected and transmitted
fields.

T y

AN €2Ke,
€
0

F1c. P 10.13

10.14. For Prob. 10.13 find the thickness and dielectric constant of a quarter-wave
dielectric matching layer that will match the empty guide to the dielectric-filled guide.

10.16. A rectangular pulse of width 1 microsecond (frequency components up to
1 megacycle) is used to modulate a carrier of frequency 10! cycles per second. This
signal is transmitted through a rectangular guide with a = 2b = 2.5 centimeters
as a TE;, mode. What length of guide is required to produce a signal delay of
2 microseconds?

10.16. . Find the solutions for a TE;;; mode in a rectangular cavity of sides a, b, d.
Obtain expressions for the resonant frequency @ and the decay constant «. Evaluate
the @ for the case when a = b = ¢ = 3 centimeters and ¢ = 5.8 X 107 mhos per
meter.

10.17. Obtain the solutions for axially symmetric TE,y» modes in a eylindrical
cavity of height d and radius a.

10.18. Prove that k.?is always real for TE and TM modes in an arbitrary perfectly
conducting waveguide.

HinT: Start with the two-dimensional divergence theorem taken over the wave-
guide cross section:

/c (Ve+ A)dS = 9§A-ndz
8
and let A = E¥V.E. (= Hf V.H,)



