CHAPTER 1

VECTOR ANALYSIS

This chapter develops the mathematics of vector analysis that will be
needed in the succeeding chapters of the book. Based on the work of
this chapter, it is possible to considerably simplify the formulation of the
physical laws of electromagnetic theory. Furthermore, manipulation
of the equations with the goal of solving physical problems is also greatly
facilitated. One of the purposes of this chapter is to lay the necessary
groundwork in the use of vector algebra and vector calculus.

Another purpose is also sought in this chapter. For along with the
mathematical simplifications in the use of vector analysis, there go
certain concomitant philosophical concepts. This chapter, consequently,
contains a discussion of fields, the flux representation of vector fields, and
some general remarks concerning sources of fields. The definition of the
divergence and curl of a field can then be understood as measures of the
strength of the sources and vortices of a field. When in the succeeding
chapters the specific nature of the electric and magnetic fields is con-
sidered, the student will have an appropriate framework into which to fit
them.

Although much effort has been directed to the development of a phys-
ical basis for the mathematical definitions of this chapter, they may still
seem somewhat artificial. The full justification of their utility, and a
deepening of their meaning, will become apparent when the physical laws
of electromagnetics are considered in the later chapters.

1.1. Scalars and Vectors

In this book we deal with physical quantities that can be measured.
The measurement tells how many times a given unit is contained in the
quantity measured. The simplest physical quantities are those that are
completely specified by a single number, along with a known unit. Such
quantities are called scalars. Volume, density, and mass are examples
of scalars. '

Another group of physical quantities are called vectors. We may see
how the vector arises if we consider as an example a linear displacement
of a point from a given initial position. It is true that the final position
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2 ELECTROMAGNETIC FIELDS [CHap. 1

of the point could be described in terms of three scalars, e.g., the cartesian
coordinates of the final point with respect to axes chosen through the
initial point. But this obscures the fact that the concept of displacement
is a single idea and does not depend on a coordinate system. Conse-
quently, we introduce displacements as quantities of a new type and
establish a system of rules for their use. All physical quantities which
can be represented by such displacements and which obey their respective
rules are called vectors. _

The vector can be represented graphically by a straight line drawn in
the direction of the vector, the sense being indicated by an arrowhead and
its length made proportional to the magnitude of the vector. Examples
of vector quantities include displacement, acceleration, and force. In
this book all vector quantities are designated by boldface type, while
their magnitudes only are indicated through the use of italics.

1.2. Addition and Subtraction of Vectors

From the definition of a vector, just given, it is possible to deduce the
rule for addition of vectors. Thus, consider two vectors A and B as
illustrated in Fig. 1.1. Vector A represents the displacement of a mov-

able point from point 1 to point 2. Vector B

3 represents a displacement from point 2 to point

3. The result is equivalent to a total displace-

ment of a point from 1 to 3. This linear dis-

c placement from 1 to 3 is called the resultant,

or geometric sum of the two displacements

2 (1,2) and (2,3). It is represented by the vec-
tor C, which we call the sum of the vectors A

A and B:

1

Fia. 1.1. Vector addition. C=A+B (1.1
Note that vectors A and B are of the same
dimensions and type and that the geometric construction of Fig. 1.1
requires that the origin of one be placed at the head of the other. We
may inquire whether the order of addition is of significance.

Consider that the displacement B is made first and then the displace-
ment A. In this case the movable point describes the path 143 as in
Fig. 1.2 and consequently produces the same resultant. Vector addition
thus obeys the commutative law; i.6., the geometric sum of two vectors is

independent of the order of addition so that
A+B=B+A (1.2)

The path 143 and 123 together make up a parallelogram whose diagonal
is the resultant of the displacement represented by the two adjacent sides.
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Accordingly, the law of vector addition is often referred to as the parallelo-
gram law. This law of addition is characteristic of the quantities called
vectors. Thus it is proved in statics that forces acting on a rigid body
follow the parallelogram law of addition; consequently, such forces are
vectors.

It is easy to show that vectors satisfy the associative law of addition,
which states that the order of adding any number of vectors is immaterial.
Thus the sum of three vectors A, B, C can be expressed as

A+B)+C=A+B+C) (1.3)

The proof can be established by considering Fig. 1.3, in which the same
resultant (1,4) is arrived at by carrying out the summation indicated by

1 A

Fig. 1.2. Tllustration of parallelogram of Fra. 1.3. Illustration of associative law of
vector addition. vector addition.

either the left- or right-hand side of Eq. (1.3). The former path is
(1,3,4); the latter is (1,2,4).

To obtain the difference of two vectors A — B, it becomes necessary to
define the negative of a vector. This is taken to mean a vector of the
same magnitude but of opposite direction to the original vector. Thus

A—-B=A+(-B) (1.4)

We may therefore define vector subtraction asfollows: A vector Bissub-
tracted from a vector A by adding to A a vector of the same magnitude as
B but in the opposite direction. In the parallelogram of Fig. 1.2 a
diagonal from 4 to 2 would represent the geometric difference A — B.

1.3. Unit Vectors and Vector Components

The result of multiplying a vector A by a positive scalar m is to produce

a new vector in the same direction as A but whose magnitude is that of
A times m. The resultant P is thus related to A and m by the following’
P =mA (1.5)

[P| = m|A| or P =mA (1.6)

A unit vector is one whose magnitude is unity. It is often convenient
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to express a vector as the product of its magnitude and a unit vector
having the same direction. Thus if a is a unit vector having the direction
of A, then A = Aa. The result expressed by (1.5) follows immediately,
since mA = mAa. The three unit vectors a., a,, a, parallel to the right-
hand rectangular axes z, y, 2, respectively, are of particular importance.
The components of a vector are any vectors whose sum is the given
vector. We shall often find it convenient to choose as components the
three rectangular components of cartesian coordinates. Thus, if 4., 4,,
A, are the magnitude of the projections of vector A on the z, y, z axes, its
rectangular components are a,4,, a,A,, a,A,. The vector A is com-
pletely determined by its components since the magnitude is given by

A2 = A2 4+ A2+ A2 (1.7)
and the direction cosines I, m, n are given by
4. Y = 4
l= i m =~ n=> (1.8)

For brevity, we shall usually designate 4., 4,, A., without the associated
unit vectors, as the components of A.

Equal vectors have the same magnitude and direction; consequently,
their respective rectangular components are equal. Therefore a vector
equation can always be reduced, in general, to three scalar equations.
For example, A + B = C can be expressed as

az(Az + Bz) + ay(Au + By) + az(A: + Bz) = azCz + ayCy + azCz (19)

ie., addition is commutative and associative. Since the vector repre-
sented by the left-hand side of (1.9) equals that of the right-hand side, we
are led to the result

4:+B.=C. A4,+B,=(C, A, +B.=C. (110

1.4. Vector Representation of Surfaces

Figure 1.4 illustrates a plane surface of arbitrary shape. We may
represent this surface by a vector S whose length
corresponds to the magnitude of the surface area
and whose direction is specified by the normal to
the surface. To avoid ambiguity, however, some
convention must be adopted which establishes the
positive sense of the normal.
When the surface forms part of a closed surface,
the positive normal is usually taken as directed out-
F1a. 1.4. Vector sur- o
face area. n is a Ward. For an open surface the positive normal can
unit surface normal. be associated with the positive sense of describing the
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periphery. This relationship is defined by taking the positive normal in
the direction that a right-hand screw would advance when turned so as to
describe the positive periphery. This definition actually arises out of a
mathematical description of certain physical phenomena which will be
discussed in later chapters. One can choose either positive periphery or
positive normal arbitrarily.

If the surface is not plane, it is subdivided into elements which are
sufficiently small so that they may be considered plane. The vector
representing the surface is then found by vector addition of these com-
ponents. This means that an infinite number of surfaces correspond to a
given surface vector. The unit surface normal is designated by n.

1.5. The Vector Product of Two Vectors-

Certain rules have been set up governing multiplication of vectors.
The vector or cross product A X B of two vectors A and B is, by definition,

F1a. 1.5. Vector cross product. Frc. 1.6. Illustration for the distributive
law of vector multiplication.

a vector of magnitude 4B sin 6 in the direction of the normal to the plane
determined by A and B. Its sense is that of advance of a right-hand
screw rotated from the first vector to the second through the angle 8
between them, as in Fig. 1.5. Since the direction reverses if the order of
multiplication is interchanged, the commutative law of multiplication
does not hold. Actually, we have

AXB=-BXA (1.11)

This definition of vector product was chosen because it corresponds to a
class of physically related quantities. Geometrically, the magnitude
|[A X B| is the area of a parallelogram formed by A and B as the sides.
If we think of the periphery of the parallelogram as described from the
origin to head of A followed by the origin to head of B, then, in accordance
with the definitions in the last section, A X B represents the vector area
of the parallelogram. .

The preceding geometric interpretation is the basis for a proof that
vector multiplication follows the distributive law. Thus, consider the
prism described in Fig. 1.6, whose sides are A, B, A + B, and C. Since
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the total surface is closed, the vector representing the total surface of the
prism is zero (see Prob. 1.6). Consequently, taking the positive normal
as directed outward, the sum of the component surface areas may be set
equal to zero, giving

14AXB)+%BXA)+AXC+BXC+CX(A+B) =0 (1.12)
from which we obtain
CXA+B)=CXA+CXB (1.13)

Equation (1.13) expresses the distributive law of multiplication.
The vector product of two vectors can be expressed in terms of the
rectangular components of each vector. Since the distributive law holds,

AXB=(a,A.+ a,A, + a,A,) X (a,B, + a,B, + a.B,)
a, X a,4.B, + a. X a,4.B, + a, X a.4.B,
+a, X a,A,B,+a, XadB,+a, Xad,B,
+ a, X a,4,.B, +a, X a,A.B, + a, X a,A.B. (1.14)

The sine of the angle between two vectors is zero when they are in the
same or opposite directions and is =1 when they are orthogonal. It is
thus easy to verify that
a, Xa, = a, a, Xa =a, a, Xa,=a, .
a:Xa.=a, Xa =2aXa =0 (1.15)

so that (1.14) simplifies to

A X B = a,(4,B, — 4,B,) + a,(4,B, — A,B,) + a,(4,B, — A,B,)
(1.16)

A convenient way of remembering the formula given by (1.16) is to note
that it is obtained from the formal expansion of the following determinant:

Il

a, a, a,
AXB=|4, 4, A, (1.17)
B. B, B,

Once one term of the expansion is found, the remaining can be obtained
by cyclical permutation; that is, replace z by y, y by 2, and z by z. For
example, the first term in (1.17) is a.(4,B. — 4.B,), from which the
second term is found to be a,(A4.B. — A.B,) by replacing z, y, z by
Y, 2, z, respectively.

1.6. The Scalar Product of Two Vectors

As mentioned, vector multiplication is useful in mathematically
describing the relationship between vectors that arise out of a class of
physical problems. In handling another class of physically related quan-
tities, it will be desirable to define a scalar product of two vectors.
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The scalar, or dot, product of two vectors A and B, written A - B, is a
scalar and has the magnitude AB cos 6, where 6 is the angle between the
two vectors, as illustrated in Fig. 1.5. From the definition it is clear that

A-B=B:A (1.18)

and consequently the commutative law of multiplication applies.

The scalar product of A and B may be interpreted as the algebraic
product of the magnitude of one of them (say A) by the component of
the other (B) in the direction of the first. Referring to Fig. 1.7, we apply
this concept to establish a basic property of :
the scalar product. We have

A-D + B-D = OP|D| + PQ|D| = 0Q|D|
(1.19)
But (A + B) - D = 0Q|D]; consequently,
(A+B)-D=A-D+B.D (120) ° ?
Fre. 1.7. Tllustration of dis-
In other words, the distributive law applies tributive law of scalar multi-
to scalar multiplication. Plication.

The cosine of the angle between the directions of two vectors is +1
when the directions are the same, —1 when they are opposite, and 0 when
they are at right angles. Consequently, the following vector relation-
ships involving the unit vectors a,, a,, a, must be true:

|

|

L
P

D

a,+a, =a,-a, =4a,+-a, =1 (1.21)
a,+a, =a,+a, =a,*a, =0 )

Since the commutative and distributive laws hold, it follows that scalar
multiplication of vectors is carried out by the rules of ordinary algebra.
In particular, we may expand A - B in terms of rectangular components.

A-B=(a,A,+a,4, + a.A,) - (a.B. + a,B, + a,B,)
=a,-a,A4.B, +a,-a,A.B, +a,-a,A.B, + a,+-a.A,B,
+a,-a,AB,+a,-a,A,B, +a,-a,A.B. + a,-a,4.B,
+ a,-a,A.B. (1.22)
With the aid of (1.21) this simplifies to

A A-B= A.B,+ A,B, + A.B, (1.23)
A special case is the dot product of A with itself, which gives
A A= A= A, A, + A A, + A.A, (1.24)

1.7. Product of Three Vectors

Three vectors can be multiplied in three different ways. As an
example of one such possibility we consider A(B - C). This is nothing
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more than the product of a scalar (B-C) times a vector A, and the
resultant may be evaluated by the rules given in Sec. 1.3.

A second arrangement is known as the triple scalar product. An
example is A+ B X C. The vector product is necessarily formed before
taking the scalar product, and the resultant is a scalar. This product

has a simple geometrical interpretation

that is evident in Fig. 1.8. For B X C

is clearly the vector area of the base,

whereupon A - B X C is the volume of the

A parallelepiped. But this volume is cal-
culated equally well by the expressions -

B B:CX Aand C-A X B. Consequently,

Fia. 1.8. Geometric interpreta- A B X C =A XB:-C
tion of triple scalar product. =C-AXB=CXA-B

This result is often expressed by the statement that in the triple scalar
product the dot and cross may be interchanged and/or the order of the
vectors altered by a cyclic rearrangement.

The third arrangement involving the product of three vectors is the
triple vector product, exemplified by A X (B X C). The parentheses
indicate which product is taken first, since the result depends on the order
of forming the product; that is, the associative law does not hold and
A X (B X C) is not the same as (A X B) X C. By inspection we note
that the resultant of A X (B X C) lies in the plane of B and C and is
orthogonal to A. If each vector is expressed in terms of its rectangular
components and the indicated operations carried out, it can be verified
that

AX(BXC)=BA-C)—-C(A-B) (1.25)

The details are left as an exercise for the student (see Prob. 1.7).

1.8. Scalar and Vector Fields

If a particle is in motion, then at any instant its velocity can be desig-
nated by a vector; i.e., the velocity possesses the properties characteristic
of a vector. But if we examine the state of motion of a fluid filling space,
then the velocities of the different particles will not be the same, in
general, In this case every point has its own velocity vector and the
moving continuous fluid can be represented by what is called a vector
field.

In mathematical physics the field of a physical quantity refers to
nothing more than the dependence of that quantity on position in a
region of space. It is assumed that the variation is, ordinarily, a con-
tinuous one. The field may be a vector field, as illustrated above, or a
scalar field.
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The scalar field is simply a scalar function of position in space; that is,
there is associated with each point in space a definite scalar magnitude.
For example, the barometric pressure at each point on the earth’s surface
constitutes a scalar field. The field is a scalar field because pressure is a
scalar quantity.

Since a field is a function of z, y, 2, say, it can also be expressed as a
function of a new set of coordinates. z’, y’, 2’ by an appropriate transfor-
mation. Ordinarily, such a transformation brings in the direction cosines
of the new axes measured relative to the old axes. But the presence of
direction cosines would make any physical law involving the scalar field
depend on the choice of axes, which is contrary to the character of the
laws of nature. Consequently, the only scalar functions of the coordi-
nates which can enter physical laws are those in which the direction
cosines do not appear in an arbitrary transformation of axes. Such a
function is called a proper scalar function of the coordinates.

To each point on the surface of the earth a temperature can be measured
and a temperature field established. It is convenient to organize this
information graphically (or conceptually) by connecting points that are
at the same temperature, choosing certain specific values of temperature.
In this way the isotherms of a weather map give a rough idea of the tem-
perature field. Scalar fields are sometimes called potential fields, and
lines or surfaces over which the field has a constant magnitude are referred
to as equipotentials. For example, points on the same contour line of a
topological map correspond to points on the earth with the same potential
energy, that is, equipotentials.

A vector function of position associates a definite vector with each point
of a special region, the aggregate of these vectors constituting a vector
field. A simple example is the position vector r = a,z + a,y + a.z,
which is a function of position of the point (z,y,2) relative to the origin of
the axes chosen. There is thus associated with every point a vector
having the magnitude and direction of the line drawn from the origin to
the point in question. The field strength at a few points of the field is
illustrated in Fig. 1.9.

A vector field may be described in terms of its components at every
point in space. In this way one can form
three scalar fields from the given vector

field. If the component fields are proper

scalar functions, then the vector function \\

is a proper vector function. AN A ad
Among the vector fields that arise in T RN

physics are those involving the flow of some /
quantity. In fluid flow, if v is the fluid
velocity and p is the density at (z,y,2), then
pv is the vector representing the flow of mass  Fia. 1.9. The vector field r.
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per unit area at each point (z,y,2). Similarly, the electric current density
J(z,y,2) represents the flow of charge per unit area in a current flow field.

As we have already said, a vector field is defined by specifying a vector
at each point in space, for example, J(z,y,2). In most cases of interest
this vector is a continuous function of (z,y,2), except possibly at isolated

y

D b

e —

F1a. 1.10. Illustration of flow lines around  Fic. 1.11. Flow lines between two coaxial
a sphere. cylinders.

points or singularities or along isolated lines or singular lines. Where the
vector field is continuous we can define lines of flow of the field, which are
lines at every point tangent to the vector at that point. The differential
equation for the line can be found by forming a proportionality between
the components of displacement along the line dz, dy, dz and the cor-
responding components of the vector field at the same point:

_ %y _ dz (1.26)

Just as equipotential surfaces proved convenient in visualizing a scalar
field, flow lines are useful in “mapping” vector fields. Obviously, only a
few of the infinite number of lines would be drawn in such a map. Asa
matter of fact, in a two-dimensional field we can represent the field
intensity by taking equal quantity of flow between adjacent lines. In
this way the density of lines transverse to the direction of flow is propor-
tional to the magnitude of the flow vector. Figure 1.10 illustrates fluid
flow through a figure of revolution; adjacent lines actually symbolize con-
centric tubes, each of which carries the same quantity of fluid.

As a simple example of the evaluation of flow lines, consider the radial
flow of current between two coaxial cylinders as illustrated in Fig. 1.11.
The current density is given by

_Ta _ I (ra,  ya,
1"277“%@2 +7)
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and hence the differential equation for the flow lines is
dr_dy . de_dy

Integration gives the result

Iny=Inz+Ilnc=1Incz
or Yy =cz

where c is a constant of integration. Every different value of the constant
c gives a new flow line. A complete flow map as illustrated in Fig. 1.11 is
obtained by considering a range of values of ¢. Note that with the
values selected, the relative density of the lines graphically corresponds to
the relative current density. Figure 1.11 is therefore a particularly
appropriate representation of the vector field J. A more complete dis-
cussion of flux plotting is given in Chap. 5.

The representation of a vector field by means of flow lines seems fairly
obvious where the field represents the flow of some quantity. But the
technique for construction of flow lines as given in the previous paragraph
contains no restrictions on such fields. It may, indeed, be used to repre-
sent any vector field. We shall see that the representation of vector
fields through the concept of flow or flux (which means the same thing)
will prove very useful in our future work.

1.9. Gradient

Let us suppose that ®(z,y,z) represents a scalar field and that ® is a
single-valued, continuous, and differentiable function of position. These
properties will always be true of the physical fields
that we shall encounter. An equipotential surface,
then, has the equation

®(x,y,2) = C @1.27)

where C is a constant. By assigning to C a succes-
sion of values, a family of equivalued surfaces is ob-
tained. No two such surfaces will intersect since
we have taken ® to be single-valued.

Consider two closely spaced points P; and P,
where P; lies on the equipotential surface C;, and C,
P; may or may not be on this surface, as in Fig. 1.12. Fra. 1.12
Let the coordinates of P1be (z,y,2) ; then P, is located
at (z + dz, y + dy, 2 + dz). The displacement dl from P;.to P; can be
expressed in terms of its rectangular components:

dl=a,dr+ a,dy + a,dz (1.28)
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We desire to evaluate the difference in potential d® between P, and P.,.
From the rules of calculus this can be written

2% o o '
d@-adx+é—gdy+5;dz (1.29)
It will prove very useful to define the following vector G:

9P

2P 9P
G—-a,£+ay@+a,5z— (1.30)

for we may now combine (1.28) and (1.30) to express d® as
d® =G-.dl (1.31)

Let us deduce some of the properties of the vector G, as defined above.
Suppose that P, lies on surface C; (see Fig. 1.12). Since P, is a differ-
ential distance from P,, dl will be tangent to the surface C; at P;. Fur-
thermore, d® will, of course, be zero, since & is constant on C;. In order
for (1.31) to be satisfied, it is clear that G is normal to the equipotential
surface at P;.

To determine the magnitude of G, let P; be chosen in such a way that
dl makes an angle 6 with the normal to C, as illustrated in Fig. 1.12.
Since G is in the direction of the normal, then

dd =G-dl =Gcosbdl (1.32)
and consequently ‘2—? = (G cos 0 (1.33)

In words, the component of G in the direction dl is the rate of increase of
® in that direction. The latter is also termed the directional derivative
of @ in the direction dl. If § = 0, dl becomes an element normal to the
equipotential surface, written dn, and the directional derivative is maxi-
mum and equal to the magnitude G; that is,

P

-5 (1.34)

and is the maximum rate of increase of ®. Because G thus coincides with
the maximum space rate of increase of ®, in both direction and magnitude,
it is called the gradient of &.

The vector G, for the reason just expressed, is often written grad &.
Another more useful notation involves the V (read del) operator, which is
defined as

9 F) )

V=a,a—x+a,,gg;+a,a—z (135)

We shall have much more to say about this operator, but for the present it
is sufficient to note that G = grad ® = V&.
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The gradient operation may be viewed formally as converting a scalar
field into a vector field. We shall discover later that certain vector fields
can be specified as the gradient of some fictitious scalar field. The scalar
field may then play a simplifying role in the ensuing mathematical
analysis.

1.10. The Divergence

We have noted that it may be convenient to think of any vector field as
representing the flow of a fluid. It is desirable to specify that the fluid is
incompressible. But this restriction would ordinarily prevent us from
representing any arbitrary vector field.
For example, a consequence of incom-

pressibility is the requirement that as /@

A2z

much fluid enter as leave a fixed region.
Only special vector fields could be rep- 7
resented by fluid motion of this type dz
(solenoidal fields). %

To avoid this limitation we also /dx,/" - _L_;
suppose that fluid at certain points ’,//' (,y',2)
may be created or destroyed. Points i—— "I
of the first sort will be called sources; dy
points of the second kind, sinks, or
negative sources. By setting up a
suitable source system (including vor-
tices to be discussed later), we may represent any arbitrary vector field
by a steady motion of an incompressible fluid. In general, the sources
will be found to be continuously distributed in space. We shall now
describe how the source strength can be calculated.

To find the source magnitude within a volume V we may measure the
volume of fluid leaving in a unit time. Since the fluid is incompressible
and in steady motion, this volume of fluid represents the algebraic sum of
all the sources contained within V.

Now this same evaluation can be performed by calculating the fluid
flow through the bounding surface S of V. If we actually desire the
source strength at a point (2,y’,2’), we take V to be a differential volume
element dz dy dz enclosing this point as in Fig. 1.13. We assume the
existence of a vector field F. A Taylor expansion of F, (the z component
of F) in the vicinity of the point (z’,5',2’) can be made. The leading
terms are

x

Fre. 1.13. Illustration for evaluation of
divergence.

5}

VAR Fz ’ az ’ an ’ .
Fo=F@y ) + 52 o — o) + a’”; - +Lc-2

where the partial derivatives are evaluated at (z',y',2'). If (2',¥',%') is
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taken at the center of the volume element, then the outflow through
surface 2, shown in Fig. 1.13, is

/deS = dde[Fz(x'yy, ’) + 16F
2

] + higher-order terms (1.37)
Notice that the vector is in the positive z direction and hence represents

an outflow from the volume V. The outflow through surface 1 involves,
in this case, an x component —F.; consequently,

- /F, dS = —dydz [F,(:v',y 2 6F
1

] + higher-order terms
(1.38)

The total outflow through surfaces 1 and 2, neglecting higher-order terms,
is (9F./dz)dxdydz. In a similar way the contributions from the
remaining two pairs of surfaces will be found to be (9F,/dy) dz dy dz and
(8F./02) dx dy dz. 'The net outflow is therefore

b Fds = ( 6Fu-

Here F - dS is the rate of flow of material through the surface element dS.
For example, /; F - dS evaluates the total flux through a surface . In

) dr dy dz (1.39)

(1.39) the notation & signifies that the integral is over a closed surface.
It therefore correctly expresses, in vector notation, the net flow of flux
through the surface S which bounds V. Integrals of this type are known
as surface integrals.

If we divide (1.39) by dz dy dz, the left-hand side becomes the net out-
flow per unit volume at (2',5',2’). This is a scalar quantity and is called
the divergence of the vector F at the point (z’ ,y’ 2’) and is written

divF = lim SF-dS = aF
V—0 v

(1.40)

The divergence may be thought of as equal to the rate of increase of lines
of flow per unit volume. The div F is a scalar field which at each point
is a measure of the strength of the source of the vector field F at that
point.

Since the operator V defined earlier has the formal properties of a
vector, we may form its product with any vector according to the usual
rules. Thus if we write the scalar product

v - e 3

(1.41)

we discover a convenient representation for div F which leads to the
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correct expansion in cartesian coordinates. Accordingly, we adopt the
notation

V:F =divF : (1.42)
1.11. Line Integral

There are several properties of vector fields, exhibited through their
representation by flux lines, that will concern us. One has to do with
the “spreading out,” or “outflow,” of lines of flow in a given region. As
we have already noted, this is a measure of the net strength of the sources
within that region. The net outflow is most readily evaluated by means

of a surface integral is F . dS over the bounding surface of the region.

The magnitude of the resultant is also sometimes referred to as “the
number of flux lines crossing S.”

The outflow per unit volume at a point measures the divergence of the
field at that point and consequently the strength of the source located
there. An evaluation of the divergence of a vector field in rectangular
coordinates is given in (1.40).

Now, instead of integrating the normal component of a vector over a
surface, we can integrate its component along a line. Thus if dl is a

vector element of length along an arbitrary patfl C, the integral /1 F.odl

taken over the extent of the path C is called the line integral. The value
of the integral, in general, depends on the path, although for certain
vector functions it depends only on the end points. A simple problem
that leads to a line integral is the calculation of the work done in moving a
particle over the path C, where F represents the force applied at each
point along the contour.

When the path is a closed one, the line integral is denoted by 950 F.dl

and the quantity is called the “net circulation integral” for F around the
chosen path. It is a measure of another vector field property, namely,
the curling up of the field lines. For example, if the flux lines are closed
loops, then the circulation integral over any such loop will obviously yield

a nonzero result. For the fluid-flow analog, ¢CF « dl measures the

circulation of fluid around the path C'; hence the expression “circulation
integral.”

For a special class of vector fields, F can be derived from the gradient of
ascalar ®. The line integral over a path C joining points 1 and 2 can then

be written
2 2 2
/F-dl=/ V<I>-dl=f a 4 (1.43)
1 1 1 dl

The last expression arises out of the definition of the directional deriva-



16 ELECTROMAGNETIC FIELDS [CHAp. 1

tive. Consequently,
2
[[Fa=a-a | (1.44)

where ®; is the value of the scalar potential at point 2, while &, is the
value at point 1. What is most important about this result is that it
depends only on the location of the end points and is independent of the
path C. Consequently, if the path is a closed one, the line integral
vanishes; i.e., we may state that the line integral of a gradient over any
closed path vanishes. The absence of circulation in such functions is
expressed by designating them irrotational. '

We have shown that any vector function that can be derived as the
gradient of a scalar potential function is irrotational. It follows, con-
versely, that if the line integral of a vector function around any closed
loop is zero, then the vector function is derivable as the gradient of a
scalar function.

1.12. The Curl

We have already defined the divergence operator and noted how it
evaluates a certain property of a vector field, namely, its rate of increase
of lines of flow. Another very important
property of a vector field, just noted, is the
amount of “curl” in the flow lines. The
latter is related to the magnitude of the cir-
T 3 culation. By analogy with fluid flow, the
ela . ) region that “produces’ the circulation is a
_L (*,y,2) vortex region; hence the “curling” of flow

F4

1 lines may be thought of as related to the
__dy.__l y  ‘“vorticity” of the field. We should like to
specify a differential operator that measures
F1c. 1.14. Contour for evalua-  the “yorticity.” Following our experience
tion of z component of the . . .
curl of a vector. with the divergence operator, one might sug-
“gest that the vorticity of a field at some point
P be found by computing the net circulation integral around an element
of area at P and dividing by the area of the element, taking the limit
as the area approaches zero.

The above definition is not quite satisfactory because the orientation of
the differential area is not specified, and the result may be expected to
depend on that choice. The process of evaluating the vorticity is thus
more complicated than that for finding the divergence. Let us, however,
carry out the suggested operation for a differential area in the yz plane as
illustrated in Fig. 1.14. If the path shown by the arrows (counterclock-
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wise) is followed, then the net circulation integral is

9SCF-d1=/1F,,dy+/;F,dz—f3F,,dy—/;F,dz (1.45)

where the total line integral is expressed in terms of its component parts
along paths 1,2, 3,4. If we let the point (z/,’,2") be at the center of the
path chosen and expand the field components in a Taylor series expansion
about that point [as in (1.36)], then (1.45) can be written

/ F.dl = F,(z'y?") dy — aF dz 5 4y + Py, 2y
[+
~ R y/A) dy ~ i d—zdy R d;’
oF, OF,
= (ay )d dz  (1.46)

where the partial derivatives are evaluated at the point (z,3/,2). If we
divide by the area dy dz, we obtain oF,/dy — 0F,/dz, which is a measure
of the circulation per unit area in the yz plane at the point (z',y',2').
This quantity is defined as the  component of the curl of F. The direc-
tion of the curl is thus that associated with the direction of advance
of a right-hand screw when rotated in the direction in which the fluid
circulates.

A similar derivation may be applied to elementary contours in the zy
and zz planes to obtain the z and y components of the curl of F. We may
obtain the other components of the curl of F by cyclic permutation of the
variables z, y, z as well. The final result is

oF, OF, oF, OF, oF, dF.
curl F = a,(ay az) + a, (E ax) + a, <—5§ ay> (1.47)

The curl of F is a vector quantity. Its component along an arbitrary
dicection equals the circulation per unit area in the plane normal to that
direction. This is clearly true for the direction of the coordinate axes,
and will be true for any direction once it is shown that the curl F is a
proper vector function. Proof of the latter is left to the student (see
Prob. 1.10).

The vector curl F clearly is a measure of what we have called the
vorticity of the field. It corresponds to the maximum ecirculation per
unit area at a point, the maximum being obtained when the area dS is so
oriented that curl F is normal to it. When F represents a fluid velocity,
the direction of curl F at a point P is along the axis of rotation of the fluid
close to P, using the right-hand rule.
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If we take the vector product V X F, treating V as a vector according to
the rules of vector multiplication, then

a. a, a;
a 9 @
F, F, F,
_ (oF. _oF, oF, _ oF, oF, _oF.
= a, (ay E) + ay < 9z ax) + a, (3; —@) (1.48)

But this result is nothing more than curl F in rectangular coordinates.
Because of this, the usual notation for designating the curl of Fis V X F.
The importance of the curl (and divergence) property
will be clear later, when we show that an arbitrary
vector field is specified by giving its divergence and
curl.
Example 1.1. We wish to calculate the curl of the
vector field v, where v is found in the following way.
Consider an arbitrary rigid body, as illustrated in
Fig. 1.15, rotating about an axis through 0 with an
angular velocity w. Then, as we know, the linear
velocity at any point P in the body is the product of
the angular velocity by the moment arm of the point
F1c. 1.15. A rotating about the axis. The l:emtter is the perpend}cular dis-
rigid body. tance from P to the axis. In vector notation the re-
lation between the linear velocity v, the moment arm
vector r, and the angular velocity o (the vector angular velocity o is
defined to be directed along the axis of rotation with a sense established
by the advance of a right-hand screw) is given by

v=0XTr (1.49)

The velocity v as given above defines a vector field whose curl we desire.
If (1.49) is reduced to rectangular coordinates, the curl operation may
be carried out. Thus

d(wy — zw,) _ (wst — w.2) (1.50)

(VX v). = dy 9z

Note that o is a fixed vector and consequently a constant in the differ-
entiation. Thus

(V X v)z = 20)2 (1'51)
Similarly, (V X v), = 2w,, (V X V), = 2w,, and hence
VXvVv=20 (1.52)
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This result verifies the concept of the curl operation as a measure of
the vorticity. Intuitively, o measures the vorticity of the v field. Note
that the result is independent of position within the rotating body.

1.13. Successive Application of V

It is possible to form scalar and vector products in which the operator
V appears more than once. For example, since the gradient is a vector,
it is possible to take the divergence of the gradient. If this is expanded
in rectangular coordinates, there results

P P 9% % 9% | 9%
6x+av-a—z;+a'§)— +——+5z—2

V® =V-|a, 2=
v-ve (a 5 T 352

(1.53)

The same result is obtained if we think of V « V as a new operator V2 with

properties
a2 9? a2
. = V2 = —— — —
vev + dy? = 922

P (1.54)

The operator V* is called the Laplacian and is a scalar. It may also be
applied to a vector, with the result '

9’F | o°F

2 —_ -
vip = 9F  OF a7 T o (1.55)

This result is interpreted as three scalar equations; e.g., the £ component
is
3F, , 9*F, , 9%,

+

= 9zt ay? 022 (1.56)

In addition to taking the divergence of the gradient, it is also possible to
form the curl of the gradient. The reader should verify that

P 0% 0%
V)(V<I>—Vx(a,£+a,,@+a,5z—)—0 (1.57)

by expanding the curl of V& by the determinant rule. The result is not
unexpected, since it has already been noted that the gradient is irrota-
tional. Consequently, its curl must vanish everywhere, as is verified by
(1.57).

The divergence of the curl of a vector is also identically zero. This
can be verified by expansion in rectangular components. Thus

V-VXF=0 (1.58)

Any vector field that has zero divergence is called solenoidal. This
describes the fact that flux lines are closed on themselves since there are
no sources or sinks in the field for the lines of flux to terminate on. Equa-
tion (1.58) specifies that the curl of any vector field is solenoidal.
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An important identity for work involving the wave equation is
VX (VXF)=9V-F) — VF : (1.59)

This can be readily verified by expansion in rectangular coordinates.
Equation (1.59) can also be considered as a defining equation for V2F,
when the vectors are expanded in other than rectangular coordinates.

A number of additional vector identities involving composite vectors
are summarized at the end of this chapter. They can be verified by
expansion in rectangular coordinates, carrying out the indicated opera-
tion. As an example, let us consider V- (A X B).

Example 1.2. Consider

V-(AXB) =V-Za,(4,B. — B,A.) (1.60)

The summation, here, represents cyclical permutation; that is, the
second term is obtained by replacing z by y, y by 2, z by . The third
term is obtained from the second in a similar fashion. This nota-
tion avoids the need to write what is essentially repetitious material.
Expanding (1.60) gives

V.(AXB) = E 695 (4,B. — B,A,)

= SV(4,%B: 4 p 24y _ p 34 _ , 3B,
ax iz o dz

B, dA dA, dB
= zAv%ﬂ“z& Fra ZB"%_ ZAza—x"

(1.61)

Since it does not matter which of the three terms indicated by the summa-
tion is chosen to represent the summation, we can write

_ 4B, 94, 04, 4B,
v (AxB)—zA'W+EB’W ZB, 3 ZA'G‘”
94, _ a4

_ Z B, ( 4, _ a—y) - z A, (% - "6@’) (1.62)

But 8B,/dx — 9B./dy is the z component of the curl of B, and d4,/dx —
dA./dy is the z component of the curl of A. Accordingly,

V:(AXB) =ZB,(V X 4). — ZA4,(V X B), (1.63)

Expanding the indicated summation yields three terms which are clearly
the three terms of a scalar product. Accordingly, the right-hand side of
(1.63) can be written in vector notation, and the following identity results:

V-AXB)=B-VXA—A-VXB (1.64)
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1.14. Gauss’ Law

In Sec. 1.9 we noted that the net outflow of “fluid”’ from a given volume
can be found by integrating the scalar product of the vector function
(considered as a flow function) and an element of area over the boundary
surface. This same quantity can also be found by integrating the diver-
gence throughout the volume since the divergence evaluates the net out-
flow per unit volume. Expressed mathematically,

/V V.FdV = 955 F-dS (1.65)

In this equation S is the boundary surface for the volume V, and dS a
surface element with positive normal drawn outward. Equation (1.65)
is known as Gauss’ law, or sometimes
as the divergence theorem.

It is worthwhile pointing out that
(1.65) applies even when the bounding
surface is not simply connected. For
example, in Fig. 1.16 the volume is
bounded by the elosed surfaces Si, Se,
and S;, where S; contains S; and S..
In applying Gauss’ theorem the volume
integral of V-F is taken throughout
the designated volume, while the sur-
face integral of F-n dS is taken over
the bounding surface, in this case the
separate component surfaces Si, Ss, Ss.
We conclude that Gauss’ theorem is
applicable to a volume enclosed by a multiply connected surface; the
surface integral in (1.65) then designates an integral over each separate
surface involved. It isimportant to remember that positive surface area
is outward from the volume; this accounts for the direction of n as shown
in Fig. 1.16.

A useful corollary of Gauss’ law is known as Green’s theorem. To
derive this we let F be the product of a scalar ® and a vector V{. Then,
using the vector identity (1.118) given at the end of the chapter,

F1c. 1.16. Volume bounded by mul-
tiply connected surfaces.

V:F=V: W =&V 4+ V-V (1.66)

Integrating (1.66) over an arbitrary volume and making use of Gauss’
[aw leads to Green’s first theorem:

/VV~FdV = 9SSq>v¢-ds = /V @V + Vo - Vy) dV  (1.67)
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The result expressed by (1.67) holds for any two scalar functions ® and
¢ which are finite and continuous and can be differentiated twice in the
region V. If, from (1.67), we subtract the equation obtained by inter-
changing ¢ and ®, we obtain

b, («pg-i - g%’) ds = /V @V —yvi)dV  (1.68)

Note that V¢ - dS is replaced by (d¢/dn) dS in (1.68), where n is the out-
ward unit normal to S. Equation (1.68) is known as Green’s second
theorem and is very important in the solution of boundary-value problems
in electromagnetic theory.

1.15. Stokes’ Theorem
Stokes’ theorem may be stated in the form

9SCF‘dl=fSVXF-dS (1.69)

where S is an arbitrary surface (not necessarily plane) bounded by the
contour C. The positive direction of dS is related to the positive sense of
describing C according to the right-
hand rule, as discussed in Sec. 1.4.

To establish Stokes’ theorem, con-
sider the arbitrary surface S illustrated
in Fig. 1.17. Let us divide the surface
into differential elements of area dSi,
dS;, dS;, etc. For each such area ele-
ment we form £F - dl taking the con-
tour direction to correspond with the
positive sense of S. If now all such
. integrals are summed, the contributions
gzgk e;;lt%egi‘fltratmn for proof of  ,iging from the common boundary of

' any two elements (e.g., dS; and dS,)
exactly cancel each other, since they are described in opposite directions
in the adjoining differential areas. Thus after addition there is left only
the integral over the original bounding contour. Consequently,

950F-d1=95dS‘F-dl+9Sdng-dl+ (1.70)

Now for each integral on the right-hand side of (1.70) the definition of
V X F can be applied. Thus we have

G Frdl=(VXF)-dSi+ (VXF)-dSs+ - (L7
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Note that in view of the choice of describing the contour around each
element, each differential area element dS;, dS,, . . . corresponds in the
same way to the positive contour C. Consequently, the summation indi-
cated on the right-hand side of (1.71) can be expressed as a surface
integral. We are thus led to Stokes’ theorem as postulated earlier; i.e.,

SBCF-d1=fSVXF-dS (1.72)

If we consider two surfaces S; and S: which have the same contour C,
then from Stokes’ theorem,

/Sl VXF-dS, = fs, v X F-dS, (1.73)

By reversing the direction of the normal to one of the surfaces, say
surface 1, then the direction of positive area is outward (or inward) to
81 + S: considered as a closed surface, and we have

—/SlVXF-dSI+/'S2V)(F-dsz=¢SVXF‘-dS=O (1.74)

In other words, the vector function A = V X F has no net outflow from
an arbitrary region. It is therefore solenoidal, a result that we have
already noted in Sec. 1.13.

1.16. Orthogonal Curvilinear Coordinates

It should be noted that the fundamental definitions of gradient, diver-
gence, and curl do not involve a particular coordinate system. That we
have expressed them, so far, in rectangular coordinates reflects merely
that it is easiest to do so. But in a wide variety of problems other
coordinate systems will be more appropriate. Accordingly, it is desirable
to develop expansions for the preceding differential operations in other
such systems. The easiest way of doing this is to work out general
formulas in orthogonal curvilinear coordinates. Then the expansions for
a specific system (e.g., spherical, cylindrical) can be obtained by substitu-
tion of appropriate parameters.

A generalized coordinate system consists of three families of surfaces
whose equations in terms of rectangular coordinates are

u1(2,y,2) = constant us(x,y,2) = constant us(z,y,2) = constant
(1.75)

We are interested only in the case where these three families of surfaces
are orthogonal to each other (problems requiring nonorthogonal coordi-
nates practically never can be solved exactly, and approximate techniques
usually involve use of orthogonal coordinate systems). Equation (1.75)
can be inverted so that (z,y,2) are expressed in terms of (u1,uz,us).
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The lines of intersection of the coordinate surfaces constitute three
families of lines, in general curved. At the point (z,y,2) or (u1,us,us) we
assign three unit vectors a,, a,, a; tangent to the corresponding coordinate
line at the point. The vector field F may be expressed in terms of com-
ponents along these unit vectors, as we have been doing for rectangular
coordinates. For the assumed orthogonal system the unit vectors are
mutually perpendicular at any point.

Consider the 1nﬁn1tes1mal parallelepiped, illustrated in Fig. 1.18, whose
faces coincide with the surfaces Uy
or us; or uz; = constant. Since the
coordinates need not express a dis-
tance directly (e.g., the angles of
spherical coordinates), the differ-
ential elements of length must be ex-
pressed as dl; = hyduy, dly = hs du,,
dlg = h3 du;, where hl, hz, hs are
suitable scale factors and may be
functions of uy, us, u;. As an illus-
tration, in cylindrical coordinates
(r,¢,2), hi = 1, hy = r, hy = 1, since

Fic. 1.18. Orth 1 ili -
diI:ates, riiogonal GTIVIIREAT €00 the elements of length along the

_ coordinate curves r, ¢, z are dr, r d¢,
and dz. The square of the diagonal dl of the parallelepiped may be
written

dit = hlz dulz + h22 duf + h32 du32 (176)
and its volume is hihshs duy dus dus.

Gradient

Let ®(ui,usu;) be a scalar function. Then, according to the proper-
ties of V&, it is a vector whose component in any direction is given by the
directional derivative of ® in that direction. Thus, for the u; component,
we have

(Ve)y = 37 = 4 57 1.77)

and similarly for directions 2 and 3. The resultant vector expansion is

a; 9% a, 0% as ad

Ve = h1 0u1 h_g 5.1;2 E 5;;3

(1.78)

Divergence

To calculate the divergence of a vector A it is necessary to evaluate the
net outflow per unit volume in the limit as the volume approaches zero.

¢
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If we refer to the differential volume of Fig. 1.18, it is possible to proceed '
as we did in rectangular coordinates. Let the components of A be
(a141,a:44,2345). Then the flux through surface 1 (0 ABC) taking the

outward normal is
Flll)(s1 = — Alhzha du2 dU3 + (Alhzha) dul duz du;
while the flux through surface 2 is

Fluxs, = A1h2h3 dU2 du3 + (A 1h2h3) du; duz dus

If we add the outflow for the remaining two surface pairs, the net flux will
be found to be

[ (hah3A ) + (h3h1A2) + — (h1h2 3)] duy dus dus

The second and third terms can also be written down by cyclical permuta-
tion of the first. From the definition of divergence we can now write

o) A__l_[ (hahs ) + 2 (o Az)-l-—(hltha)] (L.79)
hihshs

Curl

The component 1 of the curl can be found by calculating the circulation
around contour OABC and dividing by the enclosed surface area. Thus

A C 9
/ Az dlz + / Az dlz = - — (Azhg) duz dus
0 B dus
B ()
and / Asdls + / Asdly = =2 (Ashs) dus dus
4 c dug

The details are analogous to those in Sec. 1.12. In vector notation the
above result, by definition of the curl, leads to

(V X A)l = hlh [ (Ash:x) —u; (Azhz)] (1.80)

By cyclic changes in the indices the remaining components are obtained.
Consequently,

(v X 4) = ;2 [8%2 (Ashs) = = (Azhz)]
+ o o (i) = 2 (ko)

hih
ha;:[ (Ashs) — 2(Alhl)] (1.81)
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which may be written in determinant form as

hlal hzag haaa
1 d d d
VXE = R ow ow (182

hlAl thz haAs
Laplacian
The Laplacian of a scalar is defined as the divergence of the gradient of
the scalar and may be formed by combining (1.79) and (1.78). The
result is

_ _ 1 [0 (hahs 33\ , & (hshs 38
Ve = V-V = [6—u1< T aul) * o ( e 8u2>

hihy 0P
tom (5] sy
The results of this section are used in Sec. 1.19 to evaluate the afore-
mentioned vector operations in rectangular, cylindrical, and spherical
coordinates.

1.17. Point Sources

In physical problems vector fields arise from source distributions which
are continuous in space. Nevertheless, it is convenient, mostly from a

(x’,y’, zr)

(x,5,2)

0

Fic. 1.19. Illustration of notation for source and field points.

mathematical standpoint, to assume the source distribution discontinu-
ous. We shall consider here the characteristics of fields set up by point
sources. It should be noted that by properly superposing such point
sources, an arbitrary distribution can be represented.

In field theory it is necessary to clearly distinguish between the coordi-
nates that determine the location of the source and the coordinates that
designate the point at which the field is being evaluated. In this book
primed coordinates 2/, ¥/, 2’ will be used to designate the source point
while unprimed coordinates z, y, z will be used to designate the field point.
The vector r' = z’a, + y’a, + 2'a, is a vector from the origin to the
source point, while r = za, + ya, + 2a, is a vector from the origin to the
field point, as in Fig. 1.19. The vector from the source point to the field
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point is

r—r'=(@-1)a+ -y +@E-2a (1.84)
with the magnitude of the distance given by

[t =] =[x -2+ (y —y) + (z — ) (1.85)
We shall also use an abbreviated notation, described below, when there
is no danger of confusion. In this notation, the magnitude |r — r'| will
be designated by R and a unit vector
directed from the source point to the
field point by ag; thus

[f =1t =R (1.86a)

r—r
m[ = ag (1.86b) >

(«',y'2

The capital letter R is used in order
to avoid confusion with the usual no-
tation for spherical coordinates.

For a single point source located at \
(a',y'#) symmetry requires that the o =\ o0 p U hon o point
flow lines be radial and diverge uni- ggyrce.
formly. If we choose any spherical
surface whose center is at the point source, as illustrated in Fig. 1.20, the
total flux crossing the surface will be independent of the radius. In par-
ticular, the total flux computed is a measure of the total outflow from the
source—hence is a measure of the strength of the source. If we call this
quantity @ and let F be the vector field, then

Q=rk 9631? . dS = kdrRFp (1.87)

The surface integral is over a spherical surface of radius R, and it can be
evaluated because F is everywhere radial and of the same magnitude on
S. In (1.87) k is a constant of proportionality to be determined on the
basis of our definition of source strength. We shall choose k¥ = 1, so that

Q = 4rRFp (1.88)
and hence we must have
where az is a unit vector in the radial direction.
The vector field is irrotational, a fact readily established by demon-
strating that F can be derived as the gradient of a scalar . By inspec-
tion it is clear that if ® = @Q/4r R, then

Q08" _ @ (1.90)

Fo Vo= —gargy = Lmte
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One advantage of representing the vector field F in terms of a scalar
potential ® becomes apparent when the field due to a series of point
sources is required. We could superpose the vector fields F,, Fy, F,
. ..,F.dueto Qi @, @s, . . . , @, vectorially, but it is much easier to
add algebraically ®,, ®, ®;, . . . , ®.. Then, if Fy is the resultant field,
it can be expressed as

e R
FS—EF,— e e- ) (1.91)
1

i=1 1=

where R; is the distance from the source at (z!,y},2}) to the field point at

(z,y,2). This equation shows how any irrotational field can be calculated
when its sources are given.

If z!, y}, 2 are the coordinates of the ith source, then the potential
&(z,y,2) can be expressed by the following, according to (1.91):

_ Q
B = Z HWe-r G- e

i=1

In any physical problem the sources will be confined to some finite region.
It is often of interest to compute the potential set up at distances which
are very large compared with the extent of the source region. To find
this potential, take the origin of coordinates in the neighborhood of the
source system and expand (1.92) in powers of z}, y!, 2; which are small
compared with z, y, 2. Then by Taylor’s theorem,

n .
L ad %
@=¢o+z<&70$§+ﬁoyz+goz;+"’) (1.93)
i=1

where the index 0 means that the quantities in the parentheses are evalu-
ated for z} = y; = 2z, = 0. Thus ‘

\ Q: " O
"’°=241r(x2+y2+z2)%=_ e A

1=1 i=1

Carrying out the remaining operations indicated in (1.93) with respect to
(1.92) leads to

NS U AN A N
2oa) = g ) Ut (2 Qai 4L 0w
te=] i=1 =1

+2Y Qe+ ) (e
1=1
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The total source strength is obviously

Q= E Q:
=1
We define the moment of the source system as
m = E Qir;
1=1

where the vector r} = a,x! + a,y; + a,z;. The first two terms may now
be written as

_ Q@ m-r
= Gor T A

) (1.95)
Note that to a first approximation the system of sources acts at great
distances like a point source of strength

Q=Y &
i=1
The second term is a dipole term, about which more will be said in a later
chapter.

1.18. Helmholtz’s Theorem

All vector fields will be found to be made up of one or both of two funda-
mental types: solenoidal fields that have identically zero divergence
everywhere and irrotational fields that have zero curl everywhere. The
most general vector field will have both a nonzero divergence and a non-
zero curl. We shall show that this field can always be considered as the
sum of a solenoidal and an irrotational field. This statement is essen-
tially the content of Helmholtz’s theorem. Another way of stating the
Helmholtz theorem is that a vector field is completely specified by its
divergence and curl. The latter constitute the source and vortex source
of the field, respectively. Before proceeding to the general case we shall
treat the two special cases mentioned above first. Many of the proper-
ties of a vector field, whether it be an electric, magnetic, velocity, etc.,
field, stem directly from its solenoidal or irrotational characteristic.
When we consider the electric and magnetic fields in later chapters, it will
be seen that they fit into the general framework presented in this section.

Case 1. Irrotational Field

A vector field F that has zero curl or rotation everywhere is called an
irrotational field. ThusV X F = 0, but at the same time the divergence
of F cannot be identically zero or else the field F would vanish every-
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where.f Hence let
V-F= p(x,y,z) : (1'96)

where p is now interpreted as the source function for the field F.
The gradient of any scalar function ® has zero curl, as was noted in
Sec. 1.13, and hence the condition V X F = 0 is satisfied if we take

F=—Vod (1.97)

since VX V& = 0. The minus sign is chosen arbitrarily so that these
results compare directly with later work in the book; a positive sign
would be an equally correct choice. Substituting into (1.96) we get

—V-F=V® = —p (1.98)

Thus the scalar function &, which is called the scalar potential, is a solu-
tion of (1.98), a partial differential equation known as Poisson’s equation.
Once a solution for ® has been found, we may obtain our vector field F at
once from (1.97).

Case 2. Solenoidal Fields

A vector field for which V:+F = 0 is called a solenoidal field. In a
field of this type all the flow lines are continuous and close upon them-
selves. If V-F = 0, we cannot have an identically vanishing curl or
again our field F would vanish.f Thus let

VXF = J(=zy2) (1.99)

The vector function J is the vortex source for the field F. It must be a
vector source function, since V X F is a vector.

A mathematical identity that has been established is V-V X A = 0,
where A is any vector function. Thus V X A is a solenoidal field, and
hence we may take

F=VXA (1.100)

The vector A is called the vector potential since it plays a role similar to
that of the scalar potential ®. Whether A has any significant physical
properties is usually of little importance since the use of a vector potential
is mainly to facilitate the integration of (1.99).

If we substitute (1.100) into (1.99), we obtain

R VXVXA=VV-A—VA=] (1.101)
after expanding the curl-curl operation. If V- A could be taken as zero,

t Although this result is plausible in that Vv X F = v+ F = 0 signifies that there
are no sources or vortex sources, we have yet to demonstrate the conclusion. Itisa
consequence of the Helmholtz theorem
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(1.101) would simplify to
VA = —]J (1.102)

and A would be a solution of the vector Poisson equation; i.e., each com-
ponent of A satisfies the scalar Poisson equation. For example,

V4, = —J,

On the basis of the Helmholtz theorem the divergence of A is at our
disposal since only its curl has been specified thus far. Consequently,
we can always choose A so that V- A = 0. This can also be demon-
strated in the following way. In place of the potential A we could use a

potential
Al=A+Ww

where ¢ is an arbitrary scalar function. This will not change the value of
F obtained from (1.100) since

VXA =VXA4+VXVW=VXA

If A does not have a zero divergence, then we use the potential A’ and
choose ¢ so that V- A’ = 0, that is, so that V- A + V% = 0. Since a
function ¢ can always be found that satisfies this (Poisson’s) equation, a
function A’ with zero divergence and with curl equal to F can always be
obtained.

Case 3. General Vector Field

Helmbholtz’s theorem states that the most general vector field will have
both a nonzero divergence and a nonzero curl
and, furthermore, can be derived from the
negative gradient of a scalar potential & and
the curl of a vector potential A. In view of
our discussion above, this statement is fairly
obvious, since a general field would be simply
a superposition of the two types of fields dis-
cussed separately. It will, nevertheless, be
instructive to examine the mathematical state-
ment of Helmholtz’s theorem. A proof of
the theorem is to be found in the following
section.

Consider a volume V bounded by a closed surface S, asin Fig. 1.21. A
mathematical identity (proved later) states that the vector field F at the
point (z,y,2) is given by

- V- F(x',y',z’) r F(:z;',y’,z’) ‘n Lo
F(z,y,2) = —V [ ﬁ, e ay 955 —2 ) 2 as

VI x F(xl’yl’z/) , F,(xl,yl,zl) x n ,
+vaV——~4TR av +5{>'s———m——ds] (1.103)

Firc. 1.21. Illustration of
Helmholtz’s theorem.
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where V’ = a,(3/9z’) + a,(8/3y’) + a,(3/92’) operates on the source
coordinates, the integration is over the source coordinates (z’,y’,2'), and
n is a unit normal directed out of the volume V. This is the mathemat-
ical statement of Helmholtz’s theorem.

The term V'« F(z',y’,2") gives the source function p(z’,y’,2’), while the
term V' X F(2',y’,2’) determines the (vortex)t source function J(z',y’,2’).

Sources
%)
S
\L Sinks
(@) ®

F1a. 1.22. Illustration of need for surface sources in Helmholtz’s theorem.

The surface integrals represent integration over the surface sources on S.
If S recedes to infinity, the field F will generally vanish at infinity, and
hence the surface sources will vanish also. If V is finite, however, sources
will occur on the surface S in general.

The physical significance of the surface sources may be seen as follows.
Consider the situation where the flow lines of F extend into the volume V'
from outside the surface S, as in Fig. 1.22a. If we sever or cut off these
flow lines at the surface S, then the field inside V can be maintained at its
original value only if we place an equivalent source on the surface S to
produce the same flow into the volume V as was produced by the original
sources outside V. This situation is illustrated in Fig. 1.22b. The
strength of the surface source must be equal to the original flow per unit
area across S and hence equal to —F -n. The minus sign arises since
F - n is a measure of the outward flow, whereas the source strength must
equal the inward flow. The other surface source F X n arises for similar
reasons and is the equivalent vortex source that must be placed on S in
order to maintain the proper circulation for the field F in V.

We now let —F-n =0¢ and F X n = K, where ¢ and K are the
equivalent surface sources. The scalar and vector potentials are next

t In the future little effort will be made to distinguish between the two types of
sources; both will be referred to as sources, and the context will clarify whether it is
a source or vortex source.
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defined to be
<I>(x,y,z) = /; p(tl: :y s ) av’ + ¢ 0'(2? )y 7z ) as’ ' (1'1040/)

Az = VJ (x Y z) av' + ¢, K(x ’y z)ds' (1.104b)

Thus in place of (1.103) we have
F(x,y,z) = _Vé(x;yyz) +VX A(x,y,z) (1105)

which is the mathematical statement of the second part of Helmholtz’s
theorem.

In summary, we can thus state:

1. If the curl of F is identically zero, then F is an irrotational field and
can be obtained from the gradient of a scalar potential function.

2. If the divergence of F is identically zero, then F is a solenoidal field
and may be derived from the curl of a vector potential function.

3. A general vector field can be derived from the negative gradient of a
scalar potential and the curl of a vector potential.

4. The potentials are determined by the volume and surface source
functions p, J and o, K

Integration of Potsson’s Equation

Let us return to a consideration of the integrals stated in (1.104) and
show that the potentials are, indeed, solutions of the Poisson equation.
From our discussion on point sources at the beginning of this section we
obtained the result that for a point source

_Q
q)—4m'R

If instead of a point source @ we have a distribution of point sources with

a volume density p(z’,y’,2'), it follows, by superposition, that the poten-
tial is given by

B(zy,7) = /V p(z’sz)dV’ (1.106)

Consequently, from (1.90) and (1.98), ® defined by (1.106) satisfies
Poisson’s equation. Although this proof is probably satisfactory from
an intuitive point of view, it is worthwhile to show mathematically that
® as given by (1.106) is a solution of the Poisson equation

V2<I>(x,y,z) = —p(x}y)z) (1107)

The mathematical details involved are themselves of great importance.
The Laplacian of (1.106) is

— [ P& G (1Y gy
V2 (z,y,2) = /V y (R) av
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We may bring the V? operator inside
the integral because V? affects the
z, y, z variables only while the inte-
gration is over the z/, ¢/, 2’ variables.
Next we note that V2(1/R) equals
zero at all points except at the singu-
larity point B = 0 (see Prob. 1.11).
Thus the volume integral is zero
except, possibly, for a contribution
from the singular point B = 0. As
z’, y', 2 approach z, y, 2z, R tends
toward zero. Our procedure is to
surround the singular point (z,y,2)
Fie. 1.23. Sphere surrounding singu- DY a small sphere of radius 3, surface
larity point (z,,2). So, and volume V,, as in Fig. 1.23.

Since p(z',y’,2') is a continuous func-
tion, we may choose & so small that for all values of 2/, ¥/, 2’ inside the
sphere, p is essentially equal to its value p(z,y,2) at the singular point.

Our integral now becomes

ez y' 2 1 , _ p(z,y2) 1 )
/V————47r vip)av =55 Vow z) 4V

We designate by V’ the del operator, which has been defined as

KA
32’

i} a
’ = — —
v _a,ax,—i-ayay,—l—a,
so that V’ operates on the source coordinates. Similarly,

9% 92 a2

Vi gy T e

L
Since R = [(z — ') + (y — ¥)? + (¢ — 2')%*, then we can confirm by
direct expansion that V(1/R) = —V/(1/R), and V*(1/R) = V'*(1/R).
Using the latter identity and the divergence theorem in the above volume
integral, we obtain

L nfl = P TEAWTY
ir | " <R> W= £ $,v (R) 45y
Now V/(1/R) = —a%/R? and dS; = a,R?dQ, where a} is a unit vector

directed outward from the point (z,y,2) and dQ is an element of solid
angle. Substitution of these relations now shows finally that

z,Y,2
vy = — 220D 6 o = —pay,)



Skc. 1.18] VECTOR ANALYSIS 35

and hence verifies that ® as given by (1.106) is a solution of Poisson’s
equation.

For the vector potential A each component is a solution of the scalar
Poisson equation; so it follows by vector addition that the solution to
V2A = —]J is given by

1@ 2) gy
A= v 4rR av
For surface sources the solutions are the same, with the exception that
the integration is now over a surface instead of throughout a volume.

Proof of Helmholtz’s Theorem

In view of the properties of the function V2(1/R) as discussed in connection with
the integration of Poisson’s equation, it is clear that the vector function F(z,y,2) can

be represented as
A
-/, F(x,y,nvz( L av

F(z'y',2")
= _—_v2 ) ’
v e av

F(z,y,2)

Using the vector identity V X V X = VV+ —V?, we may rewrite the above as

F(z',y',2

F(z' ,y ,2') ")
Flz,,2) =V XV X / av’ — 282 gy (1.108)

Consider the divergence term first. We have

F ” ’, ! ’ ' 1
, (Z%e ) gy = /F(z,y,z)'V(R-)dV’

since V does not operate on the primed variables. Next we note that

F(x’,y’,z’) -V (%) —F(x,yylyz,) v ('l%)

V-

_ o F@y) |,V F@y,)
=-vVe—r *t R
Hence
. F(x lz) r —_ !, F(x’}y z) ! F(x,!yllz,) ’

Sﬁ F(z,y z) ndS’+/ V F(ﬂi,y,z)dvl_q, (1.109)

which is the desired form for the scalar potential .
We now return to the curl term in (1.108) and note that

F(zl7yl,zl) 1 = - _]_'_ ' /7 ' l) ’
vx [(Eev2)y 4W/VF(x,y,z)XV(R av

v 47R
_i F(/ ’ I)xvl(l)dVI
T 4r /V Y2 R
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We next use the relation

’ / 4 Uy
v X F(zg ,Z) = _F(zl’yl'zl) X v’ (%) + VX Fl(; 'Y ,Z)

to get

F@'y',2) dv’ _ / V' XF@E'y2) o 1 / 1 o FE&Y2D)
v X /V 4rR 14 4R v ir Jv Vi X R v
(1.110)

The first integral on the right-hand side is in the desired form. The remaining step
is to show that

_1 r o F@Y'2) aon _95 F@'y'2) X1 o
VX =), ] ds (1.111)

To prove this result let C be a constant vector and apply the divergence theorem to
the quantity v’ - C X F/R to obtain

', E /=_/ .o _1:‘_ ’
va CXay L€V X p v

R
=9§ cxEonas (1.112)
8 R '
In the surface integral we have
F, _~.FXn
C X 1_3 n=C ————R

and (1.112) becomes

_C- ' P e dy EXD oo
c[vvadV—chS X2 as

Since C is an arbitrary vector, the two integrals are equal and the relation (1.111) is
verified. Thus we have

F(z' ,y ") e [ V. XF@EY2) Lo, 99 F(z'y',2') Xn .
vx/ av ‘/v——'—z;m v’ + R dy =
(1.113)

Consequently, it now follows that
= —-V®d+ VXA

when (1.109) and (1.113) are used in (1.108). This completes the proof of Helm-
holtz’s theorem.

1.19. Vector Summary

From the general equations in orthogonal curvilinear coordinates the
vector operations in the three most coinmon systems are found to be as
follows.
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Rectangular Coordinates

Uy =2 Uy =Y Ug = 2
hy=1 hy =1 hs =1

k]
Vq>=az +yay+z

V'F=—a§ 9y

_ (oF, aF oF, oF, oF, _oF,
VXF—a,(ay az)+a"(az a:c)+a'(6:c ay)
e o0 0w
dr® = dyr = 922

Vip =

Cylindrical Coordinates

U =r U = ¢ Uz = 2
hi=1 he =r hs =1
Ve =8 3 +a, 5+ ,ip
R p A
SR pRC R
Spherical Coordinates
Uy =r U = 6 Uz =
hy =1 hy =r h; = rsin 8
V¢=ar%‘§+av%§%§+r§;o§
V'F=rlzaar( £+ oao(sm”")"'rsilno%
VXF=T—S%—6-,[ (F, sin 0) — 3@‘]4-%’2[;%%’%—3@&)]
+2[ 2 or) - 5]

1a/,08\, 1 o 0% 1 %
2 _ 2 - S ——
V=g (’ ar)+r2sin e?aa(su”gae)"'r2sinzoa¢2
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Vector Identities

V(@ +¢) =Ve + Wy (1.114)
V-A+B)=V-A+V.B ' (1.115)
VX(A+B) =VXA+VXB (1.116)
V@Y) = VY + ¢V (1.117)
V(WA =A-Vy +yv-A (1.118)
V-AXB=B-VXA—A-VXB (1.119)
VX (®A) = V& X A + 3V X A (1.120)
VX (AXB)=AV-B—BV-A+ (B-V)A— (A-V)B (1.121)
VA-B)=(A-V)B+ (B-V)A+AX (VXB)+BX(VXA)

(1.122)
V.Ve = Vi (1.123)
V-VYXA=0 (1.124)

VX Ve =0 (1.125)
VXVXA=VV-A) — VA (1.126)*
/V Vo dV = 56Sq>ds (1.127)
/VV-AdV = SISSA-ds (1.128)
/vaAdV=9SSnxAds (1.129)
/Sn X VddS = 9SCq>d1 (1.130)
fsva-ds=560A-d1 (1.131)

*In rectangular coordinates V?A = a. V24, + a, V24, + a, V?4,, but in curvi-
linear coordinates (1.126) defines V24, i.e.,, V2A = VV+A — V X V X A. The simple
expansion in rectangular coordinates is possible only because the orientations of the
unit vectors are independent of position.



PROBLEMS

Chapter 1

1.1. (a) Find the sum and difference of the following two vectors:
A = 4a, 4 2a, — 2a. B = 2a, — 5a, — a,

(b) Show that the two vectors in part a are orthogonal.
1.2. Derive the law of cosines by squaring both sides of the equation C = A + B.

Fic. P 1.2

1.3. (@) Show that the direction cosines between each of the unit vectors a., a,, a.
and the unit vectors (a,, a4, a.) in a cylindrical coordinate system are (cos ¢, — sin &,
0), (sin ¢, cos ¢, 0), and (0,0,1), respectively.

Hint: Note that the direction cosine between a, and a, is given by a. * ar, etc.

(b) Show that the direction cosines between each of the unit vectors a., a,, a. and
the unit vectors (a,, ag, ag) in a spherical coordinate system are (sin 8 cos ¢, cos 8 cos ¢,
— sin ¢), (sin @ sin ¢, cos 6 sin ¢, cos ¢), and (cos 8, — sin 6, 0), respectively, where 0
is the polar angle measured from the z axis.

Hint: Find the projection of a, and ag on the zy plane first.

1.4. Consider a force F acting at.a point which is specified by the position vector r.
Show that the torque about an axis defined by the unit vector a is given by T =
(r X F)-a.

1.5. Find the components of the following vector along the coordinate directions in
a cylindrical and spherical coordinate system, A = 2a, + a, — 3a..

Hint: The component A4 along the unit vector a, in a cylindrical coordinate sys-
tem is the projection of A on ay; that is, Ay = A - ay, etc. To evaluate the dot
products use the results of Prob. 1.3.

1.6. Show that the total vector surface of a closed surface is zero.

Hint: Consider a small plane area, and first show that its projection on any
coordinate plane is the component of the vector surface on the axis perpendicular to
the coordinate plane. Then by superposition for an arbitrary curved surface, the net
component of its vector surface along any coordinate direction is the projection of the
surface on the coordinate plane normal to that direction.

495
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1.7. Express A, B, and C in rectangular components, and verify that A x BXC) =
B(A-C) —'C(A-B). .

1.8. A five-sided prism as illustrated
has its corners at (0,0,0), (2,0,0), (0,2,0),
(0,2,3), (0,0,3), and (2,0,3). Evaluate the
vector area of each side, and show that the
total vector area is zero.

Fic. P 1.8

1.9. Let A, B, C represent position vectors from the origin to three arbitrary points
A, B, and C. Prove that the vector

AXB+BXC+CXA

is orthogonal to the plane determined by 4, B, C.

Hint: Note that the vector A — B, B — C, or A — C lies in the plane determined
by the points 4, B, C.

1.10. The curl of F will be a proper vector function if its form is independent of the
choice of axes. Establish this fact by showing that

a, a, a. a; a, as
a 9 4 _ a a a
o 9y oz ar’ ay' o2

F. F, F, F.s Fy Fy

where the primed and unprimed rectangular coordinate systems are arbitrarily
oriented.
Hint: F itself is tacitly assumed to be a proper vector function, so that

F = a,F, + a,F, + a.F, = a,Fy + a,/Fy + a/F,
It is then sufficient to show that

ad P 9P 0P P %
a"a—z'+a”'5?+a"5? —a,5;+a,,517+a,—

since then
i) a3 a3 a
gt gutarg sagtag tag

This will be facilitated by noting the transformation of a point from one system to
the other; i.e.,

T Inz + Ly + lLisz z = Iur’ + lay + la?

Yy =lIlnz + laay + lasz y = Loz’ + looy’ + Lso?’

2 laar + lsoy + Lasz z = lisx’ + Ly’ + las2’

where 13, L12, Lis are the direction cosines of z’ relative to z, y, 2, ete.
1.11. By direct differentiation show that V2(1/R) = 0 at all points'R » 0, where

R=[z—2N+ @y —y)?+(~—2)
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1.12. Find the gradient of the function ¥ = z?yz and also the directional derivative
of ¥ in the direction specified by the unit vector (3/4/50)a, + (4/4/50)a, +
(5/4/50)a,, at the point = = 2, y = 3,z = 1.

1.13. By direct differentiation show that v(1/r) = —V’(1/r), where r = [(z — z')?
+ (y — y)? + (2 — 2)?} and V’ indicates differentiation with respect to z/, ¥, 2'.
Also show that, for any function f(r), Vf(r) = —V'f(r).

HinT: Note that

o _dfor o _dfor
2o M Tz o

1.14. Find the divergence of the vector function A = z%a, + (zy)?%a, + 24z%y%:3a,.
Evaluate the volume integral of V - A throughout the volume of a unit cube centered
at the origin. Also evaluate the total outward flux of A over the surface of the cube
and thus verify Gauss’ law for this particular example.

1.16. Show that the following functions satisfy Laplace’s equation in their respec-
tive coordinate systems: sin kz sin ly e, where h? = (2 + k2; r*(cos n¢ + A sin n¢),
r~» cos n¢ (cylindrical coordinates); r cos 6, r~2cos 6 (spherical coordinates, no azi-
muth variation).

z

1.16. Evaluate the line integral of the vector

o)
function F = za, + z%ya, + y?za, around the y
rectangular contour C in the zy plane as illus-
trated. Also integrate the V X F over the .
surface bounded by C and thus verify that 2,0/ 22
x c '

Stokes’ law holds for this example.

Fre. P 1.16

1.17. Prove the following vector identities: V X V¢ = 0, V-V X F =0,V X yF =
(V¢) XF +yV XF, V- yF = F-Vy + ¢V - F, where ¢ is an arbitrary scalar func-
tion and F is an arbitrary vector function.

1.18. Prove that /V YV -FdV = Sﬁs yF-.ndS — /V F-vydV. Thisisthe vector

equivalent of integration by parts where n is a unit normal to S.

1.19. Evaluate the line integral of the vector function F = z?a, + zy%a, around the
circle z2 4 y% = a%. Repeat, making use of Stokes’ theorem.

1.20. Prove the following:

Ver=3 VXr=0 VAA-r) = A

where r = a.z + a,y + a.z, and A is a constant vector.

1.21. Show that (1/F)(F - Vv)(F/F) gives the curvature of the flux lines of the vectox
field F.

Hint: Note that (F/F) represents a unit tangent to the lines of flux of F.

1.22. Consider a compressible fluid of density p and having a velocity v(z,y,z).
Prove the continuity equation V+vp = —(3p/4t).

Hint: The total mass of fluid flowing out through a closed surface S is given by
Fov + dS and must equal the rate at which the enclosed mass of fluid is decreasing, i.e.,



498 ELECTROMAGNETIC FIELDS

must equal —(d/dt) / e dV. Use the divergence theorem (Gauss’ law) to convert

the surface integral to a volume integral. The results hold for any arbitrary volume,
and hence the integrands may be equated.

1.23. Water flowing along a channel with sides along z = 0, a has a velocity dis-
tribution v(z,y) = a,(z — a/2)%?% A small freely rotating paddle wheel with its axis
parallel to the z axis is inserted into the
fluid as illustrated. Will the paddle wheel 12
rotate? What are the relative rates of ro-
tation at the points z=a/4, z=1;
z=a/2 z2=1; z =3a/4, z =17 Wil
the paddle wheel rotate if its axis is paral-
lel to the z axis or y axis?

Hint: The paddle wheel will rotate pro-
vided the fluid is curling or rotating at the
point in question. Therate of rotation will
be proportional to the z component of the Fic. P 1.23
curl of the fluid velocity. The small
paddle wheel could form the basis of a curl meter to measure the curl of the fluid
velocity.

1.24. Prove that for an arbitrary vector function A(z,y,2) that is continuous at the
point (z',y',2),

1
2f = =
/'V A(z,y,2)V (r) dzdydz =

Hint: See Sec. 1.18 (integration of Poisson’s equation).

1.25. (a) Consider the following vector fields A, B, C, and state which may be com-
pletely derived from the gradient of a scalar function and which from the curl of a
vector function. ;

(b) Describe a possible source distribution that could set up the field.

{ —4rA(z' )y \2") («',y',2’) inside V
0 (z',y',2') outside volume V

A = sin 0 cos ¢a, + cos ¢ cos fag — sin pay
B = 2?sin ¢a, + 22 cos ¢ay + 2rzsin ¢a;.
C = (3y? — 2z)a, + z%a, + 2za,



