EECS 412 Electromagnetic Fields III Fall 2003

Homework #2:

Due September 29th

Reference Ramo, Whinnery, Van Duzer, Fields and Waves in Communications Electronics, 3rd Edition, Chapter 2.

Biot-Savart	2.3a
Helmholtz coils	2.3e (not as simple as it looks)
Field from a current distribution	2.4e
Inductance of a coaxial line	2.5

The following will require additional references and are not restricted to subjects covered in class.

Eddy currents	1 (attached)
Induced voltages	2,3 (attached)
Mutual inductance	4 (attached)
Solenoid & magnetic forces	5 (attached)

1. An electromagnetic "eddy current" brake consists of a disk of conductivity σ and thickness t rotating about its center with a magnetic field B applied perpendicular to the plane of the disk over a small area a².

If the area a^2 is at a distance r from the axis, find an approximate expression for the torque tending to slow down the disk at the instant its angular velocity equals ω .

2. A conducting wire is bent into the shape shown below. The segments 1-2, 4-5, and 7-8 are parallel to the x-axis. The segments 2-3 and 6-7 are parallel to the y-axis and the segments 3-4 and 5-6 are parallel to the z-axis. This conducting loop is immersed in a magnetic field given by $\overline{B} = B_o(\hat{y} + 2\hat{z})\cos\omega t$. Find the induced voltage that would be measured between terminals 1 and 8.

3. A very long thin wire has a current I flowing in it. A square single turn coil is rotated about an axis parallel to the wire at an angular rate w. Derive an expression for the EMF between terminals 1 and 2 as a function of time. At t=0 the coil is in the plane defined by the wire and the axis of rotation of the coil.

4. Consider two infinitely long metal cones with a half angle θ_o as shown below. A current I, uniformly distributed over the cone surface, flows in the upward direction on the upper cone and flows towards the origin on the lower cone.

- (a) Find the magnetic field **H** surrounding the cones.
- (b) Find the mutual inductance between the two cones and the conducting loop labeled C in the figure. The loop extends from r=a to r=b and infinitesimally close to the cone surfaces.

$$\int \frac{d\theta}{\sin\theta} = \ln\left(\tan\frac{\theta}{2}\right)$$

HINT: A useful integral is

5. Derive an expression for the required current to cause the armature in the illustrated relay to pull in. All iron paths have a cross-sectional area A. The spring force is F.

