EECS 412 Electromagnetic Fields III Fall 2003

Homework #1:

Due September 18th

Reference Ramo, Whinnery, Van Duzer, Fields and Waves in Communications Electronics, 3rd Edition, Chapter 1.

Superposition	1.4d
Conservative fields	1.7a
Potential & Gauss' Law	1.8b
Potential (spherical)	1.10d

Polarization	1 (attached)
Method of images, electric fields	2 (attached)
Electrostatic forces & energies	3 (attached)
Electrostatic forces and potential	5 (attached)
Lossy capacitor	6 (attached)

Reference Ramo, Whinnery, Van Duzer, Fields and Waves in
Communications Electronics, 3rd Edition, Chapter 7.Separation of variables, Laplaces equation4 (attached)

1. An electret (a permanently polarized substance) of polarization P is sandwiched between two metallic plates A and B. Find the distribution of the charges and the electric potentials in the system.

2. Find the electric field at point P in the following structure. The metallic sphere of radius a is grounded and space is filled with a dielectric of ε_r =3.9. Hint: use the method of images.

3. A slab of dielectric material of electric permittivity e and thickness d meters slides freely between two parallel metallic plates d meters apart. The metallic plates are connected to a battery with an e.m.f. of V volts. Find how far the slab will slide between the plates if the slab is attached to a spring with a stiffness of K newtons/meter. The dimensions are as shown in the figure. Neglect electric fringing in your calculations.

4. A two dimensional box has the potential shown on its boundary. Use a Fourier series expansion to describe the potential inside the box.

5. An electric dipole of moment m lies in the x-y plane/ A charge q is placed at the point P a distance R from the dipole. If the charge q is constrained to move in a circle of radius R, find the force on q and from it find the equilibrium position. Assume that d<<R and

that the charge has no mass. Use the potential function $\Phi = \frac{m}{4\pi\varepsilon_o} \frac{\cos\theta}{r^2}$

6. Consider the parallel plate capacitor shown below. The region between the plates is filled with two lossy dielectrics having conductivities and permittivities σ_1 , ε_1 and σ_2 , ε_2 respectively. When the upper plate is at a potential V relative to the lower plate find the displacement flux density and conduction current density that flows between the two plates. You may neglect fringing field effects.

