Optical Attenuation Sensor for Process Control

Eric A. Borisch Jeremy D. Protas Scott D. Ruppert Christopher J. Spiek

Francis L. Merat, Advisor

April 21, 1999

Project Background

- Originated by a company in the Cleveland area
- Robotic binary epoxy sprayer
 - Currently using an optical spectrum analyzer for process control
 - Looking for an inexpensive alternative

Project Goals

- Decreased cost
- Wide dynamic range
- Strong correlation
- Stability

Our Solution

- Frequency source
- Light emitting diode phototransistor pair
- Amplify & rectify the detected signal
- Take the DC value of the AC component

Design Considerations

- Oscillator design
- Optical transmission and detection
- Attenuation measurement
- Output

Oscillator Design

- Onboard
- Sine wave or square wave
- Wien Bridge oscillator

Wien Bridge oscillator

Optical Attenuation Sensor for Process Control

Optical Transmission

- High output infrared LED
- Separate AC & DC drive controls

LED Drive

Optical Detection

- Phototransistor instead of photodiode
- Low noise amplifier
- Variable gain
- Over-amplification detection

Photoreceiver/Amplifier

Attenuation Measurement

- AD630 Lock-in amplifier
- Reference & received signals compared
- Low pass filter

Output

- DC value
- Output circuit
 - Adjustable set points
 - Easy to read

• Over 50 dB dynamic range

April 21, 1999

Optical Attenuation Sensor for Process Control

- Over 50 dB Dynamic Range
- DC output linearly correlated with optical attenuation

Low Amplification

Optical Attenuation Sensor for Process Control

- Over 50 dB Dynamic Range
- DC output linearly correlated with optical attenuation
- Crosstalk

Recommendations

- Better sine wave oscillator
- Auto-ranging or application specific
- Packaged for industrial environment
- Multiple circuits with neural network

Demonstration

Optical Attenuation Sensor for Process Control

Conclusions

- Goals
 Decreased cost
 Wide dynamic range
 Strong correlation
 Stability
- Results
 - Under \$50
 - Over 50 dB
 - Repeatability & Linearity
 - Unaffected by Transients

Any Questions?

Optical Attenuation Sensor for Process Control