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EXECUTIVE SUMMARY

The goal of this project was to study methods of using Hidden Markov Models (HMMs)
to automatically detect sleep arousals in the electroencephalogram (EEG) signals of
neonates. A sleep arousal is characterized as a frequency shift of energy in the EEG
during sleep involving a change of stae in the neonate. These changes can be very
difficult to identify due the extreme variability and overlap of signal statistics in arousals
and non-arousals, as well as from patient to patient. HMMs have become increasingly
popular as a classification technique due to their success when applied to problems in the

field of speech recognition.

Our method of detecting arousals using HMMs has proved to give excellent results in
most states of sleep. More work needs to be done developing a different feature

extraction technique to improve the results of this method in the remaining state of sleep.



INTRODUCTION

This project was inspired by the research of Mark Scher, a member of the Neurology
department at University Hospitals. Dr. Scher requested that an automated arousal
detector be developed here in the EECS depart at CWRU. The CWRU engineering
group recommended trying to apply HMMs to this problem. Dr. Scher, and other
neurologists, spend many hours reviewing Polysomnographic (PSG) data, including EEG
data, noting many important events, including arousals, when diagnosing the health of
premature babies. Understanding the frequency and duration of arousals is an important
step to understanding the health of a patient’s sleep, especially in neonates as they are in
a critical stage of brain development. An automatic arousal detector would help
physicians save time diagnosing these patients. Dr. Scher’s theory suggests that an
abnormally high frequency of arousals constitutes a higher risk of significant problems in

brain development.

A PSG arousal can be defined as “an abrupt shift in EEG frequency,” but is subject to
many subjective rules and exceptions. Often, low frequency movement artifacts are
present during an arousal as well as an increase in electromyographic (EMG) amplitude
[1]. Physicians typically also look at other information besides in the PSG besides EEG
data such as heart rate, breathing rate, visual cues, and state of sleep. There are four
states of sleep for a healthy infant: 1) Mixed Signal (MAS), 2) Tracé Alternat (TA), 3)
High Voltage Slow (HVS), and 4) Low Voltage Irregular (LVI). Examples of typical

arousals are shown in Appendix A.

HMMs were first developed as a tool for automated speech recognition in the late 1960’s
[2]-[14] and were later applied to many other applications such as detecting tool wear and
biomedical engineering [15]-[16]. They are based on discrete Markov processes. These
processes consist of several states that can represent the output of certain random
variables. A set of transition probabilities connects these states by describing the
likelihood that the model will move to the next. Fig. 1 shows an example state topology
and the possible state transitions. The Hidden Markov Model is an extension of this

Markov process as the actual sequence of states is hidden to the observer.



Figure 1:
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As shown in reference [2], an HMM is completely characterized by the following

parameters:

e N, the number of states in the model.

e M, the number of distinct observation symbols per state.(number of probability
density functions per state?)

e A, the state transition probability matrix. This is an N x N matrix.

e B, the observation symbol probability distribution matrix. There is a matrix b; for
each sate j and is an N x M matrix.

e Q, the set of states. q;represents the current state.

e T, the initial state distribution. This is a vector of length N.

e O, an observation at time t.

b; is approximated by a weighted sum of M gaussian distributions as
M
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where ¢, is a weighting coeffcient, wnm is the mean vector, Ujy, is the covariance matrix,

and n(p,U,0) is the multivariate Gaussian probability density function given by:
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Thus the model A can be represented as:
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The models output a probability which represents the likelihood that the given
observation is a member of the class that the model was trained to recognize. This

probability is given by:
N N
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where o and B are the forward and backward variables. a is given by:
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References [2] and [15] provide extensive examples of these calculations. Please refer to

references to them for more complete details.

In this project, we used the HMM Toolbox for Matlab written by Hasan Ocak to

determine these parameters and evaluate the outputs of the HMMs.

The parameters are estimated by supervised training. We give the model a large set of
observation points from on class of data. Then, we repeat the process with observations
from another class of data for as many classes as we are interested in. For this project,

we trained the model on two sets: arousals, and non-arousals.



METHODOLGY

One of the most valuables lessons I learned during this project is that one will almost
never solve a large, complex problem on the first try. It is much more productive to
systematically solve the problem step by step. Each block must be designed, tested, and
proved to be working reliably before one can expect the second block to work properly
based on the output of the first block. Because of this fact, we chose to study much
simpler, controlled problems before attacking the PSG data.

The first step was to understand how HMMs work and how to implement them with
Matlab code we had available. We decided to create points randomly distributed along
the unit circle and then classify these points as to which of the four quadrants these points
lie in. First, we generated a random angle uniformly distributed between 0 and 27 and
trained an HMM to classify which quadrant this angle lied in. This model contained only
one feature. After we had this model working, we doubled the complexity of the system
by classifying randomly generating x,y pairs on the unit circle. We adjusted the
parameters of the HMM to try and improve the accuracy. We varied the number of
states, the number of density functions per state, the number of training points, and the
maximum and minimum allowed variance value. The results of these experiments are

shown in figure 2.



Fig. 2: Accuracy of HMM, Quadrant Classification Problem
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Next we wanted to classify signals similar to PSG signals, but in a controlled
environment. We created a set of sine waves with a random frequency and then did
feature extraction on these signals using the same method we planned on using with the
actual PSG data. We took the Fast Fourier Transform (FFT) of the signal and found the
total power in each of the four frequency bins we created. This classification method
proved to be almost perfect, correctly classifying the signal over %99 of the time.

After we achieved success classyifying the frequency of the sine waves, we were curious
to see how the HMMs responded to errors in the training sets. This was a necessary step
as an effective arousal detector would have to be trained on a large set of data likely to
contain many misclassified arousals due to the variable nature of an arousal. We added
gaussian noise to the frequency component of the signals causing some signals to be
placed in the wrong training sets. The preliminary experiments show that, given enough
training points, the HMMs could still perform remarkably well even with bad training
data. Figure 3 shows the results of these experiments. There were no errors contained in

the testing set.
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Next we wanted to classify signals similar to PSG signals, but in a controlled
environment. We created a set of sine waves with a random frequency and then did
feature extraction on these signals using the same method we planned on using with the
actual PSG data. We took the Fast Fourier Transform (FFT) of the signal and found the
total power in each of the four frequency bins we created. This classification method

proved to be almost perfect, correctly classifying the signal over %99 of the time.

After we achieved success classyifying the frequency of the sine waves, we were curious
to see how the HMMs responded to errors in the training sets. This was a necessary step
as an effective arousal detector would have to be trained on a large set of data likely to
contain many misclassified arousals due to the variable nature of an arousal. We added
gaussian noise to the frequency component of the signals causing some signals to be
placed in the wrong training sets. The preliminary experiments show that, given enough
training points, the HMMs could still perform remarkably well even with bad training
data. Figure 3 shows the results of these experiments. There were no errors contained in

the testing set.



Fig. 3: Percent Cormrect Vs. Variance of Noise in Training Set
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Now that we had a method that works robustly in the ideal world, we began to work with
real PSG data. First, we adapted code John Turnbull had used earlier to import data from
the linux server and convert it from multiplexed 16-bit binary files into a data format
Matlab could use. The script creates a matrix that has a row for each channel of EEG
data and a column for every sample of data. It also reads the sample rate and the
annotations the neurologist added to the data file. These include the start and stop times
of arousals, the state of sleep, and many other comments. This function extracts just the
pertinent arousal information. Next, we wrote a function that sorts one channel of data
into a vector of arousal data and a vector of non-arousal data based on the comments

made by the neurologist.



Feature Extraction

The next stage of the development process, finding a working feature extraction
technique and debugging the entire process, took considerably longer than any other.
We wrote another function that takes the FFT of one second epochs of each channel. The
data is zero padded to get 0.25 Hz resolution. Before taking the log of the FFT, the
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function sets any values of 0 to the smallest value on the computer (about 10
to produce any negative floating point underflows. We take the log to magnify the small
changes that take place at the higher frequencies. This is necessary because otherwise the
model would react only to low frequencies changes where the majority of the energy is.

The log adds more weight to the high frequency changes in the HMM’s computations.

Next, we sum all of the energy in each of 5 frequency bins and divide by the width of
each bin. These frequency bins are 1) Delta (< 4 Hz), 2) Theta (4 to 8 Hz), 3) Alpha (8 to
14 Hz), 4) Beta (14 to 24 Hz), and 5) EMG (24 to Nyquist, which is 32). We later
realized that taking the log before we summed the energy was like multiplying each point
in the FFT and then taking the log. This does not produce features that are the power in
each of the frequency bins, however, we later found it worked better than the expected
method of taking the sum before the log. We also found later that using log base ten
produces better results than using natural log. We also tried using spectral smoothing
windows, such as the Hanning window, but these were abandoned as they increased the

frequency of false positives.

Another method we experimented with involved doubling the number of features vectors
by inputting a second point of data five seconds behind the first set. We thought giving
the model the ability to see what had just occurred in the PSGs would help. This is
information the physicians can use to help them diagnose the neonates. However, this
confused the HMM. It may be worthwhile to look into this method further, but using
four classes of HMMs: 1) both windows are not in an arousal, 2) the leading window is in
an arousal, 2) both windows are in the arousal, and 4) the leading window only is not in

an arousal event.



Training

The training process usually takes hours of computation time. This proved to be quite a
hindrance. We found we could reduce this time by carefully selecting only the four most
pertinent PSG channels and using only three states with two probability density functions
per state without a significant loss of accuracy. We carefully chose four of the 14
channels we had available to provide good coverage of the entire brain. These four
channels were Fp;-Ts, Fp2-Ts, C3-01, C4-0,. We also tried using the supercomputing

center at OSU but found that the desktop machines were faster.

To classify the arousals we actually build two HMMs: one for arousals, and one for non-
arousals. One model is trained on data from arousals, while the other is trained on the

rest of the data. The training process is outlined in Fig. 4.

Figure 4: Training Process
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Now that the model is trained we enter the classification phase. To classify a section of
PSG data we extract features exactly as we did to train the model. We then pass these
features to the HMM and evaluate the probability that the given observation is a member
of the arousal class and evaluate the probability that the given observation is a member of
the non-arousal class. Whichever model outputs the maximum probability determines

whether or not an arousal is occurring for the given observation.

Next, we designed two filters to clean up the output signal of the HMMs. The first is a
simple five-point moving average filter to smooth the signal. It removes transients in the
output stream. This is to ignore 1 or 2 second changes in the state of the HMM. Next,
the output of the moving average filter is passed to a “rules” filter. This checks to make

sure each arousal is at least a minimum length of time long, and that the time inbetween

10



arousals is also at least a minimum length of time. Mark Scher initially suggested 5 and

10 seconds respectively for these lengths.

After experimentation was complete, two final models were built. One was trained on
various pieces of data from one patient, while the other was trained on pieces of data
from five separate patients. These patients were all less than six months old. The

classification process is shown in the block diagram in Fig. 5.

Figure 5: Classification Process
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RESULTS

Figure 6 shows the average Log Power Spectral Density of arousals and non-arousals. A

Hanning window was used to smooth the PSD.

Figure 6: Log Power Spectral Density
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It can be seen that there is slightly more energy in the arousals across the band. Figure 7
shows the statistics of the frequency bin features. It is clear that the mean energy of the
arousals is greater, but there is a significant overlap in the standard. Not all arousals have
more energy than non-arousals and mean energy cannot be used as a single feature alone.

These statistics vary greatly across the four different states of sleep.
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Figure 7: Frequency Bin Statistics
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The final model trained on a single patient, classified %72.06 of the observations
correctly in the training set. A more complete description, including false-negatives and
false-positives, is shown in Table 1. It should be noted that it performed very well in
three states of sleep, with the Tracé Alternant state pulling the average down. As

expected, this model performed less well on another patient (%64).

Table 1 Actual
Arousal Not-Arousal
§ Arousal 20.56 24.50
()]
8 Not-Arousal | 3.00 51.50
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The second final model to be built classified %87.36 of the total number of observations
in the training set correctly. In the testing set, the model classified %83.43 of the
observations correctly with a maximum of %89 and minimum of %74. The complete
contingency table is shown in Table 2. The testing set was comprised of five other
patients in the same age group (0 to 4 months) as the training group. Experiments on

patients older than this age group received scores of less than %60.

Table 2 Actual
Arousal Not-Arousal
§ Arousal 23.31 6.56
[4]
8 Not-Arousal | 9.43 60.12

Table 3 gives the results of the automatic detection algorithm for each of the two final

models broken down by state of sleep.

Table 3 Trained on 1 patient Trained on 5 patients
Actual Actual
State of Sleep: Detected: Arousal Not-Arousal Arousal Not-Arousal
MAS Arousal 12.34 1.16 9.47 0.28
Not-Arousal| 6.17 79.69 10.59 78.97
HVS Arousal 0.00 5.04 0.00 0.00
Not-Arousal| 4.62 88.24 4.62 93.28
TA Arousal 5.84 35.54 1.25 0.00
Not-Arousal| 1.60 56.68 6.19 92.21
LVI Arousal 61.10 17.99 52.30 5.65
Not-Arousal| 3.56 16.32 12.34 28.66
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Figure 8 is a sample graphical representation of the outputs of the HMM, the Moving
Average filter (MA), and the Rules filter as compared to classifications done by the
clinician, Mark Scher (MS)—the “desired” results. The “high” level represents arousals
while the “low” level represents non-arousals. In this ten-minute example our method
correctly identified six of the nine arousals with zero false negatives. It classified each
second %89.96 correctly with %1.5 false positives and %7.69 false negatives. This is
from the MAS state of sleep.

Figure 8
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CONCLUSIONS

As the data shows, our project made extensive progress in designing an automatic arousal
detector. From Table 3 and Fig. 8, one can clearly see our classification algorithm
performs excellently in the MAS state of sleep. The algorithm performs well in the LVI
state of sleep. While the data shown in table 3 for HVS is modest, I am not concerned
because this breaks down to 0.25 false negatives per minute of data. HVS is a more rare
state of sleep at this age group. Also, the MAS, LVI, and HVS states of sleep are

relatively stationary with respect to arousal detection.

Figure 9: Minutes 10-20, trained on 1 patient
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However, HMM fails on Tracé Alternant when using the feature extraction techniques
implemented in this project. In Fig. 9, the presence of the rapidly changing square wave
signifies when the patient is in the TA state of sleep. Here the HMM performs poorly,

thinking the patient is rapidly moving in and out of arousal states. This is due to the fact



that Tracé Alternant sleep contains rapid short bursts that look similar to arousals. The

rules for classifying arousals are different in each state, especially in Tracé Alternant.

Fig. 10 shows the same input section of data as Fig. 9 but the output is from the model
trained from five different patients. These results are the opposite of the first model: the

HMM did not detect any arousals in this state.

Figure 10: Minutes 10-20, trained on 5 patients
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Fig. 11 shows the benefits of the Moving Average and Rules filters. Here the Moving
Average filter does an excellent job removing the pertinent information from a less than
perfect HMM output. It not only removes any short false positives, but also groups
together large sections of correctly identified arousals by removing short transitions back
to the non-arousal state. The Rules filter removes one of the extra arousals during the
first 100 seconds of the figure. This brings the total detected arousals down to seven
from eight in a section of data where the correct number of arousals is 5. Obviously, two
of these are contained in one of the actual arousals. The Rules filter does a better job and
detecting the correct number of arousals while the Moving Average filter classifies each

second with more accuracy.

Figure 11
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The false positive arousal occurring at about 450 seconds brings up an interesting point.
This may be an actual arousal that the clinician missed in his first inspection of this
patient’s PSG. Due to the subjective nature of these arousals, it is possible that if the

same clinician were to rescore this patient, he would count this arousal.
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RECOMMENDATIONS

To further improve the performance of this method, a more complicated approach is
proposed. Build four separate HMMs, one trained for each state of sleep. Different
feature extraction methods could be used for each stately. Other methods could include
autoregression (AR), linear prediction code (LPC), or wavelets. This will certainly be
necessary for Tracé Alternant. The state of sleep will have to be known during the
classification state. This could be provided by data from the clinician, but eventually
should be automatically detected as well. HMMSs would be an excellent method for state
decection as well. These models should be trained on a much wider range of patients and
could include other information extracted from the PSG, beside EEG, such as EMG,
EKG, and breathing. Fig. 12 shows a possible implementation of these

recommendations:
Figure 12:
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This Polysomnogram shows a very clear arousal due to the very large movement

artifacts. The arousal detector easily classified this one correctly.
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This arousal is much more difficult to detect due to the lack of movement artifacts.
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