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At this point we turn to the problem of reconciling everything we have developed using ray
matrices with a wave description of optics.  We do this because although laser beams may
appear to be pencil-like beams of light they are not and only a wave description of laser
beams (and optical resonators) will allow us to predict the properties of laser beams.

A spherical wave is the complex wave radiated by an isotropic point source, i.e., a non-
directional point source.  We will restrict ourselves to a scalar wave description where only
the scalar amplitude of one transverse component of either the electric or magnetic field is
considered.  The other components may be found by using Maxwell’s equations.  In this
formalism we may write a spherical wave emitted by an isotropic point source at P0  as
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ikr
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01
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p
(1)

where   r r01 01= r
 and P1 is the observation point as shown below

P0

P1

r
r01

The wavefront of a wave such as (1), the surfaces of equal power perpendicular to the
direction of power flow, are spheres; hence, the use of the term spherical waves.  [For a
more complete description of scalar waves see Goodman, Introduction to Fourier Optics,
Chapter 3 “Foundations of Scalar Diffraction Theory.”]

For those of us that are interested in such things it may be noted that G  is the Green’s
function solution of the scalar wave equation in three dimensions, i,e., G  satisfies the
scalar wave equation � +( ) = - ( )2 2

0k G Pd .  [See Collin, “Scattering and Diffraction
Theory,” EEAP 635 Class Notes].  A wave such as (1) may be visualized as a series of
expanding spheres radiating power away from a point source as shown below.

z0 z1 z2 z

R1 R2
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The radius of curvature of a spherical wavefront originating from z0  will, at z1, be
R z z1 1 0= - .  As the wavefront propagates from z1 to z2 the radius of curvature increases
from R1  to R2  where R2  is given by

R R z z2 1 2 1- = - (2)
Let us consider the propagation of a ray normal to a spherical wavefront.

z1 z

r z( )
R z( )

f

Because we will eventually concerned with laser beams which are very narrow we use the
paraxial ray approximation that

r z z z R z( ) << ª = ( )1 (3)
This indicates that j  is small so that tan 'j j= ( ) ªr z .  From this we have
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At this point we can relate the ray matrices governing ray propoagation to the propagation
of spherical wavefronts.
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Using (3) and (4) we can write
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Defining R R z2 2= ( ) and R R z1 1= ( )  we can re-write this result in a form known as the
ABCD law

R
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(5)



-57-

which will be important in our understanding of the behavior of laser beams in optical
systems.

To illustrate the important of this ABCD law we will derive the wavefront transformation
associated with a thin lens.  The ABCD matrix for a thin lens is
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so that from (5)
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which is very similar to the lens law from Gaussian optics
1 1 1

2 1s s f
= -

In our development of the ABCD law we invoked the paraxial ray approximation.  Let us
see how this alters our picture of a spherical wave.  From (1)
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where we have placed the point source at the origin (
r
r = 0 ) and R r= r

.  In a cartesian
coordinate system
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If we restrict ourselves to the region where x y z2 2 2+ << , i.e., a paraxial ray
approximation, we have the result that
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Substituting (9) into the exponent of (7) and using R zª  in the denominator we have
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The result (10) is basically a plane wave of the form e ikz-  propagating in the +z direction

with a small transverse distortion given by the e
ik

x y

z
- +Ê
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2 2

2  term.

Gaussian Beam Solution of the Wave Equation

Starting with Maxwell’s equations for homogeneous charge free ledia
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Taking the curl of (2) and using (1)
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Assuming a solution of the form 
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we
 to allow for gains and losses in the media.  For lasers the
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r( )  we will be interested in is
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Substituting (5) into (4) we have the wave equation
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The Laplacian �2 may be separated into transverse and longitudinal parts, i.e.,
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In (7) we are assuming that the solution will be cylindrically symmetric since   k r
r( )  is

symmetric in r.  Assume a solution of the form
˜ , ,E x y z e ikz= ( ) -j (8)

This is a plane wave propagating in the +z direction modified by the factor j .  Substitute
(8) into (7).  Note that this k  is not k r

r( )  but corresponds to the right side of equation (5)
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We assume that j  is a slowly varying function so that 
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The differential equation (9) will have a solution of the form
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Substituting (10) into (9) and first explicitly evaluating the terms
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For this equation (10) to be true for all r we may set terms corresponding to like powers of
r equal to 0, i.e.,
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Let us now simplify the problem by considering only homogeneous media.  This means
that k2 0Æ  in (5) and reduces (12) to the form
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To further simplify this result assume that q0  is purely imaginary and may be written in the
form
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Properties of Gaussian Beams

The solution we have obtained to the wave equation
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is called the fundamental Gaussian beam solution since we assumed a transverse

dependence based only on r2 , i.e., 
∂
∂f

= 0.  [More on this later.]  To understand the result

(1) we examine each of the exponential factors in (1).
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If z zR>>  (3) becomes
R z z( ) ª (4)

In (2) we may interpret the z  in the denominator of the second term of the exponential as
being the radius of curvature of the wavefront.  For a spherical wave from a source at the
origin, the radius of curvature is given by R z z( ) = .  From (4) our expression (3) behaves
like a spherical wave with radius of curvature R z z( ) =  for z zR>> .  This suggests that we
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regard R z( ) as the curvature of the wavefronts of the wave described by (1).  The sign
convention for wavefronts is the opposite of that for mirrors and lenses as may be seen
below.

source direction of 
propagation

R

R > 0

z

sourcedirection of 
propagation

R
R < 0

z

Continuing with our examination of (3) as z Æ�   we see that R z( )Æ �  so that the beam
wavefronts are initially planar ( R = � ) and gradually becomes spherical as z  becomes
larger than zR , A suitable picture of what is happening is seen in the drawing below where
the transverse Gaussian amplitude dependence is indicated by the dashed lines representing
the r z= ( )w , i.e., the e-1  amplitude points.

beam 
wavefronts

direction of 
propagation

z

amplitude pointse-1

amplitude pointse-1

z = 0

q
w z( )

 liner z2 = ( )w  liner z2 = ( )w

 liner z2 = ( )w

The e-1  amplitude lines become straight for z zR>>  and the half angle q  for the cone
formed by these lines in three dimensions is illustrated above and is given by
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since w w l
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1  as z zR>> .   This angle q  is called the divergence

angle.  Since q  is small for laser beams (paraxial ray approximation if you prefer),
tanq qª  and
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The result is that, for z zR>> , a Gaussian beam has a constant divergence angle given by
(4).

We return to (22), p. 67 in the handout on Gaussian beams

e e
ikr

q z

ikr

R z

r

z
-

+( ) -
( )

-
( )=

2

0

2 2

22 2ˆ w (5)

We have already identified e
ikz

ikr

R z
- -

( )
2

2  as a "paraxial" approximation of an outward
propagating "spherical" wave with radius of curvature R z( ).  In an extension of the
reasoning that led to interpreting R z( ) as a radius of curvature we define the complex
radius of curvature ˆ ˆq z q z( ) = +0  or, from (5),

1 1 1 2

0
2ˆ ˆq z q z R z z ik( )

=
+

=
( )

+
( )w

Recalling k = 2p
l

 we may write this in slightly different form as

1 1 1

0
2ˆ ˆq z q z R z

i
z( )

=
+

=
( )

-
( )

l
pw

(6)

Let us examine how q̂ z( ) changes as we move along the z-axis from a point z1 to another
point z2.  Using ˆ ˆq z q z( ) = +0  we have that ˆ ˆq z q z1 0 1( ) = +  at z z= 1, and ˆ ˆq z q z2 0 2( ) = + .

Subtracting, we get ˆ ˆq z q z z z2 1 2 1( ) - ( ) = - , or
ˆ ˆq z q z z z2 1 2 1( ) = ( ) + -( ) (7)

This is exactly the form of the transformation for spherical waves along the z-axis [Eqn.
(2), p.60] which is repeated here for comparison.

R R z z2 1 2 1= + -( ) (8)
We now examine the effect of a lens upon a Gaussian beam with complex radius of
curvature q̂1 just to the left of the lens. The lens may be viewed as causing a phase
distortion of the incident wave according to equation (10) of Appendix I

E x y e E x y
ikn ik

x y

f
2

2
1

0

2 2

, ,( ) = ( )
+ +D

(9)
where E x y1 ,( ) is the scalar field incident upon the lens from the left, D0  is the thickness of
the lens, n  is its index of refraction, f  is its focal length, and E x y2 ,( ) is the beam (field)
exiting the lens at the right.
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lens:
index of refraction = 

focal length =  

n > 1
f

incident field 
E x y1 ,( )

resultant field 
E x y2 ,( )

D0

If E1 and E2  are spherical waves we get the result that the lens transforms the wavefront
curvatures R1  and R2  respectively.  According to Equation (15) of Appendix I and Eqn.
(6), p.61, i.e.,

1 1 1

2 1R R f
= - (10)

If E1 and E2  were Gaussian beams we would have exactly the same result except for
replacing R2  by the complex radius of curvature q̂2 and R1  by q̂1.  To show this, let E1

and E2  be Gaussian, i.e.,

E Ae
ikz ik

r

q
1

2

2

1=
- -

ˆ ˆ (11a)

E Be
ikz ik

r

q
2

2

2

2=
- -

ˆ ˆ (11b)

Then, from (9),

E Be e Ae
ikz ik

r

q
ikn ik

r

f
ikz ik

r

q
2

2 2 2

2

2
0

2 2

1= =
- - - + - -

ˆ ˆˆ ˆ
D

For the phase of the waves to be continuous at the lens surface we have
1 1 1

2 1ˆ ˆq q f
= - (12)

which is the Gaussian beam analog of (10).  Inserting (6) into (12) and equating real and

imaginary parts we get 
1 1 1

2 1R R f
= -  and w w1 2z z( ) = ( ) at the lens surfaces which agree

with our geometric optic picture of transforming slopes ( R ) and    not  changing a ray's
displacement from the optic axis (w ).  A sketch of beam transformation by a lens is shown
below for spherical waves and Gaussian beams.
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s = -3 s = -1

lens

R2
R1

s = -3 s = -1

q̂1 q̂2

lens

The solid curved lines represent the wavefront curvature.

It can be shown that for lenses and mirrors equations (7) and (12) will lead to the ABCD
law for Gaussian beams

ˆ
ˆ
ˆ

q
Aq B

Cq D2
1

1

= +
+

(13)

For more complex structures we argue that since R q= ˆ  yields the Gaussian beam forms of
(8) and (10) it will also yield the ABCD law (13) from Equation (5), p.61.

Returning to the transformation of a Gaussian beam by a lens we note that although such a
Gaussian beam is largely confined near the z-axis it has an infinite transverse extent and
some of the beam power will be lost each time a Gaussian beam passes through a finite-
sized aperture such as a lens or mirror.  This power loss is called diffraction loss and may
be estimated in the following manner.  The transverse beam amplitude goes as

e e
r

z
r-

( ) -
=

2

2

2

2w w  where we have dropped the functional notation for w  for brevity.  We
define the normalized transverse amplitude distribution f  as

f
p w

w=
-2 1

2

2

e
r

where the normalization is of the transverse beam power, that is,

f p2

0
2 1r rdr( ) =

�

Ú
where the square of the electric field amplitude f  is proportional to the beam power F .
Then, in a circular region of radius a  about the z-axis we contain that fraction of the total
beam power

F
F

a r rdr

r rdr

r
e dr e e

a

a
r r

a
a( )

�( )
=

( )

( )
= = - = -Ú

Ú
Ú�

- - -f p

f p w
w w w

2

0

2

0

20

2 2

0

22

2
4 1

2

2

2

2

2

2

or
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F
F

a
e

total

a( ) = -
-

1
2

2

2w (14)

Plotting (14) as a function of a
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This result says that if a = w  approximately 86% of the incident power will be transmitted
through the aperture, i.e., 14% power loss.  A general rule of thumb is to pick a ≥ 1 5. w  at
which point 99+% of the incident power will be transmitted through the aperture.
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Gaussian Beam Collimation

s = -3 s = -1

w02 0w 2 0w

  2zl

  zl   zl

We rather arbitrarily define a collimated Gaussian beam where the spot size has increased
by 2 over the beam waist w0 , or the beam area has doubled.  Beyond these limits the
beam continues spreading nearly linearly with distance and, hence, is no longer a parallel or
collimated beam.  The beam spread is given by

w w2
0
2

2

1z
z

zR

( ) = +
Ê
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�
�̄

È

Î
Í
Í

ù

û
ú
ú

where

zR = pw
l

0
2

Up to now we have not associated any physical significance to zR ; it is simply defined as
pw
l

0
2

 and nothing more.

2 10
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z

zR

z zR= ±
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Hence, zR  is called the Rayleigh distance or range and defines the collimated beam region.

Focusing to a spot
For a collimated beam of spot size w  incident before a lens, the lens will be located a
distance z  equal to its focal length f  behind the focus.

Proof:
If the beam is collimated z zR£  and

R z z
z

z
z

z

z
zR R

R( ) = +È
ÎÍ

ù
ûú
= + ≥1 2

2

2

2

The beam wave fronts are planar at z = 0  and have R z zR R( ) = 2 , hence, R z zR R( ) ≥ 2  for

z zR£ .  For some typical numbers like l = m0 5. , w0
2 17= mm

z
mm

mm
mR = = ( )( )

¥
ª-

pw
l

0
2 2

4

3 14 17
5 10

1800
.

The beam transformation by the lens was given in class as
1 1 1

2 1ˆ ˆq q f
= - (1)

By its definition
1 1

2q̂ z R z

i

z( )
=

( )
-

( )
l

pw
(2)

Substituting this result into (1) we get
1 1 1

2 2
2

1 1
2R

i

R

i

f
- = - -l
pw

l
pw

or, equating real and imaginary parts,
1 1 1

2 1R R f
= -  and w w1 2= (3)

i.e., the beam radius does not change in passing through the lens and the wavefronts
transform as spherical waves.

Returning to the problem, if R1 , the incident beam curvature is very large then 
1 1

1R f
<<

since f  is typically on the order of 1 meter or less and (3) becomes
1 1

2R f
ª -

This is a spherical wavefront converging to a point a distance f  in front of the lens.
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lens

d

a

f

w0

d0

The wavefront leaving the lens is highly curved since f  is generally short.  This means that
f zR>>  since in the collimated beam waist the curvatures are very planar ( R z( ) very

large).

For 99% power transmission through the lens d = 3w  or w = d

3
 where d  is the lens

diameter.  The relationship between w  and w0  is given by

w w w
f

f

z

f

zR R

( ) = +
Ê
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�
�̄ ª0

2

2

1

2
01

since f zR>> .  Solving for w0

w w pw w
l0

0
2

= =z

f f
R

or

w l
pw0 =

f

The beam waist is w0  and the beam spot size d0  (86% power point) is defined as
d0 02= w .



-71-

d f f
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= =
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l

p

l

Then, d
f

d0

2ª l
.  The ratio 

f

d
 is known as the f-number of the lens and is defined as

f
f

d
#= .  For a typical lens f #  can be as low as 0.5.  Picking f # .= 0 5 and l = m10 6.  (a

CO2 laser) we have
d f0

62 2 10 6 10 0 5 10 6ª = ¥( )( ) = m-l # . . .
This shows that we can focus a laser beam as small as one wavelength across.

Resonator Mode Properties

We can now apply Gaussian beam theory to develop the basic mode properties of optical
resonators.  Let us approach the problem somewhat in reverse by assuming that we have a
spherical Gaussian beam, i.e. assume a waist spot size w0  at z = 0  and spot sizes w1 and
w2  and radii of curvature R1  and R2  at z z= 1 and z z= 2with radii of curvature R1  and R2

and diameter much larger than w1 and w2  at z1 and z2, we will have trapped the beam
inside the resonator.  The beam will be reflected exactly back on itself at each mirror and
will form a standing wave with time-independent spot sizes and radii of curvature.

w0
2 0w

z z= 2z z= 12 1w 2 2w z

R1
R2

z =0

Note that as long as the mirrors are significantly larger than the spot size, the shape of the
mode will depend only on R1 , R2  and l = -z z2 1 (since z1 0< ).

The usual problem in resonator design is to assume two mirrors of radii ¬1 and ¬2 and
separation   l  and find the appropriate beam parameters which result, i.e., find w1, w2 , w0 ,
location of the beam waist, etc.  We can do this by making use of the relations
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R z z
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1 (2)

As z1 and z2 are the distances of the two mirrors from the beam waist at z = 0  we may
write the beam radii as being

R R z z
z

z
R

1 1 1

2

1

= ( ) = + (3a)

R R z z
z

z
R

2 2 2

2

2

= ( ) = + (3b)

Each of these equations may be solved by the quadratic formula for z1 and z2 giving

z
R R zR

1
1 1

2 24

2
=

± -
(4a)

z
R R zR

2
2 2

2 24

2
=

± -
(4b)

This set of equations (4) is two equations in three unknowns ( z1, z2, zR ).  To allow a
unique solution of the problem we use the mirror separation as the third equation

z z2 1- = l (4c)
The algebra of solving (4) is very tedious and, for those interested, the details of the
solution are found in Appendix I.  The solution of (4) is found to be

z
R R R R

R R
R
2 1 2 2 1

1 2

2
2

=
- -( ) -( ) - -( )

+ -( )
l l l l

l
(5)

A word about signs is in order at this point. R1  and R2  are the beam curvatures whereas
¬1 and ¬2 are the mirror curvatures and have the opposite signs from R1  and R2 .  The
equation (5) may also be written in terms of our previously defined stability factors

  
g

R1
1

1= - l

  
g
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where R1  and R2  are signed quantities and
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g g g g

g g g g
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2
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2
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+ -( )

l (6)

From (6) and (11) we may solve for z1 and z2 as

z
g g

g g g g1
2 1

1 2 1 2

1

2
=

- -( )
+ -

l (7a)

  
z

g g

g g g g
z2

1 2

1 2 1 2
1

1

2
=

-( )
+ -

= +l l (7b)

The mirror spot sizes will then be given by (2) and (7) as
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The symmetrical resonator

Let us examine the behavior of a cavity formed by two mirrors of equal radii of curvature.
To eliminate signs we define the    unsigned    beam radius of curvature R  as R R R2 1= - = .
Since R  is unsigned it will also correspond to the magnitudes of the mirror radii of
curvature.  For our purposes (5) is easier to use than (6) so we get

  
z

R R R

R
RR

2
2

2
2 2 4

2= -( ) -( ) -( )
+( )

= -( )l l l l

l

l
l (9)

We can determine the beam waist w0  by using the definition of the Rayleigh distance

zR = pw
l

0
2

 to get

w l
p0

4
2 2

2= zR (10)

and, from (9), for a symmetrical cavity

  
w l

0
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4 2 2
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¯

l l
R (11)

By symmetry we argue that

  
- = =z z1 2 2

l
(12)

which, for this case, the spot sizes at the mirrors may be found from (11), (12) and (2) to
be

  

w w w w l
p1 1 2 2
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l

l
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(13)

If   R >> l  as in many practical lasers, equations (11) and (13) become

  
w l

p0
4

2
@ lR

(14)

  
w w l

p1 2
4

2
= @ Rl

(15)

Equations (14) and (15) show that the beam spread is small since w w w1 2 0= @ .  It may
also be noted that for a symmetrical confocal cavity where   R = l we have the smallest
mirror spot sizes possible in a symmetrical cavity, that is, w w w1 2 02= = .  This result is
developed in Appendix III.

Example:
Design a symmetrical resonator for l = -10 4  cm with l = 2  meters.
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If we choose a confocal geometry, i.e.,   R = =l 2 meters, equation (14) gives the beam
waist as

  
w l
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4 2

2 2 2
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2
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ª
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l
l l cm cm

cm.

and, from (13), we have the mirror spot size as

w w l
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= = =l l

l l
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. cm

As shown in Appendix III, this is the smallest mirror spot size possible for a symmetrical
cavity. Suppose we wanted a larger mirror spot size for some reason.  Let us say that we
want w w1 2 0 3= = . cm  and calculate what R  must be.  First, let us assume   R >> l  which
will turn out to be a reasonable assumption.  We may then use (15) to get

0 3 0 06
2
2
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4
. .= È

ÎÍ
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ûú
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R m= È
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ù
ûú

ª0 3
0 06

600
4.

.

which justifies our assumption that R m>> =l 2 .  Typical gas lasers have mirrors with
radii of curvature of a few meters (2 to 10 meters typically) for   l = 1m  so that beam waists
and mirror spot sizes tend to be small giving rise to "narrow" laser beams.

Stable resonators
The ability of an optical resonator to lase depends upon its ability to confine radiation
within the cavity.  As an example, consider the symmetrical resonator where
R R R2 1= - = .  The mirror spot size is given by (13) as

  

w l
p1 2

2
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2

2

, =
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¯

l

l
l

R

R
(16)

The minimum mirror spot size is found in the confocal symmetrical cavity where   R = l.
The minimum spot size in this case is given by

  
w l

p1 2 2
2, min

= l
(17)

(See the example on the previous page for where this formula came from.).  The ratio of
(16) to (17) is

  

w
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1 2

1 2 4

1

2

,
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ûú

l l

R R

(18)

Plotted as a function of 
l

R
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We see that the mirror spot size becomes infinite as R Æ�  (
  

l

R
= 0, plane parallel mirrors)

or 
  
R Æ l

2
 (
  

l

R
= 2, two concentric mirrors),  As the mirror spot size goes to infinity, the

size of the mirrors required to reflect most of the light back into the cavity also goes to
infinity (See p. 74).  Obviously we cannot use mirrors of infinite diameter so we say that a
resonator is unstable if the mirror spot size becomes infinite.  By unstable we mean that it
cannot confine light within the resonator.

To determine the conditions under which light will be confined within the optical resonator
we have to consider the propagation of Gaussian beams within an optical resonator.  In an
optical resonator a Gaussian beam starting from some point at which the beam has a
complex radius of curvature q̂1 must, after one round trip of the resonator, come back to
the starting point, with the same radius of curvature ˆ ˆq q2 1= .  If we know the ABCD matrix
for ray propagation through the system it follows that q̂1 and q̂2 are related by the ABCD
law, i.e.,

ˆ
ˆ
ˆ

q
Aq B

Cq D2
1

1

= +
+

(19)

But, for a standing wave to be created within the resonator, ˆ ˆq q2 1=  or

ˆ
ˆ
ˆ

q
Aq B

Cq D1
1

1

= +
+

(20)

This gives rise to a quadratic in q̂1

Cq D A q Bˆ ˆ1
2

1 0+ -( ) - =
which may be solved by the quadratic formula to give
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q̂
A D A D BC

C1

2 4

2
=

-( ) ± -( ) +

We then expand the quantity A D-( )2 under the square root and use the identity
BC AD- = 1 (since the determinant of a ray matrix is 1) to get

q̂
A D A D

C1

2 4

2
=

-( ) ± +( ) -

which we re-write as

q̂
A D i A D

C1

24

2
=

-( ) ± - +( )

The reason for this will become apparent when we identify the radius of curvature and
beam radius from this expression.  To do this we select the solution for q̂1 with the positive
root and invert to get

1 2

41
2q̂

C

A D i A D
=

-( ) ± - +( )
Rationalizing the denominator we get

1
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4
41

2

2q̂
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B
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A D

B
= -( ) - - +( )

(21)

But the complex radius of curvature was defined [Equation (6), p.70] as
1 1

1 1 1
2q̂ R

i= - l
pw

(22)

from which we can identify

R
B

A D1

2=
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(23a)

w l
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2

2

4
=

- +( )
B

A D
(23b)

For the resonator to be stable w1 must be real and finite; hence, the denominator of (23b)
must be non-zero and A D+( ) <2 4  giving us the stability condition

A D+Ê
Ë

�
¯ <

2
1

2

(24)

This is basically the same stability condition as we got for the biperiodic lens sequence
[Equation 14, p.58] where we now recognize R1  and R2  as the radii of curvature of the
Gaussian beam trapped in the optical resonator.
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Stability diagram of an optical resonator

NOTE: The shading indicates high loss (unstable) regions in which the stability condition
(24) is violated.

Higher order modes
The Gaussian spherical wave which we have discussed to this point is only the lowest
order solution of the wave equation.  It is also the solution which will have the lowest
losses for a stable curved mirror cavity; higher order modes are also possible although, as
we shall se, their diffraction losses will be progressively higher.  The reason for this is
that, while the mirrors are of finite size, the amplitude distribution moves further away
from the center of the mirrors as the order increases.

If we no longer assume that 
∂
∂

=
f

0 [See Equation (7), p.73 and (8), p.74], i.e., that there

may be a transverse dependence of the beam that is not symmetric about the optic axis we
find that the wave equation is satisfied not only by the spherical Gaussian that we have
examined in great detail, but by all members of the doubly infinite set
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where w z( ) , q̂ z( ) and f z( ) are as before, and H xn( ) are the Hermite polynomials given by
H x0 1( ) = (2)
H x x1 2( ) =



-78-

H x x2
24 2( ) = -

If the cavity has cylindrical symmetry the modes may be described in terms of associated
Laguerre polynomials, i.e.,
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(3)

Most laser cavities will have slight asymmetries in them (e.g., mirror misalignments,
Brewster angle windows, etc.) which cause mode patterns of rectangular rather than
cylindrical symmetry.

We may re-write (1) using 
1 1

2q̂ R
i
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The transverse variation of the electric field is then of the form
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A quick graphical consideration of (5) is relevant here.  For ease of drawing we will
assume n = 0  so that (5) becomes

E H em m0
2

2

µ ( ) -
z

z

(6)

where we have defined z
w

=
( )
2x

z
 and are looking at the field distribution only along the x-

axis, i.e., y=0, then
m = 0 m = 1 m = 2 mode number

z z z

Polynomial, Hm z( )

z z z

field amplitude,

H em z
z

( ) -
2

2

z z z

intensity or power,

H em z
z

( ) -
2

2

2

The presence of the Hermite polynomials in (5) [and (1) and (2)] is seen to shift the
intensity distribution further away from the optical axis (z = 0) in the figure above.  The

function w z( )  no longer gives the 
1

2e
 power points (

1
e

 amplitude points).  We cannot talk
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about a 
1
e

 amplitude point because as seen in the above figure the transverse amplitude can

become negative for m > 0 and we have no basis for defining the beam size.  What is done
is to talk about the intensity distribution (third row in the above figure) which is
everywhere positive.  We can now integrate the transverse intensity distribution  on a
computer to determine the power distribution of the beam.
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The above figure plots the fraction of the total beam power for a particular rectangular mode
( TEMmn) within a circular cross-section of the beam.  Note that TEMmn and TEMnm are
represented by the same curve because of their symmetry.

The e-1  and e-2  power points are shown to show how the beam "size" is increasing as the
mode numbers increase.  It is possible to define an effective beam size for a particular

mode, say w weff mnC z= ( ) , where Cmn  is the 
1

2e
 power point as determined from the graph

on p.88.  Note that Cmn  will be different for different m  and n .

Stable resonators constructed with mirrors having radii of curvature R1  and R2  will reflect
higher-order modes as well as the fundamental mode since neither the radius of curvature
nor the spot size depends upon the indices.  Lasers can, and frequently, do oscillate in a
combination of higher order modes.  We note, however, that as the mode indices increase
the intensity distribution moves farther out on the mirrors and away from the cavity optical
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axis.  We can, therefore, control the mode structure by making the mirrors small and, thus,
increase the diffraction losses which the higher order modes experience.  In practice, this is
done by introducing some aperture inside the optical cavity rather than reducing the mirror
size.  The effect of the aperture is to "slice off" a large part of the intensity from the higher
order mode than from the low-order pattern.

The beam divergence q  was defined as the ratio of w z( )  to z .  This was the half-angle of

the cone formed by the 
1

2e
 power points.  Because the intensity distribution shifts further

away from the optical axis with higher mode numbers we define the divergence using the
previously defined weff  as

q
w w l

pw
ª

( )
= ( ) @eff

mn mn

z

z
C

z

z
C

0

showing that the beam divergence increases with increasing mode number (Cmn  increases
with increasing m  and n , see p.88).

Mode frequencies
To this point we have not discussed the resonance frequencies of Gaussian beam
resonators.  To a first approximation, the validity of which is related to the degree to which
the Gaussian  spherical waves can be approximated by plane waves, e eikz i- -= j , the
resonance frequencies are determined by

j j pz z k z z k q2 1 2 1 2 2( ) - ( ) = -( ) = =l (1)

where k  is the wavenumber ( k = 2p
l

), l  is the cavity length, and q  is an integer.  This

equation (1) says that the phase shift per round trip is an integer multiple of 2p .  From (1)
the resonance frequencies are

  
f q

c
q = 2l

(2)

To develop a more accurate expression for the mode frequencies we must use the
requirement that the    round trip     phase shift experienced by the     Gaussian beam     must be an
integral multiple of 2p ,     or   that the     one-way    phase shift must be an integer multiple of p ,
i.e.,

j j pz z q2 1( ) - ( ) = (3)
The phase shift j z( ) for the TEMmn mode from (1), p. 86 is

j fz kz n m z( ) = - + +( ) ( )1 (4)

where f z
z

zR

( ) = Ê
ËÁ

�
�̄

-tan 1 .  Thus, the resonance condition (3) is

j j f f pz z k z z n m z z q2 1 2 1 2 11( ) - ( ) = -( ) - + +( ) ( ) - ( )[ ] =
But, z z2 1- = l and k

f

c
= =2 2p

l
p

 so that

  
f q

m n
z z

c
mnq = + + +( ) ( ) - ( )[ ]È

ÎÍ
ù
ûú

1
22 1p

f f
l

(5)

Note that (5) specifies the resonance frequencies in terms of the Rayleigh distance, zR , and
the distances of the mirrors from the beam waist, z1 and z2. It would be more convenient if
we had an expression in terms of the easily measured cavity parameters l , R1  and R2 . Let
us examine the term f fz z2 1( ) - ( )  in (5).
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cos cos cos cos sin sinf f f f f f f fz z2 1 2 1 2 1 2 1( ) - ( )[ ] = -( ) = +
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and, in a similar manner,
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Then, we can write
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using the expressions (6) and (7), p.79, for z1, z2 and zR
2
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We have from (6), after considerable algebra,
cos f f2 1 1 2-( ) = g g

or
f f2 1

1
1 2- = ( )-cos g g (7)

The detailed derivation of this result can be found in Appendix IV.  Substituting (7) into (5)
we have the result

  
f q

m n
g g

c
mnq = + + +( ) ( )È

ÎÍ
ù
ûú

-1
2

1
1 2p

cos
l

(8)

which gives the resonance frequencies in terms of easily determined parameters.

There are several observations we can make about the mode frequencies in a general curved
mirror cavity:

1. The lowest order mode, i.e., the TEM q00  modes, will not in general have
frequencies corresponding to the simple plane wave analysis which resulted in (1)
and (2). Instead,

 
  
f q g g

c
q00

1
1 2

1
2

= + ( )È
ÎÍ

ù
ûú

-

p
cos

l
 and only if g g1 2 1=  do we have
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f q

c
q00 2
=

l
2. There is considerable degeneracy in the mode frequencies.  Note that the

frequencies of all modes for which q k= '  and m n k+( ) = ' ' , where k'  and k' '  are
constants, are equal.

A word about terminology used to describe the mode structure in a laser cavity is in order.
A laser oscillating at frequencies fmnq, fmnq' , fmnq' ' , etc. at the same time is said to be
operating on many    longitudinal modes   , the longitudinal modes being denoted by the
various q  values, which are usually widely separated in frequency.  The indices m  and n
are used to designate    transverse modes   .  Thus, a laser having frequencies fmnq, fm n q' ' , etc.
is said to be oscillating on several transverse modes and a single longitudinal mode.  A
single frequency laser will usually oscillate on the lowest order  transverse    mode, its
frequency will be f q00 .

Let us examine the frequency spectrum predicted by (8) in more detail.  The spacing
between adjacent longitudinal mode frequencies ( q  and q +1) will be given by

  
f f

c
q q

c
fmn q mnq long+( ) - = + -( ) = =1 2

1
2l l

D

showing that the frequency spacing between adjacent longitudinal modes is a constant
given by

  
Df

c
long = 2l

(9)

The spacing between transverse modes will be given by

f f f m n m n
g g

m n q mnq long' ' ' '
cos

- = +( ) - +( )[ ] ( )-

D
1

1 2

p
For adjacent transverse modes, i.e., m n m n' '+( ) - +( ) = 1, we have the uniform transverse
mode spacing Dftransverse  given by

D Df
g g

ftransverse long=
( )-cos 1

1 2

p
(10)

To illustrate the meaning of (9) and (10) we do an example.  Suppose we are considering a

near planar symmetrical cavity where   R >> l .  Then, 
 
g g g

R1 2 1= = = - l
.  For 

  

l

R
<< 1

  
cos cos cos- - -( ) = ( ) = -Ê

Ë
�
¯ ª

1
1 2

1 1 1
2

g g g
R R

l l

Then, from (10),

D Df
R

ftransverse long= 2l

p
(11)

This shows that the transverse mode frequencies are located very near the longitudinal
mode frequencies, i.e.,

D Df ftransverse long<<
from (11) and the resulting frequency spectrum is as shown below.
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00 01 11 12 22 00 01 11 12 22 00 01 11 12 22transverse mode indices

longitudinal mode indices q q+1 q+2
Dftransverse

Dflong

f

Note that the transverse mode frequencies do not continue indefinitely.  Even if the laser is
operating in many higher order modes simultaneously there will be a maximum transverse
mode TEMmnq  beyond which the diffraction losses become too great to allow lasing in
these higher order modes.

Consider now the spectrum of a symmetrical confocal cavity.  Since R = l we have g = 0

and cos cos- -( ) = ( ) =1 1 0
2

g
p

.  From (10)

D D
D

f f
f

transverse long
long= =

p

p
2

2
The resulting spectrum is then
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Note, page numbers for original notes.

Appendix I
Derive equation 4, p. 79

Appendix II
????

Appendix III
Page 81, smallest mirror spot size possible for a symmetrical cavity

Appendix IV
Derivation of equation (7), p.91
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Appendix V
Summary of Basic optical formula

            TEM00     Gaussian beam formulas

E-field solutions of wave equation under
assumptions
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Transformation of waves

spherical gaussian
Through space R R z z2 1 2 1= + -( )
Through a lens 1 1 1

2 1R R f
= - 1 1 1

2 1ˆ ˆq q f
= -
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R1 0> R2 0>

source
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Through optical
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Power transmission of a Gaussian beam of radius w z( )  through an aperture of radius a
If a z= ( )w  then 86% of the incident power will be transmitted
If a z= ( )1 5. w  then 99+% of the incident power will be transmitted

Stability of Gaussian beam resonators

For two mirror cavity
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Resonant frequencies of Gaussian beam resonators
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Optical resonators for Gaussian beams
Note that z1 0<  and R1 0< , all other variables are positive.
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For symmetrical resonators where R  is the    unsigned    radius of curvature
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For confocal symmetric cavity where   R = l
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