Example: Plano-convex lens

R =co R, =-2.5cm
AB=d =0.6cm

optic

A B axis

n,=15

n, =1.00 n,

From page 13 the system matrix for planes passing through A and B perpendicular to the

optical axisis:
d d
1-—F, -R-R+ —RR
S — n2 r-]2
AB T
d g dp
n2 n2
For the given lens
P n,—n :1.5—1:O
r oo
P - n-n, :1—1.520.2
r, -2.5
4_06_o4
n, 15
s - 1-(04)(0.2) -02| [092 02| [b -a
e 0.4 1] (04 1| |-d c

Asacheck on our calculations

det(S,s) = (0.92)(1) — (0.2)(0.4) = 0.92+ 0.08 = 1.00
The location of the principal planesis given by
~1-b 1-092

4, =+0.4
a 0.2
=871 171
a 0.2

The principal planes are then located as shown below

-27-



optic
axis

R R
Thistype of lensis often found in optical instruments because a high quality flat surfaceis
much easier to produce than a spherical surface; hence, a good plano-convex lensis
cheaper than a comparable quality biconvex lens.

Thelocation of the principal planes for some common lens shapes are shown below.

H H,
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optic
axis axis
11
1
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optic 1 optic
axis 1 axis
11
1
11
1
11
R-p-Feo R=P<0;p,=0
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In these sketches H, and H, are principal planes, P, and P, are the refractive powers of
the first and second surfaces respectively, and P=F, + B,, i.e,, athin lenswhere d = 0.

Simple magnifier:
We will now analyze a plano-convex lens as a ssmple magnifier as shown below.
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Several features of this drawing are worth mentioning regarding graphical ray tracing.
Note that the lensis assumed to be athin lens, i.e., the distance between the principal
planes H, and H, issmall (= 0). Inthe drawing the object to beimaged islocated s in
front of H,. To locate the image we trace two rays from the object and graphically
determine their intersection—this intersection locates the image. Thefirst ray will be drawn
parallel to the optic axis. By the definition of principal planesthisray must pass through
the focal point A. The second ray is drawn from the object to the principal point of H, .
On page 17 we notes that principal points are nodal points; hence, the ray will leave the
principa point of H, with the same slope asit had crossing H,. These rays may be
extended indefinitely until they intersect. A perpendicular to the optic axis from this point
of intersection will locate the image.

As shown in the drawing the object islocated near thefirst focal plane. The eye of the
observer islocated near the second focal plane. 6, is usually agood measure of the

apparant size of the image. Tan(92) = r_)z( or, because of the paraxial ray approximation,
2
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The magnification is given by ﬁzl—%. If, asisusualy the case, >>1then

2
B = —fi. Substituting this result into the expression for 6, we get 6, = r—lf since
2 —h
S
- rl
-, ( fz] n_n o :
0,=—== =——. A comfortable viewing distance for theeyeis

1
X S, - f2 fz - f1
approximately 10 inches (about 250mm). Theangle 6' that the object would subtend if we

n

viewed it from a distance of 250 mm unaided is 6' = 25(;1m - Common usage defines the

magnification of the lens as
r.l

M = 0, _ f, __ 250mm
' ) f,
250mm

Note that since f, is negative (see drawing) M > 0 and the image is upright.

The Compound Microscope

We will now consider amore complicated instrument, a compound microscope consisting
of two lens separated by adistance d as shown by the following figure.
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axis
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Itemsindicated by capitals are referring to the overall optical system; small lettersrefer to
items characterizing the individual optical elements. Between planes h, and h,
d 1 1 d

1-— ————4—
S - 1 —fi {1 0} 1 —fl |t f4d f,f, :[b —a}
1 0 14 d 1 O 12 d 1_f_ _d C

2
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1 1 1+iziwhered:f2+f4+£
Fz fz f4 fz f4 fz f4

f,f
F=__24
? /
1-b 1_(1_?j df
_+—P_ 4/ _Ya
- a b ‘
f,f,
1 1_(?_ J df
_C- 2 hat’)
L, 3 - 7 =+
f,f,
For atypical microscope f, = f, =16mm and ¢ =160mm
L=- (16+16+160mm)(16mm) _ 19.2mm
160mm
L=+ (16 + 16+ 160mm)(16mm) _ +19.2mm
160mm

Let us now locate the object relative to the system focal points. As before for good viewing
the virtua image will beat x, = —250mm. Then, using the Newtonian form of the lens

law x,x, = —F7.

2 2
R (1'6)0 =+0.01024mm

whichisalmost at thefirst focal point F . The system magnification is

M= 250 = _20 L indicating an inverted image. For the numbersgiven M = —156.

F2 f2 f4

Let us now examine the intermediate image formed by thefirst lens. The object isvery
near the system focal point F, so that, relativeto f,, x, =-1.6mm. Using the Newtonian
lenslaw
2 2
X, = B a6y =160mm

x -16
Thisindicates that the image is formed approximately at the focal point of the eyepiece.
Thisintermediate image isrea and inverted. The eyepiece may now be treated asasimple

magnifier with magnification M, = —@ = +@. For the objective lens the
1 2
magnification M, =1— 2. _—(. The system magnification M isthen seen to be

f, &
approximately equal to the product of the eyepiece and objective magnifications.

The Telescope

A telescopic system is defined to be an optical system having a dope transformation that is
independent of r,, i.e., of the form n,r,' = kn;r,' where k isaconstant. Let usconsider the
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optical system of the diagram below and examine the conditions under whichitis
telescopic.

R

U

S

- _ L _ _ __

optical
system

- A general ’,
I

b -a
If Sisagenera matrix of Gaussian coefficients, i.e., [ 4 c } then

1 0 3 1 0 b+aﬁ -a
Sp, = & 1 |: i a} —ﬁ 1|~ g
o n, —d c] bleyalsle g ¢l c_ale

r‘|2 nl r‘|2 nl r‘I2
The slope transformation between B, and P, isthen

(002)=[ b+ o) o,

For this transformation to be independent of r, it isnecessary that a= 0; hence,

(n,r,") =b(nyr,'). Note that once a is set equal to zero it remains zero for any choice of ¢,
and 7,, i.e, itisinvariant under trandation. Consider the system shown below composed
of two thin lenses separated by adistance d.

L, L,

A A
| | | |
| * | | * | =
- f,— -, f, -

- d =

Y Y

Between lenses L, and L,
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1 1 1-— ———+—

S, = 1 _f_ |:1 O:| 1 _f_ — f, f, f, ff,
1Ly 4 d 1 2 d
0 1 0 1 d 1-—

For this system to qualify as telescopic
1

1,1 d_
f, f, ff,
Using this equality we can re-write § | as
—% 0 P, 0
SLlez N = i
faf, —e| |BTR o

f,

where we have defined p, = —%. Note that the telescopic system requirement resulted in
4

d=f,+f,,i.e, thefocal pointsof the two lenses must coincide. Writing out the

transformations

rz': parll
I.
=0+ )+

o

where we assumed that n, =n, =1.

The quantity p, isknown asthe angular magnification. In general, telescopes are capable
of resolving objects at great distances because of their ability to magnify the small angular
separation between such objects. With § | being telescopic consider the transformation

between aplane H, located /, totheleft of L, and H, located 7, to theright of L,

p, O P, 0
S_IlHZ - |:f1 g.):|[ fz + 1:4 i]{—:; (]).:| - [EZ Py, + fz + f4 - ﬁ i]
2 P, ! P Py

o

For image formationwelet 7,p, + f, + f, — b 0. Then, the transformation between H,

o

and H, is
r‘2'= parl'
1
I’2 = p—al’l

Notice that high magnification and good angular separation are competing processes. The

larger p, is (better angular resolution) the smaller the system magnification (pi) is. The
proper design of atelescopic system involves atrade-off between angular resolofjti onand
magnification.

Let us examine the longitudina magnification % as opposed to the transverse
1

magnification r_z' Differentiating the expression /,p, + f, + f, _4h =0 we get

1 o
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A,

Alp,—=2=0
P,

A, 1

Al P

For the system examined al magnifications are independent of image and/or object
distances and the image isreal and inverted. Any such telescopic system having the same
signed magnifications as derived hereis called Gailean.



Stops and Apetures

Up to now we have only been concerned with the image location and size. Two other
important considerations are the system field of view and the brightness of the image.
Stops are related to the determination of each of these factors and, in general, stops are
defined to be those elements in the optical system that determine what fraction of the light
from an object point will actually reach the corresponding image point.

Let usfirst examine an on-axis point as shown below.

. sop

A thin lens
o
/

/Ai/

/
— 4 I ® I °
—_ 4

For points B and P, x,X, = (—4)(+1) = —4cm?® = — 7 = —(2cm)® = —4cm?. To the
observer a P, it appearsthat A, and B, limit the rays coming from B. We shall now
show that the apeture A,B, ismerely theimage of AB,. To relate the apetures first note

that they satisfy the Newtonian lenslaw x,x, = —f;7 since x, = +1, X, =—4, and f, = +2.
If point A, istheimage of A then their distances from the optic axis are related by

B=1-as, = 1+ as where a:fi and s and s, are measured from the principal planes
2

of thelens. For athin lensrecall that the principal planes coincide. To put B inamore
tractableformwrite s, = f, + X, and s, = x, + f;. Substituting these expressionsinto those

for fweget = —% _L where we have used thefact that f, = —f,. Note that this
2

equality is equivalent to the lenslaw as —% = f = XX, = —f,. With the numbers given
2

inthedrawing B =+2. To show that their heights do obey thisrelation and have theratio
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of 2:1we note that the siope of RA is 16M¢ .= % . Thedistance of B, from the optic

1 oom 2
axisisthen 6><§:1.20m. Theslopeof PB is ° SCm:g.Thedistanceof A, from
the optic axisisthen 50m><§: 2cm which istwicethat of A confirming the

magnification of 2. Actually this derivation could have been proved for arbitrary locations
of the stop.

Returning to the cone of light rays coming from B itisseenthat A B, constitutesthe
apeture stop since it limits the angular spread (0) of the rays coming from B, that will be
imaged to P,.

Suppose we move A B, to theleft of the focal point as shown below.

L
A A
A
R fol o6
B,
Y B
N

The apeture stop is still determined by A B, but to an observer to the right of thelensit is
again A,B, (theimage of AB,) that limitsthe cone of raysfrom B. Let us define anew
concept —image space—as al physical objects to the right of the lens plus the images of all
pointsto the left of the lens. With this definition we may define the apeture stop in image
space as the exit pupil. In the two examples the cone of rays converging to or diverging
from theimage point is limited by the exit pupil A,B,.

L et us define object space as that space consisting of all physical objects to the left of the
lensplus al objectslocated to theright of the lens. Theimage of the apeture stop in object
gpace is defined to be the entrance pupil. 1n both examples the apeture stop isin object
space; hence, it itsalf isthe entrance pupil.

The term pupil is used to define these apetures because in optical systemsto be used with

the human eye the exit pupil correspondsto the pupil of the eye. Of the two examples only
in the second example would such a correspondence be possible.
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Consider now the imaging of off-axis points. A ray from an off-axis point (in the image
plane) that passes through the center of the apeture stop is called a chief ray. Becausethe
exit pupil and entrance pupil are images of the apeture stop the chief ray will also pass
through the center of both pupils. The marginal ray isaray from an off-axis point in the
image plane which passes through the edge of the apeture stop, the entrance pupil and the
exit pupil.

Note that in many optical systemsit may not be a specific stop which limits the size of the
light cone but the diameter of the lensitself as shown below.

P f f P g
— - ¥ r
[ §
Example of the apeture stop in object space.
A v
} e
\
L /N S
a
' - -

In acompound lens system it is possible that the physical apeture stop will not be in image
or object space as shown below.
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(Note how large the entrance and exit pupils are for such a short system.) In multi-lens
systemsit is often difficult to determine the entrance or exit pupil at first glance; however, a
systematic method of determining the limiting apeture isto image al stopsand lensrims
through the system: to the | eft to locate the entrance pupil, to the right to locate the exit
pupil. The stop or lens rim allowing the smallest cone of rays through the system from the
image point will be the appropriate entrance or exit pupil and the corresponding optical
element will be the apeture stop.

The graphical techniques we have been using for the past several pages become rather
complex in multi-lens systems such as the one on the previous page. A ray matrix analysis
of the optical system may greatly simplify the process of determining the apeture stop and
the corresponding pupils. Consider the general ray matrix transformation

r, b -ajr
Hy Il
where n,'=n'=1. Equivalently this may be written as
r,'=br'—ar
r, =—dr'+er,
To determine the apeture stop we take an object point on the optical axisso that r, =0. Let
the cone half-angleat B, be o, and let the radius of the apeture stop be p. Then the second

transformation yields
p=-do,+cx0=-da,

or o, = —%. The apeture stop for the system will have the smallest % ratio of all stops

and lensrimsin the system. Notethat d will be acomponent of the ray matrix relating P,
to the lens or stop; not the matrix relating B, to P, (the object point).
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Example:

L L,
object point R
P NN Iz BZ
! ¢ k h image point
: \ f, =+5cm /
|
1
PV
: lcm . ,
Theangle subtended by L, is o, = T 0.1Irad. Theimageof L, through L, islocated
2 (57 . .
X =——"= 1" —25cm locating theimage of L, 20cm to the left of F, as drawn
X2

above. To computeits sizerecall that between conjugate planes H, and H,

1 4
0 B

where a:fi and f=1-as,. Identifying s, as+30cm (we areimaging from right to left
2

— point B, to P,) we canwrite f=1- (é)(+30)=—5. The image then occludes the angle
o, = em _ lrad. We could aso have solved this by writing
20cm 4
1
1 0]y i1 o] |t 5
*r"6 1 o 10 17|, 1
5
Thus, a2=—§=—i—rr?]=—%rad. The minus sign here simply indicates that the image

of B, through L, isinverted, however, we are only concerned with the magnitude of ¢,
and not itssign. Irregardless of the method we reach the result that L, is the apeture stop.

The apeture stop determines the transmitted light cone for an on-axis point object, thefield
stop determines the transmitted light cone for off-axis points. A more formal definitionis
that the field stop limits the cone formed by the chief rays. Theimage of thefield stopin
object space is the entrance window); the image in image space is the exit window,
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. exit pupil
image of apeture stop

L
R /J(//fl \fz\\\\ /////fs /l f4\\\J' P,

entrance window apeture stop
imageof L,

(a) on-axisimaging

Nl
U

(b) off-axisimaging

Lens L, will be the field stop since the light cone from P, isnot intercepted by L,. In fact,
for P, asdrawn, the light cone completely missed L,. Since L, isthefield stop itsimage
in object space will be the entrance window and itsimage in image space the exit window.
From the diagram L, isthe exit window and the entrance window is as indicated. Note
that at B, the entire light cone allowed by the apeture stop behind L, istransmitted through
L,. At P, thelight conetransmitted by L, istotally blocked by the field stop — the rim of
L,; however, for B, located between B, and P, only part of the light cone passed by the
apeture stop will be transmitted by L,. This phenemonais known as vignetting.

Consider the effect of astop located at F,. If the image of this new stop subtends a smaller
angle (as seen from the center of L,) than L, doesit will be the new field stop. 1t will
reduce the field of view in the object plane, but does not remove the vignetting. To correct
the vignetting we use alens called afield lensat P,. A lenslocated there will not effect the
imaging of the on-axis point P, since because of the symmetry of the system L, smple
images P, onto itself.

field lens
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As afurther argument that thisis so consider the transformation of athin lens

r'=r'—-—r
6

r,=r
Sincer,=0wehaver,=r,=0and r,'’=r" indicating that the light conefrom B, is not
atered by L,. Atthispoint weask ourselveswhat L, doesin thethe optical system. To
answer this L, deviates the entirelight conefrom P, onto L,. Lens L, images L, onto L,
if f, correspondsto f, and f, to f, thusforminga S =—1imaging system between L,
and L,. Because of thetotal transmission of the light conefrom P, to P, lens L, has
completely eliminated vignetting. If P, were adlight distance further radially from B, no
light from P, would reach L,. Thisindicatesthat L, isthefield stop for the system.

In the above example, the field lens was easily added; in more complex systems containing
compound lensesit may be impossible to add afield lens. In fact, the concept of afield
stop isredly not too relevant to systems containing compound lenses.

Baffles may often be used in optical systemsto prevent stray light from reaching the image.
Asanillustration consider the tel escopic system shown below.

L, \ ;L \
baffles glare stop

Lens L, isafieldlens. L, functionsasthe apeture stop. Light may enter L, at an angle,
reflect off the walls of the lens housing and be reflected or scattered into the image. One
method of preventing thisis to insert a glare stop which images through L, matchesthe
apetureof L,. In addition, baffles may be inserted outside the optical patch to “catch” stray
light. Asafurther precaution all stops, baffles, etc. should be highly absorbent to suppress
reflections, g.v., the use of flat black paint inside telescopes.

From page 1 we know that geometric optics breaks down when we attempt to image
objects less than afew tenths of amillimeter in size. For objects smaller than this the image
tends to blue and become fuzzy because of diffraction effects. If the only limit upon the
image quality is diffraction then we say that the lens or optical system is diffraction limited.
Such optics are very good optics. In most systems other limitations upon image quality are
given the general name aberrations. Some aberrations may be due to inhomogenitiesin the
glass, surface defects, or improper grinding. They are called irregular aberrations ince they
are not subject to rogorous analysis except statisticaly. Certain other aberrations called
regular aberrations are due to the breaking down of the paraxia ray approximation. An
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excellent example of how this affects our geometric optics results to this point may be fund
on page 12. Therefraction of aray by a curved dielectric surface is given by

nr,' cosf, = nr,' cospf, + R(n cos6, — n, cosé, )
with the corresponding paraxial ray expression being
] n -
o =nh _( 2 Rnljrl

Note that it has been assumed that cosp3; = cosf3, =1 and cosb, = cos6, = 1.

As soon as we begin working with large aperture lens this approximation beguns to break

down as we deal with larger angles. In general

X4

X
cosx=1-—+"—+...
20 4
Regular aberrations are those deviations from paraxia ray results that may be predicted
using higher order terms of the trigonometric expansions.

The results that we have obtained using the paraxia ray approximation are said to follow
first-order theory, i.e., they include only the first termsin the trigonometric expansions. In
almost every problem no more than the first five termswill ever be included and usualy it
isonly thefirst two or three.

We shall not attempt to develop arigorous theory of aberrations but will, instead, simply
define the aberration, how it effects the imaging of the lens (or optical system, athough we
shall stick to describing the aberrations of asingle lens) and how it may be corrected for.

Spherical Aberration
This aberration is based directly upon the breakdown of the paraxial ray approximation for

on-axis objects. A zone of acircularly symmetric lensis simply aregion of the lens surface
bounded by r and r +dr where r islessthan the lensradius. We may now define
spherical aberration as the result of rays passing through different zones of alens being
focused to different points. Recall that marginal rays are those rays passing through the
boundary of thelens. If the rays closeto the optical axis are focused further away from the
lens than marginal raysthe lensis said to show positive longitudinal spherical aberration
and the lensis undercorrected for spherical aberration.

,,,,,,,,, circle of least confusion

,,,,,,,, L \ /cus of paraxial rays

VY RN

focus of marginal rays

Longitudinal spherical aberration is the distance between the focal pointsfor paraxial and
for marginal rays. Lateral spherical aberration isthe spot size corresponding to the
marginal raysin aplane perpendicular to the optic axis and containing the paraxial ray focal
point.
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Although we shall not show it spherical aberration varies according to how much the lenses

are bent. One formal measure of this bending is the Coddington shape factor o = %
where R and R, arethe signed radii of curvature of the left and right surfaces of the lens
respectively (light traveling from left to right). Some typical lens shapes and their
Coddington shape factors are given below.

By

o=-3 o=- = o=+1 o=43
Note: al of the above lenses are of equal diameter and equal paraxial ray focal length but
have different spherical aberration. Spherical aberration is also afunction of the image and

object distances so we define the Cossington position factor 7« = % where § and S
are the signed object and image distances respectively.

Spherical aberration cannot be eliminated from asingle lens but it can be minimized if the
Coddington shape and position factors satisify

2_
0:—2(n ljﬂ'
n+2

where nisthe index of refraction of the lens material.

To design alens that has minimal spherical aberration we first determine the desired image-
object ration which then fixes f and 7. With these results we may then determine the
desired shape of thelens. A useful set of equations for doing this may be obtained by
substituting the expressions for = and ¢ into the lens law:

1 1 1
S § f
1,11 1.1
-3vS_ S S_S £, §_, 2%
- 1 11 1 175
s § § f, §
r=1 2fz(i):1_2f2 E+EJ:_ _2f,
S S f,
21, 2f,
T=1-—%2=-1-—2
S S

It ismore complicated to relate ¢ to the lens parameters:

-43-



1 1 1 1 1 r,—n
A eI e

: L+ nL+n
where An=n,—n. Sincec==2—%,0rr,-1, = we can write
,—r o

L {fh)nite)_n s, 20)
f, rr, o\ o\ rr,

i_@rz—rlJrZAn_ 1 +2An

f, o 1, o, of, o,

Solving for r, gives r, = 2Ant,
In like fashion
1 eth)|_An(2n-n+y _2An_An(,—n) 2An 1
f, rr, Lo nr, or, orl, o, fo
gives
_ 2Anf, lorr = 2Anf,
| +1
Combining these results gives
n_o-1
r, o+l

To illustrate how to use these results consider the problem of determining the radii of
curvature for alensof f, =+10cm, n=1.5 which has minimum spherical aberration for
paralel incident light. Since the incident rays are parallel to the optic axis they are focused
to the focal point. Inthissituation asweargued that § — — and S, — +10cm as per
page 19 of these notes. The Coddington position factor is then

_S+3_10-- o
S-S 10+«
The shape factor which minimizes the spherical aberration is given by

2_
o= =1 7r-2(225 1)( 1)=0.714
n+2 15

Theradii of the lens surfaces will then be

2Anf, (1.5 —-1)(10) _ 415.83m
o+ 1 0.714+1

1=

and
2Anf, _ 2(15-1)(10)

2= 51 0.714-1
Thus, theflnal lensis amenicus.

=-35Cm

Rigorous aberration theory shows how spherical aberration can be eliminated entirely for
multiple-lens systems although we shall not pursue the subject in any greater depth.

Coma



Comarefersto the comet-like appearance of the image of a point object that islocated off
the axis. Coma occurs when the incident rays make an angle with the optic axis; spherical
abberation occured for an on-axis object and for rays parallel to the optic axis.

No expressions for comawill be developed; instead we will examine the results of an
experim,ent. Consider the optical system shown below

image plane lens image plane

diaphram or mask over lens

where the image plane contains an off-axis point object. Let the mask be as shown below.

object plane image plane

3<:1>4
_I_axis —T—axis

point object
The mask isfreeto rotate about the optic axis. If the diaphram is oriented so that the holes
correspond to the 1’ sthe imahe point at 1 in the image place will result. If themask is
rotated so the holes correspond to the 2’ s the resultant point image will be at point 21 in the
image place. Image points 3 and 4 are formed by orienting the mask holes to correspond
with the mask positions 3 and 4. Note that the image points form acircular ring. Thisis
called the comatic circle. The circle described by the maks holesisazone of thelens. In
general, zones of different radii will produce concentric circles of differing radius and
location in the image place. The radius of the comatic circle is proportiona to the square of
the radius of the corresponding lens zone and is the distance between the center of the
comatic circle and the optic axis. The sum total of al comatic circles, i.e, thetotal |,ight
passing through the lens produces the characteristic comatic flare as shown below.
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lens zones comatic circles

Note that comais afunction of the angle of obliquity — it is not present for point objects

on the optic axis. A genera condition for eliminating comaisto have M , where v, is
sin

Y2
the dope angle at the object and 7y, isthe dope angle at theimage, equal aconstant. This
relation must be true for al values of y, and over the entire system aperture to completely
eliminate coma. A system free of both coma and spherical aberration is called aplanatic.

Adigmatism

Consider abunde of light rays of circular cross-section incident on a spherical lens surface
some distance away from the optic axis. The projection of the circular bundle on the
spherical surface will be an ellipse with its magjor axis along alens radius and the minor axis
perpendicular to thisradius. Astignatism, then, isthat property of alensto focusrays
along the magjor axis and the minor axis to different points. These points are called
tangential and radial focal points.

7
FT-tangentia focus

The classical object used to illustrate astignatism is a spoked wheel as the object to be
imaged. The spokes being oriented radially will focus to the place F;, the rim being
oriented prependicular to the radius will focusto aplane F.

FRr-radial focus
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D

Some other examples are

object

_I_axi S

\

point object

_I_axi s

image at FT

_|_

_I_

FT FR
image at FR

|
+

-
_|_

The distance between F; and F, isthe astigmatic interval or the Interval of Sturm. The
“best” image is somewhere between F; and F; aswewill illustrate with an example.

Example:

A 70mm diameter lens has atangentia focal length of 16.7cm and aradial focal length of

18.5cm.
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The refractive powers corresponding to these focal lengthsare B = 1 =6m" and
T

P, = Fi =5.4m™. Thecircle of least confusion is located at the “dioptic midpoint,” i.e.,

R

Poc = % =5.7m™.

That is, the circle of least confusion is located # =17.5cm fromthe lens. Notice that

thisis not smplethe average of F. and F; which would be 17.6cm. The diameter of the
circle of least confusion isfound by using similar triangles
70 d

185 185-17.5
toget d=3.78mm
What shall not deal with eliminating astigmatism in any detail. We note, however, that we
have image formation in two surfaces — one corresponding to tangential and one to radial
object details. The correction of astigmatism then liesin somehow bringing these two
surfacestogether. The details of doing this are beyond the scope of this course but the
result isthat two lenses dightly separated with an aperture stop placed between them can
minimize astigmatism. It isnot possible to correct for astigmatism with asingle lens.

Curvature of Field & Distortion

These are two other aberrations related to astigmatism. Curvature of field occurswhen a
place object is not imaged into a place surface. The difference between astigmatism and
curvature of field isthat astigmatism varies with object distance while curvature of field
does not.

Distortion has a very specific meaning in optics — the aberration due to the dependence of
the transverse linear magnification upon the distance of the object point from the optic axis.
This effect causes square objects to resemble barrels or pincushions and may be minimized
by using a symmetrical doublet compound lens with a central stop.
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lens system “pincushion” distortion
Chromatic aberration
For asmplelenslight of different wavelengths will have different focal points. The reason
for thisis a phenemona called dispersion — the property of amaterial that itsindex of
refraction isafunction of wavelength. Air has very little dispersion for visible light;
vacuum, none at al. Invisible opticsit is customary to specify amaterial’ s index of
refraction at three wavel engths rather than in graphic or functional terms. Thethree
wavelengths most often used are the Fraunhofer lines of the solar spectrum: the blue F line
a A ~486nm, theyellow sodium D lineat A ~589nm, and thered Clineat A ~ 656nm.
L et the corresponding indices of refraction be n., n,, and n.. The dispersion acrossthe

visible spectrumis n. — n. and the dispersive power isdefined as A = n;;nlc A low

.
dispersion glass such as crown glasshasa A ~ 0.020 and a highly dispersive glass such as
flint glasshasa A ~ 0.033. Intermsof asmplelensrecal that the focal point is given by

1 1 1
toonfi-

where r, and r, are the signed radii of curvature of the first and second surfaces
respectively, njistheindex of refraction of the medium surrounding the lens, and n, isthe
refractive index of the lens material. Thisindicatesthat f, doesindeed depend upon n,.
For asimple positive lens the focal length is shorter for blue light than for red light.

Chromatic aberrationm ay be further catagorized aslongitudina and lateral chromatic
aberration. Longitudinal chromatic aberration is the distance between the image planes
corresponding to the different wavelengths of light; lateral chromatic aberration isthe
differencein the location of the images from the optic axis. Chromatic aberrationis called
positive if the blue focus lies clsoer to the lens than the red.

Lenses corrected for chromatic aberration at two different wavelengths are called
achromats; lens which correct at three wavelengths are called apochromats. The specific

-49-



wavelengths for which the lensis corrected will depend upon the application. For
example, film is more blue sensitive than the human eye so cameralenses are corrected for
blues and blue-greens. The human eye's peak response isin the yellow-green so visual
instruments are corrected for yellow-greens.

There are two methods of correcting for chromatic aberration. Thefirstistousea
compound lens — a doublet — made of aflint glass lens and acrown glass lens placed in
contact. The principle of operation isthat the dispersion produced in one lensis canceled
by the opposite dispersion of the other. Without derivation, if the power of the desired lens
combinationis P, (A for achromatic) and A, and A, are the dispersions of the first and

second lens respectively and P, and P, their respective power we have

R=F, =%
A2 - Al
and
B=-F &
Az - Al
Example:

with the following data on crown and flint glass design an achromatic doublet with a
+10cm focal length.

ne N, Ne
crown 1.53 1.523 1.52
flint 1.63 1.62 1.61
For the crown glass,
= ne—n. _153-152 _ 0.019
n,—-1 1523-1
and for the flint
= ne—n. _163-161_ 0.032
n, -1 1.62-1
The powers are then
B= (10)% =24.6m™
0.032-0.019
and
=10 2%
0.032-0.019
For athinlens P, =P + P, =24.6-14.6=10.0m™"
andsince B, = 11 . 10m™ we have our desired lens.
f 0.dm

Knowing the focal lengths we may now determine the lens curvatures from the lensmaker’s
formula

P= An(1 - ij
I’.l r.2

Suppose we let the first lens be a symmetric doublet, i.e, , =+Rand r, = —R, so that
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24.6m™ = (1.523— 1)(l + lj
R R
which gives
R=+4.25cm

Thethird surface will have r, given by

-14.6m™* = (1.62— 1)(—% + 1)

r3
or r,=+20cm. Theresulting lensis of the form

crown flint

A second method of correcting for chromatic aberration is to use two positive lenses made
of the same material and separated by a distacne equal to one-half the sum of their

individual focal lengths, i.e., d = %( f,+ f,). Thisiscalled aspaced doublet and its
principle of operation will not be discussed here.

Propagation of aray through abiperiodic lens sequence, i.e., a series of lenses of
aternating focal lengths f, and f, separated by adistance d. Such alens structureiscalled
alens waveguide and has been used as a guide structure for light. Thislens system isalso
formally equivalent to an optical resonator formed by mirrors of radii R =2, and

R, =2f,, i.e, alaser cavity.

light ray

1)
U
(@) light raysin abiperiodic lens sequence
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(b) light raysin an optical resonator

For the lens sequence we will write the system matrix between planes s and s+1

'] |1 1o 1 Lo ry
tal o 1f2 d 1], 1f1 d 1|r,

r.']_[D CJ
= 2
T ] LB AT
In(2), A, B, C and D are NOT the Gaussian coefficents we have been working with.
This particular notation has been chosen to be consistent with Y ariv,_Introduction to Optical
Electronics. In the manner of Yariv, we may write (2) out for clarity as
r,,, = Dr/'+Cr,
r,, = Bry' +Ar, 4)

From (4), r,'= %(rs+1 - Ar,)

Since thisresult must be true for all unit cells (basic lens units) of our system this result
must also hold true for the transformation between planes s+1and s+ 2, i.e,,

1
= E(rs+2 - Ars+l)

Substituting from (3),
Cr,+Dr'= %(rs+2 - Ar,,)
and again from (4)

r

s+1
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D 1
Crs + E(rsﬂ - Ars) = E(rs+2 - Ars+1)

BCr, + Dr,,, — ADr,=r_, — Ar,,

S

and after rearranging
r.., —(A+D)r,,+(AD-BC)r,=0

Recalling that the determinant of aray matrix is aways 1 we have from (2) that
AD - BC=1. Wealsodefine b= % where b isNOT a Gaussian coefficent but only

avariablein the problem. Using these definitions and results we get
M2 — 2brs+1 +I= 0 (5)
To determine the solution of (5) we must first develop someideas from what is called finite
difference calculus. Define
Ar,=r_ T, (6)
Thisisthefirst forward difference and may be likened to a derivative since here

As=(s+1)—-s=1and AL _
As

whereas in ordinary differential calculus we would takethelimitas s— oo, i.e.,

Ar,. Thisiscalled finite difference calculus since As=1

lim Al _ r,'. Inasimilar fashion to (6) we may define the second forward difference

= AS

A2rs = A(Ars) = AI’s+l - Ars =g = To =T + 1

A2rs =l — 2rs+1 +r (7)
Rewriting (5) using (7) we get

Ar,+(2-2b)r,, =0 (8)

2
+af =0 where a isaconstant.

Thisisanalagousto the ordinary differential equation d

dx?
which has solutions
f = Clei\/ax + Cze—i\ ax
By analogy we may try asolution to (8) of the form r_ = r,€> where s isthe independent
variableand r, and q are constants to be determined. Substituting this solution into (7) we

get r 29 _2pr @9 41 ¥ =0
Thisisaquadraticin € and has solutions
€9=bxb*-1 9)
At this point let us define b = cos® so that +/b? —1=isin® and (9) becomes
€9=cosftising =e"’
The genera solution to (5) isthen
r,=ce¥ +ce™ (10)
where ¢, and ¢, are constants to be determined by the initial conditions. Equation (10)
may also be written in the form
Fy =l SIN(SO + ) (11)

where r_, and o arefound from the initial ray displacement and slope.
For thisto be areal lenswaveguide it is necessary that the light raysin the system always

be incident upon the finite sized lenses. Thisrequiresthat 6 in (10) bereal. For if 6 were
complex or imaginary we would have unbounded hyperbolic solutions. [Example: in (11)
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if a=0and 6 iscomplex, i.e, sin(sif')=sinh(sf")] For O to beredl it isnecessary that
1-b*>0 [from b’ —=1=isin@] or

b?<1 (12)
From this and with the definition of b we get, after some algebra,
2
1>~ 4 _d & g

—+ >
2f  2f, A4ff,

15(1- 9 129 59
21 |7 2,

Thefactors 1— d and 1- if are often called stability factors and are usualy defined as
1 2

d
G =1--+ (R=2f,)
i (14)
) :1—§ (Rz = 2f2)
2
Thisresult ismore genera than it seems and we shall return to it when we discuss optical

resonators. A plot of the condition (13) [ 0 < g,g, <1] isgiven below.

9,
A
0.9, >0
9,9, <0 unstable
unstable +1
_1 - gl
+1
-1
0 0.9, <0
99, > unstable
unstable




