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Example:                 Plano-convex lens

A B

optic

axis

R1 = � R cm2 2 5= - .

n1 1 00= . n2

AB d cm= = 0 6.

n2 1 5= .

From page 13 the system matrix for planes passing through A  and B  perpendicular to the
optical axis is:
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As a check on our calculations

det . . . . . .SAB( ) = ( )( ) - ( )( ) = + =0 92 1 0 2 0 4 0 92 0 08 1 00
The location of the principal planes is given by
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a .
The principal planes are then located as shown below
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axis
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P1 P2

This type of lens is often found in optical instruments because a high quality flat surface is
much easier to produce than a spherical surface; hence, a good plano-convex lens is
cheaper than a comparable quality biconvex lens.

The location of the principal planes for some common lens shapes are shown below.
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In these sketches H1  and H2  are principal planes, P1 and P2  are the refractive powers of
the first and second surfaces respectively, and P P P= +1 2 , i.e., a thin lens where d ª 0.

Simple magnifier:
We will now analyze a plano-convex lens as a simple magnifier as shown below.

A
optic

axis

r2

s2

x2

f2f1

s1x1

r1

H1 H2

q2

q1

Several features of this drawing are worth mentioning regarding graphical ray tracing.
Note that the lens is assumed to be a thin lens, i.e., the distance between the principal
planes H1  and H2  is small (ª 0 ).  In the drawing the object to be imaged is located s1 in
front of H1 .  To locate the image we trace two rays from the object and graphically
determine their intersection—this intersection locates the image.  The first ray will be drawn
parallel to the optic axis.  By the definition of principal planes this ray must pass through
the focal point A .  The second ray is drawn from the object to the principal point of H1 .
On page 17 we notes that principal points are nodal points; hence, the ray will leave the
principal point of H2  with the same slope as it had crossing H1 .  These rays may be
extended indefinitely until they intersect.  A perpendicular to the optic axis from this point
of intersection will locate the image.

As shown in the drawing the object is located near the first focal plane.  The eye of the
observer is located near the second focal plane. q2 is usually a good measure of the

apparant size of the image. Tan
r

x
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2
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( ) =
-

 or, because of the paraxial ray approximation,
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The magnification is given by b = -1 2
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.  A comfortable viewing distance for the eye is

approximately 10 inches (about 250mm).  The angle q'  that the object would subtend if we

viewed it from a distance of 250 mm unaided is q' ª r

mm
1

250
.  Common usage defines the

magnification of the lens as
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Note that since f1  is negative (see drawing) M > 0 and the image is upright.

The Compound Microscope

We will now consider a more complicated instrument, a compound microscope consisting
of two lens separated by a distance d  as shown by the following figure.
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Items indicated by capitals are referring to the overall optical system; small letters refer to
items characterizing the individual optical elements.  Between planes h1 and h4
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For a typical microscope f f mm2 4 16= =  and   l = 160mm

L
mm mm

mm
mm1

16 16 160 16
160

19 2= - + +( )( ) = - .

L
mm mm

mm
mm2

16 16 160 16
160

19 2= + + +( )( ) = + .

Let us now locate the object relative to the system focal points.  As before for good viewing
the virtual image will be at x mm2 250ª - .  Then, using the Newtonian form of the lens
law x x F1 2 2

2= - .

x
F

x
mm1

2
2

2

21 6
250

0 01024= - = - ( )
-

= +.
.

which is almost at the first focal point F1. The system magnification is

  
M

F f f
= = -250 250

2 2 4

l
 indicating an inverted image.  For the numbers given M ª -156.

Let us now examine the intermediate image formed by the first lens.  The object is very
near the system focal point F1 so that, relative to f1 , x mm1 1 6= - . .  Using the Newtonian
lens law

x
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@
.

This indicates that the image is formed approximately at the focal point of the eyepiece.
This intermediate image is real and inverted.  The eyepiece may now be treated as a simple

magnifier with magnification M
f fe = - = +250 250

1 2

.  For the objective lens the

magnification 
  
M

s

f fo = - ª -
1 2

2 2

l
.  The system magnification M  is then seen to be

approximately equal to the product of the eyepiece and objective magnifications.

The Telescope

A telescopic system is defined to be an optical system having a slope transformation that is
independent of r1 , i.e., of the form n r kn r2 2 1 1' '=  where k  is a constant.  Let us consider the
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optical system of the diagram below and examine the conditions under which it is
telescopic.
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If S  is a general matrix of Gaussian coefficients, i.e., 
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The slope transformation between P1 and P2  is then

  
n r b a

n
n r ar2 2
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1
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For this transformation to be independent of r1  it is necessary that a = 0 ; hence,
n r b n r2 2 1 1' '( ) = ( ). Note that once a  is set equal to zero it remains zero for any choice of  l1

and   l2 , i.e., it is invariant under translation.  Consider the system shown below composed
of two thin lenses separated by a distance d .

d

L1 L2

f1 f2 f3 f4

Between lenses L1 and L2
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For this system to qualify as telescopic
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where we have defined p
f

fa = - 2

4

.  Note that the telescopic system requirement resulted in

d f f= +2 4 , i.e., the focal points of the two lenses must coincide.  Writing out the
transformations

r p r2 1' '= a

r f f r
r

p2 2 4 1
1= +( ) +'
a

where we assumed that n n2 1 1= = .

The quantity pa  is known as the angular magnification.  In general, telescopes are capable
of resolving objects at great distances because of their ability to magnify the small angular
separation between such objects.  With SL L1 2

 being telescopic consider the transformation
between a plane H1  located   l1 to the left of L1 and H2  located  l2  to the right of L2
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For image formation we let l
l

2 2 4
1 0p f f

pa
a

+ + - = .  Then, the transformation between H1

and H2  is
r p r2 1' '= a

r
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1=
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Notice that high magnification and good angular separation are competing processes.  The

larger pa  is (better angular resolution) the smaller the system magnification (
1
pa

) is.  The

proper design of a telescopic system involves a trade-off between angular resolution and
magnification.

Let us examine the longitudinal magnification 
D
D
l

l
2

1

 as opposed to the transverse

magnification 
r

r
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1

.  Differentiating the expression 
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l
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+ + - =  we get
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2

1
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1=
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For the system examined all magnifications are independent of image and/or object
distances and the image is real and inverted.  Any such telescopic system having the same
signed magnifications as derived here is called Gailean.
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Stops and Apetures

Up to now we have only been concerned with the image location and size.  Two other
important considerations are the system field of view and the brightness of the image.
Stops are related to the determination of each of these factors and, in general, stops are
defined to be those elements in the optical system that determine what fraction of the light
from an object point will actually reach the corresponding image point.

Let us first examine an on-axis point as shown below.

f1 f2f4

P2

thin lens

B1

A2

B2

stop

A1

4cm
1cm

qP1

For points P1 and P2  x x cm f cm cm1 2
2

2
2 2 24 1 4 2 4= -( ) +( ) = - = - = -( ) = - .  To the

observer at P2  it appears that A2  and B2  limit the rays coming from P1.  We shall now
show that the apeture  A B2 2  is merely the image of A B1 1 . To relate the apetures first note
that they satisfy the Newtonian lens law x x f1 2 2

2= -  since x1 1= + , x2 4= - , and f2 2= + .
If point A2  is the image of A1  then their distances from the optic axis are related by

b = - =
+

1
1

12
1

as
as

 where a
f

= 1

2

 and s1 and s2  are measured from the principal planes

of the lens.  For a thin lens recall that the principal planes coincide.  To put b  in a more
tractable form write s f x2 2 2= +  and s x f1 1 1= + .  Substituting these expressions into those

for b  we get b = - =x

f

f

x
2

2

2

1

 where we have used the fact that  f f1 2= - .  Note that this

equality is equivalent to the lens law as - = Þ = -x

f

f

x
x x f2

2

2

1
1 2 2

2 .  With the numbers given

in the drawing b = +2.  To show that their heights do obey this relation and have the ratio
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of 2:1 we note that the slope of PA1 1 is 1 5
1
5

cm
cm = .  The distance of B1 from the optic

axis is then 6
1
5

1 2¥ = . cm .  The slope of P B2 1 is 

6
5

3
2
5

cm

cm = . The distance of A2  from

the optic axis is then 5
2
5

2cm cm¥ =  which is twice that of A1  confirming the

magnification of 2.  Actually this derivation could have been proved for arbitrary locations
of the stop.

Returning to the cone of light rays coming from P1 it is seen that A B1 1  constitutes the
apeture stop since it limits the angular spread (q ) of the rays coming from P1 that will be
imaged to P2 .

Suppose we move A B1 1  to the left of the focal point as shown below.

f1 f2

B1

A2

B2

A1

P1

The apeture stop is still determined by A B1 1  but to an observer to the right of the lens it is
again A B2 2  (the image of A B1 1) that limits the cone of rays from P1.  Let us define a new
concept —image space—as all physical objects to the right of the lens plus the images of all
points to the left of the lens.  With this definition we may define the apeture stop in image
space as the exit pupil.  In the two examples the cone of rays converging to or diverging
from the image point is limited by the exit pupil A B2 2 .

Let us define object space as that space consisting of all physical objects to the left of the
lens plus all objects located to the right of the lens.  The image of the apeture stop in object
space is defined to be the entrance pupil.  In both examples the apeture stop is in object
space; hence, it itself is the entrance pupil.

The term pupil is used to define these apetures because in optical systems to be used with
the human eye the exit pupil corresponds to the pupil of the eye.  Of the two examples only
in the second example would such a correspondence be possible.
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Consider now the imaging of off-axis points.  A ray from an off-axis point (in the image
plane) that passes through the center of the apeture stop is called a chief ray.  Because the
exit pupil and entrance pupil are images of the apeture stop the chief ray will also pass
through the center of both pupils. The marginal ray is a ray from an off-axis point in the
image plane which passes through the edge of the apeture stop, the entrance pupil and the
exit pupil.

Note that in many optical systems it may not be a specific stop which limits the size of the
light cone but the diameter of the lens itself as shown below.

f1 f2P1 P2

Example of the apeture stop in object space.

f1 f2P1 P2

In a compound lens system it is possible that the physical apeture stop will not be in image
or object space as shown below.
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P1

P2

entrance pupil

apeture stop

exit stop

(Note how large the entrance and exit pupils are for such a short system.)  In multi-lens
systems it is often difficult to determine the entrance or exit pupil at first glance; however, a
systematic method of determining the limiting apeture is to image all stops and lens rims
through the system: to the left to locate the entrance pupil, to the right to locate the exit
pupil.  The stop or lens rim allowing the smallest cone of rays through the system from the
image point will be the appropriate entrance or exit pupil and the corresponding optical
element will be the apeture stop.

The graphical techniques we have been using for the past several pages become rather
complex in multi-lens systems such as the one on the previous page.  A ray matrix analysis
of the optical system may greatly simplify the process of determining the apeture stop and
the corresponding pupils.  Consider the general ray matrix transformation
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where n n2 1 1' '= = .  Equivalently this may be written as
r br ar2 1 1' '= -
r dr er2 1 1= - +'

To determine the apeture stop we take an object point on the optical axis so that r1 0= .  Let
the cone half-angle at P1 be a0 and let the radius of the apeture stop be r .  Then the second
transformation yields

r a a= - + ¥ = -d c d0 00

or a r
0 = -

d
.  The apeture stop for the system will have the smallest 

r
d

 ratio of all stops

and lens rims in the system.  Note that d  will be a component of the ray matrix relating P1

to the lens or stop; not the matrix relating P1 to P2  (the object point).



-39-

Example:

f1

f2P1 P2

image point

object point

L1 L2

P3

P4
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The angle subtended by L1 is a1

1
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rad. .  The image of L2 through L1 is located

x
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= -  locating the image of L2 20cm to the left of P1 as drawn

above.  To compute its size recall that between conjugate planes H1  and H2
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Thus, a r
2

1
4

1
4

= - = - = -
d

cm

cm
rad .  The minus sign here simply indicates that the image

of P3  through L1 is inverted; however, we are only concerned with the magnitude of a2

and not its sign.  Irregardless of the method we reach the result that L1 is the apeture stop.

The apeture stop determines the transmitted light cone for an on-axis point object, the field
stop determines the transmitted light cone for off-axis points.  A more formal definition is
that the field stop limits the cone formed by the chief rays.  The image of the field stop in
object space is the entrance window); the image in image space is the exit window,
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f2 P2f1P1 f3 P3f4

L2L1

exit pupil
image of apeture stop

apeture stopentrance window
image of L2

(a) on-axis imaging

f2f1
P1

f3 P3f4

L2L1

P4

P5

(b) off-axis imaging

Lens L2 will be the field stop since the light cone from P4 is not intercepted by L2.  In fact,
for P4 as drawn, the light cone completely missed L2.  Since L2 is the field stop its image
in object space will be the entrance window and its image in image space the exit window.
From the diagram L2 is the exit window and the entrance window is as indicated.  Note
that at P1 the entire light cone allowed by the apeture stop behind L1 is transmitted through
L2.  At P4 the light cone transmitted by L1 is totally blocked by the field stop — the rim of
L2; however, for P6  located between P1 and P4 only part of the light cone passed by the
apeture stop will be transmitted by L2.  This phenemona is known as vignetting.

Consider the effect of a stop located at P2 .  If the image of this new stop subtends a smaller
angle (as seen from the center of L1) than L2 does it will be the new field stop.  It will
reduce the field of view in the object plane, but does not remove the vignetting.  To correct
the vignetting we use a lens called a field lens at P2 .  A lens located there will not effect the
imaging of the on-axis point P1 since because of the symmetry of the system L3  simple
images P2  onto itself.

f3

P3

f4

L2

f2f1
P1

L1
P4

P5

MR1 L3

f5 f6

MR2

MR1

MR2

MR1

MR1

MR2

MR2

P7

field lens
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As a further argument that this is so consider the transformation of a thin lens

r r
f

r2 1
6

1

1
' '= -

r r2 1=
Since r1 0=  we have r r2 1 0= =  and r r2 1' '=  indicating that the light cone from P1 is not
altered by L3 .  At this point we ask ourselves what L3  does in the the optical system.  To
answer this L3  deviates the entire light cone from P4 onto L2.  Lens L3  images L1 onto L2

if f5 corresponds to f2  and f6  to f3 thus forming a b = -1 imaging system between L1

and L2.  Because of the total transmission of the light cone from P4 to P7  lens L3  has
completely eliminated vignetting.  If P4 were a slight distance further radially from P1 no
light from P4 would reach L2.  This indicates that L3  is the field stop for the system.

In the above example, the field lens was easily added; in more complex systems containing
compound lenses it may be impossible to add a field lens.  In fact, the concept of a field
stop is really not too relevant to systems containing compound lenses.

Baffles may often be used in optical systems to prevent stray light from reaching the image.
As an illustration consider the telescopic system shown below.

baffles

L1 L2
L3

glare stop

Lens  L2 is a field lens. L1 functions as the apeture stop.  Light may enter L1 at an angle,
reflect off the walls of the lens housing and be reflected or scattered into the image.  One
method of preventing this is to insert a glare stop which images through L2 matches the
apeture of L1.  In addition, baffles may be inserted outside the optical patch to “catch” stray
light.  As a further precaution all stops, baffles, etc. should be highly absorbent to suppress
reflections, q.v., the use of flat black paint inside telescopes.

From page 1 we know that geometric optics breaks down when we attempt to image
objects less than a few tenths of a millimeter in size. For objects smaller than this the image
tends to blue and become fuzzy because of diffraction effects.  If the only limit upon the
image quality is diffraction then we say that the lens or optical system is diffraction limited.
Such optics are very good optics.  In most systems other limitations upon image quality are
given the general name aberrations.  Some aberrations may be due to inhomogenities in the
glass, surface defects, or improper grinding.  They are called irregular aberrations ince they
are not subject to rogorous  analysis except statistically.  Certain other aberrations called
regular aberrations are due to the breaking down of the paraxial ray approximation.  An
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excellent example of how this affects our geometric optics results to this point may be fund
on page 12.  The refraction of a ray by a curved dielectric surface is given by

n r n r
r

R
n n1 1 1 2 2 2

1
2 2 1 1' cos ' cos cos cosb b q q= + -( )

with the corresponding paraxial ray expression being

n r n r
n n

R
r2 2 1 1

2 1
1' '= - -Ê

Ë
�
¯

Note that it has been assumed that  cos cosb b1 2 1ª ª  and cos cosq q1 2 1ª ª .

As soon as we begin working with large aperture lens this approximation beguns to break
down as we deal with larger angles.  In general
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! !
x

x x= - + +1
2 4

2 4

K

Regular aberrations are those deviations from paraxial ray results that may be predicted
using higher order terms of the trigonometric expansions.

The results that we have obtained using the paraxial ray approximation are said to follow
first-order theory, i.e., they include only the first terms in the trigonometric expansions.  In
almost every problem no more than the first five terms will ever be included and usually it
is only the first two or three.

We shall not attempt to develop a rigorous theory of aberrations but will, instead, simply
define the aberration, how it effects the imaging of the lens (or optical system, although we
shall stick to describing the aberrations of a single lens) and how it may be corrected for.

Spherical Aberration
This aberration is based directly upon the breakdown of the paraxial ray approximation for
on-axis objects.  A zone of a circularly symmetric lens is simply a region of the lens surface
bounded by r  and r dr+  where r  is less than the lens radius.  We may now define
spherical aberration as the result of rays passing through different zones of a lens being
focused to different points.  Recall that marginal rays are those rays passing through the
boundary of the lens.  If the rays close to the optical axis are focused further away from the
lens than marginal rays the lens is said to show positive longitudinal spherical aberration
and the lens is undercorrected for spherical aberration.

focus of paraxial rays

focus of marginal rays

circle of least confusion

Longitudinal spherical aberration is the distance between the focal points for paraxial and
for marginal rays.  Lateral spherical aberration is the spot size corresponding to the
marginal rays in a plane perpendicular to the optic axis and containing the paraxial ray focal
point.
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Although we shall not show it spherical aberration varies according to how much the lenses

are bent.  One formal measure of this bending is the Coddington shape factor s = +
-

R R

R R
1 2

1 2

where R1  and R2  are the    signed    radii of curvature of the left and right surfaces of the lens
respectively (light traveling from left to right).  Some typical lens shapes and their
Coddington shape factors are given below.

s = -3 s = -1 s = 0 s = +1 s = +3
Note: all of the above lenses are of equal diameter and equal paraxial ray focal length but
have different spherical aberration.  Spherical aberration is also a function of the image and

object distances so we define the Cossington position factor p = +
-

S S

S S
1 2

1 2

 where S1 and S2

are the   signed     object and image distances respectively.

Spherical aberration cannot be eliminated from a single lens but it can be minimized if the
Coddington shape and position factors satisify

s p= - -
+

Ê
ËÁ

�
�̄2

1
2

2n

n
where n is the index of refraction of the lens material.

To design a lens that has minimal spherical aberration we first determine the desired image-
object ration which then fixes f  and p .  With these results we may then determine the
desired shape of the lens.  A useful set of equations for doing this may be obtained by
substituting the expressions for p  and s  into the lens law:

1 1 1

2 1 2S S f
- =

p = +
-

=
+
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=

- +

- -
= -S S

S S
S S

S S

S f S

S f S
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2 2 2

2 2 2
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1 1 1 1
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ËÁ
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2
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2

1

f
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f
S f
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2

1

f

S

f

S
It is more complicated to relate s  to the lens parameters:
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1 1 1 1 1
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where Dn n n= -2 1.  Since s = +
-
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Solving for r2  gives r
nf

2
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=
-

D
s

In like fashion
1 2 2 2 1
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s = -2
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Dnf

r
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nf
1
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1
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D
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Combining these results gives
r

r
1

2

1
1

= -
+

s
s

To illustrate how to use these results consider the problem of determining the radii of
curvature for a lens of f cm2 10= + , n = 1 5.  which has minimum spherical aberration for
parallel incident light.  Since the incident rays are parallel to the optic axis they are focused
to the focal point.  In this situation as we argued that S1 Æ -�  and  S cm2 10Æ +  as per
page 19 of these notes.  The Coddington position factor is then

p = +
-

= - �
+ �

Æ -S S

S S
2 1

2 1

10
10

1

The shape factor which minimizes the spherical aberration is given by

s p= - -
+
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+
Ê
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2
2 25 1
1 5 2

1 0 714
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.
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The radii of the lens surfaces will then be

r
nf
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22
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2 1 5 1 10
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5 83=
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.
.

and

r
nf

cm2
22
1

2 1 5 1 10
0 714 1

35=
-

= -( )( )
-

= -D
s

.

.
Thus, the final lens is a menicus.

Rigorous aberration theory shows how spherical aberration can be eliminated entirely for
multiple-lens systems although we shall not pursue the subject in any greater depth.

Coma
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Coma refers to the comet-like appearance of the image of a point object that is located off
the axis.  Coma occurs when the incident rays make an angle with the optic axis; spherical
abberation occured for an on-axis object and for rays parallel to the optic axis.

No expressions for coma will be developed; instead we will examine the results of an
experim,ent.  Consider the optical system shown below

diaphram or mask over lens

image plane image planelens

where the image plane contains an off-axis point object.  Let the mask be as shown below.

mask

3

2

1

43

2

4
1

axis

point object

object plane

axis

image plane

1

2

3 4

The mask is free to rotate about the optic axis.  If the diaphram is oriented so that the holes
correspond to the 1’s the imahe point at 1 in the image place will result.  If the mask is
rotated so the holes correspond to the 2’s the resultant point image will be at point 21 in the
image place.  Image points 3 and 4 are formed by orienting the mask holes to correspond
with the mask positions 3 and 4.  Note that the image points form a circular ring.  This is
called the comatic circle.  The circle described by the maks holes is a zone of the lens.  In
general, zones of different radii will produce concentric circles of differing radius and
location in the image place.  The radius of the comatic circle is proportional to the square of
the radius of the corresponding lens zone and is the distance between the center of the
comatic circle and the optic axis.  The sum total of all comatic circles, i.e., the total l,ight
passing through the lens produces the characteristic comatic flare as shown below.
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1 2 3 4 5

lens zones

1
2

5
4

3

comatic circles

Note that coma is a function of the angle of obliquity — it is not present for point objects

on     the optic axis.  A general condition for eliminating coma is to have 
sin
sin

g
g

1

2

 , where g 1 is

the slope angle at the object and g 2  is the slope angle at the image, equal a constant.  This
relation must be true for all values of g 1 and over the entire system aperture to completely
eliminate coma.  A system free of both coma and spherical aberration is called aplanatic.

Astigmatism

Consider a bunde of light rays of circular cross-section incident on a spherical lens surface
some distance away from the optic axis.  The projection of the circular bundle on the
spherical surface will be an ellipse with its major axis along a lens radius and the minor axis
perpendicular to this radius.  Astignatism, then, is that property of a lens to focus rays
along the major axis and the minor axis to different points.  These points are called
tangential and radial focal points.

FT-tangential focus

lens

FR-radial focus

lens

The classical object used to illustrate astignatism is a spoked wheel as the object to be
imaged.  The spokes being oriented radially will focus to the place FT , the rim being
oriented prependicular to the radius will focus to a plane FR .
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object FTlens FR

Some other examples are

object

axis

point object

axis

image at FT image at FR

The distance between FT  and FR  is the astigmatic interval or the Interval of Sturm.  The
“best” image is somewhere between  FT  and FR  as we will illustrate with an example.

Example:
A 70mm diameter lens has a tangential focal length of 16.7cm and a radial focal length of
18.5cm.
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FR
best image

FT

The refractive powers corresponding to these focal lengths are P
F

mT
T

= = -1
6 1 and

P
F

mR
R

= = -1
5 4 1. .  The circle of least confusion is located at the “dioptic midpoint,” i.e.,

P mAVG = + = -6 5 4
2

5 7 1.
. .

That is, the circle of least confusion is located 
1

5 7
17 51.

.
m

cm- =  from the lens.  Notice that

this is not simple the average of FT  and FR  which would be 17 6. cm .  The diameter of the
circle of least confusion is found by using similar triangles

70
18 5 18 5 17 5. . .

=
-
d

to get  d mm= 3 78.
What shall not deal with eliminating astigmatism in any detail.  We note, however, that we
have image formation in two surfaces — one corresponding to tangential and one to radial
object details.  The correction of astigmatism then lies in somehow bringing these two
surfaces together.  The details of doing this are beyond the scope of this course but the
result is that two lenses slightly separated with an aperture stop placed between them can
minimize astigmatism.  It is not possible to correct for astigmatism with a single lens.

Curvature of Field & Distortion
These are two other aberrations related to astigmatism.  Curvature of field occurs when a
place object is not imaged into a place surface.  The difference between astigmatism and
curvature of field is that astigmatism varies with object distance while curvature of field
does not.

Distortion has a very specific meaning in optics — the aberration due to the dependence of
the transverse linear magnification upon the distance of the object point from the optic axis.
This effect causes square objects to resemble barrels or pincushions and may be minimized
by using a symmetrical doublet compound lens with a central stop.
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lens system

lens system

“barrel” distortion

“pincushion” distortion

imageobject

Chromatic aberration
For a simple lens light of different wavelengths will have different focal points.  The reason
for this is a phenemona called dispersion — the property of a material that its index of
refraction is a function of wavelength.  Air has very little dispersion for visible light;
vacuum, none at all.  In visible optics it is customary to specify a material’s index of
refraction at three wavelengths rather than in graphic or functional terms.  The three
wavelengths most often used are the Fraunhofer lines of the solar spectrum: the blue F line
at l ~ 486nm , the yellow sodium D line at l ~ 589nm, and the red C line at l ~ 656nm.
Let the corresponding indices of refraction be nF , nD , and nC .  The dispersion across the

visible spectrum is n nF C-  and the dispersive power is defined as D = -
-

n n

n
F C

D 1
.  A low

dispersion glass such as crown glass has a D ~ .0 020 and a highly dispersive glass such as
flint glass has a D ~ .0 033.  In terms of a simple lens recall that the focal point is given by

1 1 1

2
2 1

1 2f
n n

r r
= -( ) -

Ê
ËÁ

�
�̄

where r1  and r2  are the signed radii of curvature of the first and second surfaces
respectively, n1is the index of refraction of the medium surrounding the lens, and n2  is the
refractive index of the lens material.  This indicates that f2  does indeed depend upon n2 .
For a simple positive lens the focal length is shorter for blue light than for red light.

Chromatic aberrationm ay be further catagorized as longitudinal and lateral chromatic
aberration.  Longitudinal chromatic aberration is the distance between the image planes
corresponding to the different wavelengths of light; lateral chromatic aberration is the
difference in the location of the images from the optic axis.  Chromatic aberration is called
positive if the blue focus lies clsoer to the lens than the red.

Lenses corrected for chromatic aberration at two different wavelengths are called
achromats; lens which correct at three wavelengths are called apochromats.  The specific
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wavelengths for which the lens is corrected will depend upon the application.  For
example, film is more blue sensitive than the human eye so camera lenses are corrected for
blues and blue-greens.  The human eye’s peak response is in the yellow-green so visual
instruments are corrected for yellow-greens.

There are two methods of correcting for chromatic aberration.  The first is to use a
compound lens — a doublet — made of a flint glass lens and a crown glass lens placed in
contact.  The principle of operation is that the dispersion produced in one lens is canceled
by the opposite dispersion of the other.  Without derivation, if the power of the desired lens
combination is PA (A for achromatic) and D1  and D2  are the dispersions of the first and
second lens respectively and P1 and P2  their respective power we have

P PA1
2

2 1

=
-
D

D D
and

P PA2
1

2 1

= -
-
D

D D

Example:
with the following data on crown and flint glass design an achromatic doublet with a
+10cm focal length.

nF nD nC

crown 1.53 1.523 1.52
flint 1.63 1.62 1.61

For the crown glass,

D1 1
1 53 1 52
1 523 1

0 019= -
-

= -
-

=n n

n
F C

D

. .
.

.

and for the flint

D2 1
1 63 1 61

1 62 1
0 032= -

-
= -

-
=n n

n
F C

D

. .
.

.

The powers are then

P m1
110

0 032
0 032 0 019

24 6= ( )
-

= -.
. .

.

and

P m2
110

0 019
0 032 0 019

14 6= -( )
-

= - -.
. .

.

For a thin lens P P P mlens = + = - = -
1 2

124 6 14 6 10 0. . .

and since P
f m

mlens = = = -1 1
0 1

10 1

.
 we have our desired lens.

Knowing the focal lengths we may now determine the lens curvatures from the lensmaker’s
formula

P n
r r

= -
Ê
ËÁ

�
�̄D 1 1

1 2

Suppose we let the first lens be a symmetric doublet, i.e., r R1 = +  and r R2 = - , so that
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24 6 1 523 1
1 11. .m
R R

- = -( ) +Ê
Ë

�
¯

which gives
R cm= +4 25.

The third surface will have r3 given by

- = -( ) - +
Ê
ËÁ

�
�̄

-14 6 1 62 1
1 11

3

. .m
R r

or r cm3 20= + .  The resulting lens is of the form

flintcrown

A second method of correcting for chromatic aberration is to use two positive lenses made
of the same material and separated by a distacne equal to one-half the sum of their

individual focal lengths, i.e., d f f= +( )1
2 1 2 .  This is called a spaced doublet and its

principle of operation will not be discussed here.

Propagation of a ray through a biperiodic lens sequence, i.e., a series of lenses of
alternating focal lengths f1  and f2  separated by a distance d.  Such a lens structure is called
a lens waveguide and has been used as a guide structure for light.  This lens system is also
formally equivalent to an optical resonator formed by mirrors of radii R f1 12=  and
R f2 22= , i.e., a laser cavity.

f2f1
light ray

s s+1

d d

z

f2f1

(a) light rays in a biperiodic lens sequence
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d

z

R1 R2

(b) light rays in an optical resonator

For the lens sequence we will write the system matrix between planes s  and s +1

r

r
f

d
f

d

r

r
s

s

s

s

+

+

È
ÎÍ

ù
ûú
= -È

Î
Í
Í

ù

û
ú
ú
È
ÎÍ

ù
ûú

-È

Î
Í
Í

ù

û
ú
ú
È
ÎÍ

ù
ûú
È
ÎÍ

ù
ûú

1

1
2 1

1
1

0 1

1 0

1
1

1

0 1

1 0

1

' '

r

r

d

f f
d

d

f f
d

r

r
s

s

s

s

+

+

È
ÎÍ

ù
ûú
= - -È

Î
Í
Í

ù

û
ú
ú

- -È

Î
Í
Í

ù

û
ú
ú
È
ÎÍ

ù
ûú

1

1
2 2 1 1

1
1

1

1
1

1

' '

r

r

d

f

d

f

d

f f f

d

f f

d
d

f

d

f

r

r
s

s

s

s

+

+

È
ÎÍ

ù
ûú
=

-
Ê
ËÁ

�
�̄ -
Ê
ËÁ

�
�̄ - - - +

-
Ê
ËÁ

�
�̄ -

È

Î

Í
Í
Í
Í

ù

û

ú
ú
ú
ú

È
ÎÍ

ù
ûú

1

1

2 1 2 1 2 1 2

1 1

1 1
1 1

2 1

' '
(1)

r

r

D C

B A

r

r
s

s

s

s

+

+

È
ÎÍ

ù
ûú
= È
ÎÍ

ù
ûú
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ù
ûú

1

1

' '
(2)

In (2), A , B , C  and D  are      NOT    the Gaussian coefficents we have been working with.
This particular notation has been chosen to be consistent with Yariv,   Introduction to Optical
Electronics   .  In the manner of Yariv, we may write (2) out for clarity as

r Dr Crs s s+ = +1' ' (3)
r Br Ars s s+ = +1 ' (4)

From (4), r
B

r Ars s s' = -( )+
1

1

Since this result must be true for all unit cells (basic lens units) of our system this result
must also hold true for the transformation between planes s +1 and s + 2, i.e.,

r
B

r Ars s s+ + += -( )1 2 1

1
'

Substituting from (3),

Cr Dr
B

r Ars s s s+ = -( )+ +'
1

2 1

and again from (4)
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Cr
D

B
r Ar

B
r Ars s s s s+ -( ) = -( )+ + +1 2 1

1

BCr Dr ADr r Ars s s s s+ - = -+ + +1 2 1

and after rearranging
r A D r AD BC rs s s+ +- +( ) + -( ) =2 1 0

Recalling that the determinant of a ray matrix is always 1 we have from (2) that

AD BC- = 1.  We also define b
A D= +

2
 where b  is     NOT     a Gaussian coefficent but only

a variable in the problem.  Using these definitions and results we get
r br rs s s+ +- + =2 12 0 (5)

To determine the solution of (5) we must first develop some ideas from what is called finite
difference calculus.  Define

Dr r rs s s= -+1 (6)
This is the first forward difference and may be likened to a derivative since here

Ds s s= +( ) - =1 1 and 
D
D

Dr

s
rs
s= .  This is called finite difference calculus since Ds = 1

whereas in ordinary differential calculus we would take the limit as s Æ� , i.e.,

lim '
s

s
s

r

s
r

Æ�
=D

D
.  In a similar fashion to (6) we may define the second forward difference

D D D D D2
1 2 1 1r r r r r r r rs s s s s s s s= ( ) = - = - - ++ + + +

D2
2 12r r r rs s s s= - ++ + (7)

Rewriting (5) using (7) we get
D2

12 2 0r b rs s+ -( ) =+ (8)

This is analagous to the ordinary differential equation 
d f

dx
af

2

2 0+ =  where a  is a constant.

which has solutions
f c e c ei ax i ax= + -

1 2

By analogy we may try a solution to (8) of the form r r es o
isq=  where s  is the independent

variable and ro  and q  are constants to be determined.  Substituting this solution into (7) we

get r e br e r eo
i s q

o
i s q

o
isq+( ) +( )- + =2 12 0

This is a quadratic in eiq  and has solutions

e b biq = ± -2 1 (9)

At this point let us define b = cosq  so that b i2 1- = sinq  and (9) becomes
e i eiq i= ± = ±cos sinq q q

The general solution to (5) is then
r c e c es

is is= + -
1 2

q q (10)
where c1 and c2  are constants to be determined by the initial conditions.  Equation (10)
may also be written in the form

r r ss = +( )max sin q a (11)
where rmax  and a  are found from the initial ray displacement and slope.

For this to be a real lens waveguide it is necessary that the light rays in the system always
be incident upon the finite sized lenses.  This requires that q  in (10) be real.  For if q  were
complex or imaginary we would have unbounded hyperbolic solutions.  [Example: in (11)



-54-

if a = 0  and q  is complex, i.e., sin ' sinh 'si sq q( ) = ( )]  For q  to be real it is necessary that

1 02- ≥b  [from b i2 1- = sinq ] or
b2 1£ (12)

From this and with the definition of b we get, after some algebra,
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The factors 1
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f
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f
 are often called stability factors and are usually defined as
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(14)

This result is more general than it seems and we shall return to it when we discuss optical
resonators.  A plot of the condition (13) [ 0 11 2£ £g g ] is given below.

g g1 2 0<

g g1 2 0<
g g1 2 0>

g g1 2 0>

+1

+1

-1

-1

unstable
unstable

unstable

unstable

g1

g2


